
Finding the Θ-Guarded Region

Domagoj Matijević
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Abstract

We are given a finite set of n points (guards) G in the plane R
2 and an angle

0 ≤ Θ ≤ 2π. A Θ-cone is a cone with apex angle Θ. We call a Θ-cone empty (with
respect to G) if it does not contain any point of G. A point p ∈ R

2 is called Θ-
guarded if every Θ-cone with its apex located at p is non-empty. Furthermore, the
set of all Θ-guarded points is called the Θ-guarded region, or the Θ-region for short.

We present several results on this topic. The main contribution of our work is to
describe the Θ-region with O( nΘ) circular arcs, and we give an algorithm to compute
it. We prove a tight O(n) worst-case bound on the complexity of the Θ-region for
Θ ≥ π

2 . In case Θ is bounded from below by a positive constant, we prove an almost
linear bound O(n1+ε) for any ε > 0 on the complexity. Moreover, we show that
there is a sequence of inputs such that the asymptotic bound on the complexity of
their Θ-region is Ω(n2).

Key words: Θ-guarded region, unoriented Θ-maxima, convex hull generalization,
good Θ-illumination, α-embracing contour

1 Introduction

Illumination and guarding problems have been a popular topic of study in
mathematics and computer science for several decades. One instance in this
class of problems is the classical one posed by Victor Klee [13]: How many
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osbild@mpi-inf.mpg.de (Ralf Osbild).

Preprint submitted to Elsevier July 6, 2009



guards are necessary, and how many are sufficient to patrol the paintings and
works of art in an art gallery with n walls? While this particular problem
has been solved shortly after by Chvatal [6] proving a tight ⌊n

3
⌋ bound, many

other variants in this problem class have appeared in the literature, see e.g.
[16] for a general survey on the topic.

In this paper we consider a guarding problem with a fixed number of guards
which have fixed positions in the plane. We concentrate on the mathematical
description, the complexity, and the computation of the guarded area.

The model is as follows: We are given a finite set of points (guards) G in the
plane R

2. A Θ-cone is a cone with apex angle Θ. We call a Θ-cone empty
(with respect to G), if it does not contain any point of G in its interior. A
point p ∈ R

2 is called Θ-guarded (with respect to G), if every Θ-cone with
apex located at p is non-empty. The set of all Θ-guarded points is called the
Θ-guarded region, or the Θ-region for short. We consider Θ-cones as open sets,
hence the Θ-region is an open set, too. The rationale behind this model is that
a point is well-guarded only if it is guarded from all sides.

1.1 Previous Work

For a given set G of n points in the plane, Avis et al. [3] were the first to
introduce the notion of unoriented Θ-maxima. They say that some point g ∈ G
is a Θ-maxima if there exists an empty Θ-cone with apex at g. Hence a point
g is Θ-maxima if it is not Θ-guarded with respect to G. They present an
O( n

Θ
logn) algorithm for computing the unoriented Θ-maximum of the set G,

or to put it in other words, an algorithm to query each point in G if it is
Θ-guarded or not. A slight variation of their algorithm can actually query
any finite point-set P in O(n+|P |

Θ
log(n+ |P |)) time as we show in Lemma 15.

They further show that the unoriented π
2
-maxima can be computed in O(n)

expected time.

Abellanas et al. [1] extent the guarding model (there it is called good Θ-
illumination) by a range r, i.e., a guard g ∈ G can only guard points inside
the circle of radius r that is centered at g. Beneath other results they show
how to check if a query point p is Θ-guarded in O(n) time and output the
necessary range and guards as witnesses.

Over years several generalizations of the standard convex hull of a point set
have been proposed, like the α-hull [9], the k-th iterated hull [5], and the
related concept of the k-hull (k-depth contour) [7].
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Our contribution

After some general observations, we describe the structure of the boundary
of the Θ-region for different values of Θ in Section 2. There we also give an
easy and efficient O(n logn) time algorithm to compute the boundary in case
Θ ≥ π. In the main part of the paper we concentrate on the case Θ < π, since
for these angles the problem becomes much more involved and the boundary
of the Θ-region more complex to understand. In Section 3 we show that the
boundary of the Θ-region is contained in an arrangement of circular arcs. In
Section 4 we bound this set of arcs by O( n

Θ
). Note that in our work Θ and

n are independent parameters. In particular, asymptotic bounds are stated
in n and 1

Θ
. For Θ ≥ π

2
we prove that the complexity of the Θ-region is

O(n). If Θ > δ for a positive constant δ > 0, we show that the complexity
is O(n1+ε), for any ε > 0. In Section 5 we give a generic example for a Θ-
region with complexity Ω(n2) where the angle Θ is of order 1

n
. In Section 6 we

give an algorithm to compute the Θ-region in O(n
3

2
+ξ/Θ + µ logn) time, for

any ξ > 0, where µ denotes the complexity of the arrangement of the O( n
Θ
)

arcs. Our algorithm is based on the Partitioning Theorem [12] and on the
computation of an arrangement of circular arcs.

