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Abstract. In this paper the Čebišev functional T ( f ,g;a,b) is regarded as a function of two vari-

ables

T ( f ,g;x,y) =
1

y− x

∫ y

x
f (t)g(t)dt − (

1

y− x

∫ y

x
f (t)dt)(

1

y− x

∫ y

x
g(t)dt), (x,y) ∈ [a,b]× [a,b]

The property of Schur-covexity (Schur-concavity) of this function is considered. Some applica-

tions for the means are pointed out.

1. Introduction

Let I be an interval with nonempty interior and x = (xi,x2, ..,xn) and y = (yi,y2, ..,yn)
in In be two n-tuples such that x ≺ y, i.e.

k

∑
i=1

x[i] 6

k

∑
i=1

y[i], k = 1, ...,n−1

n

∑
i=1

x[i] =
n

∑
i=1

y[i],

where x[i] denotes the i th largest component in x .

DEFINITION 1. Function F : In → R is Schur-convex on In if

F(xi,x2, ..,xn) 6 F(yi,y2, ..,yn)

for each two n-tuples x and y such that it holds x ≺ y on In .

Function F is Schur-concave on In if and only if −F is Schur-convex.

The next lemma gives us a necessery and sufficient condition for verifying the

Schur-convexity property of F when n = 2 ([4, p. 333], [3, p. 57]).
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LEMMA A 1. Let F : I2 → R be a continuous function on I2 and differentiable

in interior of I2. Then F is Schur-convex if and only if it is symmetric and it holds
(

∂F

∂y
−

∂F

∂x

)

(y− x) > 0 (1)

for all x,y ∈ I , x 6= y.

The authors in [1] were inspired by some inequalities concerning gamma and

digamma function and proved the following result for the integral arithmetic mean:

THEOREM A 1. Let f be a continuous function on I . Then

F(x,y) =
1

y− x

∫ y

x
f (t)dt (2)

F(x,x) = f (x)

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I .

Also, in [1], applications to logarithmic mean are given.

COROLLARY A 1. The generalized logarithmic mean defined as follows

Lr(x,y) =

(

yr − xr

r(y− x)

) 1
r−1

, x,y > 0 (3)

L1 =
1

e

(

xx

yy

)
1

x−y

L0 =
y− x

logy− logx

L(x,x) = x (4)

is Schur-convex for r > 2 and Schur-concave for r < 2.

The Čebišev functional T ( f ,g;a,b) is defined for two Lebesgue integrable f and

g on interval [a,b] ∈ R as

T ( f ,g;a,b) :=
1

b−a

∫ b

a
f (t)g(t)dt −

(

1

b−a

∫ b

a
f (t)dt

)(

1

b−a

∫ b

a
g(t)dt

)

.

We will consider the function T (x,y) := T ( f ,g;x,y),(x,y) ∈ [a,b]× [a,b] .
We will use the well-known Čebišev inequality:

THEOREM A 2. Let f and g be Lebesgue integrable on interval [a,b] . If f and

g are monotonic in the same sense (in the opposite sense) then

T ( f ,g;a,b) > 0 (6 0). (5)

In this paper we generalize results in Theorem A 1 and Corollary A 1 As a conse-

quence, a result for the extended generalized logarithmic type mean is pointed out.
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2. Results

THEOREM 2.1. Let f and g be Lebesgue integrable functions on I = [a,b]. If

they are monotone in the same sense (in the opposite sense) then T (x,y) := T ( f ,g;x,y) ,

(x,y) ∈ [a,b]× [a,b]∈ R
2 is Schur-convex (Schur-concave) on [a,b]× [a,b].

Proof. There are three cases to be considered according momotonity of functions.

Case 1. Let f and g be two increasing functions on [a,b] and x < y . So, we have

f (x) 6 f (t) 6 f (y) and g(x) 6 g(t) 6 g(y) and it yields

( f (y)− f (t))( f (t)− f (x)) > 0, (6)

(g(y)−g(t))(g(t)−g(x)) > 0, (7)

Multiplying these inequalities by 1
y−x

and integrating over [x,y] produces two

inequalities

1

y− x

∫ y

x
f 2(t)dt 6 (( f (x)+ f (y))

1

y− x

∫ y

x
f (t)dt − f (x) f (y),

1

y− x

∫ y

x
g2(t)dt 6 ((g(x)+ g(y))

1

y− x

∫ y

x
g(t)dt −g(x)g(y).

Then, we can estimate T ( f , f ;x,y)

T ( f , f ;x,y) =
1

y− x

∫ y

x
f 2(t)dt −

(

1

y− x

∫ y

x
f (t)dt

)2

6 (( f (x)+ f (y))
1

y− x

∫ y

x
f (t)dt − f (x) f (y)−

(

1

y− x

∫ y

x
f (t)dt

)2

=

(

f (y)−
1

y− x

∫ y

x
f (t)dt

)(

1

y− x

∫ y

x
f (t)dt − f (x)

)

; (8)

and analogues T (g,g;x,y) as follows

T (g,g;x,y) =
1

y− x

∫ y

x
g2(t)dt −

(

1

y− x

∫ y

x
g(t)dt

)2

6

(

g(y)−
1

y− x

∫ y

x
g(t)dt

)(

1

y− x

∫ y

x
g(t)dt −g(x)

)

. (9)

The functional T ( f ,g;x,y) can be expressed as

T ( f ,g;x,y) =
1

2(y− x)2

∫ y

x

∫ y

x
( f (t)− f (s))(g(t)−g(s))dtds.

and analogues T ( f , f ;x,y) and T (g,g;x,y)

