

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Mirjana Domazet-Lošo

ALGORITHMS FOR EFFICIENT ALIGNMENT-
FREE SEQUENCE COMPARISON

ALGORITMI ZA UČINKOVITU USPOREDBU
SEKVENCI BEZ KORIŠTENJA

SRAVNJIVANJA

DOCTORAL THESIS
DOKTORSKA DISERTACIJA

Zagreb, 2010.

The research related to this doctoral dissertation was conducted at the Department of

Applied Computing, Faculty of Electrical Engineering and Computing, University of

Zagreb, Croatia and within the Bioinformatics group, Department of Evolutionary

Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.

Supervisors: Prof. Dr. Bernhard Haubold, Max Planck Institute for Evolutionary

Biology, Plön, Germany

Asst. Prof. Dr. Strahil Ristov, Ruđer Bošković Institute, Zagreb,

Croatia

Number of Pages: 127

Dissertation Number:

The dissertation evaluation committee:

1. Professor Damir Kalpić, Ph. D.,

Faculty of Electrical Engineering and Computing, University of Zagreb

2. Professor Bernhard Haubold, Ph.D.,

Max Planck Institute for Evolutionary Biology, Department of
Evolutionary Genetics, Plön, Germany

3. Assistant Professor Strahil Ristov, Ph.D.,

Ruđer Bošković Institute, Zagreb

4. Professor Mirta Baranović, Ph.D.,

Faculty of Electrical Engineering and Computing, University of Zagreb

5. Professor Bojana Dalbelo-Bašić, Ph.D.,

Faculty of Electrical Engineering and Computing, University of Zagreb

The dissertation defense committee:

1. Professor Damir Kalpić, Ph. D.,

Faculty of Electrical Engineering and Computing, University of Zagreb

2. Professor Bernhard Haubold, Ph.D.,

Max Planck Institute for Evolutionary Biology, Department of
Evolutionary Genetics, Plön, Germany

3. Assistant Professor Strahil Ristov, Ph.D.,

Ruđer Bošković Institute, Zagreb

4. Professor Mirta Baranović, Ph.D.,

Faculty of Electrical Engineering and Computing, University of Zagreb

5. Professor Robert Manger, Ph.D.,

Faculty of Science, University of Zagreb

Date of dissertation defense: 7th October 2010

Acknowledgment

I thank Prof. Dr. Bernhard Haubold for the opportunity to join his group and for his

guidance, patience and support. I thank him for the valuable suggestions that have

improved my thesis.

I also thank Asst. Prof. Dr. Strahil Ristov for his support and comments on the

thesis.

I am thankful to Prof. Dr. Diethard Tautz and Prof. Dr. Mirta Baranović for their

overall support.

I thank Dr. Tomislav Domazet-Lošo for many helpful discussions.

I thank members of Chalk Talk Group and Lab Seminar Group at the Max Planck

Institute for Evolutionary Biology in Plön for the valuable feedback on my work, and

for the opportunity to learn from their work. I thank particularly Chaitanya Gokhale

for interesting disccusions.

I thank my family and my friends for their support and encouragment.

Table of Contents

1. GENERAL INTRODUCTION... 1
1.1. Suffix trees and other index data structures used in biological sequence

analysis... 9

1.1.1. Suffix Tree .. 11

1.1.2. The space and the time complexity of the algorithms for the suffix tree

construction ... 13

1.1.3. Suffix Array .. 14

1.1.4. The space and the time complexity of the algorithms for suffix array

construction ... 16

1.1.5. Enhanced Suffix Array ... 18

1.1.6. The 64-bit implementation of the lightweight suffix array construction

algorithm 22

1.1.7. Self-index ... 22

1.1.8. Burrows-Wheeler transform .. 24

1.1.9. The FM-Index and the backward search algorithm 25

1.1.10. The space and the time-complexity of the FM-index 29

2. EFFICIENT ESTIMATION OF PAIRWISE DISTANCES BETWEEN
GENOMES... 31

2.1. Introduction.. 31

2.2. Methods ... 33

2.2.1. Definition of an alignment-free estimator of the rate of substitution, Kr

 33

2.2.2. Problem statement ... 35

2.2.3. Time complexity analysis of the previous approach (kr 1)................ 35

2.2.4. Time complexity analysis of the new approach (kr 2) 37

2.2.5. Algorithm 1: Computation of all Kr values during the traversal of a

generalized suffix tree of n sequences.. 38

2.2.6. The implementation of kr version 2 ... 44

2.3. Analysis of Kr on simulated data sets .. 45

2.3.1. Auxiliary programs .. 45

2.3.2. Consistency of Kr ... 46

 i

2.3.3. The affect of horizontal gene transfer on the accuracy of Kr 48

2.3.4. The effect of genome duplication on the accuracy of Kr.................... 49

2.3.5. Run time comparison of kr 1 and kr 2 ... 50

2.4. Application of kr version 2 .. 53

2.4.1. Auxililary software used for the analysis of real data sets 56

2.4.2. The analysis of 12 Drosophila genomes .. 57

2.4.3. The analysis of 13 Escherichia coli and Shigella genomes 58

2.4.4. The analysis of 825 HIV-1 pure subtype genomes............................. 61

2.5. Discussion.. 62

3. EFFICIENT ALIGNMENT-FREE DETECTION OF LOCAL
SEQUENCE HOMOLOGY.. 66

3.1. Introduction.. 66

3.2. Methods ... 69

3.2.1. Problem statement – determining subtype(s) of a query sequence.... 69

3.2.2. Construction of locally homologous segments 71

3.2.3. Time complexity of computing a list of intervals Ii 72

3.2.4. Algorithm 2: Construction of an interval tree 73

3.2.5. Computing a list of segements Gi... 80

3.3. Analysis of st on simulated data sets ... 82

3.3.1. Run-time and memory usage analysis of st.. 82

3.3.2. Consistency of st .. 85

3.3.3. Comparison to SCUEAL on simulated data sets 92

3.4. Application of st... 97

3.4.1. The analysis of Neisseria meningitidis .. 98

3.4.2. The analysis of a recombinant form of HIV-1 99

3.4.3. The analysis of circulating recombinant forms of HIV-1 103

3.4.4. The analysis of an avian pathogenic Escherichia coli strain 104

3.5. Discussion.. 107

4. CONCLUSION .. 110

REFERENCES... 112

5. ELECTRONIC SOURCES... 121

6. LIST OF ABBREVIATIONS AND SYMBOLS... 122

 ii

 iii

ABSTRACT.. 124

SAŽETAK .. 125

CURRICULUM VITAE.. 126

ŽIVOTOPIS ... 127

1. General Introduction

Nucleic acids (DNA and RNA) are the molecular carriers of hereditary information

in living organisms. These molecules are polymers of four nucleotides. DNA

sequences are usually represented as strings of characters over the alphabet {A, C, G,

T}, where each character corresponds to a nucleotide base. Similarly, RNA

sequences are represented as strings over the alphabet {A, C, G, U}. The size of the

DNA or RNA of an organism (its genome size) varies significantly. For example, the

size of viral genomes ranges from few thousand to around million nucleotide base

pairs; bacterial genomes sizes range from hundreds of thousands to less than ten

million base pairs, and the size of mammalian genomes ranges between one and

eight billion base pairs (Gregory, 2005), e.g. a human genome comprises around 3

billion base pairs.

All the existing and the extinct genomes are the outcome of the copying process

that happens each generation from the emergence of the first living cell

approximately 3.8 billion years ago. However, this process was accompanied by

mutations and recombination. The genetic variation thus generated permitted

adaptation to different habitats, which resulted in the diversity of present and extinct

organisms. Thus, the evolution of organisms or sequences can be envisaged as a

branching process where every pair of organisms or sequences has a common

ancestor at a varying depth of an emerging tree.

However, evolution is a historical process, which usually cannot be observed

directly. Therefore, we reconstruct this branching process from the physically

available sequences. The first step in this endeavor is to compare different sequences

and to find similar regions between them. In particular, the number of unique

combinations is extremely large even for very short sequences; for example, a DNA

sequence comprising only 100 base pairs (which is less than 0.00001% of a human

genome) can have 4100 ≈ 2 ·1060 unique combinations. In addition, the space of

nucleotide sequences occupied by present day and extinct organisms represents only

a small portion of all possible combinations. Hence, it is possible to construct

hypotheses about common ancestry of sequences (also called homology) using

 1

sequence similarity scores which are above the score expected by chance alone

(Karlin and Altschul, 1990).

Historical branching patterns (also known as phylogenies) are not the only

information that can be reconstructed from the comparison of sequences. Regions of

high sequence similarity between even relatively distantly-related organisms usually

imply similar biological functions or structures. In this way, the functional

information, inferred through experiments in one organism, can be transferred to a

genome of another organism solely based on sequence comparison between these

organisms. The advantage of this approach becomes apparent when we consider that

functional experiments in some organisms (e.g. humans, animals with long

generation time) are much more difficult if not impossible, than in the so called

"model organisms", e.g. yeast, bacteria, fruit flies, mice.

This is why sequence comparison is an essential tool in modern biology: the

study of functional and structural organization, evolutionary mechanisms and

evolutionary history of organisms all rely upon sequence comparison. But, how can

we compare sequences in the first place? The traditional, widely-used approach to

sequence comparison is sequence alignment. The goal of this procedure is to find the

most plausible hypothesis about homology between nucleotide positions in two or

more sequences. For this purpose, sequences are typically arranged in a matrix

(Figure 1-1), where each sequence corresponds to a matrix row, and the columns of a

matrix represent the homologous nucleotides. Due to mutations, the homologous

nucleotides are not always identical. In order to align homologous nucleotides within

the same column, gaps (spaces) can be inserted in a sequence. In Figure 1-1, two

sequences are aligned in five ways, and for each alignment two scores are computed.

The goodness of an alignment is determined based on the alignment score. The

optimal alignment score corresponds to the minimal weighted edit distance between

sequences, that is, the minimal sum of weighted (scored) edit operations required to

transform one sequence into another. Hence, each alignment score is computed as the

sum of rewards for matches (identical nucleotides within the same column), and

penalties for mismatches (different nucleotides within the same column) and gaps

(when a nucleotide is aligned with a gap). In the biological context, a mismatch is

observed as a nucleotide substitution (or a point mutation), and a gap as an insertion

 2

or a deletion of a nucleotide (Figure 1-1). An example of a scoring scheme with

arbitrary values for matches, mismatches and gaps is shown in Figure 1-1. In this

example, there are two scoring systems: similarity score depicts a similarity between

strings, in which case the best alignment is the one with the maximal score. The

distance score, on the other hand, measures the distance between strings, and here the

minimal score corresponds to the optimal alignment. In the example in Figure 1-1,

the best results for both scoring schemes are achieved for the first alignment.

A GCCS1

GGCAS2 GGCAS2

A GCCS1

GGC-AS2

A -GCCS1

GGC-AS2

A -GCCS1

GGCA-S2

A -GCCS1

GGCA-S2

A -GCCS1

GGCA--S2

-A -GCCS1

GGCA--S2

-A -GCCS1
10

5

4

Distance
score

Similarity
scoreAlignment

-104

-33

-12

1 12

10

5

4

Distance
score

Similarity
scoreAlignment

-104

-33

-12

1 12

Figure 1-1. An Example of Pairwise Sequence Alignment. Sequences S1 =

ACCG and S2 = ACGG can be aligned in several possible ways, five of which are

listed here. An indel (insertion or deletion) is denoted by a gap (-). The similarity

score between a sequence pair is computed based on the following values: each

match is rewarded 1, each substitution -1, and a gap -2. For example, for the first

alignment, the score is 3 · 1 – 1 = 2, since there are 3 matches, and a mismatch.

The distance score between a sequence pair is computed based on the following

values: each match is 0, the penalty for a substitution is 1, and the penalty for a gap

is 2. For example, for the first alignment, the score is 3 · 0 + 1 = 1. Thus, the best

alignment score in both cases is obtained for the first alignment.

 3

The alignment procedure can be pair-wise or between multiple sequences. In the

first case, a pair of sequences is aligned, and in the second case, more than two

sequences are aligned. Furthermore, an alignment procedure can be also global or

local. Global sequence alignment is usually applied to similar sequences which are

homologous along their entire lengths. Local sequence alignment is usually applied

to more divergent sequences, where only some regions are homologous. The optimal

alignment, with respect to the chosen scoring scheme, can be found for both global

and local alignment. The Needleman-Wunsch algorithm (Needleman and Wunsch,

1970) is a dynamic programming algorithm that constructs the optimal pair-wise

global alignment (the chosen similarity scoring scheme can be similar to the example

in Figure 1-1). The algorithm requires both O(|S1| · |S2|) time and space for the

comparison of a sequence pair (S1, S2). This time complexity corresponds to the

computation of |S1| · |S2| matrix entries, where each entry represents a score for a

different partial alignment between the first and the second sequence. However, the

memory usage of this algorithm can be reduced to O(|S1| + |S2|) using Hirschberg's

algorithm (Hirschberg, 1975), with a further increase in the run-time. To illustrate the

requirements of the optimal global alignment computed by the Needleman-Wunsch

algorithm, let us look at an example: a human genome comprises 3 billion nucleotide

base pairs, and since each DNA molecule has two strands of the same length, it totals

6 billion nucleotides. If we wish to compare two human genomes using a computer

that can execute a billion instructions per second, then the comparison of two human

genomes using the Needleman-Wunsch algorithm would require 6 · 109 · 6 · 109 / 109

= 36 billion seconds ≈ 1142 years to compute all entries in a matrix. Similarly, a

variant of the Needleman-Wunsch algorithm, the Smith-Waterman algorithm (Smith

and Waterman, 1981), results in the optimal local sequence alignment. Again, the

time and the space complexity of the algorithm is O(|S1| · |S2|) for a sequence pair (S1,

S2). Moreover, finding the optimal multiple sequence alignment is an NP-complete

problem under a commonly used scoring scheme (Wang and Jiang, 1994). Therefore,

many alignment tools are based on some heuristic in order to improve the run-time

(e.g. Edgar and Batzoglou, 2006; Section 2.1).

Once an alignment is computed, it still does not directly reflect evolutionary

distance. In particular, the evolutionary distance between nucleotide sequences is the

 4

number of nucleotide substitutions per site. Thus, the similarity score between a pair

of sequences derived from an alignment should be transformed into evolutionary

distance. The simplest model used for this purpose, the Jukes-Cantor model, is based

on the idea that each nucleotide base has an equal chance of mutating to any other

base (Jukes and Cantor, 1969). The Jukes-Cantor formula (1-1) converts p, the

proportion of mismatches between a sequence pair (S1, S2), into the number of

nucleotide substitutions per site:

() ⎟
⎠
⎞

⎜
⎝
⎛ −−= plnS,SK 21 3

41
4
3 (1-1)

Parameter p can be easily obtained from the alignment. In the example in Figure

1-1, the value of p of the first alignment is 0.25 (one mismatch per 4 nucleotides)

which yields an evolutionary distance of 0.304 nucleotide substitutions per site. In

the computation of the relative number of pair-wise mismatches between sequences,

the regions with gaps are usually ignored. In addition, a number of more complex

models have been proposed (e.g. Kimura 1980; Felsenstein, 1981). These models are

based on more than one parameter for different types of nucleotide conversions.

Among them, probably the most commonly used is Kimura's 2-parameter model

(Kimura, 1980), which distinguishes between transitions and transversions.

Evolutionary distances can be further used to construct phylogenies (Figure 1-2).

A phylogenetic (or evolutionary) tree is usually a bifurcating tree whose leaves

represent sequences or organisms. Each internal node (a bifurcation in the tree)

corresponds to a common ancestor of two or more entities (organisms or sequences)

at the leaves of the tree. There are several methods for the reconstruction of a

phylogenetic tree based on evolutionary distances between all sequence pairs: e.g.

Neighbor-Joining method (Saitou and Nei, 1987), and UPGMA (Michener and

Sokal, 1957). These two methods are based on clustering: first, the two sequences

which have the smallest evolutionary distance are joined (that is, their most recent

common ancestor is added to the tree), and then the third sequence or a set of

sequences, which are closest to them, are added to the tree, and so on. The

requirement of this procedure is that the total distance between sequences in the set

has to stay minimal. The diagram representing a phylogenetic tree is called

 5

dendrogram. A special case of a dendrogram, where the branch lengths correspond to

the number of nucleotide substitutions, is called a phylogram (Figure 1-2c).

A GCCS1

TTCAS3

GGCAS2

TTCAS3

GGCAS2

A GCCS1

a) MSA of S1, S2, and S3

0
0.824
0.824
S3S2

0.8240.824S3

00.304S2

0 0.304
S1

S1

0
0.824
0.824
S3S2

0.8240.824S3

00.304S2

0 0.304
S1

S1

c) Phylogenetic tree of S1, S2, and S3

 S1

 S2

 S3

0.

0.152

0.412

0.260
152 S1

S2

0.1

S3

b) Matrix of evolutionary distances
between S1, S2, and S3

Figure 1-2. Construction of the phylogenetic tree of sequences S1, S2, S3. a) In

the first step, the multiple sequence alignment (MSA) of S1, S2, and S3 is

constructed. b) Next, the evolutionary distances between sequences are determined

using the Jukes-Cantor formula (formula (1-1)). These values are computed from

the number of pair-wise mismatches between sequence pair, which is 0.25 for (S1,

S2), and 0.5 for (S1, S3) and (S2, S3). The evolutionary distance is a symmetric

measure, and the values on the diagonal are 0. c) The phylogenetic tree is

constructed using the Neighbor-Joining method (see text) and drawn in MEGA 4

(Kumar et al., 2008). The evolutionary distance between a sequence pair (Si, Sj) is

the sum of values along branches from Si to Sj. For example, the distance between

S1 and S2 is 0.304, which can be computed as the sum of 0.152 plus 0.152.

In order to show the scale of the data that biologists wish to analyze, let us

consider the human 1000 genome project (www.1000genomes.org)1, which started

1 Another large-scale sequencing project is currently under way: the 1000 plants project
(www.onekp.com). In addition, the volume of available nucleotide sequences is constantly increasing:

 6

in 2008, and is expected to finish in 2011. This project involves sequencing of at

least 1000 human genomes in order to catalog human genetic variation, which would

assist research in genetic diseases. Such a large-scale project was made feasible by

the latest sequencing techniques which significantly lowered the sequencing cost (for

example, the current estimate of the sequencing costs of this project is 30-50 million

dollars, while the application of older sequencing techniques would have required

500 million dollars; see en.wikipedia.org/wiki/1000_Genomes_Project). It is

expected that the project will yield at least 6 trillion nucleotides, which will be

available to the public. However, the time and the memory requirements of the

alignment procedures do not scale well for the comparison of large genomes. As an

efficient alternative, alignment-free methods, which were first proposed more than

two decades ago (Blaisdell, 1986), might be used for the comparison of very long

sequences. It was also noticed that alignment-free methods can perform better on

rearranged sequences than global alignment methods (Vinga and Almeida, 2003;

Höhl et al., 2006). However, in the comparison of syntenic sequences, alignment-

based methods outperformed alignment-free methods (Höhl and Ragan, 2007).

Alignment-free methods have been developed in two directions: methods that

rely on the analysis of word frequencies between sequences, and methods based on

information theory (Vinga and Almeida, 2003). However, the distance measures

obtained by alignment-free methods are generally not related to evolutionary models.

In an attempt to provide an efficient alignment-free method which produces

biologically relevant evolutionary distances, we have recently developed an

alignment-free pair-wise distance measure, Kr (Haubold et al. 2009). Kr is an

estimator of the number of nucleotide substitutions per site, based on the Jukes-

Cantor model of DNA sequence evolution (Jukes and Cantor, 1969). As a result, Kr-

based phylogenies of closely related genomes are more accurate than phylogenies

based on model-free distance measures. However, the first implementation of the

method was slow for large samples of genomes.

the size of GenBank, a sequence database which contains all publicly available nucleotide sequences,
now doubles every 30 months (Benson et al., 2009). In 2008, GenBank contained approximately 92
million sequences with over 95 billion base pairs (Benson et al., 2009).

 7

In the first part of my thesis (Chapter 2), I address the problem of efficient

estimation of Kr pair-wise distances. I developed a new algorithm for the rapid

computation of Kr distances (Algorithm 1), which I implemented in the program, kr

version 2 (Domazet-Lošo and Haubold, 2009). To illustrate the run-time

improvement of the new implementation and its applicability, the program was tested

on simulated data sets, and a wide range of complete genomes data sets: 825

genomes of HIV-1 strains (7.5 million base pairs), 13 genomes of enterobacteria

(over 60 million base pairs), and the complete genomes of 12 Drosophila (over 2

billion base pairs) (Domazet-Lošo and Haubold, 2009).

However, in the Kr-based clustering of 825 genomes of HIV-1, a single strain

was not classified according to its official subtype. Further analysis of this strain

revealed a phylogenetic incongruence along its genome: the strain was a recombinant

of at least two different subtypes (see Sections 2.4.4 and 3.4.3). Motivated by this

observation, in the second part of my thesis, I investigated the detection of regions of

local sequence similarity (Chapter 3). I proposed a solution based on a new algorithm

for efficient detection of locally matching regions between sequences (Algorithm 2),

and implemented it in the program st. To illustrate the efficiency and the scalability

of the program, it was used for the classification of strains of the circulating

recombinant forms of the human immunodeficiency virus (HIV) (over 3 million base

pairs), and for the detection of locally homologous regions between an avian

pathogenic Escherichia coli strain and a set of 13 enterobacterial strains (over 60

million base pairs).

Both algorithms (Algorithm 1 and Algorithm 2), which I developed as a part of

this thesis, rely on the concept of a generalized suffix tree (Gusfield, 1997).

Therefore, I begin by giving an overview of suffix trees and similar index data

structures, which are widely-used in the analysis of biological sequences (Section

1.1). I address the first problem, efficient estimation of pairwise distances between

genomes, in Chapter 2. In Chapter 3, I concentrate on the alignment-free detection of

local sequence homology. The thesis conclusions are presented in Chapter 4.

 8

1.1. Suffix trees and other index data structures used in
biological sequence analysis

The comparison of two or more sequence generally relies on the detection of

conserved islands (exact or similar subsequences) between sequences, or sometimes

within a sequence. In particular, the large-scale sequence comparison requires the up-

most efficiency in both the time and the memory requirements for the retrieval of

these regions. In technical terms, the problem of finding matching regions between

sequences corresponds to the classical problem of the pattern search, i.e. finding the

occurrences of a (typically short) pattern in a (long) text. This problem can be

described by introducing the following notation: Let P and T be strings over the same

alphabet, Σ, where the lengths of P and T are denoted as |P| and |T|, respectively. P is

usually the shorter string, usually referred to as pattern (or query), and T is the longer

string, called text (or subject), and usually |T| >> |P|. The problem of finding exact

matches is the problem of finding all z occurrences (z ≥ 0) of P in T. This problem

can be naively solved in the worst case O(|P| · |T|) time. Of course, this is impractical

for large text. Hence, the more sophisticated solutions were developed to address this

problem. These solutions apply two approaches to speed up the computation: (i) a

pattern is indexed, which requires only a small extra space; or (ii) a text is indexed,

which requires the significant amount of additional space. The two classical

algorithms that index pattern are the Knuth-Morris-Pratt algorithm (Knuth et al.,

1977) and the Boyer-Moore algorithm (Boyer and Moore, 1977). They can solve the

problem of finding exact matches of P in T in the worst case O(|T|) time, with a

preprocessing step which takes O(|P|) time, although the Boyer-Moore algorithm on

average performs even better, with O(|T| / |P|) time. However, when several patterns

need to be found in the same text, then the O(|T|) time does not scale well.

The other approach is based on the preprocessing (indexing) of the text; in

particular, it uses the suffix tree data structure or its variants. The suffix tree is an

index data structure, and one of the most important data structures in string

algorithms and the analysis of biological sequences (Gusfield, 1997). The suffix tree

resembles the book index principle: first, the lexicographically sorted index of a book

is built, and then, the location of an arbitrary entry is found by just searching the

 9

index, and not the entire book, with the number of comparisons which is at most

equal to the entry length.

The suffix tree data structure can be efficiently used in problems like finding the

exact matches, but its real strength is shown in more complicated problems, like

finding the longest common substrings between sequences. In the exact matching

problem, the suffix tree is constructed for the text T in O(|T|) time, and then all z

occurrences of the pattern P are searched in O(|P| + z) time (Section 1.1.2). In the

problem of finding the longest common substrings between a sequence pair (S1, S2),

the suffix tree is constructed in O(|S1| + |S2|) time, and then the traversal of the tree in

order to find the longest common substring is performed in the same linear time. The

following section (1.1.1) describes this widely-used data structure.

The more space efficient counter-part of the suffix tree is the suffix array

(Manber and Myers, 1993; Section 1.1.3). However, the memory requirements of

both suffix trees and suffix arrays are proportional to the text size. In order to reduce

the space required for the index storage, researchers developed self-indexes. A self-

index is the data structure that replaces text and requires space proportional to the

compressed text (e.g. Navarro and Mäkinen, 2007; Ferragina et al., 2008; Section

1.1.7). In contrast, typical string operations performed using self-indexes are slower

than in the case of suffix tress and suffix arrays; e.g. searching a pattern in a text is

one order of magnitude slower than the same operation performed using a suffix

array (Ferragina et al., 2008; Välimäki et al., 2007). Moreover, current

implementations of self-indexes require significant additional space (linear in the text

size) for the construction of indexes (Ferragina et al., 2008).

In a quest for the best trade-off between the time and the space requirements

needed for the index construction in the programs which I developed as a part of my

thesis, I used the enhanced suffix array (Kasai et al., 2001; Abouelhoda et al., 2004;

Section 1.1.5), which is an extension of the suffix array, as the underlying data

structure to implement the suffix tree concept (Section 1.1.6).

 10

1.1.1. Suffix Tree

Suffix tree is a data structure developed for efficient operations on strings (Gusfield,

1997). It is a rooted directed tree that represents all suffixes of a string (Figure 1-3e).

Let T be the suffix tree for a string S. Let S be defined over the alphabet Σ. Every

suffix si of S is defined as si = S[i..|S|], and 1 ≤ i ≤ |S|. A tree leaf (or a terminal node),

denoted (S, i), corresponds to a suffix si of S. Every edge (or branch) of T is labeled

with characters. Every branch label represents a substring of S. The concatenation of

characters from the root of T to a leaf (S, i) of T spells out a suffix si of S. Every

internal node (or branch node) x of T, except a root, has at least two, and maximally

|Σ| branches. The label on each branch of x starts with a different character from Σ. A

path-label from the root of T to an internal node x of T represents a common

substring of two or more suffixes of S. The string depth of x is the length of the path-

label of x.

