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1. General Introduction 

Nucleic acids (DNA and RNA) are the molecular carriers of hereditary information 

in living organisms. These molecules are polymers of four nucleotides. DNA 

sequences are usually represented as strings of characters over the alphabet {A, C, G, 

T}, where each character corresponds to a nucleotide base. Similarly, RNA 

sequences are represented as strings over the alphabet {A, C, G, U}. The size of the 

DNA or RNA of an organism (its genome size) varies significantly. For example, the 

size of viral genomes ranges from few thousand to around million nucleotide base 

pairs; bacterial genomes sizes range from hundreds of thousands to less than ten 

million base pairs, and the size of mammalian genomes ranges between one and 

eight billion base pairs (Gregory, 2005), e.g. a human genome comprises around 3 

billion base pairs.  

All the existing and the extinct genomes are the outcome of the copying process 

that happens each generation from the emergence of the first living cell 

approximately 3.8 billion years ago. However, this process was accompanied by 

mutations and recombination. The genetic variation thus generated permitted 

adaptation to different habitats, which resulted in the diversity of present and extinct 

organisms. Thus, the evolution of organisms or sequences can be envisaged as a 

branching process where every pair of organisms or sequences has a common 

ancestor at a varying depth of an emerging tree. 

However, evolution is a historical process, which usually cannot be observed 

directly. Therefore, we reconstruct this branching process from the physically 

available sequences. The first step in this endeavor is to compare different sequences 

and to find similar regions between them. In particular, the number of unique 

combinations is extremely large even for very short sequences; for example, a DNA 

sequence comprising only 100 base pairs (which is less than 0.00001% of a human 

genome) can have 4100 ≈ 2 ·1060 unique combinations. In addition, the space of 

nucleotide sequences occupied by present day and extinct organisms represents only 

a small portion of all possible combinations. Hence, it is possible to construct 

hypotheses about common ancestry of sequences (also called homology) using 

  1



 

sequence similarity scores which are above the score expected by chance alone 

(Karlin and Altschul, 1990). 

Historical branching patterns (also known as phylogenies) are not the only 

information that can be reconstructed from the comparison of sequences. Regions of 

high sequence similarity between even relatively distantly-related organisms usually 

imply similar biological functions or structures. In this way, the functional 

information, inferred through experiments in one organism, can be transferred to a 

genome of another organism solely based on sequence comparison between these 

organisms. The advantage of this approach becomes apparent when we consider that 

functional experiments in some organisms (e.g. humans, animals with long 

generation time) are much more difficult if not impossible, than in the so called 

"model organisms", e.g. yeast, bacteria, fruit flies, mice.  

This is why sequence comparison is an essential tool in modern biology: the 

study of functional and structural organization, evolutionary mechanisms and 

evolutionary history of organisms all rely upon sequence comparison. But, how can 

we compare sequences in the first place? The traditional, widely-used approach to 

sequence comparison is sequence alignment. The goal of this procedure is to find the 

most plausible hypothesis about homology between nucleotide positions in two or 

more sequences. For this purpose, sequences are typically arranged in a matrix 

(Figure 1-1), where each sequence corresponds to a matrix row, and the columns of a 

matrix represent the homologous nucleotides. Due to mutations, the homologous 

nucleotides are not always identical. In order to align homologous nucleotides within 

the same column, gaps (spaces) can be inserted in a sequence. In Figure 1-1, two 

sequences are aligned in five ways, and for each alignment two scores are computed. 

The goodness of an alignment is determined based on the alignment score. The 

optimal alignment score corresponds to the minimal weighted edit distance between 

sequences, that is, the minimal sum of weighted (scored) edit operations required to 

transform one sequence into another. Hence, each alignment score is computed as the 

sum of rewards for matches (identical nucleotides within the same column), and 

penalties for mismatches (different nucleotides within the same column) and gaps 

(when a nucleotide is aligned with a gap). In the biological context, a mismatch is 

observed as a nucleotide substitution (or a point mutation), and a gap as an insertion 
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or a deletion of a nucleotide (Figure 1-1). An example of a scoring scheme with 

arbitrary values for matches, mismatches and gaps is shown in Figure 1-1. In this 

example, there are two scoring systems: similarity score depicts a similarity between 

strings, in which case the best alignment is the one with the maximal score. The 

distance score, on the other hand, measures the distance between strings, and here the 

minimal score corresponds to the optimal alignment. In the example in Figure 1-1, 

the best results for both scoring schemes are achieved for the first alignment.  

 

A GCCS1

GGCAS2 GGCAS2

A GCCS1

GGC-AS2

A -GCCS1

GGC-AS2

A -GCCS1

GGCA-S2

A -GCCS1

GGCA-S2

A -GCCS1

GGCA--S2

-A -GCCS1

GGCA--S2

-A -GCCS1
10

5

4

Distance 
score

Similarity 
scoreAlignment

-104

-33

-12

1 12

10

5

4

Distance 
score

Similarity 
scoreAlignment

-104

-33

-12

1 12

 

Figure 1-1. An Example of Pairwise Sequence Alignment. Sequences S1 = 

ACCG and S2 = ACGG can be aligned in several possible ways, five of which are 

listed here. An indel (insertion or deletion) is denoted by a gap (-). The similarity 

score between a sequence pair is computed based on the following values: each 

match is rewarded 1, each substitution -1, and a gap -2. For example, for the first 

alignment, the score is 3 · 1 – 1 = 2, since there are 3 matches, and a mismatch. 

The distance score between a sequence pair is computed based on the following 

values: each match is 0, the penalty for a substitution is 1, and the penalty for a gap 

is 2. For example, for the first alignment, the score is 3 · 0 + 1 = 1. Thus, the best 

alignment score in both cases is obtained for the first alignment. 
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The alignment procedure can be pair-wise or between multiple sequences. In the 

first case, a pair of sequences is aligned, and in the second case, more than two 

sequences are aligned. Furthermore, an alignment procedure can be also global or 

local. Global sequence alignment is usually applied to similar sequences which are 

homologous along their entire lengths. Local sequence alignment is usually applied 

to more divergent sequences, where only some regions are homologous. The optimal 

alignment, with respect to the chosen scoring scheme, can be found for both global 

and local alignment. The Needleman-Wunsch algorithm (Needleman and Wunsch, 

1970) is a dynamic programming algorithm that constructs the optimal pair-wise 

global alignment (the chosen similarity scoring scheme can be similar to the example 

in Figure 1-1). The algorithm requires both O(|S1| · |S2|) time and space for the 

comparison of a sequence pair (S1, S2). This time complexity corresponds to the 

computation of |S1| · |S2| matrix entries, where each entry represents a score for a 

different partial alignment between the first and the second sequence. However, the 

memory usage of this algorithm can be reduced to O(|S1| + |S2|) using Hirschberg's 

algorithm (Hirschberg, 1975), with a further increase in the run-time. To illustrate the 

requirements of the optimal global alignment computed by the Needleman-Wunsch 

algorithm, let us look at an example: a human genome comprises 3 billion nucleotide 

base pairs, and since each DNA molecule has two strands of the same length, it totals 

6 billion nucleotides. If we wish to compare two human genomes using a computer 

that can execute a billion instructions per second, then the comparison of two human 

genomes using the Needleman-Wunsch algorithm would require 6 · 109 · 6 · 109 / 109 

= 36 billion seconds ≈ 1142 years to compute all entries in a matrix. Similarly, a 

variant of the Needleman-Wunsch algorithm, the Smith-Waterman algorithm (Smith 

and Waterman, 1981), results in the optimal local sequence alignment. Again, the 

time and the space complexity of the algorithm is O(|S1| · |S2|) for a sequence pair (S1, 

S2). Moreover, finding the optimal multiple sequence alignment is an NP-complete 

problem under a commonly used scoring scheme (Wang and Jiang, 1994). Therefore, 

many alignment tools are based on some heuristic in order to improve the run-time 

(e.g. Edgar and Batzoglou, 2006; Section 2.1).  

Once an alignment is computed, it still does not directly reflect evolutionary 

distance. In particular, the evolutionary distance between nucleotide sequences is the 
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number of nucleotide substitutions per site. Thus, the similarity score between a pair 

of sequences derived from an alignment should be transformed into evolutionary 

distance. The simplest model used for this purpose, the Jukes-Cantor model, is based 

on the idea that each nucleotide base has an equal chance of mutating to any other 

base (Jukes and Cantor, 1969). The Jukes-Cantor formula (1-1) converts p, the 

proportion of mismatches between a sequence pair (S1, S2), into the number of 

nucleotide substitutions per site: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−= plnS,SK 21 3

41
4
3       (1-1) 

Parameter p can be easily obtained from the alignment. In the example in Figure 

1-1, the value of p of the first alignment is 0.25 (one mismatch per 4 nucleotides) 

which yields an evolutionary distance of 0.304 nucleotide substitutions per site. In 

the computation of the relative number of pair-wise mismatches between sequences, 

the regions with gaps are usually ignored. In addition, a number of more complex 

models have been proposed (e.g. Kimura 1980; Felsenstein, 1981). These models are 

based on more than one parameter for different types of nucleotide conversions. 

Among them, probably the most commonly used is Kimura's 2-parameter model 

(Kimura, 1980), which distinguishes between transitions and transversions.  

Evolutionary distances can be further used to construct phylogenies (Figure 1-2). 

A phylogenetic (or evolutionary) tree is usually a bifurcating tree whose leaves 

represent sequences or organisms. Each internal node (a bifurcation in the tree) 

corresponds to a common ancestor of two or more entities (organisms or sequences) 

at the leaves of the tree. There are several methods for the reconstruction of a 

phylogenetic tree based on evolutionary distances between all sequence pairs: e.g. 

Neighbor-Joining method (Saitou and Nei, 1987), and UPGMA (Michener and 

Sokal, 1957). These two methods are based on clustering: first, the two sequences 

which have the smallest evolutionary distance are joined (that is, their most recent 

common ancestor is added to the tree), and then the third sequence or a set of 

sequences, which are closest to them, are added to the tree, and so on. The 

requirement of this procedure is that the total distance between sequences in the set 

has to stay minimal. The diagram representing a phylogenetic tree is called 
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dendrogram. A special case of a dendrogram, where the branch lengths correspond to 

the number of nucleotide substitutions, is called a phylogram (Figure 1-2c). 

A GCCS1

TTCAS3

GGCAS2

TTCAS3

GGCAS2

A GCCS1

a) MSA of S1, S2, and S3

0
0.824
0.824
S3S2

0.8240.824S3

00.304S2

0 0.304
S1

S1

0
0.824
0.824
S3S2

0.8240.824S3

00.304S2

0 0.304
S1

S1

c) Phylogenetic tree of S1, S2, and S3

 S1

 S2

 S3

0.

0.152

0.412

0.260
152 S1

S2

0.1

S3

b) Matrix of evolutionary distances 
between S1, S2, and S3

                                                

 

Figure 1-2. Construction of the phylogenetic tree of sequences S1, S2, S3. a) In 

the first step, the multiple sequence alignment (MSA) of S1, S2, and S3 is 

constructed. b) Next, the evolutionary distances between sequences are determined 

using the Jukes-Cantor formula (formula (1-1)). These values are computed from 

the number of pair-wise mismatches between sequence pair, which is 0.25 for (S1, 

S2), and 0.5 for (S1, S3) and (S2, S3). The evolutionary distance is a symmetric 

measure, and the values on the diagonal are 0. c) The phylogenetic tree is 

constructed using the Neighbor-Joining method (see text) and drawn in MEGA 4 

(Kumar et al., 2008). The evolutionary distance between a sequence pair (Si, Sj) is 

the sum of values along branches from Si to Sj. For example, the distance between 

S1 and S2 is 0.304, which can be computed as the sum of 0.152 plus 0.152. 

 

In order to show the scale of the data that biologists wish to analyze, let us 

consider the human 1000 genome project (www.1000genomes.org)1, which started 

 
1 Another large-scale sequencing project is currently under way: the 1000 plants project 
(www.onekp.com). In addition, the volume of available nucleotide sequences is constantly increasing: 
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in 2008, and is expected to finish in 2011. This project involves sequencing of at 

least 1000 human genomes in order to catalog human genetic variation, which would 

assist research in genetic diseases. Such a large-scale project was made feasible by 

the latest sequencing techniques which significantly lowered the sequencing cost (for 

example, the current estimate of the sequencing costs of this project is 30-50 million 

dollars, while the application of older sequencing techniques would have required 

500 million dollars;  see en.wikipedia.org/wiki/1000_Genomes_Project). It is 

expected that the project will yield at least 6 trillion nucleotides, which will be 

available to the public. However, the time and the memory requirements of the 

alignment procedures do not scale well for the comparison of large genomes. As an 

efficient alternative, alignment-free methods, which were first proposed more than 

two decades ago (Blaisdell, 1986), might be used for the comparison of very long 

sequences. It was also noticed that alignment-free methods can perform better on 

rearranged sequences than global alignment methods (Vinga and Almeida, 2003; 

Höhl et al., 2006). However, in the comparison of syntenic sequences, alignment-

based methods outperformed alignment-free methods (Höhl and Ragan, 2007). 

Alignment-free methods have been developed in two directions: methods that 

rely on the analysis of word frequencies between sequences, and methods based on 

information theory (Vinga and Almeida, 2003). However, the distance measures 

obtained by alignment-free methods are generally not related to evolutionary models. 

In an attempt to provide an efficient alignment-free method which produces 

biologically relevant evolutionary distances, we have recently developed an 

alignment-free pair-wise distance measure, Kr (Haubold et al. 2009). Kr is an 

estimator of the number of nucleotide substitutions per site, based on the Jukes-

Cantor model of DNA sequence evolution (Jukes and Cantor, 1969). As a result, Kr-

based phylogenies of closely related genomes are more accurate than phylogenies 

based on model-free distance measures. However, the first implementation of the 

method was slow for large samples of genomes.  

                                                                                                                                           
the size of GenBank, a sequence database which contains all publicly available nucleotide sequences, 
now doubles every 30 months (Benson et al., 2009). In 2008, GenBank contained approximately 92 
million sequences with over 95 billion base pairs (Benson et al., 2009). 
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In the first part of my thesis (Chapter 2), I address the problem of efficient 

estimation of Kr pair-wise distances. I developed a new algorithm for the rapid 

computation of Kr distances (Algorithm 1), which I implemented in the program, kr 

version 2 (Domazet-Lošo and Haubold, 2009). To illustrate the run-time 

improvement of the new implementation and its applicability, the program was tested 

on simulated data sets, and a wide range of complete genomes data sets: 825 

genomes of HIV-1 strains (7.5 million base pairs), 13 genomes of enterobacteria 

(over 60 million base pairs), and the complete genomes of 12 Drosophila (over 2 

billion base pairs) (Domazet-Lošo and Haubold, 2009).  