Remark 1 Besides our work there is an independent and recent publication
by Abellanas et al. [2]. There the complexity of the Θ-region (called the α-
embracing contour) is claimed to be O(n) for all constant Θ, and an algorithm
that runs in O(n2 log n) time and O(n2) space is proposed. After personal
communication with the authors we agree that the claims are unfortunately
not generally true for small angles.

1.2 Remark on Plotted Pictures

The computer generated pictures are based on the value of the continuous
function f : R

2 \ G → (0, 2π] where f(p) = max {Θ : ∃ empty Θ-cone with
apex p}. The left picture of Figure 1 and the two rightmost pictures in Figure 6
are generated by plotting a grid point shaded, iff f has a value below the
threshold Θ. In the right picture of Figure 1 we have mapped different intervals
of function values in [0, π] to different gray scale values to visualize isolines
(along the boundary of the gray scale value) of f in this example. Although
these pictures visualize only function values at grid points, one can rely on the
pictures, since we deal with cones of a certain angle and not with arbitrarily
thin stripes that could somehow pass between grid points.
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Figure 1. An example with |G| = 50. The Θ-region is not necessarily connected for
0 < Θ < π (left). The isolines of function f show how components of the Θ-region
disconnect for decreasing Θ in this example (right).

2 The Shape of the Θ-Guarded Region

We start with some observations. A point p ∈ R
2 does not belong to the Θ-

region, if there is an empty Θ-cone with apex p. Hence, no point inside an
empty cone can belong to the region, and hence, the region can not contain
holes. A point p lies on the boundary of a Θ-region, if the closure 1 of each
Θ-cone with apex p is non-empty, and there is at least one empty (open) Θ-
cone with apex at p. The example in Figure 1 shows that the Θ-region is not
necessarily connected for 0 < Θ < π. The shape of the Θ-region is invariant
under translation, rotation, and scaling of G.

The shapes of all Θ-regions can be grouped according to Θ. The boundary
of the π-region is just the convex hull CH (G), because the intersection of all
half-planes containing G (convex hull) is the same as removing every half-
plane from R

2 that does not contain any point of G (π-region). However, for
0 < Θ < π, empty (convex) Θ-cones can enter the convex hull through the
edges, while for π < Θ < 2π the apexes of empty (concave) Θ-cones do not
even have to touch the convex hull (see Figure 2). Therefore, the Θ-region is
connected, if Θ ≥ π. Trivially, the 2π-region is the plane R

2 and the 0-region
is the empty set.

Before we discuss the Θ-region for 0 < Θ < π in Sections 3–6, we discuss the
simpler case π < Θ < 2π below. Throughout the paper we use the property
about inscribed angles: Given a circular arc Cl,r from l to r, then ∠lpr = ∠lqr
holds for all p, q ∈ Cl,r. We write Cα

l,r if the inscribed angle is α. The arc end
points are always given in counterclockwise order.

1 Exceptionally we consider closed cones here.
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=θ π <0< θ π π< θπ <2

Figure 2. For Θ < π (resp. Θ > π) the region lies inside (outside) the convex hull
CH (G) and the bounding arcs are bend inside (outside) the region.

2.1 Finding the Θ-Guarded Region for Θ > π

As already discussed (see Figure 2), for Θ > π every point in the convex
hull interior of G is Θ-guarded. Intuitively, the boundary of the Θ-region is
drawn by the apex of an empty Θ-cone which is rotated around the convex
hull CH (G) such that its rays are always tangent to CH (G). The following
algorithm computes the boundary of the Θ-region.

We first compute the clockwise sequence of guards G′ = {g1, . . . , gk} defining
the convex hull (see for example [15]). Formalizing the intuition given above,
we construct an algorithm that outputs circular arcs defining the boundary of
the Θ-region as follows. We identify all pairs (gi, gj) ∈ G′ × G′ with gi 6= gj ,
for which there exists an empty Θ-cone that is tangent to gi and gj, and
has its apex outside the convex hull. We say that the apex of the Θ-cone
can “see” the polygonal chain of CH (G) from gi to gj. Such a pair (gi, gj)
will always have the property, that the lines supporting the convex hull edges
(gj, gsucc(j)) and (gpred(i), gi) have an angle of intersection not greater than Θ,
and that the lines supporting (gi, gsucc(i)) and (gpred(j), gj) have an angle of
intersection greater than Θ. The sequence of all these pairs (gi, gj) and the
corresponding circular arcs C2π−Θ

gj,gi
, that are defined by gi, gj, and the apex

of the Θ-cone that is tangent to gi and gj, can be computed by a cyclic
scan over the sequence G′. The arc end points of the Θ-region boundary
can be computed as the intersection points of each circular arc C2π−Θ

gj ,gi
with

the supporting lines through (gj, gsucc(j)) and (gpred(i), gi). Consequently the
Θ-region has the same complexity than the convex hull. The running time of
the algorithm is dominated by the convex hull construction in O(n logn) time.
We summarize the above in the following Lemma.

Lemma 2 The boundary of the Θ-region for Θ > π can be computed in
O(n logn) time and its complexity is |CH (G)|.
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Figure 3. The construction of a tunnel.

