

# Order among quasi-arithmetic operator means for convex functions

#### Jadranka Mićić Josip Pečarić



J. Mićić, J. Pečarić ()

Operator means for convex functions

Convexity and Applications 1 / 32

< ロ > < 同 > < 回 > < 回 >

## Contents



Introduction

- Generalization of Jensen's operator inequality
- Generalization of converses of Jensen's operator inequality
- Next generalization

#### 2 Quasi-arithmetic mean

- Monotonicity
- Difference and ratio type inequalities
- Power means

#### Future research

- Jensen's inequality for operators without operator convexity
- Quasi-arithmetic means without operator convexity
- Converse inequalities with condition on spectra

A B F A B F

< 6 b

# 1.1. Generalization of Jensen's operator inequality

Let *T* be a locally compact Hausdorff space and let  $\mathcal{A}$  be a  $C^*$ -algebra of operators on some Hilbert space *H*. We say that a field  $(x_t)_{t\in T}$  of operators in  $\mathcal{A}$  is continuous if the function  $t \mapsto x_t$  is norm continuous on *T*. If in addition  $\mu$  is a Radon measure on *T* and the function  $t \mapsto ||x_t||$  is integrable, then we can form *the Bochner integral*  $\int_T x_t d\mu(t)$ , which is the unique element in  $\mathcal{A}$  such that

$$\varphi\left(\int_{T} x_t \, d\mu(t)\right) = \int_{T} \varphi(x_t) \, d\mu(t)$$

for every linear functional  $\varphi$  in the norm dual  $\mathcal{A}^*$ . Assume furthermore that  $(\Phi_t)_{t\in T}$  is a field of positive linear mappings  $\Phi_t : \mathcal{A} \to \mathcal{B}$  from  $\mathcal{A}$  to another  $C^*$ -algebra  $\mathcal{B}$  of operators on a Hilbert space K. We say that such a field is continuous if the function  $t \mapsto \Phi_t(x)$  is continuous for every  $x \in \mathcal{A}$ . If the  $C^*$ -algebras include the identity operators, and the field  $t \mapsto \Phi_t(1)$  is integrable with integral equals 1, we say that  $(\Phi_t)_{t\in T}$  is unital.

J. Mićić, J. Pečarić ()

F.Hansen, J.Pečarić and I.Perić, *Jensen's operator inequality and its converse*, Math. Scand., **100** (2007), 61–73.
 find a generalization of Jensen's operator inequality:

#### Theorem

Let  $f : I \to \mathbb{R}$  be an operator convex functions defined on an interval I, and let  $\mathcal{A}$  and  $\mathcal{B}$  be a unital  $C^*$ -algebras. If  $(\Phi_t)_{t \in T}$  is a unital field of positive linear mappings  $\Phi_t : \mathcal{A} \to \mathcal{B}$  defined on a locally compact Hausdorff space T with a bounded Radon measure  $\mu$ , then

$$f\left(\int_{T} \Phi_{t}(x_{t}) d\mu(t)\right) \leq \int_{T} \Phi_{t}(f(x_{t})) d\mu(t)$$
(1)

holds for every bounded continuous fields  $(x_t)_{t \in T}$  of self-adjoint elements in A with spectra contained in I.

< ロ > < 同 > < 回 > < 回 >

# 1.2. Generalization of converses of Jensen's operator inequality

In a long research series, Mond and Pečarić established the method which gives the reverse to Jensen inequality associated with convex functions. The principle yields a rich harvest in a field of operator inequalities. We call it **the Mond-Pečarić method** for convex functions. One of the most important attributes of Mond-Pečarić method is to offer a totally new viewpoint in the field of operator inequalities. Using the Mond-Pečarić method, F.Hansen, J.Pečarić and I.Perić generalized the previous inequality similar to what they made with Jensen's inequality.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Theorem

Let  $(x_t)_{t\in T}$  be a bounded continuous field of self-adjoint elements in a unital  $C^*$ -algebra  $\mathcal{A}$  with spectra in [m, M] defined on a locally compact Hausdorff space T equipped with a bounded Radon measure  $\mu$ , and let  $(\Phi_t)_{t\in T}$  be a unital field of positive linear maps  $\Phi_t : \mathcal{A} \to \mathcal{B}$  from  $\mathcal{A}$  to another unital  $C^*$ -algebra  $\mathcal{B}$ . Let  $f, g : [m, M] \to \mathbb{R}$  and  $F : U \times V \to \mathbb{R}$ be functions such that  $f([m, M]) \subset U, g([m, M]) \subset V$  and F is bounded. If F is operator monotone in the first variable and f is convex in the interval [m, M], then

$$F\left[\int_{T} \Phi_t(f(x_t)) d\mu(t), g\left(\int_{T} \Phi_t(x_t) d\mu(t)\right)\right] \leq \sup_{m \leq z \leq M} F\left[\alpha_f z + \beta_f, g(z)\right] \mathbf{1}.$$