However, in the Kr-based clustering of 825 genomes of HIV-1, a single strain 

was not classified according to its official subtype. Further analysis of this strain 

revealed a phylogenetic incongruence along its genome: the strain was a recombinant 

of at least two different subtypes (see Sections 2.4.4 and 3.4.3). Motivated by this 

observation, in the second part of my thesis, I investigated the detection of regions of 

local sequence similarity (Chapter 3). I proposed a solution based on a new algorithm 

for efficient detection of locally matching regions between sequences (Algorithm 2), 

and implemented it in the program st. To illustrate the efficiency and the scalability 

of the program, it was used for the classification of strains of the circulating 

recombinant forms of the human immunodeficiency virus (HIV) (over 3 million base 

pairs), and for the detection of locally homologous regions between an avian 

pathogenic Escherichia coli strain and a set of 13 enterobacterial strains (over 60 

million base pairs).  

Both algorithms (Algorithm 1 and Algorithm 2), which I developed as a part of 

this thesis, rely on the concept of a generalized suffix tree (Gusfield, 1997). 

Therefore, I begin by giving an overview of suffix trees and similar index data 

structures, which are widely-used in the analysis of biological sequences (Section 

1.1). I address the first problem, efficient estimation of pairwise distances between 

genomes, in Chapter 2. In Chapter 3, I concentrate on the alignment-free detection of 

local sequence homology. The thesis conclusions are presented in Chapter 4.  
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1.1.  Suffix trees and other index data structures used in 
biological sequence analysis 

The comparison of two or more sequence generally relies on the detection of 

conserved islands (exact or similar subsequences) between sequences, or sometimes 

within a sequence. In particular, the large-scale sequence comparison requires the up-

most efficiency in both the time and the memory requirements for the retrieval of 

these regions. In technical terms, the problem of finding matching regions between 

sequences corresponds to the classical problem of the pattern search, i.e. finding the 

occurrences of a (typically short) pattern in a (long) text. This problem can be 

described by introducing the following notation: Let P and T be strings over the same 

alphabet, Σ, where the lengths of P and T are denoted as |P| and |T|, respectively. P is 

usually the shorter string, usually referred to as pattern (or query), and T is the longer 

string, called text (or subject), and usually |T| >> |P|. The problem of finding exact 

matches is the problem of finding all z occurrences (z ≥ 0) of P in T. This problem 

can be naively solved in the worst case O(|P| · |T|) time. Of course, this is impractical 

for large text. Hence, the more sophisticated solutions were developed to address this 

problem. These solutions apply two approaches to speed up the computation: (i) a 

pattern is indexed, which requires only a small extra space; or (ii) a text is indexed, 

which requires the significant amount of additional space. The two classical 

algorithms that index pattern are the Knuth-Morris-Pratt algorithm (Knuth et al., 

1977) and the Boyer-Moore algorithm (Boyer and Moore, 1977). They can solve the 

problem of finding exact matches of P in T in the worst case O(|T|) time, with a 

preprocessing step which takes O(|P|) time, although the Boyer-Moore algorithm on 

average performs even better, with O(|T| / |P|) time. However, when several patterns 

need to be found in the same text, then the O(|T|) time does not scale well.  

The other approach is based on the preprocessing (indexing) of the text; in 

particular, it uses the suffix tree data structure or its variants. The suffix tree is an 

index data structure, and one of the most important data structures in string 

algorithms and the analysis of biological sequences (Gusfield, 1997). The suffix tree 

resembles the book index principle: first, the lexicographically sorted index of a book 

is built, and then, the location of an arbitrary entry is found by just searching the 
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index, and not the entire book, with the number of comparisons which is at most 

equal to the entry length. 

The suffix tree data structure can be efficiently used in problems like finding the 

exact matches, but its real strength is shown in more complicated problems, like 

finding the longest common substrings between sequences. In the exact matching 

problem, the suffix tree is constructed for the text T in O(|T|) time, and then all z 

occurrences of the pattern P are searched in O(|P| + z) time (Section 1.1.2). In the 

problem of finding the longest common substrings between a sequence pair (S1, S2), 

the suffix tree is constructed in O(|S1| + |S2|) time, and then the traversal of the tree in 

order to find the longest common substring is performed in the same linear time. The 

following section (1.1.1) describes this widely-used data structure. 

The more space efficient counter-part of the suffix tree is the suffix array 

(Manber and Myers, 1993; Section 1.1.3). However, the memory requirements of 

both suffix trees and suffix arrays are proportional to the text size. In order to reduce 

the space required for the index storage, researchers developed self-indexes. A self-

index is the data structure that replaces text and requires space proportional to the 

compressed text (e.g. Navarro and Mäkinen, 2007; Ferragina et al., 2008; Section 

1.1.7). In contrast, typical string operations performed using self-indexes are slower 

than in the case of suffix tress and suffix arrays; e.g. searching a pattern in a text is 

one order of magnitude slower than the same operation performed using a suffix 

array (Ferragina et al., 2008; Välimäki et al., 2007). Moreover, current 

implementations of self-indexes require significant additional space (linear in the text 

size) for the construction of indexes (Ferragina et al., 2008). 

In a quest for the best trade-off between the time and the space requirements 

needed for the index construction in the programs which I developed as a part of my 

thesis, I used the enhanced suffix array (Kasai et al., 2001; Abouelhoda et al., 2004; 

Section 1.1.5), which is an extension of the suffix array, as the underlying data 

structure to implement the suffix tree concept (Section 1.1.6). 
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1.1.1. Suffix Tree 

Suffix tree is a data structure developed for efficient operations on strings (Gusfield, 

1997). It is a rooted directed tree that represents all suffixes of a string (Figure 1-3e).  

Let T be the suffix tree for a string S. Let S be defined over the alphabet Σ. Every 

suffix si of S is defined as si = S[i..|S|], and 1 ≤ i ≤ |S|. A tree leaf (or a terminal node), 

denoted (S, i), corresponds to a suffix si of S. Every edge (or branch) of T is labeled 

with characters. Every branch label represents a substring of S. The concatenation of 

characters from the root of T to a leaf (S, i) of T spells out a suffix si of S. Every 

internal node (or branch node) x of T, except a root, has at least two, and maximally 

|Σ| branches. The label on each branch of x starts with a different character from Σ. A 

path-label from the root of T to an internal node x of T represents a common 

substring of two or more suffixes of S. The string depth of x is the length of the path-

label of x. 

A generalized suffix tree is a data structure that represents every suffix of a set of 

strings. 

 

Example 1.1 

Let S = ACCA$. The suffixes of S are s1 = ACCA$, s2 = CCA$, s3 = CA$, s4 = A$, 

and s5 = $. The character $ is a sentinel character that is not part of the alphabet over 

which S is built, so it does not exist anywhere else in S. The terminal character 

ensures that every suffix ends as a leaf. If the character $ were not added to the end 

of S, then the suffix s4 would be s4 = A, and would not end up as a leaf of T, but as an 

internal node. However, the convention of adding $ at the end of the string is usually 

not required in the implementation. 

Figure 1-3 illustrates the naïve construction of T built for string S, which leads to 

O(|S|2) construction. In the first step (Figure 1-3a), the leaf (S, 1), corresponding to 

the suffix s1, is connected to the root of T (node x1). In the second step (Figure 1-3b), 

the suffix s2 is added to the tree. At most |s2| comparisons are needed to add the 

suffix s2 to the non-empty tree. The first character of s2, C, is compared to the 

starting characters on the labels of branches starting at the root of T. Since the label 
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of the only existing branch starts with A, the comparison finishes here. A new branch 

is added for s2, which connects the leaf (S, 2) to the root of the tree (x1). 

In the third step, s3 is added to the tree (Figure 1-3c). The first character of s3 is 

compared to the characters on the labels of already existing branches. Since a branch 

starting with character C already exists, the new suffix follows this branch. The 

second character of s3 is compared to the second character on the branch label. Since 

they differ, the branch labeled with CCA$ in Figure 1-3b is split in two, and a new 

branch node (x2) is added at that position. The new branches connect leaves (S, 2) 

and (S, 3), corresponding to the suffixes s2 and s3 respectively, to the branch node x2.  

Similarly, the fourth suffix, s4, is added to the tree (here, the new branch node is 

x3) (Figure 1-3d). Finally, the suffix s5 is added (Figure 1-3e). For this suffix, starting 

with the terminal character, a new branch is added. 

 

 

T T T T 1 

Figure 1-3. Example 1.1 – Naïve construction of the suffix tree T for the string 
S = ACCA$, which leads to O(|S|2) time. 

 

In the fully constructed tree (Figure 1-3e), there are three branch nodes: the node 

x1 is the root of the tree, and the two branch nodes connected to the root are x2 and x3. 

The leaves of the tree are denoted as (S, i), where 1 ≤ i ≤ 5. 

a) s = ACCA$ is added to 1 b) s2 = CCA$ is added to TTs sa) = ACCA$ is added to b) = CCA$ is added to ssc) c) = CA$ is added to 3
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x 1 
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S, 1

$CCA$ A$ CA$ 

S, 4 S, 3 S , 2 S, 2

x 2 
x3

d) s4 = A$ is added to T e) s5 = $ is added to T

S , 1 

ACCA$

S , 1 

ACCA$

1 

S, 1

ACCA$

S, 2

CCA$

S, 1

ACCA$

S, 2
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A$ CA$ 

S , 3 S , 2 

S, 1

ACCA$
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A$ CA$ 

S , 3 S , 2 

1
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, 1S

x 1 
C A

S , 1 

$ CCA$ A$ CA$

S , 4 S , 3 

x 2
x 3 
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$ CCA$ A$ CA$

S , 4 S , 3 
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x 3 
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x 1 
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d) s4 = A$ is added to T e) s5 = $ is added to T
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1.1.2. The space and the time complexity of the algorithms for the 
suffix tree construction 

This naive approach of constructing a suffix tree results in O(l2) run-time, for a string 

of length l. However, a suffix tree can be efficiently constructed in O(l) time 

(Weiner, 1973; McCreight, 1976; Ukkonen, 1995). 

The O(l) time construction of suffix trees is based on suffix links. A suffix link 

connects every non-root branch node to another specifically chosen branch node of 

the tree. Let T be the suffix tree for a string S. Let S' and S'' be substrings of S, and c 

a character from the alphabet of S, such that S' = cS''. If S' represents a path-label 

from the root of T to a branch node x', and S'' represents a path-label from the root of 

T to a branch node x'' (S'' could be an empty string), then a suffix link connects x' to 

x'' (Figure 1-4). In addition, suffix links can be used for finding hits with 

mismatches. 

x1

CA $

S, 1

$CCA$ A$ CA$

S, 4 S, 3 S, 2 S, 5

x2

x3

x1

CA $

S, 1

$CCA$ A$ CA$
x2

x3

S, 4 S, 3 S, 2 S, 5
 

Figure 1-4. The suffix tree T for the string S = ACCA$, with included suffix 
links. Suffix links are shown as blue dashed lines connecting the branch nodes x2 

and x3 to the root of T (x1). 
 

The important property of suffix trees is that the existence of an arbitrary string P 

in a suffix tree T can be determined in O(|P|) time. This is done by comparing at 

most |P| characters of a string P to the characters along the branches of T. The exact 

matching problem, or finding z occurrences of P in T, can be done in O(|P| + z) time. 

Let x denote a branch node such that the concatenation of characters from the root of 

T to x spells out P. Then, all matches of P in T are found by traversing the subtree 
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rooted on x (for example, in depth-first mode), and collecting the starting positions of 

suffixes corresponding to the leaves in the subtree rooted on x. 

Another problem solved by suffix trees is finding the longest common substrings 

between sequences. Let the generalized suffix tree T be constructed for sequences S1 

and S2 in O(|S1| + |S2|) time. A common substring between these sequences can be 

found as the concatenation of branch labels from the root of T to a branch node that 

has the leaves corresponding to both S1 and S2 in its subtree. The longest common 

substring is found by traversing the tree, and storing the information about the 

longest found substring. In fact, the longest common substring corresponds to the 

branch node with the deepest string-depth of all branch nodes which are roots of 

subtrees containing leaves from both S1 and S2. In this way, the longest common 

substring is found in O(|S1| + |S2|) time. 

Suffix trees have been widely used in many biological applications (e.g. Kurtz et 

al., 2001; Höhl et al., 2002; Kurtz et al., 2004; Bray and Pachter, 2004; Apostolico 

and Denas, 2008). However, the memory requirements of suffix trees are their 

limiting factor. For example, the best implementations of suffix trees require at least 

10 bytes per each character of an input string (sequence), and often more (15-20 

bytes) (Kurtz, 1999). Thus, the application of suffix trees to data sets of large 

genomes becomes demanding (e.g., human genome is 3 * 109 base pairs long). In 

order to reduce the memory usage of suffix trees, data structures with different trade-

offs between the space and the time requirements were proposed (e.g. Hunt, 2003; 

Ristov, 2003). Among them, a suffix array, introduced by Manber and Myers (1993) 

emerged as a widely accepted space-efficient alternative to a suffix tree. 

1.1.3. Suffix Array 

Manber and Myers proposed a data structure called suffix array (1993). Suffix array 

(SA) is an array of positive integers, corresponding to the starting positions of the 

lexicographically ordered suffixes of a string.   
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Example 1.2: 

Let S = ACCA$. The suffixes of S are s1 = ACCA$, s2 = CCA$, s3 = CA$, s4 = A$, 

and s5 = $, and the character $ is a sentinel character as before.  

First, the lexicographically ordered list of suffixes of S is formed: 

s1 = ACCA$ 

s4 = A$ 

s3 = CA$ 

s2 = CCA$ 

s5 = $ 

Next, the suffix array of S, SA, is constructed from the list of the lexicographically 

ordered suffixes of S. For example, SA[1] = 1, since the first suffix in the 

lexicographical order is, at the same time, the first suffix of S (s1). SA[2] = 4, since 

the second suffix in the lexicographical order is the fourth suffix of S (s4). Finally, SA 

= [1, 4, 3, 2, 5]. 

a) The suffix tree for S = ACCA$ b) The suffix array for S = ACCA$

x1

CA $

S, 1

$CCA$ A$ CA$

S, 4 S, 3 S, 2 S, 5

x2

x3

x1

CA $

S, 1

$CCA$ A$ CA$

S, 4 S, 3 S, 2 S, 5

x2

x3

5

2

3

4

1

SA[i]

$5

CCA$4

CA$3

A$2

ACCA$1

sii

5

2

3

4

1

SA[i]

$5

CCA$4

CA$3

A$2

ACCA$

i si

1

 

Figure 1-5. The suffix tree and the suffix array for S = ACCA$. The suffix array, 

SA, for S can be obtained by preorder traversing of the suffix-tree. For example, 

SA[1] = 1, that is, the first suffix in the lexicographical order, s1, corresponds to the 

leaf (S, 1), which is the first leaf encountered in the preorder traversal of the leaves 

of the suffix tree. The second encountered leaf is (S, 4) which corresponds to the 

second suffix in the lexicographical order, s4, etc. 