3 The Boundary of the Θ-Region

From now on we assume that the angle is 0 < Θ < π. Here we give a mathe-
matical description of the Θ-region. First we come back to the inscribed angles
and explain its meaning for our setting. Let e = (l, r) ∈ G×G be any pair of
guards. Then the set of points where we can place the apex of an empty Θ-
cone passing through the line segment (l, r) in the same direction is bounded
by the circular arc, incident to l and r having inscribed angles Θ, and its chord
lr. We denote this closed circular segment with DΘ

l,r (or De for short) and its
bounding circular arc, as above, with CΘ

l,r (or Ce for short). Because of the
orientation, the circular segment is described uniquely.

The construction of the Θ-region is motivated by the idea of locally remov-
ing sets Ti of unguarded points from the convex hull CH (G) such that the
remaining part matches the Θ-region (see Figure 2, middle), i.e. we aim for

Θ-region = CH (G) \
(

⋃

i∈I

Ti

)

(1)

for specific sets Ti. Next we give the construction for the sets Ti. Consider
any empty Θ-cone c that has at least a guard on each ray (see Figure 3, left).
First we turn the cone clockwise while pushing the cone towards the point
set, such that it always stays empty but touches a guard on each boundary
(see Figure 3, middle). We end this motion when the apex of the cone reaches
the position of a guard, say l0. Afterwards we start again with cone c, i.e. in
the original position, and rotate the cone in a similar way counterclockwise
until the apex reaches the position of another guard, say r0. We extend our
notions. With Li (resp. Ri) we denote the set of guards that are incident to
the left (resp. right) ray of a cone during the construction (the white points in
Figure 3, right). We call the closure of the union of all cones, which are used
during the construction, the tunnel Ti with respect to Li and Ri, or tunnel
for short (shaded region in Figure 3, right). Note that the index set I in
Formula (1) enumerates over all tunnels.

Note that Formula (1) describes the Θ-region of G, because each empty Θ-
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cone that intersects CH (G) lies in at least one tunnel Ti: Let c be such a cone.
We can identify a tunnel by moving c in the direction of its medial axis until
one of its rays is tangent to a guard. Then we let the empty cone slide along
that point without rotation until the second ray is also tangent to a guard.
According to our construction there is a tunnel that contains this cone and
hence the cone c in its original position.

No point in Ti is Θ-guarded, but only its boundary can contribute to the
boundary of the Θ-region. First we consider its straight-line boundaries. Since
Θ < π, each point of a straight-line boundary can be crossed infinitesimally
by an empty Θ-cone. That means, there are open neighborhoods of unguarded
points around each point of a straight-line boundary, and hence they can not
contribute to the Θ-region boundary. Points beyond the straight-line bound-
aries belong to different tunnels and will be processed independent from Ti.

Therefore we only have to consider the curved boundary of Ti. Observe that
during the construction, the apex of the rotating cone is drawing a sequence
of circular arcs between l0 and r0 which we will formalize next. We define the
set

Ui :=
⋂

(l,r)∈Li×Ri

DΘ
l,r (2)

as the intersection of all circular segments for guard pairs in Li × Ri. In the
following Lemma we state that we can derive the curved boundary of Ti from
these circular segments. Let hi be the closed half plane which is bounded by
the line through l0 and r0 and contains the sequence of arcs.

Lemma 3 Let Ti, Ui, and hi be as defined above. Then Ti ∩ hi = Ui.

Proof. (Superset.) Let p ∈ Ui. Assume there is no empty cone with apex p
through tunnel Ti. This means that there is at least a pair (l, r) ∈ Li×Ri with
the property that ∠lpr < Θ. Hence p 6∈ DΘ

l,r which is a contradiction. (Sub-
set.) Let p be the apex of an empty Θ-cone through tunnel Ti. This means
that ∠lpr ≥ Θ for all (l, r) ∈ Li × Ri, and hence p lies in all corresponding
circular segments DΘ

l,r. 2

It follows that the Θ-region boundary is contained in the curved boundary of
the union of the sets Ui, i.e.

∂Θ-region ⊆ ∂
⋃

i∈I

Ui = ∂
⋃

i∈I





⋂

(l,r)∈Li×Ri

DΘ
l,r



 , (3)

where i enumerates over all tunnels. We observe that the intersections of
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|Li| · |Ri| circular segments Dl,r in Formulae (2) and (3) are too pessimistic.
During the construction of a tunnel we collect all guard pairs (l, r) ⊂ Li×Ri,
that are incident to the rotating cone simultaneously, in Ei. Since the touching
point of Li (resp. Ri) can only change in one direction to its neighbor in the
sequence of Li (resp. Ri), that leads to a set Ei of size |Li|+ |Ri|−1. Therefore
we may reduce the intersection of the circular segments in Formula (2) to

Ui :=
⋂

(l,r)∈Ei

Dl,r ∩ hi

for which Lemma 3 is still valid. With C we denote the set of all circular arcs
that appear in the boundary of a set Ui.

4 Upper Bounds on the Worst-Case Complexity

Now we discuss the worst-case complexity of the Θ-region and state the asymp-
totic bounds in the number n of guards and the reciprocal value of the angle,
i.e. 1

Θ
. During the analysis of the complexity, we distinguish cases according

to the value of Θ. We already know that the 0-region is the empty set. Since
G is a discrete set the Θ-region is also the empty set for values close to 0.