In the dual case (when f is operator concave) the opposite inequality holds with sup instead of inf.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# 1.3. Next generalization

#### Corollary

Let  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $(x_t)_{t \in T}$  be as above. Furthermore, let  $(\phi_t)_{t \in T}$  be a field of positive linear maps  $\phi_t : \mathcal{A} \to \mathcal{B}$ , such that the field  $t \mapsto \phi_t(\mathbf{1})$  is integrable with  $\int_T \phi_t(\mathbf{1}) d\mu(t) = k\mathbf{1}$  for some positive scalar k. Then the inequality

$$f\left(\frac{1}{k}\int_{\mathcal{T}}\phi_t(x_t)\,d\mu(t)\right) \leq \frac{1}{k}\int_{\mathcal{T}}\phi_t(f(x_t))\,d\mu(t) \tag{2}$$

holds for each operator convex function  $f : I \to \mathbb{R}$  defined on I. In the dual case (when f is operator concave) the opposite inequality holds in (2).

・ロト ・ 四ト ・ ヨト ・ ヨト …

We remark that if  $\Phi(\mathbf{1}) = k\mathbf{1}$ , for some positive scalar *k* and *f* is an operator convex function, then  $f(\Phi(A)) \le \Phi(f(A))$  is not true in general.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We remark that if  $\Phi(\mathbf{1}) = k\mathbf{1}$ , for some positive scalar *k* and *f* is an operator convex function, then  $f(\Phi(A)) \le \Phi(f(A))$  is not true in general.

#### Example

A map  $\Phi: M_2(M_2(\mathbb{C})) \to M_2(M_2(\mathbb{C}))$  defined by

$$\Phi\left(\begin{array}{cc}A & 0\\0 & B\end{array}\right) = \left(\begin{array}{cc}A+B & 0\\0 & A+B\end{array}\right) \quad \text{for } A, B \in \mathbf{M}_2(\mathbb{C})$$

is a positive linear map and  $\Phi(I) = 2I$ . We put  $f(t) = t^2$  and

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}. \text{ Then}$$
$$f\left(\Phi\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)\right) - \Phi\left(f\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)\right) = \begin{pmatrix} 4 & 3 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 3 & 2 \end{pmatrix} \ge 0.$$

# Generalization of converses of Jensen's inequality

We have a result of the Li-Mathias type:

#### Theorem

Let  $(x_t)_{t\in T}$  and  $(\phi_t)_{t\in T}$  be as above,  $f : [m, M] \to \mathbb{R}$ ,  $g : [km, kM] \to \mathbb{R}$ and  $F : U \times V \to \mathbb{R}$  be functions such that  $(kf)([m, M]) \subset U$ ,  $g([km, kM]) \subset V$  and F is bounded. If F is operator monotone in the first variable, then

$$\inf_{\substack{km \leq z \leq kM}} F\left[k \cdot h_1\left(\frac{1}{k}z\right), g(z)\right] \mathbf{1} \\
\leq F\left[\int_T \phi_t(f(x_t)) d\mu(t), g\left(\int_T \phi_t(x_t) d\mu(t)\right)\right] \\
\leq \sup_{\substack{km \leq z \leq kM}} F\left[k \cdot h_2\left(\frac{1}{k}z\right), g(z)\right] \mathbf{1}$$
(3)

holds for every operator convex function  $h_1$  on [m, M] such that  $h_1 \leq f$ and for every operator concave function  $h_2$  on [m, M] such that  $h_2 \geq f$ .

J. Mićić, J. Pečarić ()

Applying RHS of (3) for a convex function f (or LHS of (3) for a concave function f) we obtain the following theorem:

#### Theorem

Let  $(x_t)_{t\in T}$  and  $(\Phi_t)_{t\in T}$  be as in § 2.1.,  $f : [m, M] \to \mathbb{R}$ ,  $g : [km, kM] \to \mathbb{R}$ and  $F : U \times V \to \mathbb{R}$  be functions such that  $(kf)([m, M]) \subset U$ ,  $g([km, kM]) \subset V$  and F is bounded. If F is operator monotone in the first variable and f is convex in the interval [m, M], then

$$F\left[\int_{T} \Phi_t(f(x_t)) d\mu(t), g\left(\int_{T} \Phi_t(x_t) d\mu(t)\right)\right] \leq \sup_{km \leq z \leq kM} F\left[\alpha_f z + \beta_f k, g(z)\right] \mathbf{1}$$

In the dual case (when f is concave) the opposite inequality holds in (4) with inf instead of sup.