 
 

  15



 

1.1.4. The space and the time complexity of the algorithms for 
suffix array construction 

The suffix array data structure contains integer values that represent indexes (starting 

positions) of lexicographically sorted suffixes of a string. The maximal value that can 

be stored in the suffix array is l for a string of length l. To store the value l, at least 

 bits are needed. Thus, the whole suffix array containing l entries could be 

stored in O(l log2l) bits. However, in practice, each entry of the suffix array is stored 

as a 32-bit integer value. Thus, the memory required for the storage of a suffix array 

is usually 4l bytes for the sequence of length l, when l is at most 232. In some cases, 

due to the specificities of some suffix array construction algorithms, 4 bytes per input 

character only cover sequences shorter than 231 characters (Manzini and Ferragina, 

2004).  

⎡ l2log ⎤

A lightweight algorithm for the construction of the suffix array requires only a 

small amount of extra space in addition to the space needed for the storage of a string 

and the accompanying suffix array, i.e., the construction of the suffix array by a 

lightweight algorithm takes only a little more than 5l bytes of space (e.g. Manzini 

and Ferragina, 2004).  

The naive approach to suffix array construction would require O(l2 log l) time for 

a string of length l: sorting l elements of an array by an efficient sort algorithm on 

average takes O(l log l) time (e.g. Hoare, 1962; Williams, 1964), and the comparison 

of two elements (which are suffixes in the case of SA), takes O(l) time. Thus, the 

overall time needed for the suffix array construction is bounded by O(l2 log l). 

However, a suffix array can be constructed from the corresponding suffix tree in O(l) 

time by the preorder visit of the suffix tree (see Figure 1-5). 

In the last two decades many algorithms for the direct suffix array construction 

have been proposed. The theoretically best time achieved is O(l) for a string of length 

l (Ko and Aluru, 2003; Kärkkäinen and Sanders, 2003; Kim et al., 2005). These 

linear time suffix array construction algorithms are all recursive algorithms: a suffix 

array is constructed for a substring of an observed string in a recursive step. The 
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recursion ends when a sufficiently short suffix is encountered, which is then sorted 

by a linear procedure (see Puglisi et al., 2007) 

In the recent study, Puglisi et al. (2007) compared the memory requirements and 

the speed of almost twenty SA construction algorithms on a variety of data sets. 

Interestingly, they found that the three fastest implementations are based on non-

linear algorithms with the O(l2 log l) time worst case behavior (Manzini and 

Ferragina, 2004; Maniscalco and Puglisi, 2006; Maniscalco and Puglisi, 2007), and 

not the implementations of the algorithms running in O(l) time. The authors also 

showed that, at the same time, these three non-linear solutions required in total 

considerably less space (5 - 6 bytes per character of the input data) than the 

algorithms running in the theoretically best time. For example, among the SA linear 

construction algorithms, the implementation of the algorithm of Ko and Aluru (2003) 

required at least 7 bytes, and the implementation of the algorithm invented by 

Kärkkäinen and Sanders (2003) required at least 10 bytes per input character. 

However, some problems that can be solved by suffix trees cannot be solved by 

the basic suffix array structure in the same time-complexity. For example, finding a 

string P in a suffix tree built for the string S takes O(|P|) time, since at most |P| 

comparisons have to be made along the branches of the suffix tree starting with the 

branches connected to the root of the suffix tree (Sections 1.1.1 and 1.1.2). In 

contrast, finding P in a suffix array built for S takes O(|P| · log |S|) time: The pattern 

P can be found by the binary search of the lexicographically sorted suffixes of S, 

where the binary search of the suffix array takes O(log|S|) time, and each comparison 

between two suffixes corresponding to the suffix array entries takes O(|P|) time. 

However, using an additional data structure, the lcp-array (see Section 1.1.5), this 

problem can be solved in O(|P| + log|S|) time (Manber and Myers, 1993). 

Abouelhoda et al. (2004) showed that P can be found in S in O(|P|) time using an 

enhanced suffix array (ESA), the suffix array data structure supplemented with other 

data structures (Section 1.1.5). 
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1.1.5. Enhanced Suffix Array 

An enhanced suffix array (ESA) is a suffix array accompanied by additional data 

structures. ESA represents the trade-off between the space and the time requirements 

of its predecessors, suffix trees and suffix arrays. As explained in the previous 

section, suffix array requires 4l bytes for an input sequence of length l, where l has to 

be less than 232. In contrast, the suffix tree data structure requires at least 10l bytes of 

space for the string of length l (Kurtz, 1999; Section 1.1.2). However, the typical 

string operations (e.g. search for a pattern in a string; Section 1.1.4) using the suffix 

array are solved in worse time complexity than the more space-consuming suffix tree 

data structure.  

The memory requirements of an enhanced suffix array are at least 5l bytes for a 

string of length l (Abouelhoda et al., 2004). The suffix array requires 4l bytes, and 

the rest comes from the additional data structures: the longest common prefix array 

or the longest common prefix table (lcp-array or lcp-table), and some other data 

structures which may be needed for some applications (Abouelhoda et al., 2004). 

The lcp-array contains the integer values representing the length of the longest 

common prefix between two adjacent suffixes, when suffixes are sorted in the 

lexicographical order (see Example 1.3). The length of the longest common prefix of 

two suffixes of the string of length l, takes ⎡ ⎤l2log  bits, but in practice it is stored as 

4-byte integer for strings where l is less than 232. Depending on the data, the length 

of the longest common prefix of two adjacent suffixes can be significantly shorter 

than l, so it can be represented by a one-byte integer, plus some small additional data. 

Thus, the storage of the lcp-array takes typically between l and 4l bytes. 

Abouelhoda et al. (2004) showed that each algorithm that uses the suffix tree 

data structure can be adequately replaced by an enhanced suffix array algorithm in 

the same time complexity. They have introduced the conceptual lcp-interval tree 

(Figure 1-6). Traversing of the lcp-interval tree simulates the traversal of the 

corresponding suffix tree, so that every operation requiring the traversal of a suffix 

tree can be accomplished in the time-complexity using the conceptual lcp-interval 

tree. 
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Example 1.3 

Let S = ACCA$. The suffixes of S are s1 = ACCA$, s2 = CCA$, s3 = CA$, s4 = A$, 

and s5 = $. The suffix array SA for S has already been constructed in the Example 

1.2. Now, the lcp-array LCPA for S is constructed in the following way: 

(i) LCPA[1] = 0 

(ii) LCPA[i] = lcp(sSA[i], sSA[i-1]) for i = 2, .., |S| 

The value lcp(sSA[i], sSA[i-1]) is the length of the longest common prefix of suffixes 

sSA[i] and sSA[i-1]. The suffix sSA[i] is the suffix of S starting at the position SA[i], and 

the suffix sSA[i-1] is the suffix of S starting at the position SA[i-1]. Thus, the 

prerequisite for computing the lcp-array of S is sorting the suffixes of S in 

lexicographical order. Table 1-1 shows the suffix array and the corresponding lcp-

array for S.  

 
Table 1-1. The suffix-array (SA) and the lcp-array (LCPA) for the string S = 
ACCA$. The right-most column contains lexicographically sorted suffixes of S. 

i SA[i] LCPA[i] Lexicographically ordered suffixes of S; S[SA[i]..|S|] 

1 1 0 ACCA$ 

2 4 1 A$ 

3 3 0 CA$ 

4 2 1 CCA$ 

5 5 0 $ 

 

The next concept is the lcp-interval, denoted lcp-[a..b], 0 ≤ a < b ≤ l: 

(i) LCPA[a] < lcp 

(ii) LCPA[k] ≥ lcp for all k such that a + 1 ≤ k ≤ b 

(iii) LCP[k] = lcp for at least one k such that a + 1 ≤ k ≤ b 

(iv) LCPA[b + 1] < lcp 

For example, the lcp-interval 1-[1..2], represents positions from 1 to 2 in the 

LCPA, which correspond to suffixes sSA[1] = ACCA$, and sSA[2] = A$. The lcp-value 
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of 1-[1..2], which is 1, is the length of the longest common prefix of suffixes sSA[1] = 

ACCA$ and sSA[2] = A$. 

An lcp-interval lcp-[c..d] is said to be embedded in an interval lcp-[a..b], if a ≤ c 

< d ≤ b. This principle enables the concept of the parent-child relationship between 

lcp intervals. Here, lcp-[c..d] is considered as a child interval of lcp-[a..b]. Next, the 

virtual lcp-interval tree is constructed using the concept of the parent-child 

relationship. The root of the lcp-interval tree is the interval 0-[1..|S|], since the length 

of the longest common prefix of all suffixes in the tree is zero, and the root interval 

covers all positions in S (Figure 1-6).  

The conceptual lcp-interval tree for S is built using the enhanced suffix array of 

S: the suffix-array of S and the lcp-array of S. Every interval of the lcp-interval tree is 

defined as: lcp-[SA[i].. SA[j]], where lcp is the length of the longest common prefix 

of suffixes starting at position SA[i], and ending at position SA[j] in the list of sorted 

suffixes. The lcp-interval tree is traversed bottom-up by a linear scan of the lcp array 

(Abouelhoda et al., 2004).  

Figure 1-6a) shows the lcp-interval tree for S, and Figure 1-6b) shows the suffix 

tree constructed for S. It is easily seen that the lcp-interval tree has the same topology 

as the suffix tree without terminal branches and terminal nodes, that is, the suffix tree 

leaves are not explicitly represented on the lcp-interval tree. Further, the leaves of the 

lcp-interval tree correspond to the branch nodes of the suffix tree. For example, the 

lcp-interval tree leaf 1-[1..2] corresponds to the branch node x3 (Figure 1-6b). 

Positions from 1 to 2 in the interval 1-[1..2] correspond to the leaves of the suffix 

tree (S, 1) and (S, 4). The suffixes of S corresponding to leaves (S, 1) and (S, 4), are 

the first and the second suffix in the lexicographical order, and s1 = sSA[1] = ACCA$, 

and s4 = sSA[2] = A$. 
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x1

a) The lcp-interval tree for S = ACCA$ b) The suffix tree for S = ACCA$

0-[1..5]

1-[1..2] 1-[3..4]

CA $

S, 1

$CCA$ A$ CA$

S, 4 S, 3 S, 2 S, 5

x1

x2

x3
0-[1..5]

1-[1..2] 1-[3..4]

0-[1..5]

1-[1..2] 1-[3..4]

CA $

S, 1

$CCA$ A$ CA$

S, 4 S, 3 S, 2 S, 5

x2

x3

x1

a) The lcp-interval tree for S = ACCA$ b) The suffix tree for S = ACCA$

CA $

S, 1

$CCA$ A$ CA$
x2

x3

S, 4 S, 3 S, 2 S, 5  

Figure 1-6. The lcp-interval tree and the suffix tree for the string S = ACCA$. 
All non-root nodes of an lcp-interval tree correspond to branch nodes of the 

analogous suffix tree. The leaf 1-[1..2] on the lcp-interval tree corresponds to the 

branch node x3 of the suffix tree, and the leaf 1-[3..4] corresponds to the branch 

node x2 of the suffix tree. 

 

The lcp-array can be constructed in O(l) time for a string S of length l from the 

suffix array of S (Kasai et al., 2001; Manzini, 2004). In addition, the lcp-array can be 

constructed from the suffix tree of S in O(l) time by the preorder traversal of the 

suffix tree. This solution is based on the idea that the longest common prefix of two 

suffixes is the length of the path label of their lowest common ancestor, which can be 

computed in O(1) time (Harel and Tarjan, 1984; Schieber and Vishkin, 1988). 

However, the suffix tree has to be preprocessed in O(l) time in order to obtain the 

length of the path label in O(1) time. 

In summary, the theoretically best time-complexity needed for the construction of 

ESA is O(l), since both the SA and the LCPA for a string S can be constructed in 

O(l) time. It is the same time complexity needed for the construction of the 

analogous suffix tree. In addition, the traversal of the lcp-interval tree takes O(l) time 

(Abouelhoda et al., 2004), which is also the time needed for the traversal of the 

suffix tree for the same string S of length l. In practice, the best implementations of 

the suffix array construction are faster then the best implementations of the 

corresponding suffix tree construction (Puglisi et al., 2007). They also require less 

memory, since the light-weight SA construction algorithms need only a little extra 

space besides the SA storage (Puglisi et al., 2007; Section 1.1.4), which is the 

property of sorting algorithms. 
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1.1.6. The 64-bit implementation of the lightweight suffix array 
construction algorithm 

In the programs developed as a part of my thesis, kr version 2, and st, I implemented 

the suffix tree concept using the more space-efficient data structure, the enhanced 

suffix array. I used the linear-time algorithm for the construction of the lcp-array 

(Manzini, 2004), and the suffix array library by Manzini and Ferragina (2004) for the 

SA construction, since it was one of the fastest and the most space-efficient 

implementations currently available for the SA construction (Puglisi et al., 2007).  

However, the original form of their library limited the analysis to 231 ≈ 2×109 

characters. In comparison, the human genome is 3 * 109 base pairs long. To extend 

the analysis to large genomes, I added a 64-bit implementation of the library. The 

current implementation of the 64-bit version requires around 16 bytes per input 

character, in comparison to 8 bytes per input character of the 32-bit version. This 

memory requirement comes from the underlying data structures (SA and LCP), 

which are, in the case of the 32-bit version of the program, based on 4-byte integers, 

and, in the case of the 64-bit version, on 8-byte integers. This memory drawback of 

the 64-bit implementation is the trade-off that enables us to work with large data sets. 

In the current implementation, the 64-bit implementation is intended for the data sets 

comprising billion or more nucleotides. 

1.1.7. Self-index 

The memory usage of both suffix trees and (enhanced) suffix arrays is linear with 

respect to the size of the input data set, although with different constants. However, 

this still remains a problem for large input data sets. This motivated the invention of 

data structures that require sublinear storage. This research yielded the concept of the 

self-index (also compressed self-index, or compressed index), where the text is 

represented in the compressed form (Navarro and Mäkinen, 2007; Ferragina et al., 

2008). The space requirements of self-indexes are proportional to the size of the 

compressed text.  

In the recent study, Ferragina et al. (2008) compared implementations of several 

compressed indexes. They reviewed the representatives of three groups of self-
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indexes. The first group is the FM-index family, based on the FM-index, the first 

self-index with space requirements proportional to the k-th order text entropy 

(Ferragina and Manzini, 2000; Section 1.1.10). The FM-index family relies on the 

Burrows-Wheeler transform of the text (Burrows and Wheeler, 1994; Section 1.1.8). 

The second group of indexes comprises compressed suffix arrays (CSA). The 

original compressed suffix array by Grossi and Vitter (2000) was not a self-index. 

However, Sadakane proposed a solution (2003) in which he converted the original 

CSA in a self-index. The third group of self-indexes is the LZ-index group (e.g. 

Navarro, 2004; Ferragina and Manzini, 2005), based on the Lempel-Ziv compression 

(Ziv and Lempel, 1978).  