Lemma 4 The Θ-region for Θ ≤ 2π
n

is the empty set.

Proof. Consider the n rays emanating from a point p ∈ R
2 \ G through the

guards in G. Then the rays form at least one empty cone with angle of at least
2π
n

which contains an empty Θ-cone. Hence p is unguarded. We can argue
similarly for the guards p ∈ G. 2

According to the right term in Formula (3) the complexity of the Θ-region
is hidden in an arrangement of circular arcs. Since there are at most O(n2)
different circular arcs, two for each guard pair, the complexity of the Θ-region
is trivially O(n4). Now we show that the set C of circular arcs is of O( n

Θ
) size.

Hence the complexity of the Θ-region is O( n
2

Θ2 ).

Theorem 5 The set C of circular arcs, which defines the boundary of the
Θ-region, is of O( n

Θ
) size.

Proof. Instead of counting the arcs directly we count their end points. Let p
be an arc end point of a tunnel as shown in Figure 4, left. In this position a
ray of the rotating cone is incident to two guards at once. We assume without
loss of generality that two guards lie on the left ray. We focus on the guard
lk that is closer to the apex and count how often a guard can be in this
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r j
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l k+1
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θ
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c
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p

Figure 4. An end point p of a circular arc in the boundary of a tunnel (left). A situa-
tion that is described in the proof of Theorem 5 (middle). The auxiliary construction
that is described in the proof of Theorem 6 (right).

situation. Clearly the number is bounded by n− 1 because there are no more
other guards. On the other hand we observe that the empty Θ-cones in this
situation can not intersect each other beyond the second guard on the left ray
(see Figure 4, middle). Hence there can be at most ⌊2π

Θ
⌋ different such cones.

With the same argumentation for the right ray we bound the number of arc
end points per guard by 2⌊2π

Θ
⌋ and hence the total number of arc end points

by O( n
Θ
). 2

From the last Theorem we can derive, that if the angle Θ > δ is bounded by
a constant δ > 0, then the number of arcs in C is O(n) and the complexity
of the Θ-region is O(n2). With an auxiliary construction we can even further
improve this result.

Theorem 6 If the angle Θ > δ is bounded by a constant δ > 0, then the
complexity of the Θ-region is O(n1+ǫ), for any ǫ > 0.

Proof. We make use of the following construction. Let a ∈ C be an arc in
the boundary of tunnel Ti, and let u and v be the end points of a. The line
segment (u, v) and a are the boundary of a circular segment, say da. Now we
clue a triangle ta at the edge (u, v) of da, which has an angle of min{Θ, π

4
} at

u and v, and denote this new object with Fa := da ∪ ta (see Figure 4, right).
We state that the triangle ta is a subset of Ti: Assume there is a guard g ∈ ta.
Then the angles ∠guv and ∠gvu are smaller than Θ. Hence two empty Θ-cones
with apexes u and v would belong to different tunnels what is a contradiction
to a ⊂ ∂Ti. Furthermore, because of the angle at u and v the set of empty
Θ-cones with apexes at points in a have to cover ta, what completes the proof
of the statement.

We repeat the above construction for each arc a ∈ C and collect the new
objects Fa in the set F . We repeat the definition of α-fatness from Efrat et
al. [10]: An object F is α-fat for some fixed α > 1, if there exist two concentric
disks D ⊆ F ⊆ D′ such that the ratio ρ′

ρ
between the radii of D′ and D is at

most α.We state that there is an α > 1 such that the objects Fa ∈ F are α-fat:
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The worst-case scenario occurs when the arc a is almost a straight-line. Hence
we concentrate on the proof that the triangle ta is α-fat (see again Figure 4,
right). Remember that the angle at u is min{Θ, π

4
}. Then the ratio between

the radii of the circumcircle and the inscribed circle is

ρ′

ρ
=

1

sin(1
2
· min{Θ, π

4
}) ≤ 1

sin( δ
2
)

=: α,

which is a constant. Without loss of generality we assume δ ≤ π
4
.

The main Theorem in Efrat et al. [10] states, that the combinatorial complex-
ity of the union of a collection F of α-fat objects, whose boundary intersect
pairwise in at most s points, is O(|F|1+ε), for any ε > 0, where the constant
of proportionality depends on ε, α, and s.

It is already shown that α is a constant and that the objects in F are α-fat.
The boundary of each convex object Fa ∈ F has always three edges: two line
segments and a circular arc. Therefore the boundary of each pair of objects in
F intersect in at most s = 10 points. As we said above |C| ∈ O(n), and hence
|F| ∈ O(n), because Θ is bounded from below by a constant δ. Therefore
the construction fulfills all preconditions to apply the Theorem of Efrat et al.
which completes the proof. 2

Now we show that the complexity of the Θ-guarded region is linear for angles
Θ at least π

2
.

Theorem 7 The complexity of the Θ-region is O(n) for π
2
≤ Θ < π.

Proof. Let J be a set of m Jordan curves, i.e. simply-closed curves. Kedem
et al. [11] proved that if any two curves in J intersect in at most two points
then the complexity of their union is O(m).