A generalized suffix tree is a data structure that represents every suffix of a set of

strings.

Example 1.1

Let S = ACCA$. The suffixes of S are s1 = ACCA$, s2 = CCA$, s3 = CA$, s4 = A$,

and s5 = $. The character $ is a sentinel character that is not part of the alphabet over

which S is built, so it does not exist anywhere else in S. The terminal character

ensures that every suffix ends as a leaf. If the character $ were not added to the end

of S, then the suffix s4 would be s4 = A, and would not end up as a leaf of T, but as an

internal node. However, the convention of adding $ at the end of the string is usually

not required in the implementation.

Figure 1-3 illustrates the naïve construction of T built for string S, which leads to

O(|S|2) construction. In the first step (Figure 1-3a), the leaf (S, 1), corresponding to

the suffix s1, is connected to the root of T (node x1). In the second step (Figure 1-3b),

the suffix s2 is added to the tree. At most |s2| comparisons are needed to add the

suffix s2 to the non-empty tree. The first character of s2, C, is compared to the

starting characters on the labels of branches starting at the root of T. Since the label

 11

of the only existing branch starts with A, the comparison finishes here. A new branch

is added for s2, which connects the leaf (S, 2) to the root of the tree (x1).

In the third step, s3 is added to the tree (Figure 1-3c). The first character of s3 is

compared to the characters on the labels of already existing branches. Since a branch

starting with character C already exists, the new suffix follows this branch. The

second character of s3 is compared to the second character on the branch label. Since

they differ, the branch labeled with CCA$ in Figure 1-3b is split in two, and a new

branch node (x2) is added at that position. The new branches connect leaves (S, 2)

and (S, 3), corresponding to the suffixes s2 and s3 respectively, to the branch node x2.

Similarly, the fourth suffix, s4, is added to the tree (here, the new branch node is

x3) (Figure 1-3d). Finally, the suffix s5 is added (Figure 1-3e). For this suffix, starting

with the terminal character, a new branch is added.

T T T T 1

Figure 1-3. Example 1.1 – Naïve construction of the suffix tree T for the string
S = ACCA$, which leads to O(|S|2) time.

In the fully constructed tree (Figure 1-3e), there are three branch nodes: the node

x1 is the root of the tree, and the two branch nodes connected to the root are x2 and x3.

The leaves of the tree are denoted as (S, i), where 1 ≤ i ≤ 5.

a) s = ACCA$ is added to 1 b) s2 = CCA$ is added to TTs sa) = ACCA$ is added to b) = CCA$ is added to ssc) c) = CA$ is added to 3

S , 1

ACCA$

x 1

S, 1

ACCA$

S, 2

CCA$

x1 C

A$ CA$

S , 3 S , 2

S, 1

ACCA$
x 2

x
= CA$ is added to 2 3

1x x

x 1
C A

S , 1

$ CCA$ A$ CA$

S , 4 S , 3

x 2
x 3

S, 2

x 1
C A $

S, 1

CCA A$ CA$

S, 4 S, 3 S , 2 S, 2

x 2
x3

d) s4 = A$ is added to T e) s5 = $ is added to T

S , 1

ACCA$

S , 1

ACCA$

1

S, 1

ACCA$

S, 2

CCA$

S, 1

ACCA$

S, 2

x1 C

A$ CA$

S , 3 S , 2

S, 1

ACCA$
x 2

C

A$ CA$

S , 3 S , 2

1

ACCA$
x 2

, 1S

x 1
C A

S , 1

$ CCA$ A$ CA$

S , 4 S , 3

x 2
x 3

S, 2

x 1
C A

S , 1

$ CCA$ A$ CA$

S , 4 S , 3

x 2
x 3

S, 2

x 1
C A $

S, 1

CCA A$ CA$

S, 4 S, 3 S , 2 S, 2

x 2
x3

x 1
C A $

S, 1

CCA A$ CA$

S, 4 S, 3 S , 2 S, 5

x 2
x3

d) s4 = A$ is added to T e) s5 = $ is added to T

 12

1.1.2. The space and the time complexity of the algorithms for the
suffix tree construction

This naive approach of constructing a suffix tree results in O(l2) run-time, for a string

of length l. However, a suffix tree can be efficiently constructed in O(l) time

(Weiner, 1973; McCreight, 1976; Ukkonen, 1995).

The O(l) time construction of suffix trees is based on suffix links. A suffix link

connects every non-root branch node to another specifically chosen branch node of

the tree. Let T be the suffix tree for a string S. Let S' and S'' be substrings of S, and c

a character from the alphabet of S, such that S' = cS''. If S' represents a path-label

from the root of T to a branch node x', and S'' represents a path-label from the root of

T to a branch node x'' (S'' could be an empty string), then a suffix link connects x' to

x'' (Figure 1-4). In addition, suffix links can be used for finding hits with

mismatches.

x1

CA $

S, 1

CCA A$ CA$

S, 4 S, 3 S, 2 S, 5

x2

x3

x1

CA $

S, 1

CCA A$ CA$
x2

x3

S, 4 S, 3 S, 2 S, 5

Figure 1-4. The suffix tree T for the string S = ACCA$, with included suffix
links. Suffix links are shown as blue dashed lines connecting the branch nodes x2

and x3 to the root of T (x1).

The important property of suffix trees is that the existence of an arbitrary string P

in a suffix tree T can be determined in O(|P|) time. This is done by comparing at

most |P| characters of a string P to the characters along the branches of T. The exact

matching problem, or finding z occurrences of P in T, can be done in O(|P| + z) time.

Let x denote a branch node such that the concatenation of characters from the root of

T to x spells out P. Then, all matches of P in T are found by traversing the subtree

 13

rooted on x (for example, in depth-first mode), and collecting the starting positions of

suffixes corresponding to the leaves in the subtree rooted on x.

Another problem solved by suffix trees is finding the longest common substrings

between sequences. Let the generalized suffix tree T be constructed for sequences S1

and S2 in O(|S1| + |S2|) time. A common substring between these sequences can be

found as the concatenation of branch labels from the root of T to a branch node that

has the leaves corresponding to both S1 and S2 in its subtree. The longest common

substring is found by traversing the tree, and storing the information about the

longest found substring. In fact, the longest common substring corresponds to the

branch node with the deepest string-depth of all branch nodes which are roots of

subtrees containing leaves from both S1 and S2. In this way, the longest common

substring is found in O(|S1| + |S2|) time.

Suffix trees have been widely used in many biological applications (e.g. Kurtz et

al., 2001; Höhl et al., 2002; Kurtz et al., 2004; Bray and Pachter, 2004; Apostolico

and Denas, 2008). However, the memory requirements of suffix trees are their

limiting factor. For example, the best implementations of suffix trees require at least

10 bytes per each character of an input string (sequence), and often more (15-20

bytes) (Kurtz, 1999). Thus, the application of suffix trees to data sets of large

genomes becomes demanding (e.g., human genome is 3 * 109 base pairs long). In

order to reduce the memory usage of suffix trees, data structures with different trade-

offs between the space and the time requirements were proposed (e.g. Hunt, 2003;

Ristov, 2003). Among them, a suffix array, introduced by Manber and Myers (1993)

emerged as a widely accepted space-efficient alternative to a suffix tree.

1.1.3. Suffix Array

Manber and Myers proposed a data structure called suffix array (1993). Suffix array

(SA) is an array of positive integers, corresponding to the starting positions of the

lexicographically ordered suffixes of a string.

 14

Example 1.2:

Let S = ACCA$. The suffixes of S are s1 = ACCA$, s2 = CCA$, s3 = CA$, s4 = A$,

and s5 = $, and the character $ is a sentinel character as before.

First, the lexicographically ordered list of suffixes of S is formed:

s1 = ACCA$

s4 = A$

s3 = CA$

s2 = CCA$

s5 = $

Next, the suffix array of S, SA, is constructed from the list of the lexicographically

ordered suffixes of S. For example, SA[1] = 1, since the first suffix in the

lexicographical order is, at the same time, the first suffix of S (s1). SA[2] = 4, since

the second suffix in the lexicographical order is the fourth suffix of S (s4). Finally, SA

= [1, 4, 3, 2, 5].

a) The suffix tree for S = ACCA$ b) The suffix array for S = ACCA$

x1

CA $

S, 1

CCA A$ CA$

S, 4 S, 3 S, 2 S, 5

x2

x3

x1

CA $

S, 1

CCA A$ CA$

S, 4 S, 3 S, 2 S, 5

x2

x3

5

2

3

4

1

SA[i]

$5

CCA$4

CA$3

A$2

ACCA$1

sii

5

2

3

4

1

SA[i]

$5

CCA$4

CA$3

A$2

ACCA$

i si

1

Figure 1-5. The suffix tree and the suffix array for S = ACCA$. The suffix array,

SA, for S can be obtained by preorder traversing of the suffix-tree. For example,

SA[1] = 1, that is, the first suffix in the lexicographical order, s1, corresponds to the

leaf (S, 1), which is the first leaf encountered in the preorder traversal of the leaves

of the suffix tree. The second encountered leaf is (S, 4) which corresponds to the

second suffix in the lexicographical order, s4, etc.

 15

1.1.4. The space and the time complexity of the algorithms for
suffix array construction

The suffix array data structure contains integer values that represent indexes (starting

positions) of lexicographically sorted suffixes of a string. The maximal value that can

be stored in the suffix array is l for a string of length l. To store the value l, at least

 bits are needed. Thus, the whole suffix array containing l entries could be

stored in O(l log2l) bits. However, in practice, each entry of the suffix array is stored

as a 32-bit integer value. Thus, the memory required for the storage of a suffix array

is usually 4l bytes for the sequence of length l, when l is at most 232. In some cases,

due to the specificities of some suffix array construction algorithms, 4 bytes per input

character only cover sequences shorter than 231 characters (Manzini and Ferragina,

2004).

⎡ l2log ⎤

A lightweight algorithm for the construction of the suffix array requires only a

small amount of extra space in addition to the space needed for the storage of a string

and the accompanying suffix array, i.e., the construction of the suffix array by a

lightweight algorithm takes only a little more than 5l bytes of space (e.g. Manzini

and Ferragina, 2004).

The naive approach to suffix array construction would require O(l2 log l) time for

a string of length l: sorting l elements of an array by an efficient sort algorithm on

average takes O(l log l) time (e.g. Hoare, 1962; Williams, 1964), and the comparison

of two elements (which are suffixes in the case of SA), takes O(l) time. Thus, the

overall time needed for the suffix array construction is bounded by O(l2 log l).

However, a suffix array can be constructed from the corresponding suffix tree in O(l)

time by the preorder visit of the suffix tree (see Figure 1-5).

In the last two decades many algorithms for the direct suffix array construction

have been proposed. The theoretically best time achieved is O(l) for a string of length

l (Ko and Aluru, 2003; Kärkkäinen and Sanders, 2003; Kim et al., 2005). These

linear time suffix array construction algorithms are all recursive algorithms: a suffix

array is constructed for a substring of an observed string in a recursive step. The

 16

recursion ends when a sufficiently short suffix is encountered, which is then sorted

by a linear procedure (see Puglisi et al., 2007)

In the recent study, Puglisi et al. (2007) compared the memory requirements and

the speed of almost twenty SA construction algorithms on a variety of data sets.

Interestingly, they found that the three fastest implementations are based on non-

linear algorithms with the O(l2 log l) time worst case behavior (Manzini and

Ferragina, 2004; Maniscalco and Puglisi, 2006; Maniscalco and Puglisi, 2007), and

not the implementations of the algorithms running in O(l) time. The authors also

showed that, at the same time, these three non-linear solutions required in total

considerably less space (5 - 6 bytes per character of the input data) than the

algorithms running in the theoretically best time. For example, among the SA linear

construction algorithms, the implementation of the algorithm of Ko and Aluru (2003)

required at least 7 bytes, and the implementation of the algorithm invented by

Kärkkäinen and Sanders (2003) required at least 10 bytes per input character.

However, some problems that can be solved by suffix trees cannot be solved by

the basic suffix array structure in the same time-complexity. For example, finding a

string P in a suffix tree built for the string S takes O(|P|) time, since at most |P|

comparisons have to be made along the branches of the suffix tree starting with the

branches connected to the root of the suffix tree (Sections 1.1.1 and 1.1.2). In

contrast, finding P in a suffix array built for S takes O(|P| · log |S|) time: The pattern

P can be found by the binary search of the lexicographically sorted suffixes of S,

where the binary search of the suffix array takes O(log|S|) time, and each comparison

between two suffixes corresponding to the suffix array entries takes O(|P|) time.

However, using an additional data structure, the lcp-array (see Section 1.1.5), this

problem can be solved in O(|P| + log|S|) time (Manber and Myers, 1993).

Abouelhoda et al. (2004) showed that P can be found in S in O(|P|) time using an

enhanced suffix array (ESA), the suffix array data structure supplemented with other

data structures (Section 1.1.5).

 17

1.1.5. Enhanced Suffix Array

An enhanced suffix array (ESA) is a suffix array accompanied by additional data

structures. ESA represents the trade-off between the space and the time requirements

of its predecessors, suffix trees and suffix arrays. As explained in the previous

section, suffix array requires 4l bytes for an input sequence of length l, where l has to

be less than 232. In contrast, the suffix tree data structure requires at least 10l bytes of

space for the string of length l (Kurtz, 1999; Section 1.1.2). However, the typical

string operations (e.g. search for a pattern in a string; Section 1.1.4) using the suffix

array are solved in worse time complexity than the more space-consuming suffix tree

data structure.

The memory requirements of an enhanced suffix array are at least 5l bytes for a

string of length l (Abouelhoda et al., 2004). The suffix array requires 4l bytes, and

the rest comes from the additional data structures: the longest common prefix array

or the longest common prefix table (lcp-array or lcp-table), and some other data

structures which may be needed for some applications (Abouelhoda et al., 2004).

The lcp-array contains the integer values representing the length of the longest

common prefix between two adjacent suffixes, when suffixes are sorted in the

lexicographical order (see Example 1.3). The length of the longest common prefix of

two suffixes of the string of length l, takes ⎡ ⎤l2log bits, but in practice it is stored as

4-byte integer for strings where l is less than 232. Depending on the data, the length

of the longest common prefix of two adjacent suffixes can be significantly shorter

than l, so it can be represented by a one-byte integer, plus some small additional data.

Thus, the storage of the lcp-array takes typically between l and 4l bytes.

Abouelhoda et al. (2004) showed that each algorithm that uses the suffix tree

data structure can be adequately replaced by an enhanced suffix array algorithm in

the same time complexity. They have introduced the conceptual lcp-interval tree

(Figure 1-6). Traversing of the lcp-interval tree simulates the traversal of the

corresponding suffix tree, so that every operation requiring the traversal of a suffix

tree can be accomplished in the time-complexity using the conceptual lcp-interval

tree.

 18

Example 1.3

Let S = ACCA$. The suffixes of S are s1 = ACCA$, s2 = CCA$, s3 = CA$, s4 = A$,

and s5 = $. The suffix array SA for S has already been constructed in the Example

1.2. Now, the lcp-array LCPA for S is constructed in the following way:

(i) LCPA[1] = 0

(ii) LCPA[i] = lcp(sSA[i], sSA[i-1]) for i = 2, .., |S|

The value lcp(sSA[i], sSA[i-1]) is the length of the longest common prefix of suffixes

sSA[i] and sSA[i-1]. The suffix sSA[i] is the suffix of S starting at the position SA[i], and

the suffix sSA[i-1] is the suffix of S starting at the position SA[i-1]. Thus, the

prerequisite for computing the lcp-array of S is sorting the suffixes of S in

lexicographical order. Table 1-1 shows the suffix array and the corresponding lcp-

array for S.

Table 1-1. The suffix-array (SA) and the lcp-array (LCPA) for the string S =
ACCA$. The right-most column contains lexicographically sorted suffixes of S.

i SA[i] LCPA[i] Lexicographically ordered suffixes of S; S[SA[i]..|S|]

1 1 0 ACCA$

2 4 1 A$

3 3 0 CA$

4 2 1 CCA$

5 5 0 $

The next concept is the lcp-interval, denoted lcp-[a..b], 0 ≤ a < b ≤ l:

(i) LCPA[a] < lcp

(ii) LCPA[k] ≥ lcp for all k such that a + 1 ≤ k ≤ b

(iii) LCP[k] = lcp for at least one k such that a + 1 ≤ k ≤ b

(iv) LCPA[b + 1] < lcp

For example, the lcp-interval 1-[1..2], represents positions from 1 to 2 in the

LCPA, which correspond to suffixes sSA[1] = ACCA$, and sSA[2] = A$. The lcp-value

 19

of 1-[1..2], which is 1, is the length of the longest common prefix of suffixes sSA[1] =

ACCA$ and sSA[2] = A$.

An lcp-interval lcp-[c..d] is said to be embedded in an interval lcp-[a..b], if a ≤ c

< d ≤ b. This principle enables the concept of the parent-child relationship between

lcp intervals. Here, lcp-[c..d] is considered as a child interval of lcp-[a..b]. Next, the

virtual lcp-interval tree is constructed using the concept of the parent-child

relationship. The root of the lcp-interval tree is the interval 0-[1..|S|], since the length

of the longest common prefix of all suffixes in the tree is zero, and the root interval

covers all positions in S (Figure 1-6).

The conceptual lcp-interval tree for S is built using the enhanced suffix array of

S: the suffix-array of S and the lcp-array of S. Every interval of the lcp-interval tree is

defined as: lcp-[SA[i].. SA[j]], where lcp is the length of the longest common prefix

of suffixes starting at position SA[i], and ending at position SA[j] in the list of sorted

suffixes. The lcp-interval tree is traversed bottom-up by a linear scan of the lcp array

(Abouelhoda et al., 2004).

Figure 1-6a) shows the lcp-interval tree for S, and Figure 1-6b) shows the suffix

tree constructed for S. It is easily seen that the lcp-interval tree has the same topology

as the suffix tree without terminal branches and terminal nodes, that is, the suffix tree

leaves are not explicitly represented on the lcp-interval tree. Further, the leaves of the

lcp-interval tree correspond to the branch nodes of the suffix tree. For example, the

lcp-interval tree leaf 1-[1..2] corresponds to the branch node x3 (Figure 1-6b).

Positions from 1 to 2 in the interval 1-[1..2] correspond to the leaves of the suffix

tree (S, 1) and (S, 4). The suffixes of S corresponding to leaves (S, 1) and (S, 4), are

the first and the second suffix in the lexicographical order, and s1 = sSA[1] = ACCA$,

and s4 = sSA[2] = A$.

 20

x1

a) The lcp-interval tree for S = ACCA$ b) The suffix tree for S = ACCA$

0-[1..5]

1-[1..2] 1-[3..4]

CA $

S, 1

CCA A$ CA$

S, 4 S, 3 S, 2 S, 5

x1

x2

x3
0-[1..5]

1-[1..2] 1-[3..4]

0-[1..5]

1-[1..2] 1-[3..4]

CA $

S, 1

CCA A$ CA$

S, 4 S, 3 S, 2 S, 5

x2

x3

x1

a) The lcp-interval tree for S = ACCA$ b) The suffix tree for S = ACCA$

CA $

S, 1

CCA A$ CA$
x2

x3

S, 4 S, 3 S, 2 S, 5

Figure 1-6. The lcp-interval tree and the suffix tree for the string S = ACCA$.
All non-root nodes of an lcp-interval tree correspond to branch nodes of the

analogous suffix tree. The leaf 1-[1..2] on the lcp-interval tree corresponds to the

branch node x3 of the suffix tree, and the leaf 1-[3..4] corresponds to the branch

node x2 of the suffix tree.

The lcp-array can be constructed in O(l) time for a string S of length l from the

suffix array of S (Kasai et al., 2001; Manzini, 2004). In addition, the lcp-array can be

constructed from the suffix tree of S in O(l) time by the preorder traversal of the

suffix tree. This solution is based on the idea that the longest common prefix of two

suffixes is the length of the path label of their lowest common ancestor, which can be

computed in O(1) time (Harel and Tarjan, 1984; Schieber and Vishkin, 1988).

However, the suffix tree has to be preprocessed in O(l) time in order to obtain the

length of the path label in O(1) time.

In summary, the theoretically best time-complexity needed for the construction of

ESA is O(l), since both the SA and the LCPA for a string S can be constructed in

O(l) time. It is the same time complexity needed for the construction of the

analogous suffix tree. In addition, the traversal of the lcp-interval tree takes O(l) time

(Abouelhoda et al., 2004), which is also the time needed for the traversal of the

suffix tree for the same string S of length l. In practice, the best implementations of

the suffix array construction are faster then the best implementations of the

corresponding suffix tree construction (Puglisi et al., 2007). They also require less

memory, since the light-weight SA construction algorithms need only a little extra

space besides the SA storage (Puglisi et al., 2007; Section 1.1.4), which is the

property of sorting algorithms.

 21

1.1.6. The 64-bit implementation of the lightweight suffix array
construction algorithm

In the programs developed as a part of my thesis, kr version 2, and st, I implemented

the suffix tree concept using the more space-efficient data structure, the enhanced

suffix array. I used the linear-time algorithm for the construction of the lcp-array

(Manzini, 2004), and the suffix array library by Manzini and Ferragina (2004) for the

SA construction, since it was one of the fastest and the most space-efficient

implementations currently available for the SA construction (Puglisi et al., 2007).

However, the original form of their library limited the analysis to 231 ≈ 2×109

characters. In comparison, the human genome is 3 * 109 base pairs long. To extend

the analysis to large genomes, I added a 64-bit implementation of the library. The

current implementation of the 64-bit version requires around 16 bytes per input

character, in comparison to 8 bytes per input character of the 32-bit version. This

memory requirement comes from the underlying data structures (SA and LCP),

which are, in the case of the 32-bit version of the program, based on 4-byte integers,

and, in the case of the 64-bit version, on 8-byte integers. This memory drawback of

the 64-bit implementation is the trade-off that enables us to work with large data sets.

In the current implementation, the 64-bit implementation is intended for the data sets

comprising billion or more nucleotides.

1.1.7. Self-index

The memory usage of both suffix trees and (enhanced) suffix arrays is linear with

respect to the size of the input data set, although with different constants. However,

this still remains a problem for large input data sets. This motivated the invention of

data structures that require sublinear storage. This research yielded the concept of the

self-index (also compressed self-index, or compressed index), where the text is

represented in the compressed form (Navarro and Mäkinen, 2007; Ferragina et al.,

2008). The space requirements of self-indexes are proportional to the size of the

compressed text.

In the recent study, Ferragina et al. (2008) compared implementations of several

compressed indexes. They reviewed the representatives of three groups of self-

 22

indexes. The first group is the FM-index family, based on the FM-index, the first

self-index with space requirements proportional to the k-th order text entropy

(Ferragina and Manzini, 2000; Section 1.1.10). The FM-index family relies on the

Burrows-Wheeler transform of the text (Burrows and Wheeler, 1994; Section 1.1.8).

The second group of indexes comprises compressed suffix arrays (CSA). The

original compressed suffix array by Grossi and Vitter (2000) was not a self-index.

However, Sadakane proposed a solution (2003) in which he converted the original

CSA in a self-index. The third group of self-indexes is the LZ-index group (e.g.

Navarro, 2004; Ferragina and Manzini, 2005), based on the Lempel-Ziv compression

(Ziv and Lempel, 1978).

In their study, Ferragina and collaborators (2008) observed the behavior of the

self-index implementations for two search operations: (i) find the number of

occurrences of a pattern P in the indexed text, and (ii) retrieve (locate) all

occurrences of P in the text. They compared the run-time of four self-index

implementations (representatives of the previously mentioned groups), and a plain

suffix array. As a result of this study, the compressed indexes were one (in the case

of (i)) to three orders (in the case of (ii)) of magnitude slower than the same

operations computed by the suffix array implementation. In contrast, compressed

indexes required one order of magnitude less space than the SA (the SA

implementation including text required in total 5 bytes per text character). However,

the implementations of these compressed indexes required additional space for the

construction of the index itself. Explicitly, the representatives of the FM-index

family, and the CSA required the construction of the SA prior to the construction of

the self-index, and the LZ-index representative required the construction of some

auxiliary data structure. In total, the memory usage needed for the construction of

self-index was estimated to 5-9 times the text size (Ferragina et al., 2008).

Moreover, implementing a self-index is not a trivial task (Ferragina et al., 2008).

Therefore, only recently these data structures found their way in practical

applications. Since several very recent biological applications designed for the

 23

efficient short- and long-read2 alignment to large sequence database (e.g. whole

genome) are based on the FM-index (e.g. Langmead et al., 2009; Li and Durbin,

2009; Li and Durbin, 2010), it will be described here as a representative of self-

indexes (see Sections 1.1.8-1.1.10).

1.1.8. Burrows-Wheeler transform

The Burrows-Wheeler Transform (BWT, or block-sorting compression) is an

algorithm that transforms a string into a particular permutation of it. Due to the

suitable order of permuted characters, it is also used in the data compression, e.g.

bzip2 (Seward, 2007).

Let S be a string defined over the alphabet Σ terminated by the character $, as

before (Section 1.1.1). Let SA be the suffix array constructed for a string S.

The Burrows-Wheeler Transform transforms a string S into a string B. B can be

obtained from S by rotating S, and then sorting the permutations of S in the

lexicographical order. Then, the right-most character of each permutation of S

represents a character of B. The complete string B is spelled out by reading the right-

most characters of S in top-down direction (Example 1.4; Table 1-2). However, in

practice, the BWT of a string is usually computed based on the SA of a string: the

BWT of a string S is the string B, such that for i = 1, .., |S| (Example 1.4; Table 1-3):

(i) B[i] = $ for SA[i] = 1

(ii) B[i] = S[SA[i] - 1]

Example 1.4

Let S = ACCA$. The suffixes of S are s1 = ACCA$, s2 = CCA$, s3 = CA$, s4 = A$,

and s5 = $. The suffix array for S is SA = [1, 4, 2, 3, 5] (see Example 1.2). Table 1-2

shows the construction of string B = $CCAA by sorting permutations of S. Table 1-3

represents the BWT of S based on SA (using formulas (i) and (ii)), e.g. B[1] = $; B[2]

= S[SA[2] - 1] = S[4 - 1] = S[3] = C, etc.

2 In this context, a read refers to a DNA sequence of relatively short length. A short-read is usually
shorter than 100 base pairs, and a long-read is longer than that (e.g. 100 – 10000 base pairs). These
short sequences are obtained by sequencing based on the new generation of more efficient techniques.