In their study, Ferragina and collaborators (2008) observed the behavior of the 

self-index implementations for two search operations: (i) find the number of 

occurrences of a pattern P in the indexed text, and (ii) retrieve (locate) all 

occurrences of P in the text. They compared the run-time of four self-index 

implementations (representatives of the previously mentioned groups), and a plain 

suffix array. As a result of this study, the compressed indexes were one (in the case 

of (i)) to three orders (in the case of (ii)) of magnitude slower than the same 

operations computed by the suffix array implementation. In contrast, compressed 

indexes required one order of magnitude less space than the SA (the SA 

implementation including text required in total 5 bytes per text character). However, 

the implementations of these compressed indexes required additional space for the 

construction of the index itself. Explicitly, the representatives of the FM-index 

family, and the CSA required the construction of the SA prior to the construction of 

the self-index, and the LZ-index representative required the construction of some 

auxiliary data structure. In total, the memory usage needed for the construction of 

self-index was estimated to 5-9 times the text size (Ferragina et al., 2008).  

Moreover, implementing a self-index is not a trivial task (Ferragina et al., 2008). 

Therefore, only recently these data structures found their way in practical 

applications. Since several very recent biological applications designed for the 
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efficient short- and long-read2 alignment to large sequence database (e.g. whole 

genome) are based on the FM-index (e.g. Langmead et al., 2009; Li and Durbin, 

2009; Li and Durbin, 2010), it will be described here as a representative of self-

indexes (see Sections 1.1.8-1.1.10). 

1.1.8. Burrows-Wheeler transform 

The Burrows-Wheeler Transform (BWT, or block-sorting compression) is an 

algorithm that transforms a string into a particular permutation of it. Due to the 

suitable order of permuted characters, it is also used in the data compression, e.g. 

bzip2 (Seward, 2007). 

Let S be a string defined over the alphabet Σ terminated by the character $, as 

before (Section 1.1.1). Let SA be the suffix array constructed for a string S.  

The Burrows-Wheeler Transform transforms a string S into a string B. B can be 

obtained from S by rotating S, and then sorting the permutations of S in the 

lexicographical order. Then, the right-most character of each permutation of S 

represents a character of B. The complete string B is spelled out by reading the right-

most characters of S in top-down direction (Example 1.4; Table 1-2). However, in 

practice, the BWT of a string is usually computed based on the SA of a string: the 

BWT of a string S is the string B, such that for i = 1, .., |S| (Example 1.4; Table 1-3): 

(i) B[i] = $ for SA[i] = 1 

(ii) B[i] = S[SA[i] - 1] 

 

Example 1.4 

Let S = ACCA$. The suffixes of S are s1 = ACCA$, s2 = CCA$, s3 = CA$, s4 = A$, 

and s5 = $. The suffix array for S is SA = [1, 4, 2, 3, 5] (see Example 1.2). Table 1-2 

shows the construction of string B = $CCAA by sorting permutations of S. Table 1-3 

represents the BWT of S based on SA (using formulas (i) and (ii)), e.g. B[1] = $; B[2] 

= S[SA[2] - 1] = S[4 - 1] = S[3] = C, etc. 
                                                 
2 In this context, a read refers to a DNA sequence of relatively short length. A short-read is usually 
shorter than 100 base pairs, and a long-read is longer than that (e.g. 100 – 10000 base pairs). These 
short sequences are obtained by sequencing based on the new generation of more efficient techniques. 
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Table 1-2. The construction of string B from the rotations of string S = ACCA$, 
where B is the Burrows-Wheeler transform of S. 

i Permutations of S Sorted permutations of S B[i]

1 ACCA$ ACCA$ $ 

2 CCA$A A$ACC C 

3 CA$AC CA$AC C 

4 A$ACC CCA$A A 

5 $ACCA $ACCA A 

 
 

Table 1-3. The construction of string B from string S = ACCA$ and the suffix 
array SA of S, where B is the Burrows-Wheeler transform of S. 

i SA[i] Lexicographically ordered suffixes of S; S[SA[i]..|S|] B[i] 

1 1 ACCA$ $ 

2 4 A$ C 

3 3 CA$ C 

4 2 CCA$ A 

5 5 $ A 

 

1.1.9. The FM-Index and the backward search algorithm 

The FM-index is a self-index data structure based on the suffix array and the BWT of 

the input data (Ferragina and Manzini, 2000). It will be described here as a 

representative of index data structures of a new generation, which requires sublinear 

memory storage at the expense of a somewhat slower run-time needed for typical 

suffix tree operations (Ferragina et al., 2008; Section 1.1.7). Explicitly, the FM-index 

occupies O(lHk(S)) + o(l) bits for a string S of length l, where Hk(S) is the k-th order 

entropy of S (Section 1.1.10). In the comparison of Ferragina et al. (2008), two 

variants of the FM-index required an order of magnitude less space than the suffix 

array, while the problem of finding pattern occurrences was slower up to the order of 

magnitude when compared to the plain SA (see Section 1.1.7). 
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Suffix Array Interval 

Let S be a string defined over an alphabet Σ, SA be the suffix array of S, and P a 

substring of S. All occurrences of P in S are covered by an interval in SA. This can be 

seen by looking at the lexicographically sorted suffixes of S (for example, see the 

sorted permutations of S in Table 1-4). The suffix array interval for P is defined as 

[LP, RP] (see Example 1.5): 

(i) LP = min {k: P is the prefix of SSA[k]} 

(ii) RP = max {k: P is the prefix of SSA[k]}  

In addition, if P is an empty string, then LP = 1, and RP = |S|. The set of all starting 

positions of P in S is defined as {SA[k]: LP ≤ k ≤ RP} (see Example 1.5). 

 

Backward search 

Let B be the BWT of S, and let c Σ∈ . The two functions of c are defined: C(c), and 

Occ(c, i): 

(i) C(c) is the number of characters in S[1..|S|-1] which are lexicographically 

smaller than c (including repetitions of characters) 

(ii) Occ(c, i) is the number of occurrences of c in B[1..i], and i = 1, .., |S| 

 

If P is a substring of S, then the following property of suffix array intervals holds 

(Ferragina and Manzini, 2000):  

(i) LcP = C(c) + Occ(c, LP - 1) + 1 

(ii) RcP = C(c) + Occ(c, RP) 

 

This property enables the backward search of P in order to find P in S. The 

backward search algorithm BW_Count (Ferragina and Manzini, 2000) starts with the 

last character of P, and then goes backwards (Figure 1-7). If P exists in S, the number 

of occurences of P is returned. Otherwise, 0 is returned. If an Occ value is obtained 
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in O(1) time for any Occ(c, i), i = 0, .., |S|, then P is found in S in O(|P|) time. Finally, 

the two main operations on the FM-index are: 

(i) counting the number of occurences of P in S (algorithm BW_Count; Figure 1-7)  

(ii) finding (the positions of) all z occurences of P in S 

In comparison, the suffix tree computation of (i) takes O(|P|) time (each branch node 

should store the number of leaves in its subtree), and the computation of (ii) is done 

in O(|P| + z) time (Sections 1.1.1 and 1.1.2). 

 

Algorithm BW_Count 
Require: C 
Require: Occ 
Require: P 
Ensure: number of occurences of P in S 
i = |P| /* position in P */  
c = P[|P|] /* last character in P */ 
LP = C[c] + 1 
RP = C[cnext] /* cnext is the character following c in Σ */ 
while ((LP < RP) and (i ≥ 2)) do 
  c = P[i − 1]; 
  LP = C[c] + Occ(c, LP − 1) + 1 
  RP = C[c] + Occ(c, RP) 
  i = i − 1 
if (RP < LP) then return 0  
else return (RP - LP + 1)  

Figure 1-7. Algorithm BW_Count (Ferragina and Manzini, 2000) 

 

Example 1.5 

Let S = ACCA$ as before. The suffixes of S are s1 = ACCA$, s2 = CCA$, s3 = CA$, 

s4 = A$, and s5 = $, so the suffix array built for S is SA = [1, 4, 2, 3, 5] (see Example 

1.2). Let the substring P = CA be the pattern we wish to search for in S. The suffix-

array interval for P is [3, 4], since the substring P occurs in the suffixes s3 = CA$ and 

s2 = CCA$ of S, and SA[3] = 3 and SA[4] = 2 (see Table 1-4).  
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Table 1-4. Finding the suffix array interval for the substring P = CA in the 
string S = ACCA$. 

I SA[i] Lexicographically ordered suffixes of S; S[SA[i]..|S|] 

1 1 ACCA$ 

2 4 A$ 

3 3 CA$ 

4 2 CCA$ 

5 5 $ 

LP = 3, RP = 4 

 

The array C for the c∈  Σ = {A, C} is:  

C['A'] = 0 

C['C'] = 2 

The value C['A'] is 0, since no character from S is lexicographically smaller than 'A'. 

C['C'] is 2, since only 'A' is lexicographically smaller than 'C', and the character 'A' 

occurs twice in S. Next, the array Occ is computed, where Occ(c, i) is the number of 

occurrences of c in B[1..i],  and B = $CCAA (see Table 1-3), e.g.: 

Occ('A', 1) = 0, since B[1..1] = $ 

Occ('A', 2) = 0, since B[1..2] = $C 

Occ('C', 1) = 0, since B[1..1] = $ 

Occ('C', 2) = 1, since B[1..2] = $C 

Now, P is searched in S starting from the last character, 'A' (Table 1-5). The number 

of characters lexicographically preceding 'A' in S is 0, that is, C['A'] = 0. The 

algorithm starts by initializing LP = C['A'] + 1 = 1, and RP = C['C'] = 2. The next 

observed character from P is 'C'. The new values of LP and RP are computed as:  

LP = C['C'] + Occ['C', LP - 1] + 1 = 2 + 0 + 1 = 3, and 

RP = C['C'] + Occ['C', RP] = 2 + 1 = 3 

while Occ['C', LP - 1] = Occ['C', 0] = 0, and Occ['C', RP] = Occ['C', 2] = 1. 

Since 'C' is at the first position of P, the search stops here, and the value returned 

from the function is RP - LP + 1 = 3 - 3 + 1 = 1. That is, P occurs only once in S. 
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Table 1-5. Example 1.5 – Backward search of the number of the occurrences 
of the substring P = CA in the string S. 

i P c = P[i] C[P[i]] LP RP

2 CA A 0 1 2 

1 CA C 2 3 3 

 

1.1.10. The space and the time-complexity of the FM-index 

The FM-index is a self-index. A self-index is a data structure built over a string S that 

enables the search of any substring P in S without requiring the explicit storage of S, 

as S can be derived from the self-index. The important property of the FM-index is 

that its storage requirement is close to the theoretically smallest possible amount, 

which is the k-th order entropy of S (Ferragina and Manzini, 2000). 

Let |S| = l, and let li be defined as the number of occurrences of the i-th character 

from Σ. Let con be a k-length substring (also called context) of S. Let Scon be a string 

formed as the concatenation of the characters following con anywhere in S taken 

from the left to the right of S. The k-th order entropy of S, Hk(S), for k ≥ 0, is defined 

in the following way: 

(i) H0(S) = - ∑
i

i
2

i

l
l

log
l
l

 

(ii) Hk(S) =  ( )∑
∈ kcon

con
0

con SHS
l
1

Σ

 

 

Example 1.6 

Let S = ACCA. The alphabet over S is Σ = {A, C, G, T}. Let us compute the H0(S) 

and H1(S). First, the number of occurrences of each alphabet letter in S determined: l1 

= 2, since the first alphabet letter (A) occurs twice in S. Similarly, l2 = 2, l3 = 0, and l4 

= 0. 

Now, the zero order entropy H0(S) is (using (i)):  
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Next, to compute the first order entropy H1(S), H0(con) for each context has to be 

computed. Here, con is a 1-length substring of S, so in total there are two contexts: 

con1 = A and con2 = C. Further, two subsequences of S has to be formed: Scon1 and 

Scon2 which are comprised of characters following con1 and con2 in S, respectively. 

Thus: Scon1 = C (the first occurrence of con1 in S is followed by C), and Scon2 = CA 

(the first occurrence of con2 in S is followed by C, and the second occurrence is 

followed by A). The zero-order entropy of Scon1 and Scon2 is H0(Scon1) = 

0
1
1log

1
1

2 =⎟
⎠
⎞

⎜
⎝
⎛− and H0(Scon2) = -2 =⎟

⎠
⎞
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2
1log

2
1

2 1. Finally, H1(S) is computed using 

(ii):  

H1(S) = ( )∑
∑∈ 1con

con
0

con SHS
4
1  = ( ) ( )( )=+ 2con

0
2con1con

0
1con SH|S|SH|S|

4
1  

= ( )1201 ⋅+⋅
4
1  = 0.5 

 

The FM-index occupies O(lHk(S)) + o(l) (at most 5lHk(S) + o(l)) bits for a string 

S of length l (Ferragina and Manzini, 2000). In the previous example, the storage 

required for the FM-index built on S = ACCA$ requires O(l·1) + o(l) = O(l) + o(l) 

bits. 

The existence of a string P of length m in S can be checked in O(m + log 1+εl) 

time, and all occ occurences of P are found in O(m + occlog 1+εl) time, where ε is a 

small positive constant set in advance (ε < 1) (Ferragina and Manzini, 2000; 

Ferragina et al., 2004). 
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2. Efficient Estimation of Pairwise Distances between 
Genomes 

2.1. Introduction 

Biological sequences are traditionally compared using alignment methods. In an 

alignment, homologous residues (nucleotides or proteins) are compared. However, 

finding the optimal multiple sequence alignment is an NP complete problem (Wang 

and Jiang, 1994). Thus, many alignment tools employ some heuristic to speed up the 

computation. For example, many popular multiple sequence alignment methods 

(MSA) (see Chapter 1) are based on the progressive alignment procedure 

(Notredame, 2007), e.g. ClustalW (Larkin et al., 2007), Muscle (Edgar, 2004), 

MAFFT (Katoh and Hiroyuki, 2008), ProbCons (Do et al., 2005), and T-Coffee 

(Notredame et al., 2000). The progressive technique works in the following way: the 

MSA is constructed by combining the pair-wise alignments between sequences; first, 

the more closely related sequences are added to the MSA, and then proceeding to the 

more distant pairs. In the initial step, the order of the sequences added to the MSA is 

based on the guide tree (which is a phylogenetic tree of sequences) constructed by 

some other methods. The final results of the progressive alignment procedure are 

both the MSA and the phylogenetic tree of input sequences.  