For each set Ui we define a Jordan curve Ji. Let Ji be the curved boundary of

Ui from l0 to r0 connected with an auxiliary half circle C
π
2

r0,l0
, i.e.

Ji := ∂





⋂

(l,r)∈Ei

DΘ
l,r ∩ hi



 ∪ C
π
2

r0,l0
.

Note that the auxiliary half-circle lies in Ti because Θ is obtuse. Note further
that Ji is the boundary of a convex region and that Ji lies inside the circle

that supports C
π
2

r0,l0
. We repeat this construction for all tunnels Ti, with i ∈ I,

and collect all curves Ji in J . We state that any two curves in J intersect at
most twice. Now assume that there are two curves Ji, Jj ∈ J which intersect
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p

pp

c

a

d

b
c

a b

d a b
a bcd

cd

(1a) (1b) (2) (3)

Figure 5. (Proof of Theorem 7.) The cases that could imply more than just two
intersection points between the curves Ji and Jj . The dotted parts are the sequence
of arcs of Ui and Uj from a to b and from c to d, respectively, and the solid arcs are
the auxiliary half-circles.

in more than two points. We distinguish the following cases as they are shown
in Figure 5. Let Ai (resp. Aj) denote the sequence of circular arcs of Ui (resp.
Uj).

In Case 1, the sequence of circular arcs Ai and Aj intersect in point p as is
shown in Pictures (1a) or (1b). That means that for each tunnel Ti and Tj
there exists an empty Θ-cone with apex in p. Therefore the angle ∠apb has to
be at least 2Θ which is at least π. That is a geometrical contradiction.

In Case 2, we consider a point p that lies on the sequence of arcs Aj outside
Ji as shown in Picture (2). The angle ∠cpd is at least Θ. By construction the
angle ∠bpa is larger than ∠cpd and hence ∠apb > Θ. It is a contradiction that
p does not lie inside Ji.

In Case 3, we consider an empty Θ-cone with apex c through tunnel Tj . Assume
this cone passes between a and b. Then the angle ∠bca is at least Θ and hence
c has to lie inside Ji. This is a contradiction. In case that the empty Θ-cone
c does not pass between a and b, but b and c, or a and d, similar geometric
contradictions can be shown.

Other cases are excluded since no guard can lie inside Ji or Jj. This completes
the proof. 2

5 Lower Bound on the Worst-Case Complexity

In the following we show that there is a sequence of inputs such that the
asymptotic bound on the complexity of their Θ-guarded region is Ω(n2). For
this purpose we give a generic construction for point sets Gi with ni guards and
angles Θi for all i ∈ N, such that the complexity of the Θi-region of the point
set Gi is lower bounded by c · n2

i for some constant c and limi→∞ ni = ∞. In
fact ni is a linear function in i, and Θi is of order 1

i
. Therefore the complexity

11
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−4i −i 0 i 4i

−4i

−i

0

i

4i

Figure 6. The location of the fragmented Θi-region is located at the centre of the
convex hull (left, i = 2). Some connected components of the center are erased by
unwanted tunnels (middle, i = 8). All connected components of the center are
protected against unwanted tunnels (right, i = 8).

bound can also be interpreted as Ω( n
Θ

).

First we motivate the construction for a given i ∈ N. To achieve the desired
complexity, we construct the point set Gi in such a way that the Θi-region
is fragmented into c · n2

i connected components, each of constant complexity.
Figure 6 illustrates the idea of the construction. The area, where the Θi-region
is highly fragmented is at the center of the convex hull. The decomposition
is forced by long, thin tunnels that enter this area ‘axis parallel’ from above,
below, left, and right; more precisely the medial axis of the cones that enter
these tunnels deepest are parallel to the principal axes. In the first step of
the construction we determine the tunnels that force the fragmentation and
implicitly determine the area (bounded by the box in Figure 6) that contains
these connected component. Unfortunately the same guards, that define these
tunnels, define an even larger number of unwanted tunnels which can enter
this area as well. Therefore we have to place additional guards in the second
step with the intention to prevent unwanted tunnels from entering this area,
because they could erase some of the connected components, hence reducing
the total complexity (see Figure 6, middle and right). We show how to place
a linear number of additional guards as obstacles in the plane to keep out
a squared number of tunnels from this area. We note that because of the
construction in the second step the convex hull can be huge compared to the
box in which we count the connected components. For simplicity reasons we
disregard the shape of the Θi-region outside this box. The construction details
are given below.
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4i−4i

−4i

4i
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2i

2ii
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4i

0

Pattern A
1

2i

i

4i

0

Pattern B
1

θθi i

Figure 7. Placement of the guards in the first step for i = 2 (left). Guard patterns
A and B (right).

5.1 First step: To determine the wanted tunnels.

We denote the square of edge length 2i that is centered at the origin and is
oriented parallel to the principal axes with Bi. In this step guards are placed
on the boundary of the boxes B4i and B2i. The area, in which we will count
the connected components, is Bi (see Figure 7, left). The entire construction
is symmetric to the origin as well as to the principal axes. For this reason we
only give the construction for the upper half of box B4i; the constructions for
the lower, left, and right half of this box are done analogously.