 24

Table 1-2. The construction of string B from the rotations of string S = ACCA$,
where B is the Burrows-Wheeler transform of S.

i Permutations of S Sorted permutations of S B[i]

1 ACCA$ ACCA$ $

2 CCA$A A$ACC C

3 CA$AC CA$AC C

4 A$ACC CCA$A A

5 $ACCA $ACCA A

Table 1-3. The construction of string B from string S = ACCA$ and the suffix
array SA of S, where B is the Burrows-Wheeler transform of S.

i SA[i] Lexicographically ordered suffixes of S; S[SA[i]..|S|] B[i]

1 1 ACCA$ $

2 4 A$ C

3 3 CA$ C

4 2 CCA$ A

5 5 $ A

1.1.9. The FM-Index and the backward search algorithm

The FM-index is a self-index data structure based on the suffix array and the BWT of

the input data (Ferragina and Manzini, 2000). It will be described here as a

representative of index data structures of a new generation, which requires sublinear

memory storage at the expense of a somewhat slower run-time needed for typical

suffix tree operations (Ferragina et al., 2008; Section 1.1.7). Explicitly, the FM-index

occupies O(lHk(S)) + o(l) bits for a string S of length l, where Hk(S) is the k-th order

entropy of S (Section 1.1.10). In the comparison of Ferragina et al. (2008), two

variants of the FM-index required an order of magnitude less space than the suffix

array, while the problem of finding pattern occurrences was slower up to the order of

magnitude when compared to the plain SA (see Section 1.1.7).

 25

Suffix Array Interval

Let S be a string defined over an alphabet Σ, SA be the suffix array of S, and P a

substring of S. All occurrences of P in S are covered by an interval in SA. This can be

seen by looking at the lexicographically sorted suffixes of S (for example, see the

sorted permutations of S in Table 1-4). The suffix array interval for P is defined as

[LP, RP] (see Example 1.5):

(i) LP = min {k: P is the prefix of SSA[k]}

(ii) RP = max {k: P is the prefix of SSA[k]}

In addition, if P is an empty string, then LP = 1, and RP = |S|. The set of all starting

positions of P in S is defined as {SA[k]: LP ≤ k ≤ RP} (see Example 1.5).

Backward search

Let B be the BWT of S, and let c Σ∈ . The two functions of c are defined: C(c), and

Occ(c, i):

(i) C(c) is the number of characters in S[1..|S|-1] which are lexicographically

smaller than c (including repetitions of characters)

(ii) Occ(c, i) is the number of occurrences of c in B[1..i], and i = 1, .., |S|

If P is a substring of S, then the following property of suffix array intervals holds

(Ferragina and Manzini, 2000):

(i) LcP = C(c) + Occ(c, LP - 1) + 1

(ii) RcP = C(c) + Occ(c, RP)

This property enables the backward search of P in order to find P in S. The

backward search algorithm BW_Count (Ferragina and Manzini, 2000) starts with the

last character of P, and then goes backwards (Figure 1-7). If P exists in S, the number

of occurences of P is returned. Otherwise, 0 is returned. If an Occ value is obtained

 26

in O(1) time for any Occ(c, i), i = 0, .., |S|, then P is found in S in O(|P|) time. Finally,

the two main operations on the FM-index are:

(i) counting the number of occurences of P in S (algorithm BW_Count; Figure 1-7)

(ii) finding (the positions of) all z occurences of P in S

In comparison, the suffix tree computation of (i) takes O(|P|) time (each branch node

should store the number of leaves in its subtree), and the computation of (ii) is done

in O(|P| + z) time (Sections 1.1.1 and 1.1.2).

Algorithm BW_Count
Require: C
Require: Occ
Require: P
Ensure: number of occurences of P in S
i = |P| /* position in P */
c = P[|P|] /* last character in P */
LP = C[c] + 1
RP = C[cnext] /* cnext is the character following c in Σ */
while ((LP < RP) and (i ≥ 2)) do
 c = P[i − 1];
 LP = C[c] + Occ(c, LP − 1) + 1
 RP = C[c] + Occ(c, RP)
 i = i − 1
if (RP < LP) then return 0
else return (RP - LP + 1)

Figure 1-7. Algorithm BW_Count (Ferragina and Manzini, 2000)

Example 1.5

Let S = ACCA$ as before. The suffixes of S are s1 = ACCA$, s2 = CCA$, s3 = CA$,

s4 = A$, and s5 = $, so the suffix array built for S is SA = [1, 4, 2, 3, 5] (see Example

1.2). Let the substring P = CA be the pattern we wish to search for in S. The suffix-

array interval for P is [3, 4], since the substring P occurs in the suffixes s3 = CA$ and

s2 = CCA$ of S, and SA[3] = 3 and SA[4] = 2 (see Table 1-4).

 27

Table 1-4. Finding the suffix array interval for the substring P = CA in the
string S = ACCA$.

I SA[i] Lexicographically ordered suffixes of S; S[SA[i]..|S|]

1 1 ACCA$

2 4 A$

3 3 CA$

4 2 CCA$

5 5 $

LP = 3, RP = 4

The array C for the c∈ Σ = {A, C} is:

C['A'] = 0

C['C'] = 2

The value C['A'] is 0, since no character from S is lexicographically smaller than 'A'.

C['C'] is 2, since only 'A' is lexicographically smaller than 'C', and the character 'A'

occurs twice in S. Next, the array Occ is computed, where Occ(c, i) is the number of

occurrences of c in B[1..i], and B = $CCAA (see Table 1-3), e.g.:

Occ('A', 1) = 0, since B[1..1] = $

Occ('A', 2) = 0, since B[1..2] = $C

Occ('C', 1) = 0, since B[1..1] = $

Occ('C', 2) = 1, since B[1..2] = $C

Now, P is searched in S starting from the last character, 'A' (Table 1-5). The number

of characters lexicographically preceding 'A' in S is 0, that is, C['A'] = 0. The

algorithm starts by initializing LP = C['A'] + 1 = 1, and RP = C['C'] = 2. The next

observed character from P is 'C'. The new values of LP and RP are computed as:

LP = C['C'] + Occ['C', LP - 1] + 1 = 2 + 0 + 1 = 3, and

RP = C['C'] + Occ['C', RP] = 2 + 1 = 3

while Occ['C', LP - 1] = Occ['C', 0] = 0, and Occ['C', RP] = Occ['C', 2] = 1.

Since 'C' is at the first position of P, the search stops here, and the value returned

from the function is RP - LP + 1 = 3 - 3 + 1 = 1. That is, P occurs only once in S.

 28

Table 1-5. Example 1.5 – Backward search of the number of the occurrences
of the substring P = CA in the string S.

i P c = P[i] C[P[i]] LP RP

2 CA A 0 1 2

1 CA C 2 3 3

1.1.10. The space and the time-complexity of the FM-index

The FM-index is a self-index. A self-index is a data structure built over a string S that

enables the search of any substring P in S without requiring the explicit storage of S,

as S can be derived from the self-index. The important property of the FM-index is

that its storage requirement is close to the theoretically smallest possible amount,

which is the k-th order entropy of S (Ferragina and Manzini, 2000).

Let |S| = l, and let li be defined as the number of occurrences of the i-th character

from Σ. Let con be a k-length substring (also called context) of S. Let Scon be a string

formed as the concatenation of the characters following con anywhere in S taken

from the left to the right of S. The k-th order entropy of S, Hk(S), for k ≥ 0, is defined

in the following way:

(i) H0(S) = - ∑
i

i
2

i

l
l

log
l
l

(ii) Hk(S) = ()∑
∈ kcon

con
0

con SHS
l
1

Σ

Example 1.6

Let S = ACCA. The alphabet over S is Σ = {A, C, G, T}. Let us compute the H0(S)

and H1(S). First, the number of occurrences of each alphabet letter in S determined: l1

= 2, since the first alphabet letter (A) occurs twice in S. Similarly, l2 = 2, l3 = 0, and l4

= 0.

Now, the zero order entropy H0(S) is (using (i)):

 29

H0(S) = - =⎟
⎠
⎞

⎜
⎝
⎛ +++ 00

4
2log

4
2

4
2log

4
2

22 -2· =⎟
⎠
⎞

⎜
⎝
⎛

2
1log

2
1

2 1

Next, to compute the first order entropy H1(S), H0(con) for each context has to be

computed. Here, con is a 1-length substring of S, so in total there are two contexts:

con1 = A and con2 = C. Further, two subsequences of S has to be formed: Scon1 and

Scon2 which are comprised of characters following con1 and con2 in S, respectively.

Thus: Scon1 = C (the first occurrence of con1 in S is followed by C), and Scon2 = CA

(the first occurrence of con2 in S is followed by C, and the second occurrence is

followed by A). The zero-order entropy of Scon1 and Scon2 is H0(Scon1) =

0
1
1log

1
1

2 =⎟
⎠
⎞

⎜
⎝
⎛− and H0(Scon2) = -2 =⎟

⎠
⎞

⎜
⎝
⎛

2
1log

2
1

2 1. Finally, H1(S) is computed using

(ii):

H1(S) = ()∑
∑∈ 1con

con
0

con SHS
4
1 = () ()()=+ 2con

0
2con1con

0
1con SH|S|SH|S|

4
1

= ()1201 ⋅+⋅
4
1 = 0.5

The FM-index occupies O(lHk(S)) + o(l) (at most 5lHk(S) + o(l)) bits for a string

S of length l (Ferragina and Manzini, 2000). In the previous example, the storage

required for the FM-index built on S = ACCA$ requires O(l·1) + o(l) = O(l) + o(l)

bits.

The existence of a string P of length m in S can be checked in O(m + log 1+εl)

time, and all occ occurences of P are found in O(m + occlog 1+εl) time, where ε is a

small positive constant set in advance (ε < 1) (Ferragina and Manzini, 2000;

Ferragina et al., 2004).

 30

2. Efficient Estimation of Pairwise Distances between
Genomes

2.1. Introduction

Biological sequences are traditionally compared using alignment methods. In an

alignment, homologous residues (nucleotides or proteins) are compared. However,

finding the optimal multiple sequence alignment is an NP complete problem (Wang

and Jiang, 1994). Thus, many alignment tools employ some heuristic to speed up the

computation. For example, many popular multiple sequence alignment methods

(MSA) (see Chapter 1) are based on the progressive alignment procedure

(Notredame, 2007), e.g. ClustalW (Larkin et al., 2007), Muscle (Edgar, 2004),

MAFFT (Katoh and Hiroyuki, 2008), ProbCons (Do et al., 2005), and T-Coffee

(Notredame et al., 2000). The progressive technique works in the following way: the

MSA is constructed by combining the pair-wise alignments between sequences; first,

the more closely related sequences are added to the MSA, and then proceeding to the

more distant pairs. In the initial step, the order of the sequences added to the MSA is

based on the guide tree (which is a phylogenetic tree of sequences) constructed by

some other methods. The final results of the progressive alignment procedure are

both the MSA and the phylogenetic tree of input sequences.

Recently, Edgar and Batzoglou (2006) compared popular multiple-sequence

alignment tools. Among the evaluated programs, MAFFT (Katoh and Hiroyuki,

2008), and MUSCLE (Edgar, 2004) showed a good trade-off between computational

requirements and accuracy: they were the most efficient programs for the data sets

with large number (100 or more) of sequences. In general, they were faster and more

accurate than the popular ClustalW (Larkin et al., 2007). In comparison, the most

accurate program in the study, ProbCons (Do et al., 2005), did not scale well for

large data sets. Among other tools that were not included in the study, the efficient

program MAVID (Bray and Pachter, 2004) is widely-used for the comparison of

many short syntenic sequences (e.g. White et al., 2009). Another group of alignment-

tools are pair-wise sequence alignment tools, which are more efficient, but generally

less accurate than MSA. The representative of this group is the popular program

MUMmer, developed for the comparison of large genomes (Kurtz et al., 2004).

 31

However, the alignment of data sets consisting of many large complete genomes

(e.g. the human genomes consists of 3.2 billion base pairs) becomes difficult to

compute. As a more efficient option, alignment-free methods were proposed for the

computation of distances between genomes, or for finding similar regions between

them. In addition, Höhl et al. (2006) showed that on rearranged input sequences

alignment-free methods produced more accurate phylogenetic trees than the global

alignment methods.

The alignment-free methods of distance estimation were mostly developed in two

directions (Vinga and Almeida, 2003). The first group encompasses methods where a

pair-wise distance is estimated from word frequencies of compared sequences (e.g.

Stuart and Berry, 2003; Sims et al., 2009). The second group is based on ideas

derived from information theory (e.g. Chen et al., 2000; Li et al., 2001; Otu and

Sayood, 2003; Ulitsky et al., 2006). However, the alignment-free methods developed

for the estimation of evolutionary distances are generally not based on an

evolutionary model. Thus, the distances produced by these methods do not scale

linearly with the substitution rate, the standard measure of evolutionary distance used

by biologists (see Chapter 1).

We have recently developed an alignment-free pair-wise distance measure for

closely related DNA sequences, Kr, which is based on an evolutionary model

(Haubold et al., 2009). Kr distances gave the most accurate phylogenetic results when

compared to other recently introduced alignment-free distance measures (Haubold et

al., 2009). However, in the original implementation of Kr (kr version 1), a suffix tree

was constructed and traversed for each pair of sequences. Thus, all pair-wise

distances of n input sequences were computed from n(n − 1) suffix trees. The run

time of this implementation was slow for large sequence samples.

Here, I address the problem of the efficient computation of all Kr pair-wise

distances from n input sequences. I found an algorithmic solution to this problem and

implemented it in the program kr version 2. This program is scalable to large data

sets of complete genomes (Domazet-Lošo and Haubold, 2009). The new algorithm

enables the extraction of all pair-wise Kr distances from a single traversal of a

single suffix tree of n sequences (Section 2.2.5). Thus, the time needed for the suffix

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

 32

tree construction phase was reduced from O(n2l) to O(nl). The efficiency and the

scalability of the new implementation were shown on both simulated and real data

sets of complete genomes (Sections 2.3 and 2.4), which included the 825 genomes of

HIV-1 strains, 13 genomes of enterobacteria, and the complete genomes of 12

Drosophila species (Domazet-Lošo and Haubold, 2009).

2.2. Methods

2.2.1. Definition of an alignment-free estimator of the rate of
substitution, Kr

Let S = {S1, .., Sn} be a set of n (closely related) nucleotide sequences represented as

strings over the alphabet {A, C, G, T}. Each sequence is represented by its forward

and reverse strand, and terminated by a unique character, which is not a member of

the alphabet.

Let (Si, Sj) be a pair of sequences from S. Let hi,j,p denote the shortest prefix of a

suffix of Si[p .. |Si|], 1 ≤ p ≤ |Si|, that is absent from Sj. This prefix is called shortest

unique substring, or shustring (Haubold et al., 2005; Haubold and Wiehe, 2006). The

value oi,j, observed average shustring length, is defined as the sum of all shustring

lengths for a pair (Si, Sj) over all positions p = 1,..,|Si| divided by |Si|:

∑
=

=
iS

1p
p,j,i

i
j,i h

S
1o (2-1)

In general, oi,j ≠ oj,i. This asymmetry is mostly caused by local similarity, or

similarity to the repetitive element (Haubold et al., 2009; Haubold et al., 2008):

Let |Si| < |Sj|, and Si and Sj be similar along the positions of Si (Figure 2-1a). In

this case, oi,j > oj,i, since only the part of Sj that is similar to Si can have observed

shustring lengths greater than the values obtained by chance alone. The remaining

positions of Sj have the observed shustring lengths as obtained by chance. On the

other hand, the observed shustring length for every position in Si is expected to be

greater than the value obtained by chance. On average, the value of observed

shustring lengths should be smaller for Sj than for Si. This problem can be mitigated

 33

by excluding short shustrings (i.e. shorter than by chance alone) from the

computation of the observed average shustring length between a sequence pair.

Let Si and Sj be sequences of the same length, and let a part of Sj be similar to the

repetitive element of Si (Figure 2-1b). Again, along the similar positions, the

observed shustring lengths will be greater than the shustring lengths obtained by

chance alone. The sequence Si has more copies of the matching subsequence, i.e.,

more positions for which the observed shustring lengths will be greater than the

shustring lengths obtained by chance alone, so , oi,j > oj,i.

Sj

Si

Sj

Si

a) b)

Figure 2-1. Two main causes of the asymmetric values of the observed
average shustring length oi,j and oj,i between Si and Sj. Similar parts are denoted

with solid line, and parts which are not similar are denoted with dashed line. In a), Si

is locally similar to Sj, so oi,j > oj,i. In b), Sj has only one copy of a similar part, and Si

has two copies, and again, oi,j > oj,i.

In general, the number of duplications increases the average observed shustring

length faster than mutation decreases it. Hence, to keep the symmetry of the observed

average shustring length, the smaller of the values oi,j and oj,i is used as the observed

average shustring lengths for both (Si, Sj) and (Sj, Si):

oi,j = oj,i = min {oi,j, oj,i} (2-2)

Further, the observed average shustring length is used for the approximation of

the expected shustring length, shulen. The expected shustring length of a pair (Si, Sj)

is then used to determine di,j, the number of pair-wise mismatches per nucleotide

between Si and Sj since they diverged from their last common ancestor (derived in

 34

Haubold et al., 2009). Finally, the number of nucleotide substitutions between Si and

Sj is estimated by Jukes-Cantor equation (Jukes and Cantor, 1969):

)d
3
41ln(

4
3)S,S(K j,iji −−=r (2-3)

2.2.2. Problem statement

Let S be a set of n nucleotide sequences S = {S1, .., Sn}. Without loss of generality,

let l denote the length of each sequence. Thus, the total length of n sequences is nl.

The distance matrix Kr contains all pairwise evolutionary distances between

sequences from S which are based on the Kr measure that is, Kr
i,j = Kr(Si, Sj) for every

pair (Si, Sj) (i = 1, .., n, j = 1, .., n). The elements Kr
i,i are equal to zero, since they

represent the distance from a sequence Si to itself. The observed average shustring

length oi,j is used to estimate Kr
i,j (see Sections 2.2.1, equations (2-1)-(2-3)). The

problem is: How to efficiently compute all values oi,j for every pair of sequences (Si,

Sj)?

In the previous approach, implemented in kr 1 (Haubold et al., 2009), each value

oi,j was determined by constructing and traversing a generalized suffix tree for every

pair (Si, Sj). Here, I propose a new algorithm for the efficient computation of all

values oi,j, and consequently all values Kr
i,j in a single traversal of a generalized

suffix tree of n sequences. In the following section, as the motivation for the new

approach, I discuss the time complexity of both approaches with respect to the

improvement in the time-complexity, and consequently, in the speed (Section 2.3.5),

of the new approach.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

2.2.3. Time complexity analysis of the previous approach (kr 1)

Let (Si, Sj) be a pair of sequences from S, S = {S1, .., Sn}. Sequence Si is referred to as

query sequence and sequence Sj is referred to as subject sequence. Conversely, for a

pair (Sj, Si), Sj is referred to as query sequence and Si is referred to as subject

sequence. In the approach used in kr 1, a generalized suffix tree T was constructed

 35

for each pair (Si, Sj) (Haubold et al., 2009). Thus, for the computation of all Kr values

n(n-1) trees were constructed and traversed.

For a pair of sequences (Si, Sj), with the total sequence length 2l, both the suffix

tree construction and the suffix tree traversal takes O(l) time. Thus, in the approach

used in kr 1, the time complexity of the construction of n(n-1) suffix trees for all

pairs from S is O(n2l).

Let the suffix Si[p..|Si|] correspond to a terminal node (Si, p). Let the suffix

Sj[r..|Sj|] correspond to a terminal node (Sj, r), which has the longest common prefix

with the suffix Si[p..|Si|] when compared to all other suffixes of Sj. The shustring

length |hi,j,p| is determined when the branch node v of T is visited, where v is the

lowest common ancestor of (Si, p) and (Sj, r) (Figure 2-2). Then, the value |hi,j,p| is

added to the sum oi,j in O(1) time.

v6v6

54321

C
$

C
C
$

$CAS4

CAS3

CAS2

$AS1

54321

C
$

C
C
$

$CAS4

CAS3

CAS2

$AS1

S1, 1

S3, 1

CA
$

$
C

$

C$

C

$
C

S2, 1

S4, 1

S2, 2
S3, 3
S4, 4 S4, 2

S1, 2
S2, 3
S3, 4
S4, 5

C$$

S3, 2
S4, 3

$

v5

v4

v1

v2

v3

CA
$

S1, 1

S3, 1

$
C

$

C$

C

$
C

S2, 1

S4, 1

S2, 2
S3, 3
S4, 4 S4, 2

S1, 2
S2, 3
S3, 4
S4, 5

S3, 2
S4, 3

$

C$

v5

v4

v1

v2

v3

$

Figure 2-2. A generalized suffix tree of sequences from the set S = {S1, S2, S3,
S4}. Each branch node is denoted as a red circle, and each leaf as a gray rectangle.

Each suffix corresponds to a terminal node of the suffix tree. For example, S3[1..|S3|]

= ACC$ corresponds to the terminal node (S3, 1). The shustring of the suffix

S3[1..|S3|] with respect to S4 is h3,4,1 = ACC$, since the longest common prefix of

S3[1..|S3|] and any suffix of S4 is the common prefix of S3[1..|S3|] and S4[1..|S4|]. The

shustring h3,4,1 is determined as the path-label from the root (v6) to the branch node

v1 (which is the lowest common ancestor of (S3, 1) and (S4, 1)) plus the first

character on the label of the branch connecting v1 to (S3, 1).

 36

There are l positions in Si, which correspond to l terminal nodes in T. The

addition of all |hi,j,p| values for Si takes O(l) time. Thus, the number of additions

during the traversal of all n(n-1) trees is n(n-1)l. Hence, the overall time needed for

the traversal of n(n-1) suffix trees with the computation of Kr values, is O(n2l) (see

Table 2-1).

2.2.4. Time complexity analysis of the new approach (kr 2)

Let S be a set of n nucleotide sequences S = {S1, .., Sn} of length l as before. In the

new approach, implemented in kr 2, a single generalized suffix tree for all sequences

from S is constructed (Domazet-Lošo and Haubold, 2009). In this approach, every

sequence Si (i = 1, .., n) is regarded both as a query sequence for a pair (Si, Sj), and, at

the same time, as a subject for n-1 pairs (Sj, Si) (j = 1,..,n and i ≠ j). The suffix tree

construction phase of this approach takes O(nl) time, since the total length of n

sequences is nl.

The bottom-up traversal of the suffix tree with the computation of all oi,j is the

same as in the first approach, O(n2l). This upper bound is determined in the

following way: the traversal of a suffix tree of n sequences is proportional to the

number of terminal nodes in the tree, nl. For a suffix Si[p .. |Si|], and a subject

sequence Sj, the value |hi,j,p| is added to oi,j with the time complexity O(1). Since there

are n-1 subjects, the number of additions3 for a suffix Si[p .. |Si|] is, at most, n-1.

Notice that the number of additions in this new approach can be less than n-1 per

suffix, as discussed later (see Section 2.2.5).

For all l suffixes of Si and every Sj (i, j = 1,..,n, i ≠ j), the number of |hi,j,p| values

added to oi,j is (n-1)l. Since there are n sequences that can be considered as query

sequence, Si, the traversal of a generalized suffix tree with computation of all Kr

values takes O(n2l) time.

3 If we could determine all values |hi,j,p| (with respect to every sequence Sj) when visiting a parent

node of a leaf (Si, p), then for every (Si, p) the number of additions would be |S \ {Si}|, that is, n-1.
Since the number of terminal nodes in the suffix tree is nl, the upper bound of all addition operations
for all calls of this function during the tree traversal is nl(n-1), and therefore, the time complexity of
the function is O(n2l).

 37

In summary, the time complexity analysis of the conceptual model of the

previous approach (implemented in kr 1), and the new approach (implemented in kr

2) is presented in Table 2-1.

Table 2-1. Time complexity of the conceptual models underlying kr 1 and kr 2

 Previous Approach (kr 1) New Approach (kr 2)

Suffix Tree Construction O(n2l) O(nl)

Suffix Tree Traversal O(n2l) O(n2l)

2.2.5. Algorithm 1: Computation of all Kr values during the
traversal of a generalized suffix tree of n sequences

Again, let S = {S1, .., Sn}, and let l denote sequence length. Every sequence is

represented by its forward and reverse strand. Let T be the generalized suffix tree of

S. As previously explained (Section 2.2.2), the task is to efficiently find Kr
i,j values

for every pair (Si, Sj), i = 1,.., n, j = 1,..,n.

Here, a new algorithm, Algorithm 1, is described that enables the computation of

all Kr
i,j values in a single traversal of a generalized suffix tree of n sequences

(Domazet-Lošo and Haubold, 2009). Algorithm 1 is shown in Figure 2-3. Example

2-1 illustrates Algorithm 1, and is shown in Figure 2-4.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

As detailed in Section 2.2.1, an estimate of the substitution rate Si and Sj, Kr
i,j, is a

function of oi,j, where ∑
=

=
iS

1p
p,j,i

i
j,i h

S
1o . Algorithm 1 enables the computation of all

oi,j values in a single bottom-up traversal of a generalized suffix tree of n sequences.

Let v denote a branch node of T. In Algorithm 1, every v contains the following

six fields:

 38

1. seqId – the set of sequence identifiers {Si | ∃ (Si, p) that is a terminal node in

the subtree rooted on v4}

2. termSeqId – the set of sequence identifiers {Si | ∃ (Si, p) that is a terminal

child of v}; v.termSeqId ⊆ v.seqId

3. branchChildren – the set of branch nodes which are children of v

4. countTermSubtree[i] - the number of terminal nodes in the subtree rooted on

v that refer to Si

5. countTermChildren[i] – the number of terminal children of v that refer to Si

6. stringDepth – the length of the path label of v; the string depth of v represents

the length of the longest common prefix of all suffixes corresponding to the

terminal nodes in the subtree rooted on v

Let a suffix Si[p .. |Si| correspond to a terminal node (Si, p), which is a terminal

child of a node v. Algorithm 1 is based on following properties:

(i) If there is no terminal node in a subtree rooted on v that corresponds to a suffix

of Sj, then the value |hi,j,p| for some Sj cannot be determined when v is visited

during the tree traversal. In that case, the counter v.countTermChildren[i] is

increased by 1. In general, the number of shustrings that cannot be determined

for Si ∈ v.seqId is:

][.][.][.
r.

ihildencountTermCviubtreecountTermSwiubtreecountTermSv
enanchChildrbvw

k
k

∑
∈

+=

(ii) If v.seqId ⊂ S, then values |hi,j,p| cannot be determined for Sj ∈ S \ v.seqId. Let

w be a branch node that is the lowest common ancestor of Si[p .. |Si|] and at

least one suffix of Sj (Sj ∈w.seqId). When w is encountered during the traversal

of T, |hi,j,p| is determined, and added to si,j. This is done by applying the

function scanBran to w.

