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SCHUR-CONVEXITY OF CEBISEV FUNCTIONAL

V. CULJAK AND J. PECARIC

(Communicated by N. Elezovic)

Abstract. In this paper the Cebisev functional T(f,g;a,b) is regarded as a function of two vari-
ables

1) = = [ F0s0)dr == [ 0= [ ). () € la.b] a2

y—x. y—x.

The property of Schur-covexity (Schur-concavity) of this function is considered. Some applica-
tions for the means are pointed out.
1. Introduction

Let I be an interval with nonempty interior and X = (x;,X2,..,x,) and ¥y = (¥i,¥2, -+, ¥n)
in I" be two n-tuples such that x <y, i.e.
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where xj; denotes the i th largest component in x.

DEFINITION 1. Function F : I" — R is Schur-convex on I" if

F(xiaXZa"axn) SF(yi)yZa"ayn)

for each two n-tuples x and y such that it holds x <y on I".
Function F is Schur-concave on [” if and only if —F is Schur-convex.

The next lemma gives us a necessery and sufficient condition for verifying the
Schur-convexity property of F when n =2 ([4, p. 3331, [3, p. 57)).
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2 V. CULJAK AND J. PECARIC

LEMMA A 1. Let F : I> — R be a continuous function on I*> and differentiable
in interior of I>. Then F is Schur-convex if and only if it is symmetric and it holds

JdF OF
(5 -5 ) 0-0=0 m

forall x,y€el, x#y.

The authors in [1] were inspired by some inequalities concerning gamma and
digamma function and proved the following result for the integral arithmetic mean:

THEOREM A 1. Let f be a continuous function on 1. Then
1 y
Fey) = = [ f @
F(x,x) = f(x)
is Schur-convex (Schur-concave) on I? if and only if f is convex (concave) on I .

Also, in [1], applications to logarithmic mean are given.

COROLLARY A 1. The generalized logarithmic mean defined as follows

r_xr —I1
Ly(x,y) = (ry(y—x)) ; %,y>0 (3)
1
1 /x>
1)
e\ y
__y—x
~ logy —logx
L(x,x) =x 4)

is Schur-convex for r > 2 and Schur-concave for r < 2.

The Cebisev functional T(f,g;a,b) is defined for two Lebesgue integrable f and
g oninterval [a,b] €R as

T(f giab) = o /f ‘”‘(b_ /f dt>(bi /” (t)dt).

We will consider the function T(x,y) :=T(f,g:x,y),(x,y) € [a,b] x [a,b].
We will use the well-known Cebisev inequality:

THEOREM A 2. Let f and g be Lebesgue integrable on interval [a,b]. If f and
g are monotonic in the same sense (in the opposite sense) then

T(f,g:a,b) >0 (<0). (5)

In this paper we generalize results in Theorem A 1 and Corollary A 1 As a conse-
quence, a result for the extended generalized logarithmic type mean is pointed out.
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2. Results

THEOREM 2.1. Let [ and g be Lebesgue integrable functions on I = [a,b]. If
they are monotone in the same sense (in the opposite sense) then T (x,y) :=T(f,g;x,y),
(x,y) € [a,b] x [a,b] € R? is Schur-convex (Schur-concave) on [a,b] x [a,b].

Proof. There are three cases to be considered according momotonity of functions.

Case 1. Let f and g be two increasing functions on [a,b] and x <y. So, we have
f(x) <f() < f(y) and g(x) < g(t) < g(y) and it yields

(fO) = f@O)(f () = fx) =0, (©)
(¢(y) —&(1)(g(r) — glx)) = 0, ©)

L

— and integrating over [x,y] produces two

Multiplying these inequalities by -
inequalities

— [ P < (1) + 7005 [ 70— 150
1 Yy 1 y
2 £ 0 < (6@ 5005 [ a0~ 50,

y—XJx
Then, we can estimate T (f, f;x,y)

(. fixy) = /xyﬂ(r)dr—( [ 16 dr)
< (0 5005 [ s - (5 [roa)
:<f<y)—y%c 1) )( /f 1)di — f ) ®)
and analogues T (g, g:x,y) as follows
Megny) == [f0a- (1 ] yg(r)dr)z
< (s -2 [ear) (1 [ sta-e). o

The functional T(f,g;x, y) can be expressed as

T(853) = 3557 // (a(t) — g(s))dtds.

and analogues T (f, f;x,y) and T(g,g;x,y)
) _ 1 Y [y B 2
T fid) = g . | (0 £(5)dras,
T(egxy) = 5o [ [ (s —slo) P
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Using Cuascy inequality we obtein the inequality

T (fagx)’|\ﬁ(//

~ (s [ L oo

poras) ([ [
dtds)

<H// - so17a)

— T(f,f:x,7) T(2,8:%,)?.