< ロ > < 同 > < 回 > < 回 >

## 2. Quasi-arithmetic mean

A generalized quasi-arithmetic operator mean:

$$M_{\varphi}(x,\Phi) := \varphi^{-1}\left(\int_{\mathcal{T}} \frac{1}{k} \Phi_t(\varphi(x_t)) d\mu(t)\right), \qquad (5)$$

A (10) × A (10) × A (10)

# 2. Quasi-arithmetic mean

A generalized quasi-arithmetic operator mean:

$$M_{\varphi}(x,\Phi) := \varphi^{-1}\left(\int_{\mathcal{T}} \frac{1}{k} \Phi_t(\varphi(x_t)) d\mu(t)\right), \qquad (5)$$

under these conditions:  $(x_t)_{t \in T}$  is a bounded continuous field of operators in a  $C^*$ -algebra B(H) with spectra in [m, M] for some scalars m < M,  $(\Phi_t)_{t \in T}$  is a field of positive linear maps  $\Phi_t : B(H) \to B(K)$ , such that the field  $t \mapsto \Phi_t(1)$  is integrable with  $\int_T \Phi_t(1) d\mu(t) = k\mathbf{1}$  for some positive scalar k and  $\varphi \in C[m, M]$  is a strictly monotone function.

・ロット (雪) ( き) ( き)

# 2. Quasi-arithmetic mean

A generalized quasi-arithmetic operator mean:

$$M_{\varphi}(x,\Phi) := \varphi^{-1}\left(\int_{\mathcal{T}} \frac{1}{k} \Phi_t(\varphi(x_t)) d\mu(t)\right), \qquad (5)$$

under these conditions:  $(x_t)_{t \in T}$  is a bounded continuous field of operators in a  $C^*$ -algebra B(H) with spectra in [m, M] for some scalars m < M,  $(\Phi_t)_{t \in T}$  is a field of positive linear maps  $\Phi_t : B(H) \to B(K)$ , such that the field  $t \mapsto \Phi_t(1)$  is integrable with  $\int_T \Phi_t(1) d\mu(t) = k\mathbf{1}$  for some positive scalar k and  $\varphi \in C[m, M]$  is a strictly monotone function.

・ロット (雪) ( き) ( き)

# 2.1. Monotonicity

#### First, we study the monotonicity of quasi-arithmetic means.

#### Theorem

Let  $(x_t)_{t \in T}$ ,  $(\Phi_t)_{t \in T}$  be as in the definition of the quasi-arithmetic mean (5). Let  $\psi, \phi \in C[m, M]$  be strictly monotone functions. If one of the following conditions is satisfied:

(i)  $\psi \circ \varphi^{-1}$  is operator convex and  $\psi^{-1}$  is operator monotone, (i')  $\psi \circ \varphi^{-1}$  is operator concave and  $-\psi^{-1}$  is operator monotone, (ii)  $\varphi^{-1}$  is operator convex and  $\psi^{-1}$  is operator concave, then

$$M_{\varphi}(x,\Phi) \leq M_{\psi}(x,\Phi).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

### If one of the following conditions is satisfied:

(iii)  $\psi \circ \varphi^{-1}$  is operator concave and  $\psi^{-1}$  is operator monotone, (iii')  $\psi \circ \varphi^{-1}$  is operator convex and  $-\psi^{-1}$  is operator monotone, (iv)  $\varphi^{-1}$  is operator concave and  $\psi^{-1}$  is operator convex, then

$$M_{\psi}(x,\Phi) \leq M_{\phi}(x,\Phi).$$

J. Mićić, J. Pečarić ()

#### Proof

We will prove only the case (i). If we put  $f = \psi \circ \varphi^{-1}$  in the generalized Jensen's inequality and replace  $x_t$  with  $\varphi(x_t)$ , then we obtain

$$\begin{split} \psi \circ \varphi^{-1} \left( \int_{\mathcal{T}} \frac{1}{k} \Phi_t(\varphi(x_t)) d\mu(t) \right) &\leq \int_{\mathcal{T}} \frac{1}{k} \Phi_t\left( \psi \circ \varphi^{-1}(\varphi(x_t)) \right) d\mu(t) \\ &= \int_{\mathcal{T}} \frac{1}{k} \Phi_t(\psi(x_t)) d\mu(t). \end{split}$$

Since  $\psi^{-1}$  is operator monotone, it follows

$$\varphi^{-1}\left(\int_{\mathcal{T}}\frac{1}{k}\,\Phi_t(\varphi(x_t))\,d\mu(t)\right)\leq \psi^{-1}\left(\int_{\mathcal{T}}\frac{1}{k}\,\Phi_t(\psi(x_t))\,d\mu(t)\right).$$

#### Theorem

Let  $(x_t)_{t \in T}$ ,  $(\Phi_t)_{t \in T}$  be as in the definition of the quasi-arithmetic mean and  $\psi, \phi \in C[m, M]$  be strictly monotone functions. Then

 $M_{\varphi}(x,\Phi) = M_{\psi}(x,\Phi)$  for all  $(x_t)_{t\in T}$ ,  $(\Phi_t)_{t\in T}$ 

if and only if

 $\phi = A\psi + B$  for some real numbers  $A \neq 0$  and B.