Now we introduce the guard patterns A and B (see Figure 7, right), that
define two ways to place guards inside a cell of width 1 and height 4i, which
we will use later on to stamp the upper half of the box with. First we define
Θi as the angle 2 between the rays emanating from (1

2
, 0) through the upper

corners (0, 4i) and (1, 4i). To get guard pattern A we place four guards on
the boundary of this cone: two with y = 2i and two with y = 4i. These four
guards define a wanted tunnel which is thin in the sense that the boundary
of the tunnel stays in the box of width 1 for values 0 ≤ y ≤ i; remember
that we only care for the interior of Bi. For technical reasons we add guards
at (0, 2i) and (1, 2i) to avoid unwanted tunnels between neighboring guard
patterns A. In case we do not need a tunnel inside the cell we use pattern B:
three guards that are placed equidistant on the top edge of the pattern make
it impossible for any cone to enter this box from above deeper than y = 2i.
Next we subdivide the upper half of the box B4i in 8i cells of width 1. The
medial quarter is stamped with pattern A, the remaining cells are stamped
with pattern B (see Figure 8).

This way we can guarantee 2i wanted tunnels from above which intersect Bi

2 Note that Θ and i are not independent because Θ = arctan( 1
8i) ≤ 1

8i .
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4i−4i

4i

0 i−i4i−4i

4i

0−i i

B B B B B B A A A A B B B B B B 2i

Figure 8. Subdivision of the upper half of B4i in 8i cells (left). The guard pattern
for the upper half (right).
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Pi Pi+1

iQ i+1Q 2iQ

P2i

ii−1

P1

1Q

−i −(i−1) 10−1

4i

2i

Figure 9. All possible guard pairs through which empty cones can reach Bi from
above.

and touch the x-axis. After repeating this construction for the lower, left, and
right half of B4i, tunnels from above and below touch at the x-axis as well as
tunnels from the left and right touch at the y-axis. This follows immediately
from the symmetric construction. Removing these tunnels from the box Bi,
yield to a fragmentation into (2i+ 1)2 connected components.

Finally we remark that we can save up to 2 guards per stamped pattern if
guards overlap with the neighboring pattern. Hence the number of guards,
that are placed in the entire first step, sum up to 80i+ 4.

5.2 Second step: To exclude the unwanted tunnels.

Again we start with the construction for the upper half of B4i. Figure 9 shows
the situation of the 2i neighboring guard patterns A. We denote the guard
pairs on the line y = 4i with P1, . . . , P2i and the guard pairs on the line y = 2i
with Q1, . . . , Q2i. An empty cone that enters Bi from above therefore has to
pass through Pk and Qℓ for some k, ℓ ∈ {1, . . . , 2i}. If k = ℓ, the tunnel is
wanted. So the task is to hinder all cones through tunnels with k 6= ℓ to
intersect the box Bi. We introduce a new notion to reformulate the problem.

Definition 8 Let t be a tunnel through Pk and Qℓ. We say that an empty
cone enters tunnel t the deepest if the y-value of its apex is minimal among
all empty cones in t.

14
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Figure 10. The deepest cones cj used in Observation 9. Here the vertical arrow
marks the direction of their medial axis (left). The deepest cones that are tangent
to the new vertex (middle). The deepest cones, in the case that the new guard is
pulled far out in the direction of the former medial axis (right).

Note that the deepest cone in a tunnel is unique and is tangent to at least
one guard on each ray. We define the slope of a cone as the slope of its medial
axis. Because of the regular structure of the cells with guard pattern A we
can make the following Observation. Informally it states that the slope of a
deepest cone through Pj and Qj+h is independent of j and implicitly given by
h.

Observation 9 Let h ∈ {0, . . . , 2i − 1}. Let cj be the deepest cone through
Pj and Qj+h and let dj be the deepest cone through Pj+h and Qj for all j ∈
{1, . . . , 2i− h}. Then all cones cj have the same slope, and all cones dj have
the same slope.

W.l.o.g. we concentrate on the cones cj, but we can argue in the same way for
the cones dj . We derive from Observation 9 that for fixed h the intersection
of all deepest cones cj is again a cone with the same slope (see Figure 10,
left). Assume we place a guard at a random position inside this intersection.
Then none of the cones cj is empty anymore. That means that there are new
deepest cones with different slopes, since they have to be tangent to the new
guard (see Figure 10, middle). Now we pull the new guard in the direction of
the medial axis of the former deepest cones towards infinity. Then we observe,
that while we move this point, the deepest cones are rotated and this way
are pulled away from the x-axis. Since the limes of the rotation, compared
to the slope of the original deepest cones cj, has absolute value Θi

2
, we can

force a rotation by an angle that is arbitrarily close to half of the apex angle,
i.e. Θi

2
− ε for any ε > 0 (see Figure 10, right). Note the generality of the

above discussion for all h = {0, . . . , 2i − 1}. We will definitely not place a
guard in the union of the deepest cones for h = 0, since these tunnels force
the decomposition of the Θi-region in the center. In spite of this we have used
exactly this case in the drawings in Figure 10, since it depicts the worst-case
scenario we will consider later in the proof.
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Figure 11. Construction of the second step for all parts: above, below, left, and right
(left). Construction used in the proof of Lemma 10 (right).