(iii) All values |hi,j,p| for every Sj (j = 1, .., n and i ≠ j) are determined, when a node

w is encountered during the traversal of T, which is the lowest common

4 Terminal nodes in the subtree rooted on v also include terminal children of v.

 39

ancestor of Si[p..|Si|] and at least one suffix of Sj for every Sj. In other words,

w.seqId = S.

Let v denote a branch node of T. Algorithm 1 consists of two functions that

incorporate properties (i)-(iii):

(i) function scanTerm looks up the terminal children of v

(ii) function scanBran looks up the terminal nodes in the subtrees rooted on the

branch children of v

Let (Si, p) be a terminal node of v. Then, |hi,j,p| is determined in the following way

(4):

(i) if Sj (Sj ≠ Si) is referred to by a terminal node in the subtree rooted on v, i.e. Sj

∈v.seqId, then hi,j,p is the substring that represents the path label to v plus the first

character on the branch label from v to (Si, p). Hence, |hi,j,p| = v.stringDepth + 1,

and the value of |hi,j,p| is added to si,j by calling scanTerm.

(ii) if Sj (Sj ≠ Si) is not referred to by any terminal node in the subtree rooted on v, i.e.

Sj ∉v.seqId, then hi,j,p cannot be determined when v is visited. However, |hi,j,p| is

determined and added to si,j when a node w is visited, where Sj ∈w.seqId. A node w

can be an immediate parent of v, or some other node which contains v in its

subtree, and is visited at some point later during the traversal of T. Thus, |hi,j,p| =

w.stringDepth + 1, and the value |hi,j,p| is added to si,j by applying scanBran to w.

The important property of scanBran is that all |hi,j,p| which were not previously

added to si,j by applying scanTerm are added at once using the multiplication rule

of function scanBran (line 22). This principle speeds up the computation of si,j

values.

 40

Algorithm 1 Estimate substitution rate

Require: T {suffix tree of n DNA sequences S1,S2,...,Sn}

Require: L {Li =|Si|}

Ensure: Kr {n × n matrix of substitution rates}

 1: for all 1 ≤ i, j ≤ n do

 2: sij ← 0 {initialize s - pairwise sums of shustring len.}

 3: traverse(root(T),l)

 4: for all 2 ≤ i ≤ n do

 5: for all 1 ≤ j < i do

 6: Krij ← kr(min(sij/Li, sji/Lj))

 7: function traverse(v, s)

 8: for all w ∈ v.branchChildren do

 9: traverse(w, s)

10: scanTerm(w, s)

11: scanBran(w, s)

12: end function

13: function scanTerm(v, s)

14: for all i ∈ v.termSeqIds do

15: for all j ∈ v.seqIds \ {i} do

16: sij ← sij + (v.stringDepth + 1)× v.countTermChildren[i]

17: end function

18: function scanBran(v, s)

19: for all w ∈ v.branchChildren do

20: for all j ∈ v.seqIds \ w.seqIds do

21: for all i ∈ w.seqIds

22: sij ← sij +(v.stringDepth + 1)× w.countTermSubtree[i]

23: end function

Figure 2-3. Algorithm 1. Computing the n-by-n matrix Kr for a set of n
sequences {S1, .., Sn}, where Kr

i,j is an estimate of the substitution rate
between Si and Sj (Domazet-Lošo and Haubold, 2009).

 41

Example 2.1

Let T be the generalized suffix tree for S = {S1, S2, S3, S4}; S1 = A$, S2 = AC$, S3 =

ACC$, and S4 = ACCC$, as shown in Figure 2-4a. As before, the sentinel character

of each sequence differs from the other sentinel characters, and is not member of the

alphabet.

A suffix Si[p .. |Si|] is looked up in T by concatenating the branch labels from the

root of T to a terminal node designated (Si, p). Let (Si, p) be a terminal child of vi.

The sequence Si it refers to is considered as query when compared to all other subject

sequences Sj (Sj ≠ Si). The string depth of each node vi is the path length of vi.

For example, in Figure 2-4a, S3[1 .. |S3|] = ACC$ refers to the terminal node (S3,

1), which is a terminal child of v1. The path label of v1 is ACC, and the string depth

of v1 is 3. The sequence S3 is query, and S1, S2, and S4 are subjects in the sequence

pairs (S3, S1), (S3, S2), and (S3, S4).

Algorithm 1 starts at the root of T by calling the function traverse. This function

ensures that T is traversed bottom-up, and during the traversal, values |hi,j,p| are

determined, and added to the matrix s.

For example, v1 has two terminal children: (S3, 1), and (S4, 1), and the string

depth of v1 is 3. The list of sequences referred to by the terminal nodes of v1 is:

v1.termSeqId = {S3, S4}. Since, there are no other terminal nodes in the subtree rooted

on v, v1.seqId= v1.termSeqId = {S3, S4}. The values of the remaining fields are:

v1.branchChildren = 0, v1.countTermSubtree[3] = 1, and v1.countTermSubtree[4] = 1.

The shustrings h3,4,1 and h4,3,1 can be determined when v1 is encountered during

the traversal of T. When determining h3,4,1 the sequence S3 serves as query, and S4 as

subject, and when determining h4,3,1, S4 is query, and S3 subject.

The shustring h3,4,1 is ACC$, obtained by the concatenation of the path label of v1

plus the first character on the branch connecting v1 and (S3, 1). The shustring h4,3,1 is

ACCC, obtained as the concatenation of the path label of v1 plus the first character

on the branch connecting v1 and (S4, 1). Here, the length of both shustrings h3,4,1 and

h4,3,1 is |h3,4,1|=|h4,3,1|=3+1=4, and these values are added to s3,4 and s4,3, respectively,

by calling function scanTerm for v1.

 42

In general, the shustring length |hi,j,p| for a subject Sj cannot be determined, until

Sj is included in v.seqId. Thus, the values h3,1,1 and h3,2,1, and h4,1,1 and h4,2,1 cannot

be determined, since subjects S1 and S2 are not elements of v1.seqId (there are no

terminal nodes in the subtree rooted on v1 that refer to S1 and S2). Thus, the number

of suffixes of S3 and S4 for which the shustring length cannot be determined for

some Sj (here, S1 and S2) is set to 1, or:

v1.countTermSubtree[3] = v1.countTermSubtree[4] = 1

However, h3,1,1 and h4,1,1 can be determined when the first node is visited that is

the lowest common ancestor of v1 and has a terminal node referring to S1 in its

subtree. This is v3, so |h3,1,1|=|h4,1,1|=1+1=2. Similarly, h3,2,1 and h4,2,1 are determined

when v2 is visited during the traversal of T, thus |h3,2,1| = |h4,2,1| = 2 + 1 = 3. These

values are added to s3,1, s4,1, s3,2 and s4,2 by calling function scanBranch for v3 and v2

respectively.

The states of elements of s during the traversal of T are shown in Figure 2-4b.

Finally, after T has been traversed, values si,j are converted to Kr
i,j values (Algorithm

1, lines 4 - 6).

 43

v6v6v6v6

a)

b)

54321

C
$

C
C
$

$CAS4

CAS3

CAS2

$AS1

54321

C
$

C
C
$

$CAS4

CAS3

CAS2

$AS1

S1, 1

S3, 1

CA
$

$
C

$

C$

$ C

C

S2, 1

S4, 1

S2, 2
S3, 3
S4, 4 S4, 2

S1, 2
S2, 3
S3, 4
S4, 5

C$$

S3, 2
S4, 3

$

v5

v4

v1

v2

v3

S1, 1

S3, 1

CA
$

$
C

$

C$

$ C

C

S2, 1

S4, 1

S2, 2
S3, 3
S4, 4 S4, 2

S1, 2
S2, 3
S3, 4
S4, 5

C$$

S3, 2
S4, 3

$

S3S2S1

-

22

S4

2S3

-2S2

2-S1

v5

v4

v1

v2

v3

S4v5

7 + 2

3 + 2

10 + 2

-

3 + 2

3 + 2 + 2 x 22

3 + 2 +2

S4v5

7 + 2

3 + 2

10 + 2

-

3 + 2

3 + 2 + 2 x 22

3 + 2 +2

S3S2S1

-

22

S4

2S3

-2S2

2-S1

S4S3S2S1

-+
+

1
-S1

v6

9 + 1
5 + 1
2 + 1

12 + 1
-

5 + 1
2 + 1

9 + 12 + 1 1 x 3S4

7 + 12 + 1 1 x 2S3

-2 + 1 + S2

2 + 1
S4S3S2S1

-+
+

1
-S1

v6

9 + 1
5 + 1
2 + 1

12 + 1
-

5 + 1
2 + 1

9 + 12 + 1 1 x 3S4

7 + 12 + 1 1 x 2S3

-2 + 1 + S2

2 + 1

S4S3S2S1

-

3
2

3
2

2S4

32S3

-2S2

2-S1

v4

4 + 3

4 + 3 x 2

-

3

S4S3S2S1

-

3
2

3
2

2S4

32S3

-2S2

2-S1

v4

4 + 3

4 + 3 x 2

-

3

S4S3S2S1

-

0
0

0
0

0S4

00S3

-0S2

0-S1

v1

4
4
-

0

S4S3S2S1

-

0
0

0
0

0S4

00S3

-0S2

0-S1

v1

4
4
-

0

S4S3S2S1

-
4

0

4
-

0

30S4

30S3

S2

0-S1

v2

33-0

S4S3S2S1

-
4

0

4
-

0

30S4

30S3

S2

0-S1

v2

33-0

S4S3S2S1

-
4
3

4
-
3

32S4

32S3

-2S2

S
v3

222-1

S4S3S2S1

-
4
3

4
-
3

32S4

32S3

-2S2

S
v3

222-1

a)

b)

54321

C
$

C
C
$

$CAS4

CAS3

CAS2

$AS1

54321

C
$

C
C
$

$CAS4

CAS3

CAS2

$AS1

CA
$

S1, 1

S3, 1

$
C

$

C$

$ C

C

S2, 1

S4, 1

S2, 2
S3, 3
S4, 4 S4, 2

S1, 2
S2, 3
S3, 4
S4, 5

C$$

S3, 2
S4, 3

$

v5

v4

v1

v2

v3

CA
$

S1, 1

S3, 1

$
C

$

C$

$ C

C

S2, 1

S4, 1

S2, 2
S3, 3
S4, 4 S4, 2

S1, 2
S2, 3
S3, 4
S4, 5

C$$

S3, 2
S4, 3

$

S3S2S1

-

22

S4

2S3

-2S2

2-S1

v5

v4

v1

v2

v3

S4v5

7 + 2

3 + 2

10 + 2

-

3 + 2

3 + 2 + 2 x 22

3 + 2 +2

S4v5

7 + 2

3 + 2

10 + 2

-

3 + 2

3 + 2 + 2 x 22

3 + 2 +2

S3S2S1

-

22

S4

2S3

-2S2

2-S1

S4S3S2S1

-+
+

1
-S1

v6

9 + 1
5 + 1
2 + 1

12 + 1
-

5 + 1
2 + 1

9 + 12 + 1 1 x 3S4

7 + 12 + 1 1 x 2S3

-2 + 1 + S2

2 + 1
S4S3S2S1

-+
+

1
-S1

v6

9 + 1
5 + 1
2 + 1

12 + 1
-

5 + 1
2 + 1

9 + 12 + 1 1 x 3S4

7 + 12 + 1 1 x 2S3

-2 + 1 + S2

2 + 1

S4S3S2S1

-

3
2

3
2

2S4

32S3

-2S2

2-S1

v4

4 + 3

4 + 3 x 2

-

3

S4S3S2S1

-

3
2

3
2

2S4

32S3

-2S2

2-S1

v4

4 + 3

4 + 3 x 2

-

3

S4S3S2S1

-

0
0

0
0

0S4

00S3

-0S2

0-S1

v1

4
4
-

0

S4S3S2S1

-

0
0

0
0

0S4

00S3

-0S2

0-S1

v1

4
4
-

0

S4S3S2S1

-
4

0

4
-

0

30S4

30S3

S2

0-S1

v2

33-0

S4S3S2S1

-
4

0

4
-

0

30S4

30S3

S2

0-S1

v2

33-0

S4S3S2S1

-
4
3

4
-
3

32S4

32S3

-2S2

S
v3

222-1

S4S3S2S1

-
4
3

4
-
3

32S4

32S3

-2S2

S
v3

222-1

Figure 2-4. Algorithm 1 – Example 2-1. a) Generalized suffix tree T is built from

the set of four sequences {S1, S2, S3, S4} listed in the top-left corner of the figure.

Branch nodes are shown in red, and terminal nodes as gray rectangles designated

as (Si, p). A terminal node (Si, p) corresponds to a suffix Si[p .. Si]. b) State of the

matrix s after the traversal of each of the branch nodes of T {v1, v2, v3, v4, v5, v6}.

Algorithm 1 starts by calling function traverse for the root node (v6). Each branch

node vi is visited during the bottom-up traversal of T. Function scanTerm looks up

the terminal children of every vi, and function scanBran looks up the branch children

of vi.

2.2.6. The implementation of kr version 2

Algorithm 1 is implemented in the program kr version 2 (Domazet-Lošo and

Haubold, 2009), which replaces its predecessor, kr version 1 (Haubold et al., 2009).

In Sections 2.3 and 2.4 the speed gain of the new version, kr 2, is demonstrated on

both simulated and real data sets.

 44

Apart from kr 2 being the faster program, both program versions produce

identical results. Moreover, they implement the underlying suffix tree as an enhanced

suffix array (Abouelhoda et al., 2004), where the suffix array was constructed using

the suffix array library of Manzini and Ferragina (2004). However, the original

implementation by Manzini and Ferragina was designed for data sets containing up

to 231 characters (approximately 2 billion characters, which is less than one strand of

the human genome). I extended the usage of the library to larger data sets by

implementing its 64-bit version.

The program kr version 2 was written in the C programming language and is

intended for use under the UNIX environment. It can be used either as a 32-bit or as

a 64-bit program, depending on the size of the data set. In particular, the peak

memory-usage of the 32-bit version of kr 2 is ≈ 9 times the size of the data set, and

for the 64-bit version of kr 2, it is 17-18 times the size of the data set. This memory

requirement comes from the underlying data structures (i.e. enhanced suffix array,

and some additional data) which are, in the case of the 32-bit version of the program,

based on 4-byte integers, and, in the case of the 64-bit version, on 8-byte integers.

The program source and the documentation are available from the web site:

http://guanine.evolbio.mpg.de/kr2/

2.3. Analysis of Kr on simulated data sets

2.3.1. Auxiliary programs

For the simulation of samples used in the following analyses the programs ms

(Hudson, 2002), and ms2dna (Haubold and Pfaffelhuber, 2008) were used. The ms

program generates haplotype samples with the predefined number of single

nucleotide polymorphisms (SNPs) per site, which are then converted to a set of

nucleotide sequences by ms2dna. A single-nucleotide polymorphism (SNP) is a

variation in a nucleotide sequence between individuals of a species, i.e. different

individuals can have a different nucleotide residing at the homologous sequence

position. For example, a genome of an individual can contain a nucleotide fragment

ACCTA, and a genome of another individual of the same species can contain a

fragment AACTA at the same positions. These different forms of a gene residing at

 45

the same positions in the sequence are called alleles. In this context, a haplotype can

be considered a set of neighboring SNPs.

The distance matrix correlation coefficient between a Kr distance matrix and a

distance matrix obtained from the corresponding alignment was computed using

Mantel's test (Mantel, 1967) implemented in the program zt (Bonnet and Van de

Peer, 2002).

2.3.2. Consistency of Kr

Kr has already been shown to be accurate for long sequence pairs separated by no

more than 0.5 substitutions per site (Haubold et al., 2009). In this section, a more

detailed correlation analysis between Kr and the true substitution rate (obtained from

the alignment-based substitution rate) is presented. The analysis was based on

samples of 10 homologous sequences of different lengths affected by a variable

number of single nucleotide polymorphisms (SNPs) per site, where the SNP rate, s,

is less than or equal to 0.4. For example, a sample of length 10 kb with s = 0.01

contains 100 SNPs, and so does a sample of 1 kb sequences with s = 0.1. A summary

of data set characteristics is shown in Table 2-2.

Table 2-2. The characteristics of the simulated data sets. Each group is

characterized by its sequence length (l), and the number of SNPs per site (s).

l [kb] S Number of SNPs

1 0.01, 0.1, 0.4 10, 100, 400

10 0.01, 0.1, 0.4 100, 1000, 4000

100 0.01, 0.1, 0.4 1000, 10000, 40000

1000 0.01, 0.1, 0.4 10000, 100000, 400000

For every configuration, 1000 sets of 10 sequences were generated. For each data set,

all pairwise Kr values were correlated with the true substitution rate (the results

obtained from the alignment-based distance-matrices). Finally, the correlation

coefficient was computed for each configuration and averaged across all replicates.

 46

The mean correlation coefficient between Kr and the alignment-based distance-

matrix approaches 1 as the sequence length increases (Figure 2-5). For example, for

the sample where l = 1 Mb, and s = 0.1, the mean correlation coefficient was

0.999951, and even the lowest mean correlation value (for the configuration where l

= 1 kb, and s = 0.01) was still very high (0.922171).

Further, Figure 2-6 shows that the average correlation can be observed as a

function of the total number of SNPs. Hence, the accuracy of Kr increases with the

total number of SNPs in the data set, as long as the substitution rate is below 0.5.

Sequence length [kb]

1 10 100 1000

r m
ea

n

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

s = 0.01
s = 0.1
s = 0.4

Figure 2-5. Correlation between Kr and the true substitution rate. The mean

correlation coefficient (rmean) SD is shown as the function of sequence length for

different values of the SNP rate: s = 0.01, 0.1, 0.4. Each data point is computed

from 1000 simulations.

±

 47

Number of SNPs

10 100 1000 10000 100000

r m
ea

n

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figure 2-6. Correlation between Kr and the true substitution rate. The mean

correlation coefficient (rmean) SD is shown as the function of the number of SNPs

contained in the sample. Each data point is computed from 1000 simulations.
±

2.3.3. The affect of horizontal gene transfer on the accuracy of Kr

Horizontal gene transfer (HGT) is a process in which genetic material from another

organism is incorporated into the genome of the first organism, without the first

organism being the offspring of the second one. Here, I discuss the affect of HGT on

the accuracy of Kr.

Horizontal gene transfer was modeled for 100 simulated samples of 10 sequences

of length 100 kb, and the number of SNPs per site s = 0.1. Each member of the

sample received 1 to 10 chunks (substrings) from the random donor sequence. The

length of each chunk was (i) 100 bp, and (ii) 1 kb. Each chunk was chosen from a

random position of a random donor sequence. Figure 2-7 represents the results of the

HGT simulation. The accuracy of Kr is not degraded by 100 bp chunks transfers, but

 48

1 kb transfers significantly reduce the accuracy of Kr. However, the correlation mean

is not below 0.91 even in the worst case scenario (10 transfers of 1 kb chunks).

Number of transfers per sequence

1 3 5 7 92 4 6 8 10

r m
ea

n

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1 kb transfers
100 b transfers

Figure 2-7. Horizontal gene transfer reduces the accuracy of Kr. The mean

correlation coefficient (rmean) SD is shown as a function of the number of transfers

per sequence. The transfers of 100 bp chunks do not affect the accuracy of Kr, while

the chunks of 1 kb do affect the accuracy of Kr. Each data point is computed from

100 simulations.

±

2.3.4. The effect of genome duplication on the accuracy of Kr

Gene duplication is a process by which a gene region is duplicated once or more

times in the genome of an organism. The effect of gene duplication on the accuracy

of Kr is explored in this section.

Gene duplication was modeled for 100 simulated samples of 10 sequences of

length 100 kb, and the number of SNPs per site, s = 0.1. Each sequence from a data

set was affected by 1–10 duplications of 1 kb chunks, where each chunk was copied

 49

once, twice or five times. The first copy was inserted 1 kb downstream of the 3’ end

of the source. The subsequent copies were inserted 1 kb downstream of the 3’ end of

the previous copy. Figure 2-8 shows that the accuracy of Kr is only weakly degraded

as the number of duplicated fragments, and/or the number of copies of a same

fragment, increases.

Number of Duplications per Sequence

1 2 3 4 5 6 7 8 9 10

r m
ea

n

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

1.0005

1 copy per duplication
2 copies per duplication
5 copies per duplication

Figure 2-8. Gene duplication only weakly affects the accuracy of Kr. The mean

correlation coefficient (rmean) ± SD is shown as a function of the number of

duplications per sequence. The transfers of 1 kb chunks which are copied 1, 2, or 5

times do not significantly affect the accuracy of Kr. Each data point is computed from

100 simulations.

2.3.5. Run time comparison of kr 1 and kr 2

The run-time behavior of the previous approach, implemented in kr 1, and the new

approach, implemented in kr 2, is compared using simulated data sets. Each data set

is characterized by its sequence length, l, the number of SNPs per site, s, and the

 50

number of sequences in the set, n. The summary of data set characteristics is given in

Table 2-3.

Table 2-3. Summary of group characteristics of the simulated data sets. Each

group is characterized by its sequence length (l), the number of SNPs per site (s),

and the number of sequences in the set (n).

l s n

10 kb 0.1 5, 10, 50, 100, 500, 1000

1 Mb 0.1 5, 10, 50, 100

Figure 2-9 shows the run-time comparison of the programs kr version 1 and kr

version 2 for data sets with l = 10 kb. The regression lines are:

(i) for kr version 1: R1 = 0.0038 × n1.9860

(ii) for kr version 2: R2 = 0.1070 × n1.8931

Similarly, Figure 2-10 shows the run-time comparison of kr version 1 and kr version

2 for data sets with l = 1 Mb, and the corresponding regression lines are:

(i) for kr version 1: R1 = 1.6262 × n2.2126

(ii) for kr version 2: R2 = 1.9924 × n1.3508

Based on my previous time-complexity analysis (Sections 2.2.3 and 2.2.4), both kr 1

and kr 2 are expected to execute in O(n2l) time, and the program kr 2 is expected to

execute faster because:

(i) the time required for the suffix tree construction step was reduced from

O(n2l) time in the case of kr 1 to O(nl) time in the case of kr 2

(ii) the time required for the computation of the observed average shustring

lengths during a suffix tree traversal was reduced in the case of kr 2 due to

the multiplication rule (see Algorithm 1, line 22)

The run-time behavior of both programs confirmed these expectations: kr 2 was

faster than kr 1 for all simulated data sets. In the case of the data sets of length l = 10

 51

kb, the regression lines for both kr 1 and kr 2 are close to O(n2l), but with different

constant factor. In this case, kr 2 is on average 25 times faster than kr 1.

More interestingly, the results for the data sets of 1 Mb sequences showed that

the regression line of kr 2 stayed well below the upper bound of O(n2l), and is R2 =

1.9924 n1.3508. For example, the comparison of run-times for 100 sequences of

length 1 Mb (the total data set size is 100 Mb) resulted in 43-fold difference between

kr 2 and kr 1: the execution of kr 2 took 17 minutes, and the execution of kr 1 took

722 minutes ≈ 12 hours (see Figure 2-10).

×

Number of sequences

5 10 50 100 500 1000

R
un

 ti
m

e
[s

]

10-2

10-1

100

101

102

103

104

105

kr version 1
kr version 2
fit kr version 1
fit kr version 2

Figure 2-9. The run time comparison of kr version 1 and kr version 2 on 10 kb
input sequences. The run time measured in seconds is shown as a function of the

number of 10 kb input sequences.

 52

Number of sequences

5 10 50 100

R
un

 ti
m

e
[s

]

101

102

103

104

105

kr version 1
kr version 2
fit kr version 1
fit kr version 2

Figure 2-10. The run time comparison of kr version 1 and kr version 2 on 1 Mb
input sequences. The run time measured in seconds is shown as a function of the

number of 1 Mb input sequences.

2.4. Application of kr version 2

Finally, the accuracy and the scalability of kr 2 were compared to the best alignment-

based results. Depending on the data set, Kr based distances were compared to the

better of the results obtained by either MAVID (Bray and Pachter, 2004), or

MUMmer (Kurtz et al. 2004). These programs are both very fast; MAVID is the

MSA program suitable for the alignment of many short syntenic sequences, and

MUMmer is the pair-wise alignment program designed for the comparison of large

genomes (see Section 2.4.1). In addition, Kr-based distances were analyzed in

comparison to the reference phylogenies derived from multiple sequence alignment

of relevant genes, where reference phylogenies were available.

 53

 54

The following data sets of complete genomes were analyzed (Table 2-4):

(i) 12 Drosophila genomes (Drosophila 12 Genomes Consortium, 2007)

(ii) 13 E. coli and Shigella genomes (van Passel et al., 2008)

(iii) 825 HIV-1 pure subtype genomes (Wu et al., 2007)

Table 2-4. Analyzed data sets. The table contains the following statistics for each data set: the number of sequences in the data set (n),

the average sequence length (lavg), the size of the whole data set (size), the name of the alignment program that was used for the analysis

of the data set, the time required for the execution of kr 2 (tkr2), the kr 2 memory usage peak (mkr2), the time required for the alignment

computation (tA), and the memory usage peak required for the alignment computation (mA).

Data set n
lavg

[Mb]
size
[Mb]

alignment
program

tkr2

[hh:mm:ss]
mkr2

[GB]
tA
[hh:mm:ss]

mA
[GB]

12 Drosophila genomes 12 169 2031 MUMmer 03:14:57 72 32:35:56 3.2

13 E. coli and Shigella genomes + 1
Salmonella

14 4.9 68 MUMmer 00:05:02 1.4 00:33:00 1.0

825 HIV-1 pure subtype genomes 825 0.009 7.5 MAVID 00:10:25 0.17 00:12:10 0.88

 55

2.4.1. Auxililary software used for the analysis of real data sets

The analysis of 825 pure HIV-1 strains was compared to the results obtained using

MAVID, which was the only MSA program scalable to a data set containing that

many taxa. The other two data sets were analyzed using MUMmer, since it is a pair-

wise sequence alignment software specifically developed for the comparison of large

genomes, and was the only alignment tool able to efficiently compute the alignment

of 12 Drosophila genomes (in total over 2 billion base pairs).

The memory consumption of both kr 2 and MUMmer is linear in the size of the

data set, while the memory-consumption of MAVID grows worse than linearly. This

makes MAVID inapplicable for the data sets of large genomes. Furthermore,

MAVID does not cope well with the sequences which are not syntenic, or even

properly assembled. In contrast, MUMmer deals well with sequence rearrangements,

since it was designed for the computation of bacterial genomes, which frequently

contain inversions.