Recently, Edgar and Batzoglou (2006) compared popular multiple-sequence 

alignment tools. Among the evaluated programs, MAFFT (Katoh and Hiroyuki, 

2008), and MUSCLE (Edgar, 2004) showed a good trade-off between computational 

requirements and accuracy: they were the most efficient programs for the data sets 

with large number (100 or more) of sequences. In general, they were faster and more 

accurate than the popular ClustalW (Larkin et al., 2007). In comparison, the most 

accurate program in the study, ProbCons (Do et al., 2005), did not scale well for 

large data sets. Among other tools that were not included in the study, the efficient 

program MAVID (Bray and Pachter, 2004) is widely-used for the comparison of 

many short syntenic sequences (e.g. White et al., 2009). Another group of alignment-

tools are pair-wise sequence alignment tools, which are more efficient, but generally 

less accurate than MSA. The representative of this group is the popular program 

MUMmer, developed for the comparison of large genomes (Kurtz et al., 2004).  
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However, the alignment of data sets consisting of many large complete genomes 

(e.g. the human genomes consists of 3.2 billion base pairs) becomes difficult to 

compute. As a more efficient option, alignment-free methods were proposed for the 

computation of distances between genomes, or for finding similar regions between 

them. In addition, Höhl et al. (2006) showed that on rearranged input sequences 

alignment-free methods produced more accurate phylogenetic trees than the global 

alignment methods.  

The alignment-free methods of distance estimation were mostly developed in two 

directions (Vinga and Almeida, 2003). The first group encompasses methods where a 

pair-wise distance is estimated from word frequencies of compared sequences (e.g. 

Stuart and Berry, 2003; Sims et al., 2009). The second group is based on ideas 

derived from information theory (e.g. Chen et al., 2000; Li et al., 2001; Otu and 

Sayood, 2003; Ulitsky et al., 2006). However, the alignment-free methods developed 

for the estimation of evolutionary distances are generally not based on an 

evolutionary model. Thus, the distances produced by these methods do not scale 

linearly with the substitution rate, the standard measure of evolutionary distance used 

by biologists (see Chapter 1). 

We have recently developed an alignment-free pair-wise distance measure for 

closely related DNA sequences, Kr, which is based on an evolutionary model 

(Haubold et al., 2009). Kr distances gave the most accurate phylogenetic results when 

compared to other recently introduced alignment-free distance measures (Haubold et 

al., 2009). However, in the original implementation of Kr (kr version 1), a suffix tree 

was constructed and traversed for each pair of sequences. Thus, all pair-wise 

distances of n input sequences were computed from n(n − 1) suffix trees. The run 

time of this implementation was slow for large sequence samples. 

Here, I address the problem of the efficient computation of all Kr pair-wise 

distances from n input sequences. I found an algorithmic solution to this problem and 

implemented it in the program kr version 2. This program is scalable to large data 

sets of complete genomes (Domazet-Lošo and Haubold, 2009). The new algorithm 

enables the extraction of all  pair-wise Kr distances from a single traversal of a 

single suffix tree of n sequences (Section 2.2.5). Thus, the time needed for the suffix 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n
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tree construction phase was reduced from O(n2l) to O(nl). The efficiency and the 

scalability of the new implementation were shown on both simulated and real data 

sets of complete genomes (Sections 2.3 and 2.4), which included the 825 genomes of 

HIV-1 strains, 13 genomes of enterobacteria, and the complete genomes of 12 

Drosophila species (Domazet-Lošo and Haubold, 2009). 

2.2. Methods 

2.2.1. Definition of an alignment-free estimator of the rate of 
substitution, Kr 

Let S = {S1, .., Sn} be a set of n (closely related) nucleotide sequences represented as 

strings over the alphabet {A, C, G, T}. Each sequence is represented by its forward 

and reverse strand, and terminated by a unique character, which is not a member of 

the alphabet.  

Let (Si, Sj) be a pair of sequences from S. Let hi,j,p denote the shortest prefix of a 

suffix of Si[p .. |Si|], 1 ≤ p ≤ |Si|, that is absent from Sj. This prefix is called shortest 

unique substring, or shustring (Haubold et al., 2005; Haubold and Wiehe, 2006). The 

value oi,j, observed average shustring length, is defined as the sum of all shustring 

lengths for a pair (Si, Sj) over all positions p = 1,..,|Si| divided by |Si|: 

∑
=

=
iS

1p
p,j,i

i
j,i h

S
1o        (2-1) 

In general, oi,j ≠ oj,i. This asymmetry is mostly caused by local similarity, or 

similarity to the repetitive element (Haubold et al., 2009; Haubold et al., 2008):  

Let |Si| < |Sj|, and Si and Sj be similar along the positions of Si (Figure 2-1a). In 

this case, oi,j > oj,i, since only the part of Sj that is similar to Si can have observed 

shustring lengths greater than the values obtained by chance alone. The remaining 

positions of Sj have the observed shustring lengths as obtained by chance. On the 

other hand, the observed shustring length for every position in Si is expected to be 

greater than the value obtained by chance. On average, the value of observed 

shustring lengths should be smaller for Sj than for Si. This problem can be mitigated 
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by excluding short shustrings (i.e. shorter than by chance alone) from the 

computation of the observed average shustring length between a sequence pair. 

Let Si and Sj be sequences of the same length, and let a part of Sj be similar to the 

repetitive element of Si (Figure 2-1b). Again, along the similar positions, the 

observed shustring lengths will be greater than the shustring lengths obtained by 

chance alone. The sequence Si has more copies of the matching subsequence, i.e., 

more positions for which the observed shustring lengths will be greater than the 

shustring lengths obtained by chance alone, so , oi,j > oj,i. 

Sj 

Si 

Sj 

Si 

a) b) 

 

Figure 2-1. Two main causes of the asymmetric values of the observed 
average shustring length oi,j and oj,i between Si and Sj. Similar parts are denoted 

with solid line, and parts which are not similar are denoted with dashed line. In a), Si 

is locally similar to Sj, so oi,j > oj,i. In b), Sj has only one copy of a similar part, and Si 

has two copies, and again, oi,j > oj,i. 

 

In general, the number of duplications increases the average observed shustring 

length faster than mutation decreases it. Hence, to keep the symmetry of the observed 

average shustring length, the smaller of the values oi,j and oj,i is used as the observed 

average shustring lengths for both (Si, Sj) and (Sj, Si): 

oi,j = oj,i = min {oi,j, oj,i}     (2-2) 

Further, the observed average shustring length is used for the approximation of 

the expected shustring length, shulen. The expected shustring length of a pair (Si, Sj) 

is then used to determine di,j, the number of pair-wise mismatches per nucleotide 

between Si and Sj since they diverged from their last common ancestor (derived in 
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Haubold et al., 2009). Finally, the number of nucleotide substitutions between Si and 

Sj is estimated by Jukes-Cantor equation (Jukes and Cantor, 1969):  

)d
3
41ln(

4
3)S,S(K j,iji −−=r       (2-3) 

2.2.2. Problem statement 

Let S be a set of n nucleotide sequences S = {S1, .., Sn}. Without loss of generality, 

let l denote the length of each sequence. Thus, the total length of n sequences is nl. 

The distance matrix Kr contains all pairwise evolutionary distances between 

sequences from S which are based on the Kr measure that is, Kr
i,j = Kr(Si, Sj) for every 

pair (Si, Sj) (i = 1, .., n, j = 1, .., n). The elements Kr
i,i are equal to zero, since they 

represent the distance from a sequence Si to itself. The observed average shustring 

length oi,j is used to estimate Kr
i,j (see Sections 2.2.1, equations (2-1)-(2-3)). The 

problem is: How to efficiently compute all values oi,j for every pair of sequences (Si, 

Sj)?  

In the previous approach, implemented in kr 1 (Haubold et al., 2009), each value 

oi,j was determined by constructing and traversing a generalized suffix tree for every 

pair (Si, Sj). Here, I propose a new algorithm for the efficient computation of all 

values oi,j, and consequently all  values Kr
i,j in a single traversal of a generalized 

suffix tree of n sequences. In the following section, as the motivation for the new 

approach, I discuss the time complexity of both approaches with respect to the 

improvement in the time-complexity, and consequently, in the speed (Section 2.3.5), 

of the new approach. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

2.2.3. Time complexity analysis of the previous approach (kr 1) 

Let (Si, Sj) be a pair of sequences from S, S = {S1, .., Sn}. Sequence Si is referred to as 

query sequence and sequence Sj is referred to as subject sequence. Conversely, for a 

pair (Sj, Si), Sj is referred to as query sequence and Si is referred to as subject 

sequence. In the approach used in kr 1, a generalized suffix tree T was constructed 
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for each pair (Si, Sj) (Haubold et al., 2009). Thus, for the computation of all Kr values 

n(n-1) trees were constructed and traversed. 

For a pair of sequences (Si, Sj), with the total sequence length 2l, both the suffix 

tree construction and the suffix tree traversal takes O(l) time. Thus, in the approach 

used in kr 1, the time complexity of the construction of n(n-1) suffix trees for all 

pairs from S is O(n2l).  

Let the suffix Si[p..|Si|] correspond to a terminal node (Si, p). Let the suffix 

Sj[r..|Sj|] correspond to a terminal node (Sj, r), which has the longest common prefix 

with the suffix Si[p..|Si|] when compared to all other suffixes of Sj. The shustring 

length |hi,j,p| is determined when the branch node v of T is visited, where v is the 

lowest common ancestor of (Si, p) and (Sj, r) (Figure 2-2). Then, the value |hi,j,p| is 

added to the sum oi,j in O(1) time.  
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Figure 2-2. A generalized suffix tree of sequences from the set S = {S1, S2, S3, 
S4}. Each branch node is denoted as a red circle, and each leaf as a gray rectangle. 

Each suffix corresponds to a terminal node of the suffix tree. For example, S3[1..|S3|] 

= ACC$ corresponds to the terminal node (S3, 1). The shustring of the suffix 

S3[1..|S3|] with respect to S4 is h3,4,1 = ACC$, since the longest common prefix of 

S3[1..|S3|] and any suffix of S4 is the common prefix of S3[1..|S3|] and S4[1..|S4|]. The 

shustring h3,4,1 is determined as the path-label from the root (v6) to the branch node 

v1 (which is the lowest common ancestor of (S3, 1) and (S4, 1)) plus the first 

character on the label of the branch connecting v1 to (S3, 1). 
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There are l positions in Si, which correspond to l terminal nodes in T. The 

addition of all |hi,j,p| values for Si takes O(l) time. Thus, the number of additions 

during the traversal of all n(n-1) trees is n(n-1)l. Hence, the overall time needed for 

the traversal of n(n-1) suffix trees with the computation of Kr values, is O(n2l) (see 

Table 2-1).  

2.2.4. Time complexity analysis of the new approach (kr 2) 

Let S be a set of n nucleotide sequences S = {S1, .., Sn} of length l as before. In the 

new approach, implemented in kr 2, a single generalized suffix tree for all sequences 

from S is constructed (Domazet-Lošo and Haubold, 2009). In this approach, every 

sequence Si (i = 1, .., n) is regarded both as a query sequence for a pair (Si, Sj), and, at 

the same time, as a subject for n-1 pairs (Sj, Si) (j = 1,..,n and i ≠ j). The suffix tree 

construction phase of this approach takes O(nl) time, since the total length of n 

sequences is nl. 

The bottom-up traversal of the suffix tree with the computation of all oi,j is the 

same as in the first approach, O(n2l). This upper bound is determined in the 

following way: the traversal of a suffix tree of n sequences is proportional to the 

number of terminal nodes in the tree, nl. For a suffix Si[p .. |Si|], and a subject 

sequence Sj, the value |hi,j,p| is added to oi,j with the time complexity O(1). Since there 

are n-1 subjects, the number of additions3 for a suffix Si[p .. |Si|] is, at most, n-1. 

Notice that the number of additions in this new approach can be less than n-1 per 

suffix, as discussed later (see Section 2.2.5).  

For all l suffixes of Si and every Sj (i, j = 1,..,n, i ≠ j), the number of |hi,j,p| values 

added to oi,j is (n-1)l. Since there are n sequences that can be considered as query 

sequence, Si, the traversal of a generalized suffix tree with computation of all Kr 

values takes O(n2l) time. 

                                                 
3 If we could determine all values |hi,j,p| (with respect to every sequence Sj) when visiting a parent 

node of a leaf (Si, p), then for every (Si, p) the number of additions would be |S \ {Si}|, that is, n-1. 
Since the number of terminal nodes in the suffix tree is nl, the upper bound of all addition operations 
for all calls of this function during the tree traversal is nl(n-1), and therefore, the time complexity of 
the function is O(n2l). 
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In summary, the time complexity analysis of the conceptual model of the 

previous approach (implemented in kr 1), and the new approach (implemented in kr 

2) is presented in Table 2-1. 

 

Table 2-1. Time complexity of the conceptual models underlying kr 1 and kr 2 

 Previous Approach (kr 1) New Approach (kr 2) 

Suffix Tree Construction O(n2l) O(nl) 

Suffix Tree Traversal O(n2l) O(n2l) 

 
 

2.2.5. Algorithm 1: Computation of all Kr values during the 
traversal of a generalized suffix tree of n sequences 

Again, let S = {S1, .., Sn}, and let l denote sequence length. Every sequence is 

represented by its forward and reverse strand. Let T be the generalized suffix tree of 

S. As previously explained (Section 2.2.2), the task is to efficiently find Kr
i,j values 

for every pair (Si, Sj), i = 1,.., n,  j = 1,..,n.  

Here, a new algorithm, Algorithm 1, is described that enables the computation of 

all  Kr
i,j values in a single traversal of a generalized suffix tree of n sequences 

(Domazet-Lošo and Haubold, 2009). Algorithm 1 is shown in Figure 2-3. Example 

2-1 illustrates Algorithm 1, and is shown in Figure 2-4.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

As detailed in Section 2.2.1, an estimate of the substitution rate Si and Sj, Kr
i,j, is a 

function of oi,j, where ∑
=

=
iS

1p
p,j,i

i
j,i h

S
1o . Algorithm 1 enables the computation of all 

oi,j values in a single bottom-up traversal of a generalized suffix tree of n sequences.  

Let v denote a branch node of T. In Algorithm 1, every v contains the following 

six fields: 
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1. seqId – the set of sequence identifiers {Si | ∃  (Si, p) that is a terminal node in 

the subtree rooted on v4} 

2. termSeqId – the set of sequence identifiers {Si | ∃  (Si, p) that is a terminal 

child of v}; v.termSeqId ⊆  v.seqId 

3. branchChildren – the set of branch nodes which are children of v 

4. countTermSubtree[i] - the number of terminal nodes in the subtree rooted on 

v that refer to Si 

5. countTermChildren[i] – the number of terminal children of v that refer to Si 

6. stringDepth – the length of the path label of v; the string depth of v represents 

the length of the longest common prefix of all suffixes corresponding to the 

terminal nodes in the subtree rooted on v  

Let a suffix Si[p .. |Si| correspond to a terminal node (Si, p), which is a terminal 

child of a node v. Algorithm 1 is based on following properties:  

(i) If there is no terminal node in a subtree rooted on v that corresponds to a suffix 

of Sj, then the value |hi,j,p| for some Sj cannot be determined when v is visited 

during the tree traversal. In that case, the counter v.countTermChildren[i] is 

increased by 1. In general, the number of shustrings that cannot be determined 

for Si ∈  v.seqId is: 

][.][.][.
r.

ihildencountTermCviubtreecountTermSwiubtreecountTermSv
enanchChildrbvw

k
k

∑
∈

+=

 

(ii) If v.seqId ⊂ S, then values |hi,j,p| cannot be determined for Sj ∈  S \ v.seqId. Let 

w be a branch node that is the lowest common ancestor of Si[p .. |Si|] and at 

least one suffix of Sj (Sj ∈w.seqId). When w is encountered during the traversal 

of T, |hi,j,p| is determined, and added to si,j. This is done by applying the 

function scanBran to w. 