Now we are able to complete the construction. First we compute the slope of
the medial axes of the deepest cones cj as well as dj of Observation 9 for all
h = {1, . . . , 2i − 1}. For each of these 4i − 2 slopes we place a guard at the
intersection point of the ray emanating from the origin having this slope and
the boundary of a new box Bx (see Figure 11, left). Box Bx has necessarily to
be large enough to guarantee, that each intersection point lies

(1) outside the union of the wanted cones and
(2) inside the intersection of the deepest cones of the given slope.

The existence of box Bx with these properties follows from the discussion
above. But this is not sufficient. It remains to prove the following lemma.

Lemma 10 Box Bx can be chosen large enough such that no empty Θi-cone,
but the wanted cones, can intersect Bi.

Proof. It is sufficient to prove the claim for the deepest cones with the min-
imum apex y-value amongst all deepest cones according to Observation 9.
These are the cones for h = 0. (Please note that we do not block tunnels for
h = 0 in practice; we just prove that we could even hinder cones through these
tunnels from entering Bi.)

Remember that we can place the guard which blocks the deepest cones such
that the deepest cones are rotated by an angle arbitrarily close to Θi

2
. W.l.o.g.

we assume that the cone is rotated clockwise. Consider the empty cone c of
maximum angle with apex at a = (1

4
, i) inside a cell with guard pattern A

(shaded region in Figure 11, right). This cone touches the boundary of Bi and
its left ray is vertical as it is the case for maximal rotated deepest cones. If we
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can show that the angle of c is smaller than Θi it follows that c can not enter
Bi. We crop c at the line y = 4i to make it a rectangular triangle. Now we
take the Θi-cone from pattern A, Figure 7, and move its apex to a. We divide
the triangle along the right boundary of the Θi-cone through point (5

8
, 4i).

Consequently the left sub-triangle has angle Θi

2
at point a. Since the opposite

leg of the entire triangle is 2-times the opposite leg of the left sub-triangle,
the total angle of c at a is less than 2-times Θi

2
. 2

After repeating this construction for the lower, left, and right half we have
placed 16i− 8 additional guards. Together with the guards from the first step
they define the set Gi with ni = 96i− 4 guards in total. The generic example
presented in this section proves the following Theorem.

Theorem 11 There is a sequence of inputs (Θi, ni, Gi)i∈N with limi→∞ Θi = 0
such that the asymptotic bound on the complexity of their Θ-region is Ω(n2)
where n is the number of guards.

6 Algorithm

Here we discuss a way to compute the boundary of the Θ-region. Note that
we gave bounds on the worst-case complexity of the Θ-region above. Clearly,
for any n and any Θ there are sets G for which the Θ-region is empty or
extremely simple. Despite of this our algorithm will consider the O( n

Θ
) arcs

in C and hence can not be output-sensitive. We allow a simplification in the
presentation of the algorithm: We will consider a set C′ of arcs which are longer
on one side, i.e. |C| = |C′| and

⋃ C ⊂ ⋃ C′.

First we compute the convex hull CH (G) and add for each hull edge (u, v)
the circular arc CΘ

u,v to the set C′. For each guard g, that is not a vertex of
CH (G), we compute all empty cones of maximal angle with apex at g together
with two guards (witnesses) gmin and gmax per empty cone, which lie on its
rays. (See the light shaded cone in Figure 12.) This can be done by using the
algorithm of Avis et al. [3] in O(( n

Θ
) logn) time and O(n) space.

As we did in the proof of Theorem 5, we find the arcs in C via their end points.
If we move an empty Θ-cone with apex g and its left ray through gmin along
the line through g and gmin until a guard, say gr, is tangent to the other ray,
the new apex marks an end point pr of two arcs in the set C (see Figure 12).
Since we do not know the second end points of the arcs, we add the piece of
CΘ
gmin,gr

to C′ that ends in gr and pr, and we add the piece of CΘ
g,gr

to C′ that
ends in g and pr, A similar construction for the line through g and gmax will
add another two arcs to C′.
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g
gl gr

gmin gmax

lp
rp

Figure 12. Guard g can contribute to at most two end points for each maximal
empty cone with apex g.

Note that by fixing the line through ggmin we can find guard gr naively by
simply inspecting all guards in G, and similarly we can find gl for the line
through ggmax. However, one can compute guards gr and gl faster with the
help of the well-know Partition Theorem that has been extensively used in
the context of range searching. We cite the theorem for a planar point set.

Theorem 12 (Partition Theorem [12].) Any set S of n points in the plain
can be partitioned into O(r) disjoint classes by a simplicial partition, such that
every simplex (i.e. triangle) contains between n

r
and 2n

r
points and every line

crosses at most O(r
1

2 ) simplices (crossing number). Moreover, for any ξ > 0
such a simplicial partition can be constructed in O(n1+ξ) time.

Using this Theorem recursively one can construct a tree which is called a
partition tree (e.g. the root of the tree, associated with S, has O(r) children,
each associated with a simplex from the first level, and so on). From now on
we assume that r is a constant. Observe that if r is a constant, the partition
tree is of O(n) size and it can be constructed in O(n1+ξ) time for any ξ > 0.