J. Mićić, J. Pečarić ()

Operator means for convex functions

Convexity and Applications 15/32

# 2.2. Difference and ratio type inequalities among quasi-arithmetic means

Next, we study difference and ratio type inequalities among quasi-arithmetic means. We investigate the estimates of these inequalities, i.e. we will determine real constants  $\alpha$  and  $\beta$  such that

 $M_{\psi}(x, \Phi) - M_{\phi}(x, \Phi) \leq \beta$  1 and  $M_{\psi}(x, \Phi) \leq \alpha M_{\phi}(x, \Phi)$ 

holds. With that in mind, we shall prove the following general result.

< 日 > < 同 > < 回 > < 回 > < 回 > <

# 2.2. Difference and ratio type inequalities among quasi-arithmetic means

Next, we study difference and ratio type inequalities among quasi-arithmetic means. We investigate the estimates of these inequalities, i.e. we will determine real constants  $\alpha$  and  $\beta$  such that

 $M_{\psi}(x,\Phi) - M_{\phi}(x,\Phi) \leq \beta$  1 and  $M_{\psi}(x,\Phi) \leq \alpha M_{\phi}(x,\Phi)$ 

holds. With that in mind, we shall prove the following general result.

#### Theorem

Let  $(x_t)_{t\in T}$ ,  $(\Phi_t)_{t\in T}$  be as in the definition of the quasi-arithmetic mean. Let  $\psi, \phi \in C[m, M]$  be strictly monotone functions and  $F : [m, M] \times [m, M] \rightarrow \mathbb{R}$  be a bounded and operator monotone function in its first variable.

#### (continued)

If one of the following conditions is satisfied:

(i)  $\psi \circ \varphi^{-1}$  is convex and  $\psi^{-1}$  is operator monotone, (i')  $\psi \circ \varphi^{-1}$  is concave and  $-\psi^{-1}$  is operator monotone, then

$$F\left[M_{\psi}(x,\Phi),M_{\varphi}(x,\Phi)\right] \qquad (\theta \\ \leq \sup_{0 \leq \theta \leq 1} F\left[\psi^{-1}\left(\theta\psi(m) + (1-\theta)\psi(M),\varphi^{-1}\left(\theta\varphi(m) + (1-\theta)\varphi(M)\right)\right)\right] \mathbf{1}.$$

#### (continued)

If one of the following conditions is satisfied:

(i)  $\psi \circ \phi^{-1}$  is convex and  $\psi^{-1}$  is operator monotone, (i')  $\psi \circ \phi^{-1}$  is concave and  $-\psi^{-1}$  is operator monotone, then

$$F\left[M_{\psi}(x,\Phi),M_{\varphi}(x,\Phi)\right] \qquad (0)$$

$$\leq \sup_{0\leq\theta\leq 1}F\left[\psi^{-1}\left(\theta\psi(m)+(1-\theta)\psi(M),\varphi^{-1}\left(\theta\varphi(m)+(1-\theta)\varphi(M)\right)\right)\right] \mathbf{1}.$$

If one of the following conditions is satisfied:

(ii)  $\psi \circ \phi^{-1}$  is concave and  $\psi^{-1}$  is operator monotone, (ii')  $\psi \circ \phi^{-1}$  is convex and  $-\psi^{-1}$  is operator monotone, then the opposite inequality is valid in (6) with inf instead of sup.

4 D N 4 B N 4 B N 4 B N

#### Remark

It is particularly interesting to observe inequalities when the function F in Theorem for F(u, v) has the form F(u, v) = u - v and  $F(u, v) = v^{-1/2}uv^{-1/2}$  (v > 0). E.g. if (i) or (i') of this theorem is satisfied, then

$$M_{\Psi}(x,\Phi) \leq M_{\varphi}(x,\Phi) + \sup_{0 \leq \theta \leq 1} \left\{ \Psi^{-1} \left( \theta \Psi(m) + (1-\theta) \Psi(M) \right) - \varphi^{-1} \left( \theta \varphi(m) + (1-\theta) \varphi(M) \right) \right\} \mathbf{1},$$