(iii) All values |hi,j,p| for every Sj (j = 1, .., n and i ≠ j) are determined, when a node 

w is encountered during the traversal of T, which is the lowest common 

                                                 
4 Terminal nodes in the subtree rooted on v also include terminal children of v. 
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ancestor of Si[p..|Si|] and at least one suffix of Sj for every Sj. In other words, 

w.seqId = S.  

Let v denote a branch node of T. Algorithm 1 consists of two functions that 

incorporate properties (i)-(iii): 

(i) function scanTerm looks up the terminal children of v 

(ii) function scanBran looks up the terminal nodes in the subtrees rooted on the 

branch children of v 

 

Let (Si, p) be a terminal node of v. Then, |hi,j,p| is determined in the following way 

(4):  

(i) if Sj (Sj ≠ Si) is referred to by a terminal node in the subtree rooted on v, i.e. Sj 

∈v.seqId, then hi,j,p is the substring that represents the path label to v plus the first 

character on the branch label from v to (Si, p). Hence, |hi,j,p| = v.stringDepth + 1, 

and the value of |hi,j,p| is added to si,j by calling scanTerm. 

(ii) if Sj (Sj ≠ Si) is not referred to by any terminal node in the subtree rooted on v, i.e. 

Sj ∉v.seqId, then hi,j,p cannot be determined when v is visited. However, |hi,j,p| is 

determined and added to si,j when a node w is visited, where Sj ∈w.seqId. A node w 

can be an immediate parent of v, or some other node which contains v in its 

subtree, and is visited at some point later during the traversal of T. Thus, |hi,j,p| = 

w.stringDepth + 1, and the value |hi,j,p| is added to si,j by applying scanBran to w. 

The important property of scanBran is that all |hi,j,p| which were not previously 

added to si,j by applying scanTerm are added at once using the multiplication rule 

of function scanBran (line 22). This principle speeds up the computation of si,j 

values. 
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Algorithm 1 Estimate substitution rate  

Require: T {suffix tree of n DNA sequences S1,S2,...,Sn}  

Require: L {Li =|Si|}  

Ensure: Kr {n × n matrix of substitution rates}  

 1: for all 1 ≤ i, j ≤ n do  

 2:   sij ← 0 {initialize s - pairwise sums of shustring len.} 

 3: traverse(root(T),l)  

 4: for all 2 ≤ i ≤ n do  

 5:   for all 1 ≤ j < i do  

 6:     Krij ← kr(min(sij/Li, sji/Lj))  

 

 7: function traverse(v, s)  

 8: for all w ∈ v.branchChildren do  

 9:   traverse(w, s)  

10: scanTerm(w, s)  

11: scanBran(w, s)  

12: end function  

 

13: function scanTerm(v, s)  

14: for all i ∈ v.termSeqIds do  

15:   for all j ∈ v.seqIds \ {i} do  

16:     sij ← sij + (v.stringDepth + 1)× v.countTermChildren[i] 

17: end function  

 

18: function scanBran(v, s)  

19: for all w ∈ v.branchChildren do  

20:   for all j ∈ v.seqIds \ w.seqIds do  

21:     for all i ∈ w.seqIds  

22:       sij ← sij +(v.stringDepth + 1)× w.countTermSubtree[i] 

23: end function 

Figure 2-3. Algorithm 1. Computing the n-by-n matrix Kr for a set of n 
sequences {S1, .., Sn}, where Kr

i,j is an estimate of the substitution rate 
between Si and Sj (Domazet-Lošo and Haubold, 2009). 
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Example 2.1 

Let T be the generalized suffix tree for S = {S1, S2, S3, S4}; S1 = A$, S2 = AC$, S3 = 

ACC$, and S4 = ACCC$, as shown in Figure 2-4a. As before, the sentinel character 

of each sequence differs from the other sentinel characters, and is not member of the 

alphabet. 

A suffix Si[p .. |Si|] is looked up in T by concatenating the branch labels from the 

root of T to a terminal node designated (Si, p). Let (Si, p) be a terminal child of vi. 

The sequence Si it refers to is considered as query when compared to all other subject 

sequences Sj (Sj ≠ Si). The string depth of each node vi is the path length of vi.  

For example, in Figure 2-4a, S3[1 .. |S3|] = ACC$ refers to the terminal node (S3, 

1), which is a terminal child of v1. The path label of v1 is ACC, and the string depth 

of v1 is 3. The sequence S3 is query, and S1, S2, and S4 are subjects in the sequence 

pairs (S3, S1), (S3, S2), and (S3, S4).  

Algorithm 1 starts at the root of T by calling the function traverse. This function 

ensures that T is traversed bottom-up, and during the traversal, values |hi,j,p| are 

determined, and added to the matrix s. 

For example, v1 has two terminal children: (S3, 1), and (S4, 1), and the string 

depth of v1 is 3. The list of sequences referred to by the terminal nodes of v1 is: 

v1.termSeqId = {S3, S4}. Since, there are no other terminal nodes in the subtree rooted 

on v, v1.seqId= v1.termSeqId = {S3, S4}. The values of the remaining fields are: 

v1.branchChildren = 0, v1.countTermSubtree[3] = 1, and v1.countTermSubtree[4] = 1. 

The shustrings h3,4,1 and h4,3,1 can be determined when v1 is encountered during 

the traversal of T. When determining h3,4,1 the sequence S3 serves as query, and S4 as 

subject, and when determining h4,3,1, S4 is query, and S3 subject.  

The shustring h3,4,1 is ACC$, obtained by the concatenation of the path label of v1 

plus the first character on the branch connecting v1 and (S3, 1). The shustring h4,3,1 is 

ACCC, obtained as the concatenation of the path label of v1 plus the first character 

on the branch connecting v1 and (S4, 1). Here, the length of both shustrings h3,4,1 and 

h4,3,1 is |h3,4,1|=|h4,3,1|=3+1=4, and these values are added to s3,4 and s4,3, respectively, 

by calling function scanTerm for v1. 
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In general, the shustring length |hi,j,p| for a subject Sj cannot be determined, until 

Sj is included in v.seqId. Thus, the values h3,1,1 and h3,2,1, and  h4,1,1 and h4,2,1 cannot 

be determined, since subjects S1 and S2 are not elements of v1.seqId (there are no 

terminal nodes in the subtree rooted on v1 that refer to S1 and S2). Thus, the number 

of suffixes of  S3 and S4 for which the shustring length cannot be determined for 

some Sj (here, S1 and S2) is set to 1, or:  

v1.countTermSubtree[3] = v1.countTermSubtree[4] = 1 

However, h3,1,1 and  h4,1,1 can be determined when the first node is visited that is 

the lowest common ancestor of v1 and has a terminal node referring to S1 in its 

subtree. This is v3, so |h3,1,1|=|h4,1,1|=1+1=2. Similarly, h3,2,1 and h4,2,1 are determined 

when v2 is visited during the traversal of T, thus |h3,2,1| = |h4,2,1| = 2 + 1 = 3. These 

values are added to s3,1, s4,1, s3,2 and s4,2 by calling function scanBranch for v3 and v2 

respectively.  

The states of elements of s during the traversal of T are shown in Figure 2-4b. 

Finally, after T has been traversed, values si,j are converted to Kr
i,j values (Algorithm 

1, lines 4 - 6). 
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Figure 2-4. Algorithm 1 – Example 2-1. a) Generalized suffix tree T is built from 

the set of four sequences {S1, S2, S3, S4} listed in the top-left corner of the figure. 

Branch nodes are shown in red, and terminal nodes as gray rectangles designated 

as (Si, p). A terminal node (Si, p) corresponds to a suffix Si[p .. Si]. b) State of the 

matrix s after the traversal of each of the branch nodes of T {v1, v2, v3, v4, v5, v6}. 

Algorithm 1 starts by calling function traverse for the root node (v6). Each branch 

node vi is visited during the bottom-up traversal of T. Function scanTerm looks up 

the terminal children of every vi, and function scanBran looks up the branch children 

of vi. 

2.2.6. The implementation of kr version 2 

Algorithm 1 is implemented in the program kr version 2 (Domazet-Lošo and 

Haubold, 2009), which replaces its predecessor, kr version 1 (Haubold et al., 2009). 

In Sections 2.3 and 2.4 the speed gain of the new version, kr 2, is demonstrated on 

both simulated and real data sets.  
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Apart from kr 2 being the faster program, both program versions produce 

identical results. Moreover, they implement the underlying suffix tree as an enhanced 

suffix array (Abouelhoda et al., 2004), where the suffix array was constructed using 

the suffix array library of Manzini and Ferragina (2004). However, the original 

implementation by Manzini and Ferragina was designed for data sets containing up 

to 231 characters (approximately 2 billion characters, which is less than one strand of 

the human genome). I extended the usage of the library to larger data sets by 

implementing its 64-bit version. 

The program kr version 2 was written in the C programming language and is 

intended for use under the UNIX environment. It can be used either as a 32-bit or as 

a 64-bit program, depending on the size of the data set. In particular, the peak 

memory-usage of the 32-bit version of kr 2 is ≈ 9 times the size of the data set, and 

for the 64-bit version of kr 2, it is 17-18 times the size of the data set. This memory 

requirement comes from the underlying data structures (i.e. enhanced suffix array, 

and some additional data) which are, in the case of the 32-bit version of the program, 

based on 4-byte integers, and, in the case of the 64-bit version, on 8-byte integers. 

The program source and the documentation are available from the web site:  

http://guanine.evolbio.mpg.de/kr2/ 

2.3. Analysis of Kr on simulated data sets 

2.3.1. Auxiliary programs 

For the simulation of samples used in the following analyses the programs ms 

(Hudson, 2002), and ms2dna (Haubold and Pfaffelhuber, 2008) were used. The ms 

program generates haplotype samples with the predefined number of single 

nucleotide polymorphisms (SNPs) per site, which are then converted to a set of 

nucleotide sequences by ms2dna. A single-nucleotide polymorphism (SNP) is a 

variation in a nucleotide sequence between individuals of a species, i.e. different 

individuals can have a different nucleotide residing at the homologous sequence 

position. For example, a genome of an individual can contain a nucleotide fragment 

ACCTA, and a genome of another individual of the same species can contain a 

fragment AACTA at the same positions. These different forms of a gene residing at 
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the same positions in the sequence are called alleles. In this context, a haplotype can 

be considered a set of neighboring SNPs. 

The distance matrix correlation coefficient between a Kr distance matrix and a 

distance matrix obtained from the corresponding alignment was computed using 

Mantel's test (Mantel, 1967) implemented in the program zt (Bonnet and Van de 

Peer, 2002). 

2.3.2. Consistency of Kr 

Kr has already been shown to be accurate for long sequence pairs separated by no 

more than 0.5 substitutions per site (Haubold et al., 2009). In this section, a more 

detailed correlation analysis between Kr and the true substitution rate (obtained from 

the alignment-based substitution rate) is presented. The analysis was based on 

samples of 10 homologous sequences of different lengths affected by a variable 

number of single nucleotide polymorphisms (SNPs) per site, where the SNP rate, s, 

is less than or equal to 0.4. For example, a sample of length 10 kb with s = 0.01 

contains 100 SNPs, and so does a sample of 1 kb sequences with s = 0.1. A summary 

of data set characteristics is shown in Table 2-2. 

 

Table 2-2. The characteristics of the simulated data sets. Each group is 

characterized by its sequence length (l), and the number of SNPs per site (s). 

l [kb] S Number of SNPs 

1  0.01, 0.1, 0.4 10, 100, 400 

10 0.01, 0.1, 0.4 100, 1000, 4000 

100 0.01, 0.1, 0.4 1000, 10000, 40000 

1000 0.01, 0.1, 0.4 10000, 100000, 400000

 

For every configuration, 1000 sets of 10 sequences were generated. For each data set, 

all pairwise Kr values were correlated with the true substitution rate (the results 

obtained from the alignment-based distance-matrices). Finally, the correlation 

coefficient was computed for each configuration and averaged across all replicates. 
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The mean correlation coefficient between Kr and the alignment-based distance-

matrix approaches 1 as the sequence length increases (Figure 2-5). For example, for 

the sample where l = 1 Mb, and s = 0.1, the mean correlation coefficient was 

0.999951, and even the lowest mean correlation value (for the configuration where l 

= 1 kb, and s = 0.01) was still very high (0.922171). 

Further, Figure 2-6 shows that the average correlation can be observed as a 

function of the total number of SNPs. Hence, the accuracy of Kr increases with the 

total number of SNPs in the data set, as long as the substitution rate is below 0.5. 

Sequence length [kb]
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Figure 2-5. Correlation between Kr and the true substitution rate. The mean 

correlation coefficient (rmean)  SD is shown as the function of sequence length for 

different values of the SNP rate: s = 0.01, 0.1, 0.4. Each data point is computed 

from 1000 simulations. 

±
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Figure 2-6. Correlation between Kr and the true substitution rate. The mean 

correlation coefficient (rmean)  SD is shown as the function of the number of SNPs 

contained in the sample. Each data point is computed from 1000 simulations. 
±

 

2.3.3. The affect of horizontal gene transfer on the accuracy of Kr 

Horizontal gene transfer (HGT) is a process in which genetic material from another 

organism is incorporated into the genome of the first organism, without the first 

organism being the offspring of the second one. Here, I discuss the affect of HGT on 

the accuracy of Kr.  

Horizontal gene transfer was modeled for 100 simulated samples of 10 sequences 

of length 100 kb, and the number of SNPs per site s = 0.1. Each member of the 

sample received 1 to 10 chunks (substrings) from the random donor sequence. The 

length of each chunk was (i) 100 bp, and (ii) 1 kb. Each chunk was chosen from a 

random position of a random donor sequence. Figure 2-7 represents the results of the 

HGT simulation. The accuracy of Kr is not degraded by 100 bp chunks transfers, but 
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1 kb transfers significantly reduce the accuracy of Kr. However, the correlation mean 

is not below 0.91 even in the worst case scenario (10 transfers of 1 kb chunks). 
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Figure 2-7. Horizontal gene transfer reduces the accuracy of Kr. The mean 

correlation coefficient (rmean)  SD is shown as a function of the number of transfers 

per sequence. The transfers of 100 bp chunks do not affect the accuracy of Kr, while 

the chunks of 1 kb do affect the accuracy of Kr. Each data point is computed from 

100 simulations. 

±

 

2.3.4. The effect of genome duplication on the accuracy of Kr 

Gene duplication is a process by which a gene region is duplicated once or more 

times in the genome of an organism. The effect of gene duplication on the accuracy 

of Kr is explored in this section. 