Further, MUMmer generates only pair-wise alignments, and not phylogenetic

distances between sequences. In order to compare Kr based distances to the results

generated by MUMmer, I wrote an additional program (parseDelta) that estimates

Jukes-Cantor distances from MUMmer alignments (Domazet-Lošo and Haubold,

2009).

The program dnadist from the PHYLIP package (Felsenstein, 1993) was used to

compute the distance-matrices based on the Jukes-Cantor formula from the MSA

produced by MAVID. The phylogenetic trees were constructed by applying the

Neighbor-Joining method (Saitou and Nei, 1987), implemented in the program

neighbor from the PHYLIP package (Felsenstein, 1993), and were drawn in MEGA

4 (Kumar et al., 2008).

The correlations between distance matrices based on Kr, and distance matrices

based on alignments were assessed using Mantel's test implemented in the program zt

(Bonnet and Van de Peer, 2002).

 56

2.4.2. The analysis of 12 Drosophila genomes

The Kr based phylogenetic results for the large data set of 12 Drosophila genomes

were compared to the generally accepted topology (Drosophila 12 Genomes

Consortium, 2007), and to the pair-wise sequence alignment generated by MUMmer.

The analysis of 12 Drosophila genomes using kr 1 showed that the Kr distances

produce the same topology as the reference topology (Haubold et al., 2009). Here, kr

2 confirmed these results (Figure 2-11), and showed the speed gain of kr 2 over kr 1.

The program kr 2 took 3 hours and 15 minutes to compute Kr-based distances for 12

Drosophila genomes. In comparison, the run-time of kr 1 on the same test computer

was approximately 2 days and 6 hours, which is roughly 16 times slower than kr 2.

However, the memory usage peak of kr 2 was 72 GB for this data set, compared

to 13 GB required by kr 1. This drawback of kr 2 comes from the memory

requirements of the 64-bit version of the program which was used for this data set.

Namely, the total size of 12 Drosophila genomes is 2 Gb, which requires

approximately 4 GB of memory space (each sequence is represented by its forward

and reverse strand). The memory requirements of the underlying data structures of

the 64-bit version are around 17-18 bytes per input character. For the data set of 12

Drosophila genomes this results in 72 GB memory usage peak (i.e. 4 GB 18 = 72

GB).

×

Finally, the program MUMmer was also used for the analysis of this data set. The

MUMmer based results gave a topology whose Symmetric Distance5 (Robinson and

Foulds, 1981) to the reference tree was 8. In addition, MUMmer took 6 times longer

than kr 2 to compute the result (≈ 1 day 8 hours).

5 Symmetric Distance of Robinson and Foulds (1981) is a topological distance between a sequence
pair (it does not take branch lengths into account). The distance equals the number of partitions which
are present in one tree and not in the other.

 57

 D. melanogaster

 D. sechellia

 D. simulans

 D. yakuba

 D. erecta

 D. ananassae

Melanogaster group

 D. pseudoobscura

 D. persimilis
Obscura group

Willistoni groupillistoni D. w

Subgenus Sophophora

 D. virilis

 D. mojavensis

 D. grimshawi

Subgenus Drosophila

0.02

Figure 2-11. Phylogenetic tree of 12 Drosophila genomes based on Kr. The Kr-

based evolutionary distances gave the same phylogenetic tree as the reference

topology (Drosophila 12 Genomes Consortium, 2007).

2.4.3. The analysis of 13 Escherichia coli and Shigella genomes

The Kr based phylogeny of 13 enterobacterial genomes (13 Escherichia coli and

Shigella genomes) was compared to both the MUMmer based results, and to the

reference phylogeny (van Passel et al., 2008). The size of genomes in the data set

varies from 4.3 Mb to 5.5 Mb. As explained in Section 2.2.1, such differences in size

affect the computation of observed average shustring lengths. This can be improved

by excluding 95% of the shustrings observed by chance alone from the computation

of average shustring lengths (see Section 2.2.1, Figure 2-1; Haubold et al., 2009).

Figure 2-12 shows the neighbor-joining trees of complete genomes based on Kr

distances (Figure 2-12c), MUMmer-derived distances (Figure 2-12b), and the

reference phylogenetic tree (Figure 2-12a), based on the multiple sequence alignment

of 169 single-copy genes (van Passel et al., 2008) computed using MAFFT (Katoh

and Hiroyuki, 2008).

 58

 59

The computation of Kr-based distances of 13 enterobacterial genomes with kr 2

finished in 5 minutes 2 seconds, which is over 10 times faster than the analysis of the

data set with kr 1, which took 59 minutes. However, the Kr-based phylogenetic tree

differs from the referenced phylogeny in the position of E. coli UTI89, marked with

* (Figure 2-12c). The strain E. coli UTI89 clusters with E. coli 536 in the case of Kr,

and with E. coli CFT073 in the case of the reference phylogeny. In comparison,

MUMmer-based distances yielded the correct phylogeny, with the execution time of

33 minutes, which was over 6 times longer than kr 2. The memory consumption peak

of kr 2 was 1.4 GB, and 1 GB in the case of MUMmer.

Finally, the Kr-based and the MUMmer-based distances were computed from the

concatenation of 169 selected genes used by van Passel et al. (2008). The neighbor-

joining trees based on both methods produced the same topology as the referenced

one (van Passel et al., 2008).

 Shigella flexneri 2a str. 2457T

 Shigella flexneri 2a str. 301

 Shigella flexneri 5 str. 8401

 Shigella boydii Sb227

 Shigella sonnei Ss046

 Escherichia coli K12

 Escherichia coli W3110

 Escherichia coli O157H7 EDL933

 Escherichia coli O157H7 str. Sakai

 Shigella dysenteriae Sd197

 Escherichia coli UTI89

 Escherichia coli CFT073

 Escherichia coli EC536

0.002

 Shigella flexneri 2a str. 2457T

 Shigella flexneri 2a str. 301

 Shigella flexneri 5 str. 8401

 Shigella boydii Sb227

 Shigella sonnei Ss046

 Escherichia coli K12

 Escherichia coli W3110

 Escherichia coli O157H7 EDL933

 Escherichia coli O157H7 str. Sakai

 Shigella dysenteriae Sd197

 Escherichia coli UTI89

 Escherichia coli CFT073

 Escherichia coli EC536

0.002

 Shigella flexneri 2a str. 2457T

 Shigella flexneri 2a str. 301

 Shigella flexneri 5 str. 8401

 Shigella boydii Sb227

 Shigella sonnei Ss046

 Escherichia coli W3110

 Escherichia coli K12

 Escherichia coli O157H7 EDL933

 Escherichia coli O157H7 str. Sakai

 Shigella dysenteriae Sd197

 Escherichia coli UTI89 *

 Escherichia coli EC536

 Escherichia coli CFT073

0.002

a) b)

c)

 Shigella flexneri 2a str. 2457T

 Shigella flexneri 2a str. 301

 Shigella flexneri 5 str. 8401

 Shigella boydii Sb227

 Shigella sonnei Ss046

 Escherichia coli K12

 Escherichia coli W3110

 Escherichia coli O157H7 EDL933

 Escherichia coli O157H7 str. Sakai

 Shigella dysenteriae Sd197

 Escherichia coli UTI89

 Escherichia coli CFT073

 Escherichia coli EC536

0.002

 Shigella flexneri 2a str. 2457T

 Shigella flexneri 2a str. 301

 Shigella flexneri 5 str. 8401

 Shigella boydii Sb227

 Shigella sonnei Ss046

 Escherichia coli K12

 Escherichia coli W3110

 Escherichia coli O157H7 EDL933

 Escherichia coli O157H7 str. Sakai

 Shigella dysenteriae Sd197

 Escherichia coli UTI89

 Escherichia coli CFT073

 Escherichia coli EC536

0.002

 Shigella flexneri 2a str. 2457T

 Shigella flexneri 2a str. 301

 Shigella flexneri 5 str. 8401

 Shigella boydii Sb227

 Shigella sonnei Ss046

 Escherichia coli W3110

 Escherichia coli K12

 Escherichia coli O157H7 EDL933

 Escherichia coli O157H7 str. Sakai

 Shigella dysenteriae Sd197

 Escherichia coli UTI89 *

 Escherichia coli EC536

 Escherichia coli CFT073

0.002

a) b)

c)

Figure 2-12. Phylogenetic trees of 13 strains of Escherichia coli and Shigella. a) Reference phylogeny based on the multiple

sequence alignment of 169 genes (van Passel et al., 2008). b) Whole-genome phylogeny based on the pair-wise alignment computed by

MUMmer (Kurtz et al., 2004). c) Whole-genome phylogeny based on Kr; the strain E.coli UTI89, marked with *, is clustered with E.coli

536, while in the reference phylogeny it clusters with E.coli CFT073.

 60

2.4.4. The analysis of 825 HIV-1 pure subtype genomes

In the last example, the genomes of 825 pure HIV strains were analyzed (Wu et al.,

2007). The Kr-based distances between 825 HIV-1 strains were compared to the

results obtained using the MSA program MAVID (Bray and Pachter, 2004), which

was the best tool available for the comparison of many short, syntenic6 sequences.

The resulting phylogenies are displayed in Figure 2-13. There is an excellent

correlation (r = 0.97; p = 0.001) between the Kr-based and the MAVID-based

distance-matrices.

However, in the case of the Kr-based phylogeny, strain A_DQ083238, officially

classified as an A strain, was clustered with the C strains (see Figure 2-13). On closer

inspection, this strain was discovered to be a recombinant with most of the genome

derived from an A1 strain and a C strain. This example indicated the limitation of Kr

as a global similarity measure: Here, in the case of A_DQ083238, the strong

similarity between a C strain and a part of A_DQ083238 prevailed over the similarity

between an A1 strain and the rest of the genome.

The computation of Kr-based distances with kr 2 took 10 minutes 25 seconds,

which was almost 20 times faster than the execution time of kr 1 (3 hours 26

minutes). In comparison, MAVID classified all strains correctly and swiftly in 12

minutes 10 seconds.

6 Syntenic literally means on the same band (ribbon). In this context, synteny refers to the preserved
order of genes along chromosomes (in the comparison of related species).

 61

 O

 N

 A

 G

 B

 D

 F
 A DQ083238

 C

0.01

 O

 N

 A

 G

 B

 D

 F

 C

0.01

a) b)

 O

 N

 A

 G

 B

 D

 F

 O

 N

 A

 G

 B

 D

 F

 C

 A DQ083238

 C

0.01 0.01

a) b)

Figure 2-13. Phylogenetic trees of 825 "pure" HIV-1 strains. The strains of the

same subtype are represented within the compressed subtree of the subtype. a)
Whole-genome phylogeny based on Kr. Only a single strain, A_DQ083238, was not

classified according to its official subtype (subtype A). It is actually a recombinant

between an A and a C strain. b) Whole-genome phylogeny based on the multiple

sequence alignment computed by MAVID. All strains were classified according to

their official subtype.

2.5. Discussion

Evolutionary relationships between organisms can be estimated by aligning

sequences and then deriving evolutionary distances from the alignment. These

 62

distances are then summarized as phylogenetic trees. As an alternative to alignment,

alignment-free methods can be used. Here, I stress two possible applications of

alignment-free methods: (i) the fast computation of guide trees for progressive

alignment methods, and (ii) the analysis of sequences with large scale

rearrangements (e.g. sequences with low synteny or unassembled genomes).

However, alignment-free methods generally do not yield evolutionary distances

(i.e. substitution rates). To fill this gap, we have recently developed an alignment-

free estimator of substitution rates between sequence pairs, Kr, which outperformed

other state-of-the art alignment-free methods for closely related sequences (Haubold

et al., 2009). The analysis of simulated data showed that Kr-based evolutionary

distances are accurate for closely related sequences, when the substitution rates are

less than 0.5 (Haubold et al., 2009). Here, I showed that the accuracy of Kr-based

evolutionary distances increased with the total number of single nucleotide

polymorphisms (SNPs) in the data set (Section 2.3.2; Figures 2-5 and 2-6), where the

number of SNPs is determined by both the length of sequences in the data set, and

the substitution rate between sequences (Domazet-Lošo and Haubold, 2009). In

contrast, horizontal gene transfer degraded the accuracy of Kr-based evolutionary

distances (Section 2.3.3). This result corresponds to the example of a misclassified

recombinant HIV-strain: a strain was clustered with C strains, although only 30% of

its genome derives from a C strain, with rest mostly of an A subtype (Section 2.4.4;

Figure 2-13).

The Kr-based distances are computed from the observed average shustring

lengths between a sequence pair. In the previous implementation of the method, kr

version 1, every pairwise distance was computed by constructing and traversing a

generalized suffix tree of a pair of sequences (Haubold et al., 2009). This resulted in

the construction of n(n-1) suffix trees for n sequences of length l. The time required

for the construction of all suffix trees was O(n2l). Similarly, the time required for the

traversal of all suffix trees with the computation of all Kr-based distances was O(n2l).

This was too slow for large data sets.

To address this problem, in the first part of my thesis I developed an algorithm

that computes all pair-wise Kr distances in a single traversal of a generalized ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

 63

suffix tree of n sequences (Algorithm 1, Section 2.2.5), and implemented in the

program kr version 2 (Domazet-Lošo and Haubold, 2009). In this way, the time

complexity of the suffix tree construction step was reduced from O(n2l) to O(nl). The

step of traversing a suffix tree with computing all distances remained O(n2l) in both

the new and the old approach, but the number of operations in the new approach is

upper-bounded by the number of operations of the old approach (see multiplication

rule of Algorithm 1, line 22). In comparisons of these two approaches using

simulated data sets, kr 2 was in all cases at least ten times faster than kr 1 (Section

2.3.5). For example, kr 2 was more than 40 times faster than kr 1 for the data set of

100 sequences of length 1 Mb (the total size of the data set was 100 Mb), i.e. the

execution time of kr 2 was 17 minutes, while the execution time of kr 1 was 12 hours

(Section 2.3.5; Figure 2-10). In addition, kr 2 was at least 10 times faster than kr 1 in

the analysis of real data sets: the computation of 12 Drosophila genomes was sped

up 16 times, the analysis of 825 HIV-1 genomes 20-fold, and the analysis of 13

enterobacterial genomes was sped up 10-fold (Section 2.4).

To further assess the accuracy of the Kr metric, and to test the scalability of its

implementation in kr 2, I compared kr 2 to two popular alignment tools, MUMmer

(Kurtz et al., 2004), and MAVID (Bray and Pachter, 2004) (Section 2.4). MUMmer

is an efficient pair-wise alignment tool designed for the comparison of large

genomes, while MAVID is a multiple sequence alignment tool scalable to the data

sets of numerous short syntenic sequences. I showed that the program kr 2 is scalable

to both of these extremes. First, kr 2 was compared to both MUMmer and the

available reference phylogenies on the data set of 12 Drosophila unassembled

genomes (with the total size of over 2 billion base pairs) (Section 2.4.2), and on the

data sets of 13 enterobacterial genomes (Section 2.4.3). The genomes in both data

sets are affected by horizontal gene transfer, recent duplication and large-scale

rearrangements. Second, I compared kr 2 to MAVID on the data set of 825 HIV-1

genomes (Section 2.4.4).

The Kr-based evolutionary distances yielded the best results in the case of the 12

Drosophila genomes: the Kr-based phylogeny was topologically identical to the

reference phylogeny (Drosophila 12 Genomes Consortium, 2007), which was not the

case with the MUMmer phylogeny. This agrees with the previous studies where

 64

some alignment-free methods outperformed alignment-based results on rearranged

input sequences (Höhl et al., 2006; Sims et al., 2009). However, for the data sets of

13 enterobacterial genomes, and the data set of 825 HIV-1 genomes, the alignment

based methods gave better results than Kr. In the case of the Kr-based phylogeny 825

HIV-1 genomes, a single strain was misclassified (Section 2.4.4; Figure 2-13).

Nevertheless, the correlation between the Kr-based and the MAVID-based distances

was very high (r = 0.97, p = 0.001).

Further analysis of the HIV-1 strain misclassified by Kr revealed its recombinant

nature. Motivated by this result, I investigated the application of shortest unique

substrings in the context of local sequence homology (Chapter 3).

 65

3. Efficient Alignment-Free Detection of Local
Sequence Homology

3.1. Introduction

In biology, similar sequences usually have similar (or the same) functions due to

their common evolutionary history (Chapter 1). In order to determine sequence

similarity two approaches can be used: (i) sequences can be compared using global

measures of similarity (see Chapter 2), and (ii) sequences can be compared in order

to find locally similar regions, which can be further used for inferring local sequence

homology.

Local sequence similarity is typically determined by alignment methods: an

optimal pair-wise alignment can be computed using the Smith-Waterman algorithm

(Smith and Waterman, 1981; Chapter 1) or more efficient heuristic methods may be

used. Two popular heuristic local alignment methods are BLAST (Altschul et al.,

1990)7 and FASTA (Lipman and Pearson, 1985). They compare subsequences

(words) of a query sequence to a large database of sequences. When a good match

between a subsequence of a query and a database entry is found, it is extended to the

left and to the right in order to get a longer match, and several significant matches

could be combined to form a single one. Both programs return scored alignments

between a query and the database sequences.

Local sequence similarity is particularly important for detecting conserved

regions (e.g. genes) among otherwise dissimilar sequences. In particular, closely-

related organisms may have many similar regions, or they can even be similar across

their complete genomes (the problem of global sequence similarity; see Chapter 2),

while distantly-related organisms may have only isolated regions of similarity. Thus,

the detection of local sequence similarity is of special relevance for comparison of

distantly-related sequences. However, solving this problem is also important for

detecting genetic recombination, which usually involves more closely-related

sequences.

7 The importance of these tools can be best illustrated by the number of citations: the original BLAST
publication (Altschul et al., 1990) was the most cited publication in the 1990s, with more than 28,064
citations by June 12, 2010 (ISI Web of Knowledge).

 66

Genetic recombination is a process where the genetic material of different

organisms is combined together. Homologous recombination is the exchange of

homologous (related) sequence parts, as opposed to non-homologous recombination,

where the evolutionary non-related parts are exchanged. Further, recombination can

be either reciprocal or non-reciprocal (Figure 3-1). In the first case, sequences

reciprocally exchange genetic material (Figure 3-1a). In the second case, genetic

information is transferred only in one direction: from a donor sequence to a recipient

sequence (Figure 3-1b).

a) reciprocal recombination b) non-reciprocal recombination

S1

S2

S1

S2

S1

S2

S2

Figure 3-1. Reciprocal and non-reciprocal recombination. In the case of

reciprocal recombination (DNA crossover), homologous genetic material is

exchanged between sequences S1 and S2 (shown as the exchange of 2 blue and 2

pink rectangles). In the case of non-reciprocal recombination, a part of a donor

sequence, S1, is incorporated in a recipient's sequence, S2 (shown as the blue

rectangle between pink sequences in the final form of S2).

In eukaryotes8, recombination occurs during meiosis between parental DNA

sequences to produce gametes. This homologous reciprocal recombination is also

known as DNA crossover (Figure 3-1a). Another form of homologous reciprocal

recombination occurs when a host cell is coinfected by more than one viral strain,

and a recombinant form of the virus is generated. An example for this is coinfection

of a human cell with different strains of the human immunodeficiency virus, HIV. A

8 A eukaryote is an organism whose cell contains nucleus inside its membranes (animals, plants, and
fungi), as opposed to prokaryotes which do not have a cell nucleus (e.g. bacteria).

 67

new recombinant form of HIV, when detected in a certain number of unrelated cases,

is then referred to as a circulating recombinant form (CRF)9.

In contrast, gene conversion and horizontal gene transfer (HGT) (or lateral gene

transfer; LGT) are types of non-reciprocal recombination (Figure 3-1b). In the case

of gene conversion, genetic material is transferred within an organism, while in the

case of HGT, genetic material from a donor organism is incorporated into a

recipient's genome. HGT has been more frequently observed in bacterial genomes,

but it is also known for eukaryotic genomes (Keeling and Palmer, 2008).

In general, recombination implies phylogenetic incongruencies along a genome,

that is, the phylogeny of some regions (e.g. genes) can disagree with the phylogeny

of the whole organisms (Dykhuizen and Green 1991; Posada et al. 2002; Keeling and

Palmer, 2008). Detecting phylogenetic incongruence is often challenging. Moreover,

Posada and Crandall (2001) showed that the performance of the methods for

recombination detection can vary under different conditions (e.g. genetic divergence;

the number of recombinational events). Thus, the choice of an appropriate method

should depend on the data set analyzed (Posada and Crandall, 2001).

Besides detecting recombination event, some methods can also detect

recombinational breakpoints and the sequences involved in the recombinational

event: parental and recombinant sequences (e.g. Boni et al., 2007). In particular, a

subgroup of the recombination detection methods was developed for determining the

subtypes or a mosaic form of a query sequence (e.g. Rozanov et al. 2004; Wu et al.

2007; Kosakovsky Pond et al., 2009). These methods are called subtyping methods,

and are typically used for the classification of new viral (e.g. HIV) sequences.

Among the subtyping tools developed for HIV classification, the phylogeny-based

subtyping methods provide more accurate results (e.g. Kosakovsky Pond et al.,

2009), but are slow when applied to large data sets. As an alternative, less precise,

but more efficient alignment-free approaches can be used, e.g. the subtyping based

on BLAST scores (Rozanov et al. 2004) or the approach based on the distribution of

short nucleotide sequences among different HIV subtypes (Wu et al. 2007), etc.

9 The list of HIV circulating recombinant forms (CRFs) is available at
http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html.

 68

As explained in Section 2.2.1, we have recently developed an alignment-free

estimator of substitution rates between sequence pairs, based on the average length of

shortest unique substrings between sequences, Kr (Haubold et al. 2009). In Kr-based

clustering of 825 HIV-1 genomes, all strains, except one, were correctly classified as

their official subtype (Section 2.4.4; Figure 2-13). In further analyses, we discovered

that the recombinant form of the misclassified strain was a recombinant (Domazet-

Lošo and Haubold, 2009; Sections 2.4.4 and 3.4.2). Taking this result as a starting

point, in this part of my thesis, I address the problem of detecting locally similar

regions between sequences. As one part of the solution to the problem, I developed a

new algorithm for the detection of matching regions between sequences (Section

3.2.4) based on shortest unique substrings (which were described in Section 2.2.1). I

implemented this algorithm in the subtyping program st, which was then used for

recombination detection in both simulated and real data sets. To illustrate the

efficiency and the scalability of the approach, the program was used for the

recombination detection in the pathogenic bacterium Neisseria meningitidis, to

classify circulating recombinant forms of HIV, and to find the closest relative of an

avian pathogenic Escherichia coli strain between 13 Escherichia coli and Shigella

strains (Section 3.4).

3.2. Methods

3.2.1. Problem statement – determining subtype(s) of a query
sequence

Let Q = {Q1, .., Qm} be a set of m, and S = {S1, .., Sn} be a set of n (closely related)

nucleotide sequences represented as strings over the alphabet {A, C, G, T}, and

terminated by a unique character as before. Again, each sequence from Q and S is

represented by its forward and reverse strand. Each sequence from Q is considered as

query, and each sequence from S is considered as subject. Again, without loss of

generality, let l denote the length of each sequence.

Let each query sequence Qi be represented by a list Gi, where Gi consists of k (k ≥

1) segments: Gi = Gi,1 .. Gi,k, where:

 69

(i) Gi,1 corresponds to the substring Qi[1 .. p2 - 1]

(ii) Gi,d corresponds to the substring Qi[pd .. pd+1 - 1] for d = 2, .., k -1

(iii) Gi,k corresponds to the substring Qi[pk .. |Qi|]

and every segment Gi,d of Gi is annotated by Si,d, Si,d S, such that (see Figure 3-2): ⊆

(i) among members of S, members of Si,d are the most similar to Qi over the

segment Gi,d

(ii) Si,d ≠ Si,d-1, for d = 2, .., k

The task is to find Gi as a list of segments Gi,d, d = 1, .., k. Notice that the number of

segments k is not known in advance, and should be automatically detected.

54321

C

$

G
$
C
$

$ATQ1

ATS3

CGS2

AGS1

54321

C

$

G
$
C
$

$ATQ1

ATS3

CGS2

AGS1

G1,1 G1,2

Figure 3-2. Q1 represented by a list G1 = G1,1 G1,2. Q1 is a query and S = {S1, S2,

S3} is the set of subject sequences. In the context of local sequence similarity, Q1

can be represented by two segments G1,1 and G1,2. The first segment G1,1

corresponds to the substring Q1[1..2], which is the most similar to the substring of

S3, S3[1..2]. The second segment G1,2 corresponds to the substring Q2[3..4], which is

the most similar to the substring of S2, S2[1..2]. Hence, Q1 can be observed as a

mosaic of S3 and S2.

A segment Gi,d, d = 1, .., k, that corresponds to a substring Qi[lb .. rb], is described by

the following items:

 70

(i) lb – the left endpoint of the segment

(ii) rb – the right endpoint of the segment

(iii) Si,d – the subset of S, whose members are the most similar to the substring

Qi[lb .. rb]; that is, Qi is considered to be locally homologous to members of

Si,d over Gi,d

Further, if a query Qi is represented by a single segment Gi,1 that is most similar to

the members of a subset Si,1, then we say that Qi is of subtype Si,1. If a query Qi is

represented by k segments, k > 1, then we consider Qi to be a recombinant (or a

mosaic) of different subtypes, . U
k

d 1=
di,S

3.2.2. Construction of locally homologous segments

Let Qi and Sj be a pair of sequences from Q and S, respectively. Let hi,j,p denote the

shortest unique substring (shustring), as before (see Section 2.2.1). Let Hi,p denote

the greatest value of |hi,j,p| at position p, that is, Hi,p = max{|hi,j,p|}. Let Si,p denote the

subset of S such that:

Si,p = {Sj ∈ S | |hi,j,p| = Hi,p}.

Values Hi,p and Si,p need to be stored for each position p, p = 1, .. ,|Qi|. For

efficient memory usage, the following approach is used: an interval Ii,p is formed at

position p, and contains the following fields:

(i) lb – the left endpoint of the interval: lb = p

(ii) rb – the right endpoint of the interval; initially: rb = lb + Hi,p – 1

(iii) sl – shulen at the beginning of the interval: sl = Hi,p

(iv) Ssl – a subset of S, such that Ssl = {Sj ∈S | |hi,j,p| = Hi,p}

 71

Interval Ii,p is denoted by [Ii,p.lb, Ii,p.rb]. The important property of the final form of

an interval Ii,p is that the value Hi,p' for every p', p' = 1, .. ,|Qi|, can be reconstructed

from Hi,p, as:

Hi,p' = Hi,p - (p' - Ii,p.lb) for Ii,p.lb ≤ p' ≤ Ii,p.rb.