If in addition  $\phi > 0$ , then

$$M_{\Psi}(x,\Phi) \leq \sup_{0 \leq \theta \leq 1} \left\{ \frac{\Psi^{-1}\left(\theta \Psi(m) + (1-\theta)\Psi(M)\right)}{\varphi^{-1}\left(\theta \varphi(m) + (1-\theta)\varphi(M)\right)} \right\} M_{\varphi}(x,\Phi).$$

We will investigate the above inequalities, with different assumptions. For this purpose, we introduce some notations for real valued continuous functions  $\psi, \phi \in C[m, M]$ 

$$a_{\psi,\phi} = \frac{\psi(M) - \psi(M)}{\phi(M) - \phi(M)}, \quad b_{\psi,\phi} = \frac{M\psi(M) - M\psi(M)}{\phi(M) - \phi(M)}$$

We will investigate the above inequalities, with different assumptions. For this purpose, we introduce some notations for real valued continuous functions  $\psi, \phi \in C[m, M]$ 

$$a_{\psi,\phi} = rac{\psi(M) - \psi(M)}{\phi(M) - \phi(M)}, \quad b_{\psi,\phi} = rac{M\psi(M) - M\psi(M)}{\phi(M) - \phi(M)}.$$

#### Theorem

Let  $(x_t)_{t\in T}$ ,  $(\Phi_t)_{t\in T}$  be as in the definition of the quasi-arithmetic mean and  $\psi, \phi \in C[m, M]$  be strictly monotone functions. Let  $\psi \circ \phi^{-1}$  be convex (resp. concave).

(i) If  $\psi^{-1}$  is operator monotone and subadditive (resp. superadditive) on  $\mathbb{R}$ , then

イロト イポト イラト イラト

(continued)

$$egin{aligned} & M_{\psi}(x,\Phi) \leq M_{\phi}(x,\Phi) + \psi^{-1}(eta) \mathbf{1} \ (\mathbf{resp.} \ M_{\psi}(x,\Phi) \geq M_{\phi}(x,\Phi) + \psi^{-1}(eta) \mathbf{1} \ ), \end{aligned}$$

- (i') if  $-\psi^{-1}$  is operator monotone and subadditive (resp. superadditive) on  $\mathbb{R}$ , then the opposite inequality is valid in (7),
- (ii) if  $\psi^{-1}$  is operator monotone and superadditive (resp. subadditive) on  $\mathbb{R},$  then

$$M_{\psi}(x, \Phi) \le M_{\phi}(x, \Phi) - \phi^{-1}(-\beta)\mathbf{1}$$
 (8)  
(resp.  $M_{\psi}(x, \Phi) \ge M_{\phi}(x, \Phi) - \phi^{-1}(-\beta)\mathbf{1}$  ),

(ii') if  $-\psi^{-1}$  is operator monotone and superadditive (resp. subadditive) on  $\mathbb{R}$ , then the opposite inequality is valid in (8),

J. Mićić, J. Pečarić ()

Operator means for convex functions

Furthermore, if  $\psi \circ \varphi^{-1}$  is strictly convex (resp. strictly concave) differentiable, then the constant  $\beta \equiv \beta(m, M, \varphi, \psi)$  can be written more precisely as  $\beta = a_{\psi,\varphi} z_0 + b_{\psi,\varphi} - \psi \circ \varphi^{-1}(z_0)$ , where  $z_0$  is the unique solution of the equation  $(\psi \circ \varphi^{-1})'(z) = a_{\psi,\varphi}, (\varphi_m < z_0 < \varphi_M).$ 

#### Proof

We will prove only the case (i). Putting in Theorem  $F(u, v) = u - \lambda v$ ,  $\lambda = 1$ ,  $f = g = \psi \circ \varphi^{-1}$  and replacing  $\Phi_t$  by  $\frac{1}{k} \Phi_t$ , we have

$$\begin{split} \int_{\mathcal{T}} \frac{1}{k} \Phi_t(\psi(x_t)) \, d\mu(t) &= \int_{\mathcal{T}} \frac{1}{k} \Phi_t\left(\psi \circ \varphi^{-1}(\phi(x_t))\right) d\mu(t) \\ &\leq \psi \circ \varphi^{-1}\left(\int_{\mathcal{T}} \frac{1}{k} \Phi_t(\phi(x_t)) \, d\mu(t)\right) + \beta \mathbf{1}, \end{split}$$

where  $\beta$  as in the theorem statement. Since  $\psi^{-1}$  is operator monotone and subadditive on  $\mathbb{R}$ , then we obtain  $M_{\psi}(x, \Phi) \leq \psi^{-1} \left( \psi \circ \varphi^{-1} \left( \int_{T} \Phi_{t}(\varphi(x_{t})) d\mu(t) \right) + \beta \mathbf{1} \right) \leq M_{\varphi}(x, \Phi) + \psi^{-1}(\beta) \mathbf{1}.$ 

#### Theorem

Let  $(x_t)_{t\in T}$ ,  $(\Phi_t)_{t\in T}$  be as in the definition of the quasi-arithmetic mean and  $\psi, \phi \in C[m, M]$  be strictly monotone functions. Let  $\psi \circ \phi^{-1}$  be convex and  $\psi > 0$  on [m, M].