Gene duplication was modeled for 100 simulated samples of 10 sequences of 

length 100 kb, and the number of SNPs per site, s = 0.1. Each sequence from a data 

set was affected by 1–10 duplications of 1 kb chunks, where each chunk was copied 
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once, twice or five times. The first copy was inserted 1 kb downstream of the 3’ end 

of the source. The subsequent copies were inserted 1 kb downstream of the 3’ end of 

the previous copy. Figure 2-8 shows that the accuracy of Kr is only weakly degraded 

as the number of duplicated fragments, and/or the number of copies of a same 

fragment, increases.  
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Figure 2-8. Gene duplication only weakly affects the accuracy of Kr. The mean 

correlation coefficient (rmean) ±  SD is shown as a function of the number of 

duplications per sequence. The transfers of 1 kb chunks which are copied 1, 2, or 5 

times do not significantly affect the accuracy of Kr. Each data point is computed from 

100 simulations. 
 

2.3.5. Run time comparison of kr 1 and kr 2 

The run-time behavior of the previous approach, implemented in kr 1, and the new 

approach, implemented in kr 2, is compared using simulated data sets. Each data set 

is characterized by its sequence length, l, the number of SNPs per site, s, and the 
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number of sequences in the set, n. The summary of data set characteristics is given in 

Table 2-3. 

 

Table 2-3. Summary of group characteristics of the simulated data sets. Each 

group is characterized by its sequence length (l), the number of SNPs per site (s), 

and the number of sequences in the set (n). 

l s n 

10 kb 0.1 5, 10, 50, 100, 500, 1000

1 Mb 0.1 5, 10, 50, 100 

 
 
Figure 2-9 shows the run-time comparison of the programs kr version 1 and kr 

version 2 for data sets with l = 10 kb. The regression lines are: 

(i) for kr version 1: R1 = 0.0038 ×  n1.9860 

(ii) for kr version 2: R2 = 0.1070 ×  n1.8931 

Similarly, Figure 2-10 shows the run-time comparison of kr version 1 and kr version 

2 for data sets with l = 1 Mb, and the corresponding regression lines are: 

(i) for kr version 1: R1 = 1.6262 ×  n2.2126 

(ii) for kr version 2: R2 = 1.9924 ×  n1.3508 

 

Based on my previous time-complexity analysis (Sections 2.2.3 and 2.2.4), both kr 1 

and kr 2 are expected to execute in O(n2l) time, and the program kr 2 is expected to 

execute faster because: 

(i) the time required for the suffix tree construction step was reduced from 

O(n2l) time in the case of kr 1 to O(nl) time in the case of kr 2  

(ii) the time required for the computation of the observed average shustring 

lengths during a suffix tree traversal was reduced in the case of kr 2 due to 

the multiplication rule (see Algorithm 1, line 22) 

The run-time behavior of both programs confirmed these expectations: kr 2 was 

faster than kr 1 for all simulated data sets. In the case of the data sets of length l = 10 
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kb, the regression lines for both kr 1 and kr 2 are close to O(n2l), but with different 

constant factor. In this case, kr 2 is on average 25 times faster than kr 1. 

More interestingly, the results for the data sets of 1 Mb sequences showed that 

the regression line of kr 2 stayed well below the upper bound of O(n2l), and is R2 = 

1.9924  n1.3508. For example, the comparison of run-times for 100 sequences of 

length 1 Mb (the total data set size is 100 Mb) resulted in 43-fold difference between 

kr 2 and kr 1: the execution of kr 2 took 17 minutes, and the execution of kr 1 took 

722 minutes ≈ 12 hours (see Figure 2-10).  

×
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Figure 2-9. The run time comparison of kr version 1 and kr version 2 on 10 kb 
input sequences. The run time measured in seconds is shown as a function of the 

number of 10 kb input sequences. 
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Figure 2-10. The run time comparison of kr version 1 and kr version 2 on 1 Mb 
input sequences. The run time measured in seconds is shown as a function of the 

number of 1 Mb input sequences.  
 

2.4. Application of kr version 2 

Finally, the accuracy and the scalability of kr 2 were compared to the best alignment-

based results. Depending on the data set, Kr based distances were compared to the 

better of the results obtained by either MAVID (Bray and Pachter, 2004), or 

MUMmer (Kurtz et al. 2004). These programs are both very fast; MAVID is the 

MSA program suitable for the alignment of many short syntenic sequences, and 

MUMmer is the pair-wise alignment program designed for the comparison of large 

genomes (see Section 2.4.1). In addition, Kr-based distances were analyzed in 

comparison to the reference phylogenies derived from multiple sequence alignment 

of relevant genes, where reference phylogenies were available. 
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The following data sets of complete genomes were analyzed (Table 2-4): 

(i) 12 Drosophila genomes (Drosophila 12 Genomes Consortium, 2007) 

(ii) 13 E. coli and Shigella genomes (van Passel et al., 2008) 

(iii) 825 HIV-1 pure subtype genomes (Wu et al., 2007) 

 



 

 

Table 2-4. Analyzed data sets. The table contains the following statistics for each data set: the number of sequences in the data set (n), 

the average sequence length (lavg), the size of the whole data set (size), the name of the alignment program that was used for the analysis 

of the data set, the time required for the execution of kr 2 (tkr2), the kr 2 memory usage peak (mkr2), the time required for the alignment 

computation (tA), and the memory usage peak required for the alignment computation (mA). 

Data set n 
lavg 

[Mb] 
size 
[Mb] 

alignment 
program 

tkr2 

[hh:mm:ss]
mkr2 

[GB] 
tA  
[hh:mm:ss]

mA 
[GB] 

12 Drosophila genomes 12 169 2031 MUMmer 03:14:57 72 32:35:56 3.2 

13 E. coli and Shigella genomes + 1 
Salmonella  

14 4.9 68 MUMmer 00:05:02 1.4 00:33:00 1.0 

825 HIV-1 pure subtype genomes 825 0.009 7.5 MAVID 00:10:25 0.17 00:12:10 0.88 
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2.4.1. Auxililary software used for the analysis of real data sets 

The analysis of 825 pure HIV-1 strains was compared to the results obtained using 

MAVID, which was the only MSA program scalable to a data set containing that 

many taxa. The other two data sets were analyzed using MUMmer, since it is a pair-

wise sequence alignment software specifically developed for the comparison of large 

genomes, and was the only alignment tool able to efficiently compute the alignment 

of 12 Drosophila genomes (in total over 2 billion base pairs). 

The memory consumption of both kr 2 and MUMmer is linear in the size of the 

data set, while the memory-consumption of MAVID grows worse than linearly. This 

makes MAVID inapplicable for the data sets of large genomes. Furthermore, 

MAVID does not cope well with the sequences which are not syntenic, or even 

properly assembled. In contrast, MUMmer deals well with sequence rearrangements, 

since it was designed for the computation of bacterial genomes, which frequently 

contain inversions. 

Further, MUMmer generates only pair-wise alignments, and not phylogenetic 

distances between sequences. In order to compare Kr based distances to the results 

generated by MUMmer, I wrote an additional program (parseDelta) that estimates 

Jukes-Cantor distances from MUMmer alignments (Domazet-Lošo and Haubold, 

2009).  

The program dnadist from the PHYLIP package (Felsenstein, 1993) was used to 

compute the distance-matrices based on the Jukes-Cantor formula from the MSA 

produced by MAVID. The phylogenetic trees were constructed by applying the 

Neighbor-Joining method (Saitou and Nei, 1987), implemented in the program 

neighbor from the PHYLIP package (Felsenstein, 1993), and were drawn in MEGA 

4 (Kumar et al., 2008). 

The correlations between distance matrices based on Kr, and distance matrices 

based on alignments were assessed using Mantel's test implemented in the program zt 

(Bonnet and Van de Peer, 2002).  
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2.4.2. The analysis of 12 Drosophila genomes 

The Kr based phylogenetic results for the large data set of 12 Drosophila genomes 

were compared to the generally accepted topology (Drosophila 12 Genomes 

Consortium, 2007), and to the pair-wise sequence alignment generated by MUMmer.  

The analysis of 12 Drosophila genomes using kr 1 showed that the Kr distances 

produce the same topology as the reference topology (Haubold et al., 2009). Here, kr 

2 confirmed these results (Figure 2-11), and showed the speed gain of kr 2 over kr 1. 

The program kr 2 took 3 hours and 15 minutes to compute Kr-based distances for 12 

Drosophila genomes. In comparison, the run-time of kr 1 on the same test computer 

was approximately 2 days and 6 hours, which is roughly 16 times slower than kr 2.  

However, the memory usage peak of kr 2 was 72 GB for this data set, compared 

to 13 GB required by kr 1. This drawback of kr 2 comes from the memory 

requirements of the 64-bit version of the program which was used for this data set. 

Namely, the total size of 12 Drosophila genomes is 2 Gb, which requires 

approximately 4 GB of memory space (each sequence is represented by its forward 

and reverse strand). The memory requirements of the underlying data structures of 

the 64-bit version are around 17-18 bytes per input character. For the data set of 12 

Drosophila genomes this results in 72 GB memory usage peak (i.e. 4 GB  18 = 72 

GB). 

×

Finally, the program MUMmer was also used for the analysis of this data set. The 

MUMmer based results gave a topology whose Symmetric Distance5 (Robinson and 

Foulds, 1981) to the reference tree was 8. In addition, MUMmer took 6 times longer 

than kr 2 to compute the result (≈ 1 day 8 hours). 

                                                 
5 Symmetric Distance of Robinson and Foulds (1981) is a topological distance between a sequence 
pair (it does not take branch lengths into account). The distance equals the number of partitions which 
are present in one tree and not in the other. 
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Figure 2-11.  Phylogenetic tree of 12 Drosophila genomes based on Kr. The Kr-

based evolutionary distances gave the same phylogenetic tree as the reference 

topology (Drosophila 12 Genomes Consortium, 2007). 

 

2.4.3. The analysis of 13 Escherichia coli and Shigella genomes 

The Kr based phylogeny of 13 enterobacterial genomes (13 Escherichia coli and 

Shigella genomes) was compared to both the MUMmer based results, and to the 

reference phylogeny (van Passel et al., 2008). The size of genomes in the data set 

varies from 4.3 Mb to 5.5 Mb. As explained in Section 2.2.1, such differences in size 

affect the computation of observed average shustring lengths. This can be improved 

by excluding 95% of the shustrings observed by chance alone from the computation 

of average shustring lengths (see Section 2.2.1, Figure 2-1; Haubold et al., 2009). 

Figure 2-12 shows the neighbor-joining trees of complete genomes based on Kr 

distances (Figure 2-12c), MUMmer-derived distances (Figure 2-12b), and the 

reference phylogenetic tree (Figure 2-12a), based on the multiple sequence alignment 

of 169 single-copy genes (van Passel et al., 2008) computed using MAFFT (Katoh 

and Hiroyuki, 2008). 
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The computation of Kr-based distances of 13 enterobacterial genomes with kr 2 

finished in 5 minutes 2 seconds, which is over 10 times faster than the analysis of the 

data set with kr 1, which took 59 minutes. However, the Kr-based phylogenetic tree 

differs from the referenced phylogeny in the position of E. coli UTI89, marked with 

* (Figure 2-12c). The strain E. coli UTI89 clusters with E. coli 536 in the case of Kr, 

and with E. coli CFT073 in the case of the reference phylogeny. In comparison, 

MUMmer-based distances yielded the correct phylogeny, with the execution time of 

33 minutes, which was over 6 times longer than kr 2. The memory consumption peak 

of kr 2 was 1.4 GB, and 1 GB in the case of MUMmer.  

Finally, the Kr-based and the MUMmer-based distances were computed from the 

concatenation of 169 selected genes used by van Passel et al. (2008). The neighbor-

joining trees based on both methods produced the same topology as the referenced 

one (van Passel et al., 2008). 
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Figure 2-12. Phylogenetic trees of 13 strains of Escherichia coli and Shigella. a) Reference phylogeny based on the multiple 

sequence alignment of 169 genes (van Passel et al., 2008). b) Whole-genome phylogeny based on the pair-wise alignment computed by 

MUMmer (Kurtz et al., 2004). c) Whole-genome phylogeny based on Kr; the strain E.coli UTI89, marked with *, is clustered with E.coli 

536, while in the reference phylogeny it clusters with E.coli CFT073. 
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2.4.4. The analysis of 825 HIV-1 pure subtype genomes 

In the last example, the genomes of 825 pure HIV strains were analyzed (Wu et al., 

2007). The Kr-based distances between 825 HIV-1 strains were compared to the 

results obtained using the MSA program MAVID (Bray and Pachter, 2004), which 

was the best tool available for the comparison of many short, syntenic6 sequences. 

The resulting phylogenies are displayed in Figure 2-13. There is an excellent 

correlation (r = 0.97; p = 0.001) between the Kr-based and the MAVID-based 

distance-matrices.  

However, in the case of the Kr-based phylogeny, strain A_DQ083238, officially 

classified as an A strain, was clustered with the C strains (see Figure 2-13). On closer 

inspection, this strain was discovered to be a recombinant with most of the genome 

derived from an A1 strain and a C strain. This example indicated the limitation of Kr 

as a global similarity measure: Here, in the case of A_DQ083238, the strong 

similarity between a C strain and a part of A_DQ083238 prevailed over the similarity 

between an A1 strain and the rest of the genome. 

The computation of Kr-based distances with kr 2 took 10 minutes 25 seconds, 

which was almost 20 times faster than the execution time of kr 1 (3 hours 26 

minutes). In comparison, MAVID classified all strains correctly and swiftly in 12 

minutes 10 seconds. 

                                                 
6 Syntenic literally means on the same band (ribbon). In this context, synteny refers to the preserved 
order of genes along chromosomes (in the comparison of related species). 
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Figure 2-13. Phylogenetic trees of 825 "pure" HIV-1 strains. The strains of the 

same subtype are represented within the compressed subtree of the subtype. a) 
Whole-genome phylogeny based on Kr. Only a single strain, A_DQ083238, was not 

classified according to its official subtype (subtype A). It is actually a recombinant 

between an A and a C strain. b) Whole-genome phylogeny based on the multiple 

sequence alignment computed by MAVID. All strains were classified according to 

their official subtype. 

 

2.5. Discussion 

Evolutionary relationships between organisms can be estimated by aligning 

sequences and then deriving evolutionary distances from the alignment. These 
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distances are then summarized as phylogenetic trees. As an alternative to alignment, 

alignment-free methods can be used. Here, I stress two possible applications of 

alignment-free methods: (i) the fast computation of guide trees for progressive 

alignment methods, and (ii) the analysis of sequences with large scale 

rearrangements (e.g. sequences with low synteny or unassembled genomes).  