1
2
zdtds)

In the rest of the proof we will use the short notation for the integral means:

s [ f(0)dr and g := L [V g(r)dr

According (8) and (9) we have the following estimation

T(f.8:x9) < [(f() = F)
= [(f = f@))(

The AG inequality implies

T( )] < 5107~ F) 2~

(f -
2

SN2 [(gy) —3) (@~
—g(®)-(f(») = ey 7).

Applying Theorem A 3 the inequality (5) we obtain

T(f.g5) < 5[0F~ F00)(& -

g

D=

8(x)+ () =) ey) =)

gx)+(f(r) = Ngy) —2)l. (10)

To prove the Schur-convexity of T(f,g;x,y) by Lemma A 1 the inequality (1) it
is sufficient to prove (aT({;’;;X’y) - aT(fag”) )(y—x) >0, forall x,y € [a,b], since the

function T'(x,y) :=T(f,g;x,y) is evidently symmetric.

Direct calculation yields that

(8T(f,g;x,y) _IT(f.8:x,y)
dy ox

)o-

x)

= {215 + 100600+ £0)e0) + 2T

f0E- g<y>7+f<x>g+g<x>ﬂ} ()

_ 2{%[(7—f(x))(§—g(x)) ) -

Then, the inequalitiey (10) implies

Hely)—2)

<ar(f,g;x,y) - aT(f,g;x,w) (y—x) > 0.

dy

ox

(1)

—T(f,g;x,y)}- (12)
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We have to remark that for x > y the inequalities in (6) and (7) stil are valid.
9T (f,8:%.y)
e

Furthermore, according the equations in (11) and (11) it is obviously y

AT (f.gx.y
ML) (y—x) > 0.

Case 2. Suppose that f and g are both decreasing functions on [a,b] and x < y.

Since f(x) = f(¢) > f(y) and g(x) > g(¢) > g(y) the inequalities in (6) and (7)
again are valid and the proof is the same as in Case 1.

If x >y then the conclusion is tha same as in remark in Case 1.

Case 3. Let f be an increasing function and g decreasing function. Note that
we can considere Case 1. for function f and —g.
According inequality in (10) we have

T(f,—gx,y) < %[(7—f(x))(—§+g(x))+ (fO) = N(=g() +3)]-
By definition of T'(f,—g;x,y) it holds

~T(f,g55) < ~51(F~ F(@)(E 80 + (F6) ~ F)(g0) ~ )]

and finally we obtain the opposit inequality in (10) for functions f and g:

1, - _
I(f.g:xy) 2 5[(f = fx))(€ —8(x) + (fy) = N)(g(r) —B)] (13)
Similarly as in Case 1., according (11) we conclude that

IT(f,g:x,y) 9T (f,8:x,y)
( dy a dx > b—x)<0.

and according Lemma A we prove Schur-concavity of Cebigev functional T(f,g:x,y)
with (x,y) in [a,b] x [a,b] € R?.

COROLLARY 2.1. For the generalised logaritmic mean defined by (3) it holds
(i) if (1,5) € (1,90) x (1,00) (9, 1) X (=0, 1), then
Grs(x,y) := L:ii;l(xv)’) =Ly () - Loy (%))
is Schur-convex with (x,y) € (0,00) x (0,0);
(ii) if (r;s) € (1,00) X (—oo,1)J(—o0,1) X (1,00), then Gys(x,y) is Schur-concave
with (x,y) € (0,00) x (0,00).

Proof. We use Theorem 1 for a function f(z) =¢""'and g(t) = +*~!.Function f
and g are both increasing for r—1 > 0 and s — 1 > 0 and both decreasing for r—1 < 0
and s—1 <0 . Function f and g are monotone in the opposit sence for r —1 > 0 and
s—1<0orr—1<0ands—1>0. O

REMARK 2.1. One attempt to obtain Schur convrxity of CebiSev functional is
done in [2].
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