(i) If  $\psi^{-1}$  is operator monotone and submultiplicative on  $\mathbb{R}$ , then

$$M_{\psi}(x,\Phi) \leq \psi^{-1}(\alpha) M_{\phi}(x,\Phi), \tag{9}$$

(i') if  $-\psi^{-1}$  is operator monotone and submultiplicative on  $\mathbb{R}$ , then the opposite inequality is valid in (9),

#### Theorem

Let  $(x_t)_{t\in T}$ ,  $(\Phi_t)_{t\in T}$  be as in the definition of the quasi-arithmetic mean and  $\psi, \phi \in C[m, M]$  be strictly monotone functions. Let  $\psi \circ \phi^{-1}$  be convex and  $\psi > 0$  on [m, M].

(i) If  $\psi^{-1}$  is operator monotone and submultiplicative on  $\mathbb R,$  then

$$M_{\psi}(x,\Phi) \leq \psi^{-1}(\alpha) M_{\phi}(x,\Phi), \tag{9}$$

- (i') if  $-\psi^{-1}$  is operator monotone and submultiplicative on  $\mathbb{R}$ , then the opposite inequality is valid in (9),
- (ii) if  $\psi^{-1}$  is operator monotone and supermultiplicative on  $\mathbb{R}$ , then

$$M_{\psi}(x,\Phi) \le \left[\psi^{-1}(\alpha^{-1})\right]^{-1} M_{\phi}(x,\Phi),$$
 (10)

(ii') if  $-\psi^{-1}$  is operator monotone and supermultiplicative on  $\mathbb{R}$ , then the opposite inequality is valid in (10),

where

(continued)

$$\alpha = \max_{\varphi_m \leq z \leq \varphi_M} \left\{ \frac{a_{\psi,\varphi}z + b_{\psi,\varphi}}{\psi \circ \varphi^{-1}(z)} \right\} \quad \left( \text{resp. } \alpha = \min_{\varphi_m \leq z \leq \varphi_M} \left\{ \frac{a_{\psi,\varphi}z + b_{\psi,\varphi}}{\psi \circ \varphi^{-1}(z)} \right\} \right).$$

Furthermore, if  $\psi \circ \varphi^{-1}$  is strictly convex differentiable, then the constant  $\alpha \equiv \alpha(m, M, \varphi, \psi)$  can be written more precisely as

$$\alpha = \frac{a_{\psi,\phi}z_0 + b_{\psi,\phi}}{\psi \circ \phi^{-1}(z_0)},$$

where  $z_0$  is the unique solution of the equation  $(\psi \circ \phi^{-1})'(a_{\psi,\phi}z + a_{\psi,\phi}) = a_{\psi,\phi} \cdot \psi \circ \phi^{-1}(z), \ (\phi_m < z_0 < \phi_M).$  (continued)

$$\alpha = \max_{\varphi_m \le z \le \varphi_M} \left\{ \frac{a_{\psi,\varphi}z + b_{\psi,\varphi}}{\psi \circ \varphi^{-1}(z)} \right\} \quad \left( \text{resp. } \alpha = \min_{\varphi_m \le z \le \varphi_M} \left\{ \frac{a_{\psi,\varphi}z + b_{\psi,\varphi}}{\psi \circ \varphi^{-1}(z)} \right\} \right).$$

Furthermore, if  $\psi \circ \phi^{-1}$  is strictly convex differentiable, then the constant  $\alpha \equiv \alpha(m, M, \phi, \psi)$  can be written more precisely as

$$\alpha = \frac{a_{\psi,\phi}z_0 + b_{\psi,\phi}}{\psi \circ \phi^{-1}(z_0)},$$

where  $z_0$  is the unique solution of the equation  $(\psi \circ \phi^{-1})'(a_{\psi,\phi}z + a_{\psi,\phi}) = a_{\psi,\phi} \cdot \psi \circ \phi^{-1}(z), \ (\phi_m < z_0 < \phi_M).$ 

#### Remark

We can obtain order among quasi-arithmetic means using the function order of positive operator.