Notice that when an interval Ii,p is formed, the value at position p', Ii,p.lb ≤ p' ≤

Ii,p.rb, determined as Hi,p - (p' - Ip.lb), does not have to be equal to Hi,p'. In that case,

when a new interval Ii,r is formed starting at position r, where Ii,p.lb ≤ r ≤ p' ≤ Ii,p.rb:

(i) the value at position p' is readjusted to Hi,r - (p' - Ii,r.lb)

(ii) the right endpoint of interval Ii,p is readjusted: Ii,p.rb = Ii,r.lb – 1

Algorithm 2, which constructs an interval list Ii for every sequence Qi and a set S, is

presented in Section 3.2.4. An interval list Ii consists of t elements (intervals), Ii = Ii,1,

.., Ii,t, t ≤ |Qi| = l. Since t is at least several times smaller than l both for simulated and

real data sets, this provides overall memory reduction over an approach where Hi,p

and Si,p are stored for every position p.

Finally, Ii is transformed into a list of segments Gi = Gi,1 ... Gi,k. For every

segment Gi,d (d = 1, .., k), a set of subjects Si,d is determined as a set of subjects that

are most locally similar to Qi over a segment Gi,d. The construction of Gi from Ii

using a sliding window analysis is described in Section 3.2.5.

3.2.3. Time complexity of computing a list of intervals Ii

In order to compute the list of intervals Ii for the query sequence Qi, the values of Hi,p

have to be found for every position p = 1, .., |Qi|. To determine Hi,p, a shustring hi,j,p

needs to be found for every Sj.

To find all hi,j,p, p = 1, .. ,|Qi|, a generalized suffix tree T for a pair of sequences

(Qi, Sj) is constructed and traversed. In T, a terminal node (Qi, p) corresponds to a

suffix Qi[p .. |Qi|], and a terminal node (Sj, r) corresponds to Sj[r .. |Sj|]. A shustring

hi,j,p is the shortest prefix of Qi[p .. |Qi|] absent from Sj[r .. |Sj|], and is found in T as

the path label of a branch node v, that is the lowest common ancestor of (Qi, p) and

(Sj, r), plus the first character on the path from v to (Qi, p).

 72

The time needed to construct and traverse a suffix tree is proportional to the total

length of the input text. When a generalized suffix tree is constructed of a single

query sequence (Qi) and n subject sequences (from S), then in a single tree traversal

all shustrings hi,j,p for every Sj ∈ S, and for every position p = 1, .., |Qi| can be

determined. The time-complexity of the construction and the traversal of a

generalized suffix tree of n subject sequences and a query sequence is O(nl). If the

computation is extended to m query sequences, then the construction and the

traversal of the corresponding generalized suffix tree is O((m + n)l).

I describe a new algorithm, Algorithm 2, that constructs an interval lists for every

query Qi during a single traversal of the generalized suffix tree T of all queries and

subjects. More precisely, instead of an interval list, an interval tree, ITi, is

constructed. An interval tree is a binary tree of intervals. An interval-list can be

obtained from an interval tree by traversing the tree inorder.

In Algorithm 2, an interval tree is used instead of an interval list, since inserting

an interval in an interval-list takes O(l) time, and inserting an interval-node in an

interval-tree takes O(log l) time. Thus, the overall time to construct an interval tree

for a single query takes O(l log l).

The construction of m interval trees for m queries during a single traversal of a

generalized suffix tree of m queries and n subjects takes O((m + n)l + ml log l) = O(l

(n + m(1 + log l))) time.

3.2.4. Algorithm 2: Construction of an interval tree

An interval tree ITi for Qi consists of non-overlapping interval-nodes. An interval-

node zi,p of ITi corresponds to an interval Ii,p = [Ii,p.lb, Ii,p.rb] from Ii, and contains

following elements:

(i) lb – the left endpoint of the interval-node; zi,p.lb = Ii,p.lb

(ii) rb – the right endpoint of the interval; zi,p.rb = Ii,p.rb, and initially: zp.rb =

zp.lb + Hi,p - 1

(iii) sl – shulen at the beginning of the interval: sl = Hi,p

(iv) Ssl – a subset of S, such that Ssl = {Sj ∈S | |hi,j,p| = Hi,p}

 73

(v) left – pointer to the left child of zi,p

(vi) right – pointer to the right child of zi,p

Each interval-node zi,p is formed in such a way that the following rules hold:

(i) for every interval-node x in the left subtree of zi,p: x.rb < zi,p.lb

(ii) for every interval-node x in the right subtree of zi,p: zi,p.rb < x.lb

An interval node zi,p is denoted by [zi,p.lb, zi,p.rb].

The construction of an interval-tree ITi for Qi is described in Algorithm 2 (Figure

3-3). ITi is constructed while traversing a generalized suffix tree T of Qi and n subject

sequences, S = {S1, .., Sn}.

Notice, at the moment of insertion of an interval-node in an interval-tree, an

interval can have unadjusted endpoints, that is, a new interval-node can overlap with

one or more intervals-nodes in ITi. In that case, the endpoints of both a new interval

and the intervals in ITi are adjusted, so that the tree always contains non-overlapping

intervals.

Let every branch node v of T contain following fields:

(i) subjectId - the set of subject identifiers {Sj | ∃ (Sj, p) that is a terminal node in

the subtree rooted on v}; notice that this list is empty for the branch nodes that

contain only terminal nodes that refer to the query

(ii) branchChildren: the set of branch nodes which are children of v

(iii) termChildren: the set of terminal nodes which are children of v

(iv) stringDepth: the length of the path label of v; the string depth of v represents

the length of the longest common prefix of all suffixes corresponding to the

terminal nodes in the subtree rooted on v

(v) unresolvedTerm: the set of unresolved terminal nodes of v that refer to the

query

I call a terminal node that refers to a query a query terminal node, and a terminal

node that refers to a subject a subject terminal node. A query terminal node (Qi, p) is

 74

said to be resolved, when the value Hi,p is determined for this node. The set

unresolvedTerm contains query terminal nodes in the subtree rooted on v for which

Hi,p has not yet been determined. That is, there are no subject terminal nodes in the

subtree rooted on v, so the value Hi,p could not have been determined for any

terminal node w in the subtree rooted on v (w ∈ v.unresolvedTerm).

Let every terminal node w contain the following fields:

(i) seqId: the sequence identifier referred to by w (Qi or S1, .., Sn)

(ii) pos: starting position of the suffix (seqId[pos .. |seqId|]) referred to by w

Algorithm 2 Construct an interval tree

Require: T {suffix tree of n + 1 DNA sequences Q1,S1,S2,...,Sn}

Ensure: IT {interval tree}

 1: traverse(root(T), root(IT))

 2: updateITree(root(IT), -1)

 3: function traverse(v, z)

 4: for all w ∈ v.branchChildren do

 5: traverse(w, z)

 6: if v.subjectId is not empty then

 7: for all w ∈ v.termChildren do

 8: if w is a query node then

 9: formIntervalNode(w, v, z)

10: for all w ∈ v.unresolvedTerm do

11: formIntervalNode(w, v, z)

12: end function

13: function formIntervalNode(w, v, z)

14: new.lb = w.pos

15: new.sl = v.stringDepth + 1

16: new.Ssl = v.subjectId

17: addIntervalNode(z, new)

18: end function

 75

 76

19: function addIntervalNode (z, new)

20: if z == null then

21: z = new

22: else if new.lb < z.lb then /* left subtree */

23: if new.sl == z.sl + (z.lb – new.lb) then /* extend z */

24: /* new is superinterval of z */

25: z.lb = new.lb

26: z.rb = min(z.rb, new.rb)

27: z.sl = new.sl

28: z.Ssl = new.Ssl /* new.Ssl is subset of z.Ssl */

29: if z.left != null then

30: z.left.rb = min(z.left.rb, z.lb - 1)

31: /* rb of subtree nodes are fixed by updateITree */

32: else /* add new to interval-tree */

33: new.rb = min(z.lb - 1, new.rb)

34: if z.left == null then

35: z.left = new

36: else

37: z.left = addIntervalNode(z.left, new)

38: else if new.lb > p.lb then /* right subtree */

39: /* z is not superinterval of new */

40: if (z.sl != new.sl + new.lb – z.lb) then

41: /* z.rb must be < any lb in its right subtree*/

42: z.rb = min(z.rb, new.lb - 1)

43: if z.right == null then

44: z.right = new

45: else

46: z.right = addIntervalNode(z.right, new)

47: end function

48: function updateITree (z, maxRB)

49: if z != null then

50: updateITree(z.left, z.lb – 1)

51: if maxRB != -1 then

 77

52: z.rb = min(z.rb, maxRB)

53: updateITree(z.right, maxRB)

54: end function

Figure 3-3. Algorithm 2 - Construction of an interval tree from a suffix tree.

Example 3-1

Let T be the generalized suffix tree constructed of Q1 and S = {S1, S2, S3} (Figure 3-

4a). Branch nodes of T are represented by red circles. Terminal nodes of T are

represented by gray rectangles. T is traversed bottom-up.

Algorithm 2 starts by calling function traverse, with a root node of T (v6) as

argument. Then, at each branch node v of T (v = v1, .., v6), its terminal nodes are

examined. If a terminal node w is a query terminal node, then a new interval-node z

is formed by calling function addIntervalNode. An interval-node z has following

fields: lb, rb, sl, Ssl, left and right, as previously explained, and is represented in the

following form in Figure 3-4b: [lb, rb] Ssl, sl. In the subsequent sections this is

abbreviated to as [lb, rb].

 78

Figure 3-4 Algorithm 2 – Example 3-1. a) The generalized suffix tree T is built from the set of four sequences {Q1, S1, S2, S3} listed in the

top-left corner of the figure. Branch nodes of T are shown in red, and terminal nodes as gray rectangles designated as (Si, p) for subject

terminal nodes, and (Q1, p) for query terminal nodes. b) State of the interval tree IT1 after each of the branch nodes of T {v1, v2, v3, v4, v5,

v6} is encountered during the bottom-up traversal of T (the right-most column of the table). Algorithm 2 starts by calling the function

traverse for the root node (v6). The function formIntervalNode adds a new interval node, or modifies the existing one for each query

terminal child of vi. Each interval node is represented as: [lb, rb] Ssl, sl, where lb and rb are the left and the right endpoints of an interval; sl

is the shustring length at the beginning of the interval, and Ssl is the set of subject sequences with the highest shustring lengths across

that interval. Function min returns the minimum value of the specified parameters.

54321

C

$

G

$

C

$

$ATQ1

ATS3

CGS2

AGS1

54321

C

$

G

$

C

$

$ATQ1

ATS3

CGS2

AGS1

Q1, 2

CA

$

GC$

$ S2, 2

S1, 3
S2, 4
S3, 3
Q1, 5

S2, 3
Q1, 4

v1

C$

S1, 1

$

G

A$

Q1, 3

C

C

S2, 1

TA

S3, 1

Q1, 1

GC$

v2

v3

v4

v5

v6

$

S1, 2
S3, 2

[2, 3] {S1, S3}, sl = 2

(Q1, 5)

(Q1, 1)

(Q1, 3)

(Q1, 4)

(Q1, 2)

v6

v5

v4

v3

v2

v1

(Q1, 5)

(Q1, 1)

(Q1, 3)

(Q1, 4)

(Q1, 2)

v6

v5

v4

v3

v2

v1

[1 {S3 3, 2] }, sl =

[3, 5] {S2}, sl = 3

[1 {S3 3, 2] }, sl =

[3, 5] {S2}, sl = 3

[1, 2] {S3}, sl = 3

[3, 5] {S2}, sl = 3

[1, 2] {S3}, sl = 3

[3, 5] {S2}, sl = 3

[2] {S1, S sl, 2 3}, = 2

[3 {S2 3, 5] }, sl =

[2 {S1, S3}, sl = 2, 3]

[4 {S2 = 2, 5] }, sl

[2 S1 sl, 2] { , S3}, = 2

[3, 5] {S2}, sl = 3

b)a)

The construction of the interval-tree, IT1, from Q1 and S = {S1, S2, S3} starts with

the branch node v1. The node v1 has 3 child nodes. Two subject terminal nodes of v1

are (S1, 2) and (S3, 2). Thus, the list v1.subjectId contains S1 and S3. A query terminal

node of v1 is (Q1, 2), so the first interval-node of IT1, z1,2, is formed from (Q1, 2). The

shulen value of (Q1, 2) is the string depth of its parent node, v1, plus 1. The endpoints

of z1,2 are initially set to lb = 2, and rb = lb + sl – 1 = 2 + 2 – 1 = 3, thus forming the

interval [2, 3]. Since v1.subjectId = {S1, S3}, it follows that z1,2.Ssl = {S1, S3}. In

summary, z1,2, which becomes the root of IT1, has the following structure: [2, 3] {S1,

S3}, sl = 2 (see Figure 3-4b).

The next node in the traversal of T is v2, with its terminal node (Q1, 4). The new

interval-node, z1,4, is formed as: [4, 5], Ssl = {S2}, sl = 2. The root interval-node z1,2 =

[2, 3] precedes z1,4 = [4, 5], so the new interval is added to the right subtree of the

root (see Algorithm 2, lines 38-46).

The branch node v3 has a query terminal node, (Q1, 3). The new interval, z1,3 = [3,

5], is the superinterval of z1,4 = [4, 5] (see Algorithm 2, lines 22-30). In this case, a

new interval-node is not added to the tree, but the previous interval, z1,4 = [4, 5], is

extended to the left. Hence, the new node z1,3 replaces z1,4. Further, the list of subjects

z1,4.Ssl is replaced by z1,3.Ssl, which is equal to v3.subjectId. Since v3.subjectId

z1,4.Ssl, then only the subjects from v3.subjectId have the maximal shulen values

across all positions in the extended interval [3, 5], so z1,3.Ssl = v3.subjectId.

⊆

The branch node v4 has no query terminal children, and no changes are made to

the interval tree.

Similarly to the situation for the branch node v3, when the branch node v5 is

encountered, a new interval is not added to the tree, but the existing interval z1,2 = [2,

2] is extended to the left, and it becomes z1,1 = [1, 2]. In addition, the new subject list

becomes the subset of the old one, so z1,1.Ssl = v5.subjectId = {S3}.

The last query terminal node, (Q1, 5), is a child node of the root of T, v6. Here, no

change has been made in IT1, since (Q1, 5) is already included in the interval node [3,

5], that is, z1,5 is the subinterval of z1,3.

 79

The process of adding an interval in the left subtree of an interval-node is similar

to the process of adding an interval to the right subtree just described (Algorithm 2,

lines 21-36). However, there is one difference. Let z denote an existing interval-node,

and let a new interval new extend z to the left (see Algorithm 2, lines 31-36). Here,

not only the right endpoint of extended z has to be adjusted, but also, possibly, the

right endpoints of some other nodes in the subtree of z. This is done only once by

calling the function updateITree after all interval-nodes have been added to the

tree. The function updateITree takes O(l) time to traverse an interval-tree and

fixes all right endpoints. In comparison, if the right endpoints of interval-nodes were

adjusted during the insertion of every new interval-node, then the total procedure for

all inserted interval-nodes would take O(l log l) time.

Further, a branch node v may contain only query terminal nodes in its subtree, i.e.

v may have an empty list of subjects (this situation is not shown in Figure 3-4). In

that case, interval-nodes cannot be formed from the query terminal nodes of v. These

unresolved query terminal nodes are stored in the set v.unresolvedTerm. The set of

unresolved query terminal nodes is passed from v to its ancestral branch nodes, until

a node w is encountered, which is the lowest common ancestor of v and at least one

subject terminal node. When w is encountered, interval-nodes can be formed of

query terminal nodes stored in v.unresolvedTerm.

3.2.5. Computing a list of segements Gi

A segment list Gi is formed from an interval list Ii. Every segment Gi,d of Qi (d =1, ..,

k) is said to be most closely related to Si,d S, if the sum of shulens sumi,d over Gi,d

is maximal for the shustrings of Qi when compared to Sj

⊆

∈ Si,d:

(i) maxsumi,d = max {sumi,d(Sj) | Sj ∈ S},

and for a query Qi when compared to Sj ∑
=

=
rbG

lbGp
pjijdi

di

di

hSsum
.

.
,,,

,

,

)(

(ii) Si,d = { Sj ∈ S | sumi,d(Sj) = maxsumi,d}

 80

End-points of a segment Gi,d are determined by sliding window-analysis. A

sliding window10 wi,e represents a segment of Qi of a predefined length. Subjects

which are locally homologous to Qi over wi,e are those with the maximal value of the

sum of shulens over wi,e. Thus, wsumi,e is defined as the sum of shulens over a

window wi,e:

(i) wmaxsumi,e = max {wsumi,e(Sj) | Sj ∈ S},

and for a query Qi when compared to Sj ∑
=

=
rbw

lbwp
pjijei

ei

ei

hSwsum
.

.
,,,

,

,

)(

(ii) Si,e = { Sj ∈ S | wsumi,e(Sj) = wmaxsumi,e}

When two adjacent windows, wi,e and wi,e+1, have different list of subjects with

maximal sums of shulens over windows (Si,e ≠ Si,e+1), then an end-point of a segment

is formed as a middle point of the overlapping part of these two windows.

However, in an interval list Ii only the values Hi,p are stored, and values hi,j,p ≠

Hi,p cannot be obtained from Ii for all positions p in Qi when compared to every

subject Sj ∈ S. In order to use as much information as possible to compute sumi,d and

wsumi,e, some additional information is derived from intervals in Ii. As explained in

Section 3.2.4, each interval Ii,p contains the following fields:

(i) lb – the left endpoint of the interval: lb = p

(ii) rb – the right endpoint of the interval; initially: rb = lb + Hi, p – 1

(iii) sl – shulen at the beginning of the interval: sl = Hi, p

(iv) Ssl – a subset of S, such that Ssl = {Sj ∈S | |hi,j,p| = Hi, p}

The window size w can be set by a user, or a default value (1 nucleotide) is used.

The windows are advanced by an increment that is also either set by the user, or

defaults to the window size divided by 10. Further, the minimal fragment length f is

10 Let w be the window size, and inc the increment step in a sliding windows analysis. The first sliding
window wi,1 represents the substring Qi[0 .. w - 1], the second window wi,2 represents Qi[inc .. inc + w
- 1], etc.

 81

introduced as the minimal length of the segment that can be considered as a relevant

match between a subject and a query. The value f can be also set by the user, or its

default value is the length of an increment step. If a segment length is shorter than f,

that segment is discarded, and two neighboring segments are fused across this

segment.

3.3. Analysis of st on simulated data sets

3.3.1. Run-time and memory usage analysis of st

Run-time and memory usage analysis were computed for simulated data sets of

nucleotide sequences of length (l) 10 kb, 100 kb and 1 Mb. Samples were simulated

using the program Dawg (Cartwright, 2005). Each sample consists of a query

sequence, and a set of subject sequences. In experiments (i) and (ii), the subject set

contains n = 10 sequences, and in experiment (iii) n = 100 sequences. The summary

characteristics of these three experiments are shown in Table 3-1. Notice that a query

sequence is generated as a different recombinant in each of experiments:

Experiment (i) (n = 10): a query is a recombinant of subject sequences 1 and 2 in

the following order: 1-2-1-2-1, i.e. the first segment is most closely related to subject

1, the second segment is most closely related to subject 2, and so on. Thus, for the

data sets of l = 10 kb and l = 100 kb, a query sequence consists of 5 segments of

equal lengths (2 kb and 20 kb, respectively), and of 50 segments for the data sets of l

= 1 Mb. Notice that for the data sets of l = 1 Mb, the mosaic 1-2-1-2-1 is repeated 10

times to construct 50 segments.

Experiment (ii) (n = 10): a query is a recombinant of subject sequences 1, 2, 6,

and 9 in the following order: 1-2-6-1-9, i.e. the first segment is most closely related

to subject 1, the second segment is most closely related to subject 2, the third

segment is most closely related to subject 6, and so on. Again, for the data sets of l =

10 kb and l = 100 kb, a query sequence consists of 5 segments of equal length (2 kb

and 20 kb, respectively), and of 50 segments for the data sets of l = 1 Mb. The

mosaic 1-2-6-1-9 is repeated 10 times to construct 50 segments in the case of the data

sets of l = 1 Mb.

 82

Experiment (iii) (n = 100): a query is a recombinant of subject sequences 1 and 2,

in the following order: 1-2-1-2-1 as in Experiment (i). As before, for the data sets of l

= 10 kb and l = 100 kb, a query sequence consists of 5 segments of equal length (2

kb and 20 kb respectively), and of 50 segments for the data sets of l = 1 Mb. As in

Experiment (i), the mosaic 1-2-1-2-1 is repeated 10 times to construct 50 segments

for the data sets of l = 1 Mb.

Table 3-1. Run-time and memory usage analysis of st on simulated data sets.
For each of three experiments, three data sets of different sequence length (l) were

generated. In experiments (i) and (ii), the set of subjects contains n = 10 sequences.

In experiment (iii), n = 100. For each experiment, the mosaic form (mosaic) of a

recombinant sequence (query) is shown. The table contains two statistics for each

experiment: the run-time required for the execution of st (t), and the memory usage

peak of st (m).

Experiment (i)
n = 10
mosaic: 1-2-1-2-1

Experiment (ii)
n = 10
mosaic: 1-2-6-2-9

Experiment (iii)
n = 100

mosaic: 1-2-1-2-1

 m [MB] t [s] m [MB] t [s] m [MB] t [s]

l = 10 kb 2.9 0.072 2.8 0.072 23.4 1.874

l = 100 kb 29.0 2.088 28.9 2.083 233.9 37.839

l = 1 Mb 293.8 39.358 292.96 39.274 2344.3 482.188

 83

Sequence length

10 kb 100 kb 1 Mb

M
em

or
y

us
ag

e
[M

B]

1

10

100

1000

n = 10 (a recombinant form: 1-2-1-2-1)
n = 10 (a recombinant form: 1-2-6-1-9)
n = 100 (a recombinant form 1-2-1-2-1)

Figure 3-5. Memory usage of st on simulated data sets. The analysis shows that

the memory usage is linear in the size of the input data set.

 84

Sequence length

10 kb 100 kb 1 Mb

t [
s]

0.01

0.1

1

10

100

1000

n = 10 (a recombinant form: 1-2-1-2-1)
n = 10 (a recombinant form: 1-2-6-1-9)
n = 100 (a recombinant form: 1-2-1-2-1)

Figure 3-6. Run-time of st on simulated data sets. Three graphs are shown, each

representing a different combination of the number of subject sequences in the data

set (n), and a mosaic form representing the recombinant query sequence.

3.3.2. Consistency of st

In this Section, the consistency of my program, st, is tested on simulated data sets.

The analysis is based on the samples simulated by Dawg (Cartwright, 2005). In all

three experiments, the model and the parameters used were as set by Kosakovsky

Pond et al. (2009) in order to simulate HIV-1 scenario: the general time reversible

model of nucleotide substitution with gamma and invariant rate heterogeneity (the

shape parameter of α = 0.8); the four stationary nucleotide frequencies are πA = 0.4,

πC = 0.2, πG = 0.1, and πT = 0.3; and the six substitution rates are θAC = 2.0, θAG =

4.0, θAT = 0.8, θGC = 0.9, θCT = 5.0, and θGT = 1.0.

 85

In Experiment 1, 100 samples of 4 sequences of length 10 kb were simulated. In

each data set, three sequences represent subject sequences (sequences denoted 1, 2,

and 3), and one sequence represents a query sequence (denoted Q), which is

constructed as a recombinant of sequences 1 and 2. More precisely, a query sequence

contains 5 fragments of length 2 kb, where each fragment is most closely related to

sequence 1 or sequence 2, in alternation (see Figure 3-7). Parameter d in Figure 3-7

represents the length of the shortest branch in a model, and is scaled as 2d and 3d in

other branches. Moreover, the length of each branch in the model is the expected

number of the substitutions per site. For example, the first fragment of Q is the most

closely related to sequence 1, and its evolutionary distance to sequence 1 is 0.01 +

0.01 = 0.02. The value of d ranges from 0.001 to 0.25 in order to analyze the

accuracy of st over different substitution rates (see Figure 3-7). In summary, there are

two phylogenies that involve a recombinant sequence Q. The first phylogeny refers

to the fragments of Q which are locally homologous to 1 and it is (((Q:d, 1:d): d,

2:2d): d, 3:3d); and the second phylogeny refers to the fragments of Q which are

most closely related to 2: (((Q:d, 2:d): d, 1:2d): d, 3:3d);

Figure 3-8 contains three graphs, each corresponding to the analysis based on a

different window length (w = 600 bp, 1 kb, and 2 kb). Each point on the graph

represents the mean accuracy +/- standard deviation of recombination detection over

100 samples. The accuracy can range from 0 to 1, and it refers to the ratio of

correctly classified nucleotide positions in a query sequence. For example, let Q be

constructed in the form 1-2-1-2-1, where each fragment is of length 2 kb, as in

Experiment 1. If Q is then predicted by st to be most closely related to the sequence 1

over its whole length, then the prediction accuracy is 0.6, since 6 kb out of 10 kb

were correctly determined, and 4 kb (which were most closely related to the

sequence 2) were misclassified.

In Experiment 2, 100 samples of 4 sequences of length 100 kb were simulated. A

query sequence in each sample is constructed as a recombinant of sequences 1 and 2

and contains 50 fragments of length 2 kb, where the pattern 1-2-1-2-1 is repeated 10

times (Figure 3-9). Again, the windows analysis (w = 600 bp, 1 kb, 2 kb, 10 kb) is

applied to see the prediction accuracy of this more complicated model over a range

of d values.

 86

Finally, in Experiment 3, 100 samples of 4 sequences of length 100 kb were

simulated, where a query sequence contains 5 fragments of length 20 kb in the

recombination form 1-2-1-2-1 (Figure 3-10). Windows analysis (w = 600 bp, 1 kb, 2

kb, 10 kb, 20 kb) is applied over a range of d.