Lemma 13 For any ξ > 0, there is a data structure of O(n logn) size and
O(n1+ξ) construction time such that for the given lines through ggmin and

ggmax, corresponding guards gl and gr can be computed in additional O(n
1

2
+ξ)

time.

Proof. Assume we are given a partition tree and suppose that we fix the line
through ggmax. Clearly by Theorem 12 we have the bound on the number of
triangles that intersect the line which is O(

√
r). On those triangles we recur,

which leads to a total of O(
√
n) triangles intersected by the line. But still there

might be O(r) triangles lying completely to the left of the line ggmax. For those
triangles we can precompute a convex hull for the points inside each triangle.
This will increase the total space of the partition tree by a O(logn) factor since
every level in the tree now will be of O(n) size. However, this way we avoid
recursing on the triangles that lie completely to the left of ggmax. Namely,
for every triangle that lies to the left of ggmax, guard gl can be found as an
extreme point of the precomputed convex hull in the direction perpendicular
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to the line that forms the Θ-cone with the line through ggmax in O(logn) total
time (see [14], Section 7.9). The case for the line through ggmin is similar. 2

Therefore we can state the following Lemma.

Lemma 14 For any ξ > 0, the set C′ can be computed in O(n
3

2
+ξ/Θ) time

and O(n logn) space.

Next we discuss how to compute the Θ-guarded region from the set of circular
arcs C′. For each connected component of the Θ-region the algorithm outputs
a sequence p1, . . . , pk of points in the plane and circular arcs incident with
pairs pi−1, pi for i = 2, . . . , k and pk, p1 as edges of the Θ-region.

We start with computing the arrangement A(C′) of set C′. Let ψ denote the
number of cells in A(C′) and let µ denote the total complexity of the arrange-
ment A(C′), which upper bounds the complexity of the Θ-region. Edelsbrunner
et al. [8] showed that µ is at most O(

√
ψ( n

Θ
)2α(n)), where α(·) is the inverse

Ackerman function which is an extremely slow-growing function. Moreover,
the arrangement A(C′) can be constructed in O((n + µ) logn) time by the
plane-sweep algorithm of Bentley and Ottman [4]

Since arcs in C′ are bounding circular segments from the Formula (3), cells in
the arrangement A(C′) will have the property that they are either Θ-guarded
or not Θ-guarded. Hence, if some point from the cell is Θ-guarded then the
whole cell belongs to the Θ-region and opposite. Let P denote the set of ψ
different points such that each point is taken from the interior of ψ different
cells in A(C′). To detect the cells that belong to the Θ-region, we use the
following lemma.

Lemma 15 (Avis et al. [3]) Let G be a set of n guards and let P be a set
of ψ query points in R

2. The Θ-unguarded points of P can be reported together
with their witnesses gmin and gmax in O(n+ψ

Θ
log(n+ψ)) time and O(n) space.

Proof. Avis et al. [3] presented an algorithm to compute all Θ-unguarded
guards of G in O( n

Θ
logn) time and O(n) space. So far the set of query points

and the set of guards are the same. But since their algorithm actually dis-
tinguishes between query points and guards, it can be extended immediately:
In Steps 2 and 3 of procedure Unoriented Maxima on page 284f. only guards
are inserted into the convex hull constructions, while tangents to these convex
hulls are only computed through query points. The running time of the algo-
rithm is dominated by sorting the points in G∪P for π

Θ
many directions which

takes O(n+ψ
Θ

log(n + ψ)) time. For more details see Section 2 and Section 6
(Appendix) in [3]. 2

At the end we collect all Θ-guarded cells and output the sequence of nodes and
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angle Θ worst-case complexity

π ≤ Θ < 2π |CH (G)| vertices

π
2 ≤ Θ < π O(n)

δ < Θ < π
2 , for constant δ > 0 O(n1+ε), for any ε > 0

Table 1
The worst-case complexity of the Θ-region in dependency on the angle Θ.

edges on the boundary of the union of them. We conclude with the following
Theorem.

Theorem 16 For any ξ > 0, the Θ-region for Θ < π can be computed in
time O(n

3

2
+ξ/Θ+µ logn), where µ denotes the complexity of the arrangement

A(C′).

7 Conclusion

In this paper we consider a point to be guarded, if it is guarded from ’all’ sides
by a given finite set of guards G. Our main goals were to analyze the shape
and the complexity of the Θ-region, i.e. the set of all Θ-guarded points, and
give a mathematical description of it.

As a result, we showed that the Θ-region is defined by a set of at most O( n
Θ
)

many circular arcs. The difficulty in the complexity analysis of the Θ-region
itself appeared while arguing about the complexity of the union of convex
sets Ui which are bounded by these arcs (cf. Formula 3). In dependency on
Θ we summarize our results on the worst-case complexity of the Θ-region
in Table 1. Furthermore, we could give a series of inputs with decreasing
angle and increasing number of guards whose asymptotic complexity is Ω(n2).
Finally we gave an algorithm to compute the Θ-region.
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