J. Mićić, J. Pečarić ()

Operator means for convex functions

Convexity and Applications 23 / 32

## 2.3. Power means

If we put  $\varphi(t) = t^r$  and  $\psi(t) = t^s$  in Theorem about monotonicity of quasi-arithmetic means, then we obtain the order among power means:

Let  $(A_t)_{t \in T}$ ,  $(\Phi_t)_{t \in T}$  be as above. Let  $A_t$  be a positive operator and  $\int_T \Phi_t(\mathbf{1}) d\mu(t) = k\mathbf{1}$  for some positive scalar *k*. Then

$$\left(\frac{1}{k}\int_{\mathcal{T}}\Phi_t\left(A_t^r\right)d\mu(t)\right)^{1/r} \leq \left(\frac{1}{k}\int_{\mathcal{T}}\Phi_t\left(A_t^s\right)d\mu(t)\right)^{1/s}$$

holds for either  $r \le s$ ,  $r \notin (-1, 1)$ ,  $s \notin (-1, 1)$  or  $1/2 \le r \le 1 \le s$  or  $r \le -1 \le s \le -1/2$ .

In the remaining cases we need to use <u>the function order</u> of positive operator.

J. Mićić, J. Pečarić ()

3

# 3. Future research3.1 Jensen's inequality for operators without operator convexity

Jensen's opeator inequality would be false if we replaced an operator convex function by general convex.

イロト イポト イラト イラト

# 3. Future research

# 3.1 Jensen's inequality for operators without operator convexity

Jensen's opeator inequality would be false if we replaced an operator convex function by general convex.

E.g.

We put mappings 
$$\Phi_1, \Phi_2 : M_3(\mathbb{C}) \to M_2(\mathbb{C})$$
 as follows:  
 $\Phi_1((a_{ij})_{1 \le i,j \le 3}) = \frac{1}{2}(a_{ij})_{1 \le i,j \le 2}, \Phi_2 = \Phi_1$ . Then  $\Phi_1(I_3) + \Phi_2(I_3) = I_2$ . If  
 $A_1 = 2 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$  and  $A_2 = 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ , then we have  
 $(\Phi_1(A_1) + \Phi_2(A_2))^4 = \begin{pmatrix} 16 & 0 \\ 0 & 0 \end{pmatrix} \le \begin{pmatrix} 80 & 40 \\ 40 & 24 \end{pmatrix} = \Phi_1(A_1^4) + \Phi_2(A_2^4)$ .  
Namely we have no relation between  $(\Phi_1(A_1) + \Phi_2(A_2))^4$  and

 $\Phi_1(A_1^4) + \Phi_2(A_2^4)$  under the operator order.

We observe that in above example we have the following bounds of matrices  $A_1, A_2, A$ :  $A = \Phi_1(A_1) + \Phi_2(A_2) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$  and [m, M] = [0, 2],  $[m_1, M_1] \subset [-1.60388, 4.49396]$ ,  $[m_2, M_2] = [0, 2]$ , i.e.  $(m, M) \subset [m_1, M_1] \cup [m_2, M_2]$ 

similarly as in Figure 1.a).



But, if 
$$A_1 = \begin{pmatrix} -14 & 0 & 1 \\ 0 & -2 & -1 \\ 1 & -1 & -1 \end{pmatrix}$$
 and  $A_2 = \begin{pmatrix} 15 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 15 \end{pmatrix}$ , then we have  $(\Phi_1(A_1) + \Phi_2(A_2))^4 = \begin{pmatrix} \frac{1}{16} & 0 \\ 0 & 0 \end{pmatrix} \le \begin{pmatrix} 89660 & -247 \\ -247 & 51 \end{pmatrix} =$ 

 $\Phi_1(A_1^4) + \Phi_2(A_2^4)$ . So we have that an equality of Jensen' type now is valid.

In this case we have 
$$A = \Phi_1(A_1) + \Phi_2(A_2) = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & 0 \end{pmatrix}$$
 and  $[m, M] = [0, 0.5], [m_1, M_1] \subset [-14.077, -0.328566], [m_2, M_2] = [2, 15],$  i.e.

 $(m, M) \cap [m_1, M_1] = \emptyset$  and  $(m, M) \cap [m_2, M_2] = \emptyset$ .

similarly as in Figure 1.b).

It is no coincidence that Jensen' operator inequality is valid in this example. In the following theorem we prove a general result when Jensen's operator inequality holds for convex functions.

#### Theorem

Let  $(A_1, ..., A_n)$  be n-tuple of self-adjoint operators  $A_i \in B(H)$  with bounds  $m_i$  and  $M_i$ ,  $m_i \leq M_i$ , i = 1, ..., n. Let  $(\Phi_1, ..., \Phi_n)$  be n-tuple of positive linear mappings  $\Phi_i : B(H) \rightarrow B(K)$ , i = 1, ..., n, such that  $\sum_{i=1}^n \Phi_i(1_H) = 1_K$ . If

$$(m_A, M_A) \cap [m_i, M_i] = \emptyset$$
 for  $i = 1, \dots, n$ ,

where  $m_A$  and  $M_A$ ,  $m_A \le M_A$ , are bounds of a self-adjoint operator  $A = \sum_{i=1}^{n} \Phi_i(A_i)$ , then

$$f\left(\sum_{i=1}^{n} \Phi_i(A_i)\right) \leq \sum_{i=1}^{n} \Phi_i(f(A_i))$$
(11)

holds for every continuous convex function  $f : I \to \mathbb{R}$  provided that the interval I contains all  $m_i, M_i$ .