Figure 3-7. Phylogeny of simulated recombinants. In each of three scenarios,

used in Experiments 1-3, 4 sequences were constructed: three subject sequences

(denoted 1, 2, and 3), and a query sequence (denoted Q). A recombinant query Q is

constructed as a concatenation of either 5 fragments (in Experiments 1 and 3), or of

50 fragments (in Experiment 2). Each fragment is most closely related to either a

subject sequence 1 or a subject sequence 2. Here, 5 fragments of Q are drawn,

each corresponding to either the sequence 1 (a fragment denoted by 1), or to the

sequence 2 (a fragment denoted by 2). In Experiments 1 and 3, a recombinant is of

the form 1-2-1-2-1, and in Experiment 2, these form is repeated 10 times, as there

are 50 fragments in a recombinant. A parameter d = 0.001, 0.0025, 0.005, 0.01,

0.05, 0.1, 0.2, 0.25, which is the shortest branch in both shown phylogenies, also

represents the expected number of substitutions per site. For example, since here d

is 0.01, then the left phylogenetic tree is depicted as (((Q:0.01, 1:0.01): 0.01,

2:0.02): 0.01, 3:0.03);

12121 12121

d = 0.01

Q

 Q
 1
 2
 3

0.01
0.01

0.02

0.03

0.01
0.01

0.01

 Q
 2

0.01
0.01

 1
0.01 0.01

 3
0.02

0.03

0.01

 87

The following conclusions can be derived from the analysis in Experiments 1-3, as

seen in Figures 3-8 to 3-11:

(i) as the fragment length growths, the detection accuracy is better; for example, for

d = 0.001, the average accuracy in Figure 3-8 is around 0.7 (a recombinant

sequence is formed of 5 fragments of 2 kb), and in Figure 3-10 is around 0.8 (a

recombinant sequence is formed of 5 fragments of 20 kb)

(ii) the window size, w, only slightly influences the overall prediction accuracy as

long as w is not longer than a recombinant fragment length; when w is greater

than the fragment length, the prediction accuracy starts declining. For example,

in Figure 3-9 (a recombinant sequence is formed of 50 fragments of 2 kb) the

accuracy is consistent for w ≤ 2 kb, but significantly worse results are obtained

for w = 10 kb.

(iii) with the constant window size, the number of fragments in a recombinant only

slightly reduces the accuracy; for example, compare the results in Figures 3-8 (a

recombinant sequence is formed of 5 fragments of 2 kb), and in Figure 3-9 (a

recombinant sequence is formed of 50 fragments of 2 kb)

 88

d

0.001 0.0025 0.005 0.01 0.05 0.1 0.15 0.2 0.25

<
A

cc
ur

ac
y

>

0.6

0.7

0.8

0.9

1.0

w = 600 bp
w = 1000 bp
w = 2000 bp

Figure 3-8. Recombination detection accuracy for data samples of sequences
of length 10 kb, and a recombinant consisting of 5 fragments of length 2 kb.
Figure contains 3 graphs, each for a different window length (w). Each point

represents a mean value +/- SD of 100 samples.

 89

d

0.001 0.0025 0.005 0.01 0.05 0.1 0.15 0.2 0.25

<
A

cc
ur

ac
y

>

0.5

0.6

0.7

0.8

0.9

1.0

w = 600 bp
w = 1000 bp
w = 2000 bp
w = 10000 bp

Figure 3-9. Recombination detection accuracy for data samples of sequences
of length 100 kb, and a recombinant consisting of 50 fragments of length 2 kb.
Figure contains 4 graphs, each for a different window length (w). Each point

represents a mean value +/- SD of 100 samples.

 90

d

0.001 0.0025 0.005 0.01 0.05 0.1 0.15 0.2 0.25

<
A

cc
ur

ac
y

>

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

w = 600 bp
w = 1000 bp
w = 2000 bp
w = 10000 bp
w = 20000 bp

Figure 3-10. Recombination detection accuracy for data samples of sequences
of length 100 kb, and a recombinant consisting of 5 fragments of length 20 kb.
Figure contains 5 graphs, each for a different window length (w). Each point

represents a mean value +/- SD of 100 samples.

 91

d

0.001 0.0025 0.005 0.01 0.05 0.1 0.15 0.2 0.25

N
um

be
r o

f S
am

pl
es

 (<
=

10
0)

0

20

40

60

80

100

w = 600 bp
w = 1000 bp
w = 2000 bp

Figure 3-11. Recombination detection accuracy for data samples of sequences
of length 10 kb, and a recombinant consisting of 5 fragments of length 2 kb.
Figure contains 5 graphs, each for a different window length (w). Each point

represents the number of samples (out of generated 100) which were completely

correctly classified. That is, all 4 recombinant breakpoints were correctly classified,

and the correct parental sequences were determined for both sides of each

breakpoint.

3.3.3. Comparison to SCUEAL on simulated data sets

Finally, the recombinant detection performance of st is compared to SCUEAL

(Kosakovsky Pond et al., 2009), since this tool was specifically designed for the

highly precise analysis of HIV sequence. The authors extensively analyzed SCUEAL

over both real and simulated data sets, and the availability of these data together with

the results was another reason for choosing this program as the accuracy standard.

However, as a trade-off, SCUEAL implementation is time consuming, and thus

impractical for very large sequences (e.g. SCUEAL analysis of an HIV recombinant

lasted more than 6 hours, while st analysis of the same sequence took 0.4 seconds;

Section 3.4.2). Therefore, in this Section, I only concentrate on the accuracy

 92

performance of st in comparison to SCUEAL on simulated data sets provided by

Kosakovsky Pond et al. (2009).

The simulated data sets used in the experiments resemble the simple and the

complex HIV-like mosaic. In each experiment, 100 samples were generated, where

each sequence is 10 kb long, with the recombinant fragment length of 2 kb

(Kosakovsky Pond et al., 2009). For each sample, a recombinant query sequence is

compared to 11 subject sequences (sequences denoted 1 to 11).

In the simple mosaic scenario, a query sequence is constructed in three forms: 1-

2-1-2-1, 1-6-1-6-1, and 1-9-1-9-1. In the first case, evolutionary distance between

sequences 1 and 2 is close; in the second case, evolutionary distance between

sequences 1 and 6 is medium, and in the last case, sequences 1 and 9 are divergent

(Kosakovsky Pond et al., 2009). In the complex mosaic scenario, the recombinant

form is 1-2-6-1-9, and the subject sequences are close (sequence 2), medium

(sequence 6), or distantly-diverged (sequence 9) from the sequence 1. The results of

SCUEAL-based analysis on these data sets (Kosakovsky Pond et al., 2009) are

presented in Table 3-2.

Table 3-2. Results of SCUEAL analysis of HIV-like recombinant detection
(Kosakovsky Pond et al., 2009).

SCUEAL close medium divergent complex mosaic

Correct 95/100 100/100 99/100 94/100

Subset 1/100 0 0 5/100

Superset 2/100 0 1/100 0

Mismatch 2/100 0 0 1/100

The summary results of st analysis and the comparison to SCUEAL are shown in

Figures 3-12 and 3-13. The analysis shows that the window size, w, close to the

fragment length gives better results, but the results obtained from the windows

analysis with w up to the half of the fragment length (for w = 1kb) are also

acceptable. These results agree with the previous analysis (see Section 3.4.2). In

addition, results with the greater value of f (f is the minimal length of st fragment to

 93

be considered as a relevant), are better as long as window size does not exceed the

true fragment length.

Further, the best overall results are obtained for the simple HIV-mosaic scenario,

where the parental sequences of a recombinant are at medium evolutionary distance

(mosaic form: 1-6-1-6-1). The only case where st outperforms SCUEAL is the

complex HIV mosaic scenario for window size at least 1 kb. In all other cases, st is

surpassed by SCUEAL results. With a proper choice of the window size (w), and the

minimal fragment length (f), st results are closely matching those obtained by the

SCUEAL analysis (Figures 3-12 and 3-13).

 94

window size [bp]

600 1000 2000 2600

C
ou

nt

70

75

80

85

90

95

100

st - close
st - medium
st - divergent
st - complex mosaic

949910095
complex mosaicdivergentmediumclose
949910095
complex mosaicdivergentmediumclose

a) st results compared to SCUEAL

b) SCUEAL

results

results

Figure 3-12. Comparison of st and SCUEAL results, where the minimal
fragment length (f) of st was set to 200 bp. These programs were compared over

4 different scenarios (see text). The st windows analysis is shown in for a range of

window size (600 bp, 1 kb, 2 kb, 2.6 kb) (black graphs). The value Count on y-axis

refers to the number of samples (out of 100) for which all 4 breakpoints in a

recombinant were correctly recognized (the position, and the parental sequences).

SCUEAL results are shown in b) (see also Table 3-2), and denoted as red circles,

and red triangles in a).

 95

a) st results compared to results

949910095
complex mosaicdivergentmediumclose

SCUEAL

86

88

90

92

94

96

98

100

949910095
complex mosaicdivergentmediumclose

b) SCUEAL based results

window size [bp]

600 1000 2000 2600

C
ou

nt

st - close
st - medium
st - divergent
st - complex mosaic

Figure 3-13. Comparison of st and SCUEAL results, where the minimal
fragment length (f) of st was set to 400 bp. The programs were compared over 4

different scenarios (see text). The size of a window in st windows analysis ranges

from 600 bp to 2.6 kb (black graphs). The value Count on y-axis refers to the

number of samples (out of 100) for which all 4 breakpoints in a recombinant were

correctly recognized. SCUEAL results are shown in b) (see also Table 3-2), and

denoted as red circles, and red triangles in a).

 96

3.4. Application of st

The program st was used to detect local sequence similarity in real data sets. The

results are compared to the results of existing tools, and where possible, to the

published annotation. The following data sets were analyzed (Table 3-3):

(i) Neisseria meningitidis in comparison to N. gonorrhoeae and N. cinerea

(ii) HIV-1 strain A_DQ083238 in comparison to 37 reference strains from the HIV

sequence database (http://www.hiv.lanl.gov)

(iii) 91 HIV-1 circulating recombinant forms in comparison to HIV-1 42 pure

subtype strains (Leitner et al., 2005; Wu et al., 2007)

(iv) 266 HIV-1 circulating recombinant forms in comparison to HIV-1 42 pure

subtype strains, and 65 recombinant strains (Leitner et al., 2005; Wu et al.,

2007)

(v) avian pathogenic E. coli strain O1:K1:H7 (Johnson et al., 2007) in comparison to

human pathogenic E. coli genomes

 97

Table 3-3. Analyzed data sets. The table contains following statistics for each data

set: the number of subject sequences in the data set (n), the number of query

sequences in the data set (m), the average sequence length (lavg), the size of the

whole data set (size), the reference for the analysis of the data set (Compared to),

the time required for the execution of st (tst), st memory usage peak (mst).

Data set n m
lavg

[kb]
size
[kb]

Compared to
tst
[s]

mst

[MB]

Neisseria 2 1 0.9 2.7

Boni et al. 2007;

Westesson and

Holmes, 2009

0.005 0.1

HIV 37 1 9 342
SCUEAL (Kosakovsky

Pond et al. 2009)
0.4 8

HIV 42 91 9 1169

Wu et al. 2007;

NCBI genotyping tool

(Rozanov et al., 2004)

4 43

HIV 42+65 266 9 3329

Wu et al. 2007;

NCBI genotyping tool

(Rozanov et al., 2004)

23 112

E. coli 13 1 4756 66588 Johnson et al. 2007 325 1582

3.4.1. The analysis of Neisseria meningitidis

The first data set analyzed consists of sequences representing argF gene of three

species from the genus Neisseria: N. meningitidis, N. cinerea, and N. gonorrhoeae.

Previous studies have already shown the mosaic structure of argF gene of N.

meningitidis (e.g. Boni et al., 2007; Westesson and Holmes, 2009). Their results

suggest that the first part of argF gene of N. meningitidis (nucleotide positions from 1

to approximately 200) is most closely related to the N. cinerea argF gene, and that

the ancestry of the second part of the gene is in N. gonorrhoeae. However, the

position of another possible breakpoint (around nucleotide positions 50 or 750)

remains unclear (Boni et al., 2007; Westesson and Holmes, 2009).

 98

The results obtained from st confirm the previous results (Boni et al., 2007). The

results shown in Figure 3-14 were based on st analysis using windows size: 30 bp,

the increment step: 10 bp, and the minimal length of the fragment to be considered as

a relevant transfer: 10 bp. The similar results were obtained with windows size

varying from 30–200. However, if the size of the minimal relevant transfer is

increased, then the second break point (around nucleotide position 750) is not

detected.

Figure 3-14. The mosaic structure of N. meningitidis detected by st. The

segments of N. meningitidis which are locally homologous to N. cinerea are

represented as pink rectangles (nucleotide positions 0-189, and 750-766), and

segments which are locally homologous to N. gonorrhoeae are represented as blue

rectangles (nucleotide positions 190-749, and 767-786). The recombination form of

N. meningitidis derived from st analysis agrees with the previous results (e.g. Boni et

al., 2007). However, the existence of the second breakpoint (around nucleotide

position 750) remains unclear.

3.4.2. The analysis of a recombinant form of HIV-1

The next example shows the recombinant form of an HIV-1 strain, A_DQ083238,

which was not classified according to its official subtype, A (see Section 2.4.4, and

Figure 2-13). The strain was compared to the set of 37 HIV-1 reference strains (HIV

sequence database, http://www.hiv.lanl.gov). It was analyzed both by st, and by

SCUEAL, a recently developed phylogeny-based tool for the sequence subtyping

 99

 100

(Kosakovsky Pond et al., 2009). Both st and SCUEAL found that the ancestry of

most of A_DQ083238 strain is of A1 sub-subtype, but with a significant part (around

30%) of C subtype genome (Figures 3-15 to 3-17). The st-based results were

computed with window size 300, increment step 50, and the minimal fragment length

of 100. The precise results generated by SCUEAL were produced in 379 minutes ≈

6.3 h, and the memory usage peak was 169 MB.

The strong local sequence homology between A_DQ083238 and C strains

resulted in the misclassification of A_DQ083238 in Kr-based phylogeny (the strain

was clustered with C, instead of A strains). The strong signal was based on the high

values of shortest unique substrings between A_DQ083238 and C strains, which

resulted in higher average length of shortest unique substrings when compared to the

average length of shustrings of A_DQ083238 when compared to A strains.

b) The SCUEAL-based analysis of A_DQ083238

a) The st analysis of A_DQ083238

Figure 3-15. The analysis of the strain A_DQ083238 by st and SCUEAL. Both methods showed the recombinant form of this strain: it

consist of mostly A subtype and around 30% of C subtype. In addition, both programs detected two regions of C subtype: the first regions

from roughly 1000-1800 bp, and the second region from 2700-4200 bp.

 101

Figure 3-16. Analysis of strain A_DQ083238 by st. A_DQ083238 was compared to 37 reference pure subtype strains (see text). The

segments of A_DQ083238 which are most locally homologous to A1 strains are represented as four shades of blue rectangles (e.g.

nucleotide positions 0-499), and segments which are locally homologous to C strains are represented as three shades of pink

rectangles (nucleotide positions 1050-1849, and 2700-4249). The st results suggest that A_DQ083238 is a recombinant form of mostly

A1 sub-subtype with 30% of the genome derived from C subtype, and some traces of G subtype.

 102

Figure 3-17. A part of the report generated by SCUEAL for strain A_DQ083238.
A_DQ083238 was compared to 37 reference pure subtype strains. This phylogeny-

based analysis reveals the recombinant nature of the strain, with prevailing A1 sub-

subtype, and about 30% of C derived genome.

3.4.3. The analysis of circulating recombinant forms of HIV-1

Wu et al. (2007) analyzed 331 circulating recombinant forms (CRFs) of HIV-1. They

analyzed the data set using NCBI genotyping tool, also designed for the analysis of

HIV recombinant forms (Rozanov et al. 2004), and their solution based on the

nucleotide composition of string vectors.

 103

First, the subset of 91 recombinant strains was analyzed in comparison to the set

of 42 HIV-1 reference sequences (Leitner et al., 2005; Wu et al., 2007). Each strain

from this subset is officially classified as a recombinant of two subtypes, e.g. a strain

classified as CRF02AG is a recombinant of A and G subtypes. The authors reported

the prediction accuracy of 87.3% for their method, and 73.4% and 66.2% for NCBI

genotyping tool. In the st analysis of these 91 strains, parental subtypes were

determined as the two top subject strains returned by st windows analysis. The

accuracy of st was 93.4%.

Next, from the set of 331 CRFs, 65 of them were chosen as reference

recombinant forms. Thus, the remaining 266 strains were compared to the reference

set of 42 pure subtypes and 65 recombinant forms to find the most closely related

strain. NCBI tool correctly classified 264, and Wu et al. (2007) 242 strains. For this

data set, st correctly subtyped 263 strains. Among three strains for which st did not

return the correct most closely related strain, two strains, AY771588 and AY771589,

were most closely related to a strain of pure subtype (B), which was also the result of

NCBI genotyping tool reported by Wu et al. (2007). The closer inspection showed

that the top result (a strain of subtype B) was closely followed by strains of BF

recombinant form, which was the official result. The third strain, DQ354120, was

classified by st as CRF01AE recombinant, although its official recombinant form is

CRF1501B.

3.4.4. The analysis of an avian pathogenic Escherichia coli strain

Recently, Johnson et al. (2007) compared an avian pathogenic strain of Escherichia

coli (APEC), O1:K1:H7, to strain K-12 MG1655, and 3 uropathogenic E. coli

(UPEC) strains: CFT073, UTI89, and 536. Their result, based on chromosome

alignment and BLAST (Altschul et al., 1990) comparison of proteins, suggests that

the genome of O1:K1:H7 is most closely related to the genome of UTI89. However,

they also showed that a genomic island of O1:K1:H7 (between nucleotide positions

4711722 and 4769233) exists only in strain CFT073, and not in the genomes of the

other three strains, K-12 MG1655, UTI89 and 536.

 104

 105

In the st analysis of E. coli O1:K1:H7, I used an extended set of subject

sequences to show the scalability of the method. Thus, the set of 4 subject strains (K-

12 MG1655, CFT073, UTI89, and 536) was extended to set of 13 E. coli genomes

comprising 63 Mb. The strains used as subject sequences were also used by van

Passel et al. (2008) for the phylogenetic analysis of E. coli strains. The st analysis

agreed with the previous results: most of the O1:K1:H7 genome (around 90%) is

most closely related to UTI89. In addition, in the st analysis the segment from

positions 4715950 to 4763749 was predicted to be the most closely related sequence

of O1:K1:H7 is CFT073, which corresponds to the results reported by Johnson et al.

(2007) for positions 4711722 and 4769233 (see Figure 3-18). In conclusion, the st

results agree with the previous results showing that UPEC and APEC are more

closely related to each other than to other E. coli strains.

The whole st comparison of O1:K1:H7 to 13 subject sequences took less than 6

minutes on our test computer, and the memory usage peak was 1.5 GB.

Figure 3-18. The st analysis of an avian pathogenic E. coli strain, O1:K1:H7. The genome of O1:K1:H7 was compared to the

complete genomes of 13 E. coli strains, including UPEC strains (UTI89, CFT073, 536). The results show that O1:K1:H7 is the most

similar to a UPEC strain UTI89 (dark green rectangles), but there is a significant segment from approximately 4.71 Mb to 4.77 Mb (light

green rectangle) where O1:K1:H7 is the most similar to CFT073, which is in agreement with a previous study (Johnson et al., 2007).

 106

3.5. Discussion

Recombination is typically detected from the conflicting phylogenies along genome.

However, recombination detection based on the phylogeny-based methods does not

scale well for large genomes; e.g., SCUEAL-based analysis of a recombinant HIV-1

strain took more than 6 hours, while the same analysis performed by st lasted less

than a second (Section 3.4.2). To complement phylogeny-based methods on genome-

scale, I developed an efficient solution for the detection of locally homologous

regions, which is then applied to recombination detection (Section 3.2). In particular,

the implementation of the solution, in the program st, is designed as a subtyping tool.

That is, st determines the subtype or the mosaic form of a query sequence; both the

recombination breakpoints, and the parental sequences.

As a part of this solution, I developed a new algorithm (Algorithm 2, Section

3.2.4), that efficiently finds intervals representing exact matches between a query

sequence, and one or more subject sequences. The locally homologous regions are

then derived from a sliding window analysis of the list of intervals (Section 3.2.5).

For a single query and n subject (parental) sequences of length l, the time required

for the computation of an interval list is O(l(n + log l)). This time complexity

becomes O(nl) for n >> log l. Hence, for the data set with numerous subject

sequences, the recombinant form of a single query sequence is computed in linear

time with respect to the size of the data set. In addition, the program st enables the

computation of recombinant forms of multiple queries in a single run. In particular,

determining the subtype of m queries in comparison to n subject sequences takes O(l

(n + m(1 + log l))) time, which is significantly faster than computing each query on

its own. This scales very well for large genomes. Moreover, to assess st in the

context of established subtyping tools, I compared its prediction accuracy and

efficiency to other subtyping tools (Section 3.4): to two popular alignment-free tools

(Rozanov et al., 2004; Wu et al., 2007), and a recently developed phylogeny-based

tool, SCUEAL (Kosakovsky Pond et al., 2009).

The st run-time scales well for large data sets. For example, the st analysis of an

avian pathogenic Escherichia coli strain, when compared to the set of 13 E. coli and

 107

Shigella strains (the total size of the data set is 65 million base pairs), lasted 6

minutes (Section 3.4.4). However, for the analysis of this strain, st was compared

only to the alignment-based results (Johnson et al. 2007), since the three programs to

which st was compared in the analysis of HIV-1 sequences (Rozanov et al., 2004;

Wu et al., 2007; Kosakovsky Pond et al., 2009) are not easily applicable to this

problem. In particular, the phylogeny based method, SCUEAL, is too slow for the

analysis of such a large genome. The NCBI genotyping tool (Rozanov et al., 2004) is

a web-based tool, with currently no stand-alone version, and the program developed

by Wu et al. (2007) depends on HIV-specific parameters.

 Next, I compared the st prediction accuracy to other subtyping tools (Section

3.4). In comparison to alignment-free methods (Rozanov et al., 2004; Wu et al.,

2007), st-based results were on the same level or better than the results obtained by

the other two methods (Section 3.4.3). However, a phylogeny-based tool, SCUEAL,

outperformed st on almost all simulated data sets (Section 3.3.3). Nevertheless, in the

analysis of the HIV-1 strain A_DQ083238, both programs predicted that around 30%

of A_DQ083238 genome is of C subtype (Section 3.4.2; Figures 3-15, 3-16 and 3-

17). The rest of the genome was mostly classified as A subtype by both st and

SCUEAL. In addition, SCUEAL-based results also indicated the existence of smaller

regions which are most closely related to an ancestral strain of A/G, and A/G/H/J

subtypes. Finally, in the analysis of a large genome of an avian pathogenic

Escherichia coli strain (Section 3.4.4; Figure 3-18) the results obtained by st agreed

with the alignment-based analysis (Johnson et al., 2007).

The analysis of simulated data sets showed that st performs best when applied to

closely related sequences (Section 3.3.2): the highest precision in determining the

recombination breakpoints and parental sequences is obtained if a query and the most

similar subject sequence are separated between 0.01 and 0.1 substitutions per site

(Sections 3.3.2 and 3.3.3). Interestingly, the st prediction accuracy only slightly

declines with the number of recombination breakpoints, i.e., the results of the

analysis of a recombinant containing 49 breakpoints was only slightly worse than the

results for the recombinant with 4 breakpoints (Section 3.3.2). Finally, these

simulations provide a clue for choosing the window size in st windows analysis, i.e.

the expected size of the recombinational fragment should determine the window size.

 108

Specifically, the window size should not exceed the expected fragment length, for

example: for the detection of fragments of length 2000 base pairs, the best results are

obtained for the window size 600-2000 base pairs (Section 3.3.2; Figures 3-8 to 3-

10).

 109

4. Conclusion

Modern biology relies on the comparison of sequences, which is typically based on

their alignment. However, the alignment of whole genomes is a computationally

challenging task. The goal of my thesis was to find the alignment-free solutions for

two problems: (i) efficient computation of Kr pair-wise distances between genomes,

and (ii) detecting local sequence similarity (homology).

As a solution to the first problem, I developed a new algorithm (Algorithm 1),

which computes pair-wise distances between all input sequences in a single traversal

of a generalized suffix tree of all sequences (Domazet-Lošo and Haubold, 2009). I

implemented the algorithm in the program kr version 2, and successfully applied it

on both assembled and unassembled genomes (Domazet-Lošo and Haubold, 2009).

The analysis of kr 2 showed the significant speed gain over the previous solution (kr

1), and efficiency and scalability in the analysis of large data sets. Thus, it is

particularly suitable for the clustering of unassembled genomes, and the rapid

computation of guide trees.

As a solution to the second problem, I developed a new algorithm (Algorithm 2),

which computes a list of matching intervals between a query and a set of subject

sequences in a single traversal of a generalized suffix tree of all input sequences. The

implementation of this solution in the program st efficiently detects locally

homologous regions, and was successfully applied to the recombination detection of

HIV-1 circulating recombinant forms, and the analysis of an avian pathogenic

Escherichia coli strain. The analysis of st showed that it is particularly useful for the

rapid detection of longer recombinational fragments in large genomes. As a possible

future direction of this research, the extension of Algorithm 2 could be used for the

computation of sequence alignment: the locally similar regions found by this

algorithm can represent the alignment anchors (the initial regions from which the

alignment can be extended).

Finally, the applications of Algorithm 1 and Algorithm 2 do not have to be

restricted to biological sequence analysis, i.e. they can be applied for the analysis of

regular text. For example, Algorithm 1 can be used for clustering similar text, and

 110

Algorithm 2 can be used for finding matching regions between a query text and a text

database.

 111

References

Abouelhoda, M. I., Kurtz, S., and Ohlebusch, E. 2004. Replacing suffix trees with

enhanced suffix arrays, J. Disc. Alg. 2, 53–86.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic

local alignment search tool. J. Mol. Biol. 215, 403–410.

Apostolico, A., and Denas, O. 2008. Fast algorithms for computing sequence

distances by exhaustive substring composition, Algorithms Mol. Biol. 3, 13-21.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W. 2009.

GenBank. Nucleic Acids Res. 3, D26-D31.

Blaisdell, B.E. 1986. A measure of the similarity of sets of sequences not requiring

sequence alignment. Proc. Natl. Acad. Sci. USA 83, 5155–5159.

Boni, M. F., Posada, D., Feldman, M. W. 2007. An exact nonparametric method for

inferring mosaic structure in sequence triplets. Genetics 176, 1035-1047.

Bonnet, E., and Van de Peer,Y. 2002. Zt: a software tool for simple and partial

Mantel tests. J. Stat. Softw. 7, 1–12.

Boyer, R. S., and Moore, J. S. 1977. A fast string-searching algorithm, Comm. ACM

20, 762-772.

Bray, N., and Pachter, L. 2004. MAVID: Constrained ancestral alignment of multiple

sequences. Genome Res. 14, 693–699.

Burrows, M., and Wheeler, D. 1994. A block sorting lossless data compression

algorithm, Technical Report 124, Digital Equipment Corporation

Cartwright, R.A. 2005. DNA assembly with gaps (Dawg): simulating sequence

evolution. Bioinformatics 21 (Suppl. 3), iii31–iii38.

 112

Do, C. B., Mahabhashyam, M. S., Brudno, M., Batzoglou, S. 2005. ProbCons:

Probabilistic consistency-based multiple sequence alignment. Genome Res. 15,

330–340.