T ( f , f ;x,y) =
1

2(y− x)2

∫ y

x

∫ y

x
( f (t)− f (s))2dtds,

T (g,g;x,y) =
1

2(y− x)2

∫ y

x

∫ y

x
(g(t)−g(s))2dtds.
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Using Cuascy inequality we obtein the inequality

|T ( f ,g;x,y)| 6
1

2(y− x)2

(

∫ y

x

∫ y

x
( f (t)− f (s))2dtds

)
1
2
(

∫ y

x

∫ y

x
(g(t)−g(s))2dtds

)
1
2

=

(

1

2(y− x)2

∫ y

x

∫ y

x
( f (t)− f (s))2dtds

)
1
2

×

(

1

2(y− x)2

∫ y

x

∫ y

x
(g(t)−g(s))2dtds

)
1
2

= T ( f , f ;x,y)
1
2 T (g,g;x,y)

1
2 .

In the rest of the proof we will use the short notation for the integral means:

f := 1
y−x

∫ y
x f (t)dt and g := 1

y−x

∫ y
x g(t)dt .

According (8) and (9) we have the following estimation

|T ( f ,g;x,y)| 6 [( f (y)− f )( f − f (x))]
1
2 [(g(y)−g)(g−g(x))]

1
2

= [( f − f (x))(g−g(x)) · ( f (y)− f )(g(y)−g)]
1
2 .

The AG inequality implies

|T ( f ,g;x,y)| 6
1

2
[( f − f (x))(g−g(x))+ ( f (y)− f )(g(y)−g)].

Applying Theorem A 3 the inequality (5) we obtain

T ( f ,g;x,y) 6
1

2
[( f − f (x))(g−g(x))+ ( f (y)− f )(g(y)−g)]. (10)

To prove the Schur-convexity of T ( f ,g;x,y) by Lemma A 1 the inequality (1) it

is sufficient to prove ( ∂T ( f ,g;x,y)
∂y

− ∂T ( f ,g;x,y)
∂x

)(y− x) > 0, for all x,y ∈ [a,b], since the

function T (x,y) := T ( f ,g;x,y) is evidently symmetric.

Direct calculation yields that

(

∂T ( f ,g;x,y)

∂y
−

∂T ( f ,g;x,y)

∂x

)

(y− x)

=

{

1

y− x
[−2T( f ,g;x,y)+ f (x)g(x)+ f (y)g(y)+ 2 f g

− f (y)g−g(y) f + f (x)g+ g(x) f ]

}

(y− x) (11)

= 2

{

1

2
[( f − f (x))(g−g(x))+ ( f (y)− f )(g(y)−g)]−T ( f ,g;x,y)

}

. (12)

Then, the inequalitiey (10) implies

(

∂T ( f ,g;x,y)

∂y
−

∂T ( f ,g;x,y)

∂x

)

(y− x) > 0.
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We have to remark that for x > y the inequalities in (6) and (7) stil are valid.

Furthermore, according the equations in (11) and (11) it is obviously ( ∂T ( f ,g;x,y)
∂y

−
∂T ( f ,g;x,y)

∂x
)(y− x) > 0.

Case 2. Suppose that f and g are both decreasing functions on [a,b] and x < y.

Since f (x) > f (t) > f (y) and g(x) > g(t) > g(y) the inequalities in (6) and (7)

again are valid and the proof is the same as in Case 1.

If x > y then the conclusion is tha same as in remark in Case 1.

Case 3. Let f be an increasing function and g decreasing function. Note that

we can considere Case 1. for function f and −g .

According inequality in (10) we have

T ( f ,−g;x,y) 6
1

2
[( f − f (x))(−g + g(x))+ ( f (y)− f )(−g(y)+ g)].

By definition of T ( f ,−g;x,y) it holds

−T ( f ,g;x,y) 6 −
1

2
[( f − f (x))(g−g(x))+ ( f (y)− f )(g(y)−g)]

and finally we obtain the opposit inequality in (10) for functions f and g :

T ( f ,g;x,y) >
1

2
[( f − f (x))(g−g(x))+ ( f (y)− f )(g(y)−g)]. (13)

Similarly as in Case 1., according (11) we conclude that
(

∂T ( f ,g;x,y)

∂y
−

∂T ( f ,g;x,y)

∂x

)

(y− x) 6 0.

and according Lemma A we prove Schur-concavity of Čebišev functional T ( f ,g;x,y)
with (x,y) in [a,b]× [a,b]∈ R

2.

COROLLARY 2.1. For the generalised logaritmic mean defined by (3) it holds

(i) if (r,s) ∈ (1,∞)× (1,∞)
⋃

(−∞,1)× (−∞,1) , then

Grs(x,y) := Lr+s
r+s−1(x,y)−Lr

r+1(x,y) ·L
s
s+1(x,y)

is Schur-convex with (x,y) ∈ (0,∞)× (0,∞);

(ii) if (r,s) ∈ (1,∞)× (−∞,1)
⋃

(−∞,1)× (1,∞) , then Grs(x,y) is Schur-concave

with (x,y) ∈ (0,∞)× (0,∞).

Proof. We use Theorem 1 for a function f (t) = tr−1 and g(t) = ts−1.Function f

and g are both increasing for r−1 > 0 and s−1 > 0 and both decreasing for r−1 < 0

and s−1 < 0 . Function f and g are monotone in the opposit sence for r−1 > 0 and

s−1 < 0 or r−1 < 0 and s−1 > 0. �

REMARK 2.1. One attempt to obtain Schur convrxity of Čebišev functional is

done in [2].
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