If  $f: I \to \mathbb{R}$  is concave, then the reverse inequality is valid in (11).

## 3.2 Quasi-arithmetic means without operator convexity

Now, we can observe the monotonicity of the guasi-arithmetic mean without operator convexity. E.g.

**A b** 

# 3.2 Quasi-arithmetic means without operator convexity

Now, we can observe the monotonicity of the quasi-arithmetic mean without operator convexity. E.g.

#### Theorem

Let  $(A_1, ..., A_n)$  and  $(\Phi_1, ..., \Phi_n)$  be as above. Let  $m_i$  and  $M_i$ ,  $m_i \leq M_i$ be bounds of  $A_i$ , i = 1, ..., n. Let  $\varphi, \psi : I \to \mathbb{R}$  be continuous strictly monotone functions on an interval I which contains all  $m_i, M_i$ . Let  $m_{\varphi}$ and  $M_{\varphi}, m_{\varphi} \leq M_{\varphi}$ , be bounds of the mean  $M_{\varphi}(\mathbf{A}, \Phi, n)$ , such that

$$(m_{\varphi}, M_{\varphi}) \cap [m_i, M_i] = \emptyset$$
  $i = 1, \dots, n.$ 

If one of the following conditions is satisfied:

(i)  $\psi \circ \varphi^{-1}$  is convex and  $\psi^{-1}$  is operator monotone, (i')  $\psi \circ \varphi^{-1}$  is concave and  $-\psi^{-1}$  is operator monotone, then

$$M_{\varphi}(\mathbf{A}, \Phi, n) \leq M_{\Psi}(\mathbf{A}, \Phi, n).$$

# 3.3 Converse inequalities with condition on spectra

Finally, we can observe converse to all above inequalities with condition on spectra. E.g.

< ロ > < 同 > < 回 > < 回 >

# 3.3 Converse inequalities with condition on spectra

Finally, we can observe converse to all above inequalities with condition on spectra. E.g.

#### Theorem

Let  $A_1, \ldots, A_n \in \mathcal{B}(H)$  be self-adjoint operators with bounds  $m_1 \leq M_1, \ldots, m_n \leq M_n$  and [m, M] be an interval with endpoints  $m = \min\{m_1, \ldots, m_n\}$  and  $M = \max\{M_1, \ldots, M_n\}$  where m < M. Let  $\Phi_1, \ldots, \Phi_n : \mathcal{B}(H) \to \mathcal{B}(K)$  be positive linear mappings such that  $\sum_{i=1}^n \Phi_i(1_H) = 1_K$ . Let  $A = \sum_{i=1}^n \Phi_i(A_i) \in \mathcal{B}(K)$  be the sum of operators  $\Phi_i(A_i)$  with bounds  $m_A \leq M_A$ . Let the spectral conditions

$$(m_A, M_A) \cap [m_i, M_i] = \emptyset$$
 for  $i = 1, \dots, n$ 

are valid. Let  $f : [m, M] \rightarrow \mathbb{R}$  be continuous function.

(日)

#### (continued)

If f is convex, then

$$\sum_{i=1}^{n} \Phi_i(f(A_i)) \leq \max_{m_A \leq t \leq M_A} \left\{ f_{[m,M]}^{cho}(t) - \alpha f(t) \right\} \mathbf{1}_K + \alpha f\left(\sum_{i=1}^{n} \Phi_i(A_i)\right)$$

holds for every strictly positive  $\alpha \in \mathbb{R}$ . If *f* is convex, and strictly positive on [*m*<sub>A</sub>, *M*<sub>A</sub>], then

$$\sum_{i=1}^{n} \Phi_i(f(A_i)) \leq \max_{m_A \leq t \leq M_A} \left\{ \frac{f_{[m,M]}^{cho}(t)}{f(t)} \right\} f\left(\sum_{i=1}^{n} \Phi_i(A_i)\right).$$

Also, we can observe the order among quasi-arithmetic means and power means under the same condition on spectra.

31/32

A D b 4 A b

**References:** These papers are submitted in some journals or they are manuscripts.

# Thank you very much for your attention

J. Mićić, J. Pečarić ()

Operator means for convex functions

Convexity and Applications 32 / 32