Domazet-Lošo, M., and Haubold, B. 2009. Efficient Estimation of Pairwise Distances

between Genomes, Bioinformatics 25, 3221-3227.

Drosophila 12 Genomes Consortium, 2007. Evolution of genes and genomes on the

Drosophila phylogeny. Nature 450, 203-218.

Dykhuizen, D. and Green, L. 1991. Recombination in Escherichia coli and the

definition of biological species. J. Bacteriol. 173, 7257–7268.

Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and

high throughput, Nucleic Acids Res. 32, 1792–1797.

Edgar, R. C., and Batzoglou, S. 2006. Multiple sequence alignment. Curr. Opin.

Struct. Biol. 16, 368–373.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum

likelihood approach. J. Mol. Evol. 17, 368-376.

Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c.

Distributed by the author. Department of Genetics, University of Washington, Seattle

Ferragina, P., and Manzini, G. 2000. Opportunistic Data Structures with

Applications. In Proceedings of the 41st Annual Symposium on Foundations of

Computer Science, Redondo Beach, CA, USA, pp. 390-398

Ferragina, P., and Manzini, G. 2005. Indexing compressed texts. Journal of the

ACM 52, 552–581.

Ferragina, P., González, R., Navarro, G., and Venturini, R. 2008. Compressed text

indexes: from theory to practice!.ACM Journal of Experimental Algorithmics 13.

 113

Grossi, R., and Vitter, J. 2000. Compressed suffix arrays and suffix trees with

applications to text indexing and string matching. In Proc. 32nd ACM Symposium on

Theory of Computing (STOC), pp. 397-406.

Gusfield, D. 1997. Algorithms on Strings, Trees, and Sequences. Cambridge

University Press, New York.

Harel, D., and Tarjan, R. E. 1984. Fast algorithms for finding nearest common

ancestors. SIAM J. Computing. 13: 338–355.

Haubold, B., and Pfaffelhuber, P. 2008. ms2dna version 1.6. Available at:

http://guanine.evolbio.mpg.de/mlDiv

Haubold, B., and Wiehe, T. 2006. How repetitive are genomes? BMC Bioinformatics

7, 541-550.

Haubold, B., Domazet-Lošo, M., and Wiehe T. 2008. An Alignment-Free Distance

Measure for Closely Related Genomes, In Nelson, C.E., and Vialette, S., eds.,

RECOMB-CG 2008, LNBI 5267, Springer-Verlag Berlin Heidelberg, pp. 87–99.

Haubold, B., Pfaffelhuber, P., Domazet-Lošo, M., and Wiehe, T. 2009. Estimating

mutation distances from unaligned genomes, J. Comput. Biol. 16, 1487–1500.

Haubold, B., Pierstorff, N., Möller, F., and Wiehe, T. 2005. Genome comparison

without alignment using shortest unique substrings. BMC Bioinformatics 6, 123-133.

Hirschberg, D.S. 1975. A linear space algorithm for computing maximal common

subsequences, Comm. ACM 18, 341-343.

Hoare, C.A.R. 1962. Quicksort. Computer Journal 5, 10-15.

Höhl, M., and Ragan, M. 2007. Is multiple-sequence alignment required for accurate

inference of phylogeny? Syst. Biol. 56, 206–221.

 114

Höhl, M., Kurtz, S. and Ohlebusch, E. 2002. Efficient multiple genome alignment.

Bioinformatics 18(Suppl. 1):S312–S320.

Höhl, M., Rigoutsos, I., and Ragan, M.A. 2006. Pattern-based phylogenetic distance

estimation and tree reconstruction. Evol. Bioinform. Online 2, 359–375.

Hudson, R. R. 2002. Generating samples under a Wright-Fisher neutral model.

Bioinformatics 18, 337-338

Hunt, E. 2003. The Suffix Sequoia Index for Approximate String Matching. Technical

Report TR-2003-135, Department of Computer Science, University of Glasgow,

Glasgow.

Johnson, J. T., Kariyawasam, S., Wannemuehler, Y., Mangiamele, P., Johnson, S.

J., Doetkott, C., Skyberg, J. A., Lynne, A. M., Johnson, J. R., and Nolan, L. K. 2007.

The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares

strong similarities with human extraintestinal pathogenic E. coli genomes. J.

Bacteriol. 189, 3228-3236.

Jukes, T. H., and Cantor, C.R. 1969. Evolution of protein molecules. In Munro, H.N.,

ed., Mammalian Protein Metabolism, volume 3. Academic Press, New York, 21–

132.

Kärkkäinen, J., and Sanders P. 2003. Simple linear work suffix array construction. In

Proc. 30th International Colloquium on Automata, Languages and Programming

(ICALP '03), Springer, pp. 943-955.

Karlin, S., and Altschul, S. F. 1990. Methods for assessing the statistical significance

of molecular sequence features by using general scoring schemes. Proc. Natl.

Acad. Sci. 87, 2264-2268.

Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K. 2001. Linear-time longest-

common-prefix computation in suffix arrays and its applications. In Proc. Annual

Symposium on Combinatorial Pattern Matching, LNCS 2089, Springer-Verlag,

Berlin, pp. 181–192.

 115

Katoh, K., Hiroyuki, T. 2008. Recent developments in the MAFFT multiple sequence

alignment program, Brief. Bioinform. 9, 286-298

Keeling, P. J., and Palmer, J. D. 2008. Horizontal gene transfer in eukaryotic

evolution, Nat. Rev. Genet. 9, 605–618.

Kim, D. K., Sim, J. S., Park, H., and Park, K. 2005. Constructing suffix arrays in

linear time. J. Discrete Algorithms 3, 126–142.

Kimura, M. 1980. A simple method for estimating evolutionary rates of base

substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16,

111-120.

Knuth, D.E., Morris J.H., and Pratt, V.R. 1977. Fast pattern matching in strings.

SIAM J. Computing 6, 323-350.

Ko, P., and Aluru, S. 2003. Space efficient linear time construction of suffix arrays.

In Combinatorial Pattern Matching (CPM 03), Springer, 203-210.

Kosakovsky Pond, S. L., Posada, D., Stawiski, E., Chappey, C., Poon, A. F. Y.,

Hughes, G., Fearnhill, E., Gravenor, M. B., Leigh Brown, A. J., and Frost S. D. W.

2009. An Evolutionary Model-Based Algorithm for Accurate Phylogenetic Breakpoint

Mapping and Subtype Prediction in HIV-1. PLoS Comput Biol 5 (11), e1000581.

Kumar, S., Nei, M., Dudley, J., and Tamura, K. 2008. MEGA: a biologist-centric

software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9,

299-306.

Kurtz, S. 1999. Reducing the space requirements of suffix trees. Software: Practice

and Experience 29, 1149–1171.

Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J. and

Giegerich, R. 2001. REPuter: The manifold applications of repeat analysis on a

genomic scale. Nucleic Acids Res., 29, 4633–4642.

 116

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. 2009. Ultrafast and

memory-efficient alignment of short DNA sequences to the human genome.

Genome Biol. 10, R25

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A.,

McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D.,

Gibson, T.J., and Higgins, D.G. 2007. ClustalW and ClustalX version 2.

Bioinformatics 23, 2947-2948.

Leitner, T., Korber, B., Daniels, M., Calef, C., and Foley B. 2005. HIV-1 Subtype and

Circulating Recombinant Form (CRF) Reference Sequences.

Li, H., and Durbin, R. 2009. Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 25, 1754-1760.

Li, H., and Durbin, R. 2010. Fast and accurate long-read alignment with Burrows–

Wheeler transform. Bioinformatics 26, 589–595.

Li, M., Badger, J. H., Chen X., Kwong, S., Kearney, P., Zhang, H. 2001. An

information based sequence distance and its application to whole mitochondrial

genome phylogeny. Bioinformatics 17, 149-154.

Lipman, D. J. and Pearson, W. R. 1985. Rapid and sensitive protein similarity

searches. Science 227, 1435-1441.

Manber, U., and Myers, E.W. 1993. Suffix arrays: a new method for on-line string

searches, SIAM J. Comput. 22, 935–948.

Maniscalco, M. A., and Puglisi, S. J. 2006. Faster lightweight suffix array

construction. In Ryan, J., and Dafik, eds., Proc. of 17th Australasian Workshop on

Combinatorial Algorithms, Univ. Ballavat, Ballavat, Victoria, Australia, pp. 16-29.

Maniscalco, M. A., and Puglisi, S. J. 2007. An efficient, versatile approach to suffix

sorting. ACM Journal of Experimental Algorithmics 12, 1-31.

Mantel, N. 1967. The detection of disease clustering and a generalized regression

 117

approach. Cancer Res. 27, 209-220.

Manzini, G. 2004. Two space-saving tricks for linear-time LCP computation. In

Hagerup, T., and Katajainen, J., eds., Proc. SWAT 2004. Lecture Notes in Comput.

Sci. 3111, Springer-Verlag, Berlin, pp. 372-383.

Manzini, G. and Ferragina, P. 2004. Engineering a lightweight suffix array

construction algorithm. Algorithmica 40, 33–50.

McCreight, E. M. 1976. A space-economical suffix tree construction algorithm.

Journal of the ACM. 23, 262-272.

Michener, C. D., and Sokal, R. R. 1957. A quantitative approach to a problem in

classification. Evolution 11, 130–162.

Navarro, G. 2004. Indexing text using the Ziv-Lempel trie. JDA 2, 87–114.

Navarro, G., and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing

Surveys 39, article 2.

Needleman, S.B., and Wunsch, C.D. 1970. A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48,

443-453.

Notredame, C. 2007. Recent evolutions of multiple sequence alignment algorithms.

PLoS Comput. Biol. 3: e123.

Notredame, C., Higgins, D., and Heringa J. 2000. T-Coffee: A novel method for

multiple sequence alignments. J. Mol. Biol. 302, 205-217.

Otu, H. H., and Sayood, K. 2003. A new sequence distance measure for

phylogenetic tree construction. Bioinformatics 19, 2122–2130.

Posada, D., Crandall K. A., 2001. Evaluation of methods for detecting recombination

from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. USA 98, 13757-

13762.

 118

Posada, D., Crandall, K. A., and Holmes, E.C. 2002. Recombination in evolutionary

genomics. Annu Rev Genet. 36, 75–97.

Puglisi, S. J., Smyth, W. F., and Turpin, A. H. 2007. A taxonomy of suffix array

construction algorithms. ACM Comput. Surv. 39, 1-31.

Ristov, S. 2003. A Note on Indexing DNA and Protein Sequences. In Bohanec, M.,

Filipič, B., and Gams, M., eds., Proc. 6th Intl. Multi-Conference Information Society

IS 2003, Vol A, Intelligent and Computer Systems, Ljubljana, Institut "Jožef Štefan",

pp. 121-126.

Robinson, D. F., and Foulds, L. R. 1981. Comparison of phylogenetic trees. Math.

Biosci. 53, 131-147.

Rozanov, M., Plikat, U., Chappey, C., Kochergin, A., and Tatusova, T. 2004. A web-

based genotyping resource for viral sequences. Nucleic Acids Res. 32, 654-659.

Sadakane, K. 2003. New text indexing functionalities of the compressed suffix

arrays. Journal of Algorithms 48, 294-313.

Saitou, N., and Nei, M. 1987. The neighbor-joining method: A new method for

reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.

Schieber, B., and Vishkin, U. 1988. On finding lowest common ancestors:

simplification and parallelization. SIAM J. Computing 17, 1253–1262.

Seward, J. 2007. bzip2 1.0.5, http://www.bzip.org/

Sims, G.E., Jun, S.-R., Wu, G. A., and Kim S.-H. 2009. Alignment-free genome

comparison with feature frequency profiles (FFP) and optimal resolutions, Proc.

Natl. Acad. Sci. USA 106, 2677-2682.

Smith, T.F., and Waterman, M.S. 1981. Identification of common molecular

subsequences. J. Mol. Biol. 147, 195-197.

Stuart, G.W., and Berry, M.W. 2003. A comprehensive whole genome bacterial

phylogeny using correlated peptide motive defined in a high dimensional vector

 119

space. J. Bioinf. Comp. Biol. 1, 475–493.

Ukkonen, E. 1995. On-line construction of suffix trees. Algorithmica 14, 249-260.

Ulitsky, I., Burstein, D., Tuller, T., Chor, B. 2006. The average common substring

approach to phylogenomic reconstruction. J. Comput. Biol. 13, 336-350.

Välimäki, N., Gerlach, W., Dixit, K., and Mäkinen, V. 2007. Compressed suffix tree -

a basis for genome-scale sequence analysis. Bioinformatics 23, 629-630.

van Passel, M.W., Marri, P.R., and Ochman, H. 2008. The emergence and fate of

horizontally acquired genes in Escherichia coli. PLoS Comput Biol 4 (4), e1000059.

Vinga, S., and Almeida, J. 2003. Alignment-free sequence comparison—a review.

Bioinformatics 19, 513–523.

Wang, L. and Jiang, T. 1994. On the complexity of multiple sequence alignment. J.

Comput. Biol. 1, 337–348.

Weiner, P. 1973. Linear pattern matching algorithm. In Proc. 14th Annual IEEE

Symposium on Switching and Automata Theory, Washington DC, pp. 1-11.

Westesson, O., Holmes, I. 2009. Accurate Detection of Recombinant Breakpoints in

Whole-Genome Alignments. PLoS Comput Biol 5: e1000318.

White, M. A., Ané, C., Dewey, C. N, Larget, B. R., and Payseur B. A. 2009. Fine-

Scale Phylogenetic Discordance across the House Mouse Genome. PLoS Genet 5

(11): e1000729.

Williams, J.W.J. 1964. Algorithm 232 – Heapsort. Comm. ACM 7, 347-348.

Wu X., Cai, Z., Wan, X., Hoang, T., Goebel, R., and Lin, G. 2007. Nucleotide

composition string selection in HIV-1 subtyping using whole genomes.

Bioinformatics 23, 1744–1752.

Ziv, J., and Lempel, A. 1978. Compression of individual sequences via variable-rate

coding. IEEE Trans. Inform. Theory IT-24, 530-536.

 120

5. Electronic Sources

1000 Genomes – A Deep Catalog of Human Genetic Variation. May, 2010. Web.

June 10, 2010.

<http://www.1000genomes.org>

1000 Genomes Project. June 4, 2010. Web. June 10, 2010.

<http://en.wikipedia.org/wiki/1000_Genomes_Project>

GenBank. January 29, 2010. Web. June 9, 2010.

<www.ncbi.nlm.nih.gov/genbank>

Gregory T.R. 2005. Animal Genome Size Database. n. d. Web. June 12, 2010.

<http://www.genomesize.com>

HIV sequence database. January 26, 2010. Web. June 10, 2010.

<http://www.hiv.lanl.gov>

The 1KP Project. n. d. Web. June 4, 2010

<http://www.onekp.com>

 121

6. List of abbreviations and symbols

Symbol Explanation

∑ alphabet

T text – a longer string (Chapter 1); a (generalized) suffix tree (Chapters 2

and 3)

P pattern – a shorter string

z number of occurrences of a pattern (P) in a text (T)

S arbitrary string (Chapter 1)

|S| length of a string S

S[i .. j] a substring of a string S starting at the position i, and ending at the

position j

$ sentinel character of a string S

Hk(S) k-th order entropy of S

BWT Burrows-Wheeler Transform

SA suffix array

ST suffix tree

c a character from ∑

C(c) function that returns number of characters smaller than c in a string S

Occ(c, i) number of occurrences of c in B[1..i], where B is a BWT of a string S

[LP, RP] Interval of SA which covers occurrences of a prefix P in a string S

con k-length substring (context) of a string S

Scon concatenation of characters following con in a string S, taken from the left

to the right of S

n number of sequences (Chapter 2); number of subject sequences (Chapter

3)

m number of query sequences

l length of a sequence

S = {S1, .., Sn} a set of nucleotide sequences (Chapter 2); a set of subject sequences

(Chapter 3)

 122

Q = {Q1, .., Qm} a set of query sequences

(Si, Sj) a pair of sequences from {S1, .., Sn}

hi,j,p a shortest prefix of Si[p .. |Si|] absent from Sj (shustring)

oi,j observed average shustring length for a pair (Si, Sj)

di,j number of pair-wise mismatches per nucleotide between Si and Sj

Hi,p the maximal value of hi,j,p for a position p in a query Qi when compared to

subjects Sj ∈ S, j = 1, .., n, and i ≠ j

K Jukes-Cantor evolutionary distance

Kr evolutionary distance measure between Si and Sj, where di,j is converted

to the number of nucleotide substitutions using Jukes-Cantor formula

(Chapter 2)

Gi = Gi,1...Gi,k a mosaic structure of Qi, where each segment Gi,d is the most similar to

members of Si,d, where Si,d is a subject of S

Si,d a subset of subjects of S to which Qi is the most similar over Gi,d

Si,p a subset of subjects of S to which Qi is the most similar at a position p

πA, πC, πG, πT stationary nucleotide frequencies

θAC, θAG, θAT,

θGC, θCT, θGT

substitution rates

w length of a sliding window in a sliding window analysis (in the program st)

f minimal length of a recombinant fragment to be considered as a relevant

(in the program st)

kb kilo base pair (thousand base pairs)

Mb mega base pair (million base pairs)

Gb giga base pair (billion base pairs)

 123

Abstract

Sequence comparison is an essential tool in modern biology. It is used to identify

homologous regions between sequences, and to detect evolutionary relationships

between organisms. Sequence comparison is usually based on alignments. However,

aligning whole genomes is computationally difficult. As an alternative approach,

alignment-free sequence comparison can be used. In my thesis, I concentrate on two

problems that can be solved without alignment: (i) estimation of substitution rates

between nucleotide sequences, and (ii) detection of local sequence homology. In the

first part of my thesis, I developed and implemented a new algorithm for the efficient

alignment-free computation of the number of nucleotide substitutions per site, and

applied it to the analysis of large data sets of complete genomes. In the second part of

my thesis, I developed and implemented a new algorithm for detecting matching

regions between nucleotide sequences. I applied this solution to the classification of

circulating recombinant forms of HIV, and to the analysis of bacterial genomes

subject to horizontal gene transfer.

Keywords: alignment-free method, evolutionary distance, local sequence homology,

genome comparison, HIV, horizontal gene transfer, suffix tree, suffix array, shortest

unique substring.

 124

Sažetak

Algoritmi za učinkovitu usporedbu sekvenci bez korištenja

sravnjivanja

Uspoređivanje sekvenci je osnovni alat u modernoj biologiji, a koristi se za

pronalaženje homolognih dijelova između sekvenci te za otkrivanje evolucijskih

odnosa između organizama. Uspoređivanje je sekvenci obično temeljeno na

sravnjivanju. Međutim, sravnjivanje cijelih genoma je računalno zahtijevan

postupak. Kao alternativni pristup, mogu se koristiti metode koje ne koriste

sravnjivanje sekvenci. U sklopu svoje doktorske disertacije, koristila sam pristup koji

ne zahtijeva sravnjivanje sekvenci u rješavanju dvaju problema: (i) procjena brzine

supstitucije između nukleotidnih sekvenci; (ii) određivanje lokalne homologije

između nukleotidnih sekvenci. U sklopu prvog dijela disertacije razvila sam i

implementirala algoritam za učinkovito računanje procjene relativnog broja

supstitucija između dviju nukleotidnih sekvenci bez korištenja sravnjivanja, koji sam

primijenila za analizu velikih skupova cijelih genoma. U drugom dijelu disertacije

razvila sam i implementirala novi algoritam za određivanje jednakih dijelova između

nukleotidnih sekvenci. Rješenje sam primijenila za određivanje roditeljskih tipova

rekombinantnih oblika virusa HIV te za analizu bakterijskih genoma pod utjecajem

horizontalnog prijenosa gena.

Ključne riječi: usporedbe sekvenci bez sravnjivanja, lokalna homologija,

evolucijska udaljenost, usporedba genoma, HIV, horizontalni prijenos gena, sufiksno

stablo, sufiksno polje, najkraći jedinstveni podniz.

 125

Curriculum vitae

Mirjana Domazet-Lošo was born in 1976 in Zagreb, Croatia. She obtained Diploma

(Dipl.-Ing.) in Computer Science in 1999 and MSc degree in Computer Science in

2006, both from the Faculty of Electrical Engineering and Computing, University of

Zagreb. She began her doctoral studies at the Faculty of Electrical Engineering and

Computing, University of Zagreb in the fall of 2006. During her doctoral studies, she

was a guest doctoral student within the Bioinformatics group, Department of

Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön,

Germany. She has been a researcher and a teaching assistant at the Department of

Applied Computing, Faculty of Electrical Engineering and Computing, University of

Zagreb since 1999. She has contributed to publications in international peer-reviewed

journals and to international conferences.

Publications

• Domazet-Lošo, M., and Haubold, B. 2009. Efficient Estimation of Pairwise

Distances between Genomes, Bioinformatics 25, 3221-3227.

• Haubold, B., Pfaffelhuber, P., Domazet-Lošo, M., and Wiehe, T. 2009.

Estimating mutation distances from unaligned genomes, J. Comput. Biol. 16,
1487–1500.

• Haubold, B., Domazet-Lošo, M., and Wiehe T. 2008. An Alignment-Free

Distance Measure for Closely Related Genomes, In Nelson, C.E., and
Vialette, S., eds., RECOMB-CG 2008, LNBI 5267, Springer-Verlag Berlin
Heidelberg, pp. 87–99.

• Baranović, M., Madunić, M., Mekterović, I. 2003. Data Warehouse as a Part

of the Higher Education Information System in Croatia. In Budin, L., Lužar-
Stiffler, V.; Bekić, Z. and Hljuz Dobrić, V. eds., Proc. of the 25th
International Conference on Information Technology Interfaces, SRCE,
Zagreb, pp. 121-126.

 126

 127

Životopis

Mirjana Domazet-Lošo je rođena 1976. godine u Zagrebu. Studirala je računarstvo

na Fakultetu elektrotehnike i računarstva Sveučilišta u Zagrebu, gdje je diplomirala

1999. te magistrirala 2006. godine. Doktorski studij računarstva upisala je u jesen

2006. godine na Fakultetu elektrotehnike i računarstva Sveučilišta u Zagrebu. Za

vrijeme doktorskog studija, bila je gost-doktorski student u Bioinformatičkoj grupi

Odjela za evolucijsku genetiku Instituta Max Planck za evolucijsku biologiju u Plönu

(Njemačka). Zaposlena je kao znanstveni novak na Zavodu za primijenjeno

računarstvo Fakulteta elektrotehnike i računarstva Sveučilišta u Zagrebu od 1999.

godine. Objavila je radove u časopisima s međunarodnom recenzijom i na

međunarodnim znanstvenim skupovima.

Objavljeni znanstveni radovi

• Domazet-Lošo, M., Haubold, B. 2009. Efficient Estimation of Pairwise

Distances between Genomes, Bioinformatics 25, 3221-3227.

• Haubold, B., Pfaffelhuber, P., Domazet-Lošo, M., Wiehe, T. 2009.

Estimating mutation distances from unaligned genomes, J. Comput. Biol. 16,
1487–1500.

• Haubold, B., Domazet-Lošo, M., Wiehe T. 2008. An Alignment-Free

Distance Measure for Closely Related Genomes, In Nelson, C.E., and
Vialette, S., eds., RECOMB-CG 2008, LNBI 5267, Springer-Verlag Berlin
Heidelberg, pp. 87–99.

• Baranović, M., Madunić, M., Mekterović, I. 2003. Data Warehouse as a Part

of the Higher Education Information System in Croatia. In Budin, L., Lužar-
Stiffler, V.; Bekić, Z. and Hljuz Dobrić, V. eds., Proc. of the 25th
International Conference on Information Technology Interfaces, SRCE,
Zagreb, pp. 121-126.

	Acknowledgment
	1. General Introduction
	1.1. Suffix trees and other index data structures used in biological sequence analysis
	1.1.1. Suffix Tree
	1.1.2. The space and the time complexity of the algorithms for the suffix tree construction
	1.1.3. Suffix Array
	1.1.4. The space and the time complexity of the algorithms for suffix array construction
	1.1.5. Enhanced Suffix Array
	1.1.6. The 64-bit implementation of the lightweight suffix array construction algorithm
	1.1.7. Self-index
	1.1.8. Burrows-Wheeler transform
	1.1.9. The FM-Index and the backward search algorithm
	1.1.10. The space and the time-complexity of the FM-index

	2. Efficient Estimation of Pairwise Distances between Genomes
	2.1. Introduction
	2.2. Methods
	2.2.1. Definition of an alignment-free estimator of the rate of substitution, Kr
	2.2.2. Problem statement
	2.2.3. Time complexity analysis of the previous approach (kr 1)
	2.2.4. Time complexity analysis of the new approach (kr 2)
	2.2.5. Algorithm 1: Computation of all Kr values during the traversal of a generalized suffix tree of n sequences
	2.2.6. The implementation of kr version 2

	2.3. Analysis of Kr on simulated data sets
	2.3.1. Auxiliary programs
	2.3.2. Consistency of Kr
	2.3.3. The affect of horizontal gene transfer on the accuracy of Kr
	2.3.4. The effect of genome duplication on the accuracy of Kr
	2.3.5. Run time comparison of kr 1 and kr 2

	2.4. Application of kr version 2
	2.4.1. Auxililary software used for the analysis of real data sets
	2.4.2. The analysis of 12 Drosophila genomes
	2.4.3. The analysis of 13 Escherichia coli and Shigella genomes
	2.4.4. The analysis of 825 HIV-1 pure subtype genomes

	2.5. Discussion

	3. Efficient Alignment-Free Detection of Local Sequence Homology
	3.1. Introduction
	3.2. Methods
	3.2.1. Problem statement – determining subtype(s) of a query sequence
	3.2.2. Construction of locally homologous segments
	3.2.3. Time complexity of computing a list of intervals Ii
	3.2.4. Algorithm 2: Construction of an interval tree
	3.2.5. Computing a list of segements Gi

	3.3. Analysis of st on simulated data sets
	3.3.1. Run-time and memory usage analysis of st
	3.3.2. Consistency of st
	3.3.3. Comparison to SCUEAL on simulated data sets

	3.4. Application of st
	3.4.1. The analysis of Neisseria meningitidis
	3.4.2. The analysis of a recombinant form of HIV-1
	3.4.3. The analysis of circulating recombinant forms of HIV-1
	3.4.4. The analysis of an avian pathogenic Escherichia coli strain

	3.5. Discussion

	4. Conclusion
	References
	5. Electronic Sources
	6. List of abbreviations and symbols
	Abstract
	Sažetak
	Curriculum vitae
	Životopis