However, alignment-free methods generally do not yield evolutionary distances 

(i.e. substitution rates). To fill this gap, we have recently developed an alignment-

free estimator of substitution rates between sequence pairs, Kr, which outperformed 

other state-of-the art alignment-free methods for closely related sequences (Haubold 

et al., 2009). The analysis of simulated data showed that Kr-based evolutionary 

distances are accurate for closely related sequences, when the substitution rates are 

less than 0.5 (Haubold et al., 2009). Here, I showed that the accuracy of Kr-based 

evolutionary distances increased with the total number of single nucleotide 

polymorphisms (SNPs) in the data set (Section 2.3.2; Figures 2-5 and 2-6), where the 

number of SNPs is determined by both the length of sequences in the data set, and 

the substitution rate between sequences (Domazet-Lošo and Haubold, 2009). In 

contrast, horizontal gene transfer degraded the accuracy of Kr-based evolutionary 

distances (Section 2.3.3). This result corresponds to the example of a misclassified 

recombinant HIV-strain: a strain was clustered with C strains, although only 30% of 

its genome derives from a C strain, with rest mostly of an A subtype (Section 2.4.4; 

Figure 2-13).  

The Kr-based distances are computed from the observed average shustring 

lengths between a sequence pair. In the previous implementation of the method, kr 

version 1, every pairwise distance was computed by constructing and traversing a 

generalized suffix tree of a pair of sequences (Haubold et al., 2009). This resulted in 

the construction of n(n-1) suffix trees for n sequences of length l. The time required 

for the construction of all suffix trees was O(n2l). Similarly, the time required for the 

traversal of all suffix trees with the computation of all Kr-based distances was O(n2l). 

This was too slow for large data sets.  

To address this problem, in the first part of my thesis I developed an algorithm 

that computes all  pair-wise Kr distances in a single traversal of a generalized ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n
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suffix tree of n sequences (Algorithm 1, Section 2.2.5), and implemented in the 

program kr version 2 (Domazet-Lošo and Haubold, 2009). In this way, the time 

complexity of the suffix tree construction step was reduced from O(n2l) to O(nl). The 

step of traversing a suffix tree with computing all distances remained O(n2l) in both 

the new and the old approach, but the number of operations in the new approach is 

upper-bounded by the number of operations of the old approach (see multiplication 

rule of Algorithm 1, line 22). In comparisons of these two approaches using 

simulated data sets, kr 2 was in all cases at least ten times faster than kr 1 (Section 

2.3.5). For example, kr 2 was more than 40 times faster than kr 1 for the data set of 

100 sequences of length 1 Mb (the total size of the data set was 100 Mb), i.e. the 

execution time of kr 2 was 17 minutes, while the execution time of kr 1 was 12 hours 

(Section 2.3.5; Figure 2-10). In addition, kr 2 was at least 10 times faster than kr 1 in 

the analysis of real data sets: the computation of 12 Drosophila genomes was sped 

up 16 times, the analysis of 825 HIV-1 genomes 20-fold, and the analysis of 13 

enterobacterial genomes was sped up 10-fold (Section 2.4). 

To further assess the accuracy of the Kr metric, and to test the scalability of its 

implementation in kr 2, I compared kr 2 to two popular alignment tools, MUMmer 

(Kurtz et al., 2004), and MAVID (Bray and Pachter, 2004) (Section 2.4). MUMmer 

is an efficient pair-wise alignment tool designed for the comparison of large 

genomes, while MAVID is a multiple sequence alignment tool scalable to the data 

sets of numerous short syntenic sequences. I showed that the program kr 2 is scalable 

to both of these extremes. First, kr 2 was compared to both MUMmer and the 

available reference phylogenies on the data set of 12 Drosophila unassembled 

genomes (with the total size of over 2 billion base pairs) (Section 2.4.2), and on the 

data sets of 13 enterobacterial genomes (Section 2.4.3). The genomes in both data 

sets are affected by horizontal gene transfer, recent duplication and large-scale 

rearrangements. Second, I compared kr 2 to MAVID on the data set of 825 HIV-1 

genomes (Section 2.4.4).  

The Kr-based evolutionary distances yielded the best results in the case of the 12 

Drosophila genomes: the Kr-based phylogeny was topologically identical to the 

reference phylogeny (Drosophila 12 Genomes Consortium, 2007), which was not the 

case with the MUMmer phylogeny. This agrees with the previous studies where 
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some alignment-free methods outperformed alignment-based results on rearranged 

input sequences (Höhl et al., 2006; Sims et al., 2009). However, for the data sets of 

13 enterobacterial genomes, and the data set of 825 HIV-1 genomes, the alignment 

based methods gave better results than Kr. In the case of the Kr-based phylogeny 825 

HIV-1 genomes, a single strain was misclassified (Section 2.4.4; Figure 2-13). 

Nevertheless, the correlation between the Kr-based and the MAVID-based distances 

was very high (r = 0.97, p = 0.001). 

Further analysis of the HIV-1 strain misclassified by Kr revealed its recombinant 

nature. Motivated by this result, I investigated the application of shortest unique 

substrings in the context of local sequence homology (Chapter 3). 
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3. Efficient Alignment-Free Detection of Local 
Sequence Homology 

3.1. Introduction 

In biology, similar sequences usually have similar (or the same) functions due to 

their common evolutionary history (Chapter 1). In order to determine sequence 

similarity two approaches can be used: (i) sequences can be compared using global 

measures of similarity (see Chapter 2), and (ii) sequences can be compared in order 

to find locally similar regions, which can be further used for inferring local sequence 

homology.  

Local sequence similarity is typically determined by alignment methods: an 

optimal pair-wise alignment can be computed using the Smith-Waterman algorithm 

(Smith and Waterman, 1981; Chapter 1) or more efficient heuristic methods may be 

used. Two popular heuristic local alignment methods are BLAST (Altschul et al., 

1990)7 and FASTA (Lipman and Pearson, 1985). They compare subsequences 

(words) of a query sequence to a large database of sequences. When a good match 

between a subsequence of a query and a database entry is found, it is extended to the 

left and to the right in order to get a longer match, and several significant matches 

could be combined to form a single one. Both programs return scored alignments 

between a query and the database sequences. 

Local sequence similarity is particularly important for detecting conserved 

regions (e.g. genes) among otherwise dissimilar sequences. In particular, closely-

related organisms may have many similar regions, or they can even be similar across 

their complete genomes (the problem of global sequence similarity; see Chapter 2), 

while distantly-related organisms may have only isolated regions of similarity. Thus, 

the detection of local sequence similarity is of special relevance for comparison of 

distantly-related sequences. However, solving this problem is also important for 

detecting genetic recombination, which usually involves more closely-related 

sequences. 

                                                 
7 The importance of these tools can be best illustrated by the number of citations: the original BLAST 
publication (Altschul et al., 1990) was the most cited publication in the 1990s, with more than 28,064 
citations by June 12, 2010 (ISI Web of Knowledge). 
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Genetic recombination is a process where the genetic material of different 

organisms is combined together. Homologous recombination is the exchange of 

homologous (related) sequence parts, as opposed to non-homologous recombination, 

where the evolutionary non-related parts are exchanged. Further, recombination can 

be either reciprocal or non-reciprocal (Figure 3-1). In the first case, sequences 

reciprocally exchange genetic material (Figure 3-1a). In the second case, genetic 

information is transferred only in one direction: from a donor sequence to a recipient 

sequence (Figure 3-1b). 

 

a) reciprocal recombination b) non-reciprocal recombination

S1

S2

S1

S2

S1

S2

S2

 

Figure 3-1. Reciprocal and non-reciprocal recombination. In the case of 

reciprocal recombination (DNA crossover), homologous genetic material is 

exchanged between sequences S1 and S2 (shown as the exchange of 2 blue and 2 

pink rectangles). In the case of non-reciprocal recombination, a part of a donor 

sequence, S1, is incorporated in a recipient's sequence, S2 (shown as the blue 

rectangle between pink sequences in the final form of S2). 

 
 

In eukaryotes8, recombination occurs during meiosis between parental DNA 

sequences to produce gametes. This homologous reciprocal recombination is also 

known as DNA crossover (Figure 3-1a). Another form of homologous reciprocal 

recombination occurs when a host cell is coinfected by more than one viral strain, 

and a recombinant form of the virus is generated. An example for this is coinfection 

of a human cell with different strains of the human immunodeficiency virus, HIV. A 
                                                 
8 A eukaryote is an organism whose cell contains nucleus inside its membranes (animals, plants, and 
fungi), as opposed to prokaryotes which do not have a cell nucleus (e.g. bacteria). 
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new recombinant form of HIV, when detected in a certain number of unrelated cases, 

is then referred to as a circulating recombinant form (CRF)9.  

In contrast, gene conversion and horizontal gene transfer (HGT) (or lateral gene 

transfer; LGT) are types of non-reciprocal recombination (Figure 3-1b). In the case 

of gene conversion, genetic material is transferred within an organism, while in the 

case of HGT, genetic material from a donor organism is incorporated into a 

recipient's genome. HGT has been more frequently observed in bacterial genomes, 

but it is also known for eukaryotic genomes (Keeling and Palmer, 2008).  

In general, recombination implies phylogenetic incongruencies along a genome, 

that is, the phylogeny of some regions (e.g. genes) can disagree with the phylogeny 

of the whole organisms (Dykhuizen and Green 1991; Posada et al. 2002; Keeling and 

Palmer, 2008). Detecting phylogenetic incongruence is often challenging. Moreover, 

Posada and Crandall (2001) showed that the performance of the methods for 

recombination detection can vary under different conditions (e.g. genetic divergence; 

the number of recombinational events). Thus, the choice of an appropriate method 

should depend on the data set analyzed (Posada and Crandall, 2001). 

Besides detecting recombination event, some methods can also detect 

recombinational breakpoints and the sequences involved in the recombinational 

event: parental and recombinant sequences (e.g. Boni et al., 2007). In particular, a 

subgroup of the recombination detection methods was developed for determining the 

subtypes or a mosaic form of a query sequence (e.g. Rozanov et al. 2004; Wu et al. 

2007; Kosakovsky Pond et al., 2009). These methods are called subtyping methods, 

and are typically used for the classification of new viral (e.g. HIV) sequences. 

Among the subtyping tools developed for HIV classification, the phylogeny-based 

subtyping methods provide more accurate results (e.g. Kosakovsky Pond et al., 

2009), but are slow when applied to large data sets. As an alternative, less precise, 

but more efficient alignment-free approaches can be used, e.g. the subtyping based 

on BLAST scores (Rozanov et al. 2004) or the approach based on the distribution of 

short nucleotide sequences among different HIV subtypes (Wu et al. 2007), etc. 

                                                 
9 The list of HIV circulating recombinant forms (CRFs) is available at 
http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html. 
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As explained in Section 2.2.1, we have recently developed an alignment-free 

estimator of substitution rates between sequence pairs, based on the average length of 

shortest unique substrings between sequences, Kr (Haubold et al. 2009). In Kr-based 

clustering of 825 HIV-1 genomes, all strains, except one, were correctly classified as 

their official subtype (Section 2.4.4; Figure 2-13). In further analyses, we discovered 

that the recombinant form of the misclassified strain was a recombinant (Domazet-

Lošo and Haubold, 2009; Sections 2.4.4 and 3.4.2). Taking this result as a starting 

point, in this part of my thesis, I address the problem of detecting locally similar 

regions between sequences. As one part of the solution to the problem, I developed a 

new algorithm for the detection of matching regions between sequences (Section 

3.2.4) based on shortest unique substrings (which were described in Section 2.2.1). I 

implemented this algorithm in the subtyping program st, which was then used for 

recombination detection in both simulated and real data sets. To illustrate the 

efficiency and the scalability of the approach, the program was used for the 

recombination detection in the pathogenic bacterium Neisseria meningitidis, to 

classify circulating recombinant forms of HIV, and to find the closest relative of an 

avian pathogenic Escherichia coli strain between 13 Escherichia coli and Shigella 

strains (Section 3.4). 

3.2. Methods 

3.2.1. Problem statement – determining subtype(s) of a query 
sequence  

Let Q = {Q1, .., Qm} be a set of m, and S = {S1, .., Sn} be a set of n (closely related) 

nucleotide sequences represented as strings over the alphabet {A, C, G, T}, and 

terminated by a unique character as before. Again, each sequence from Q and S is 

represented by its forward and reverse strand. Each sequence from Q is considered as 

query, and each sequence from S is considered as subject. Again, without loss of 

generality, let l denote the length of each sequence. 

Let each query sequence Qi be represented by a list Gi, where Gi consists of k (k ≥ 

1) segments: Gi = Gi,1 .. Gi,k, where: 
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(i) Gi,1 corresponds to the substring Qi[1 .. p2 - 1] 

(ii) Gi,d corresponds to the substring Qi[pd .. pd+1 - 1] for d = 2, .., k -1 

(iii) Gi,k corresponds to the substring Qi[pk .. |Qi|] 

 

and every segment Gi,d of Gi is annotated by Si,d, Si,d S, such that (see Figure 3-2): ⊆

(i) among members of S, members of Si,d are the most similar to Qi over the 

segment Gi,d  

(ii) Si,d ≠ Si,d-1, for d = 2, .., k 

 

The task is to find Gi as a list of segments Gi,d, d = 1, .., k. Notice that the number of 

segments k is not known in advance, and should be automatically detected.  

 

54321

C

$

G
$
C
$

$ATQ1

ATS3

CGS2

AGS1

54321

C

$

G
$
C
$

$ATQ1

ATS3

CGS2

AGS1
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Figure 3-2. Q1 represented by a list G1 = G1,1 G1,2. Q1 is a query and S = {S1, S2, 

S3} is the set of subject sequences. In the context of local sequence similarity, Q1 

can be represented by two segments G1,1 and G1,2. The first segment G1,1 

corresponds to the substring Q1[1..2], which is the most similar to the substring of 

S3, S3[1..2]. The second segment G1,2 corresponds to the substring Q2[3..4], which is 

the most similar to the substring of S2, S2[1..2]. Hence, Q1 can be observed as a 

mosaic of S3 and S2. 

 
A segment Gi,d, d = 1, .., k, that corresponds to a substring Qi[lb .. rb], is described by 

the following items: 
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(i) lb – the left endpoint of the segment  

(ii) rb – the right endpoint of the segment 

(iii) Si,d – the subset of S, whose members are the most similar to the substring 

Qi[lb .. rb]; that is, Qi is considered to be locally homologous to members of 

Si,d over Gi,d 

 

Further, if a query Qi is represented by a single segment Gi,1 that is most similar to 

the members of a subset Si,1, then we say that Qi is of subtype Si,1. If a query Qi is 

represented by k segments, k > 1, then we consider Qi to be a recombinant (or a 

mosaic) of different subtypes, . U
k

d 1=
di,S

3.2.2. Construction of locally homologous segments  

Let Qi and Sj be a pair of sequences from Q and S, respectively. Let hi,j,p denote the 

shortest unique substring (shustring), as before (see Section 2.2.1). Let Hi,p denote 

the greatest value of |hi,j,p| at position p, that is, Hi,p = max{|hi,j,p|}. Let Si,p denote the 

subset of S such that:  

Si,p = {Sj ∈  S | |hi,j,p| = Hi,p}.  

Values Hi,p and Si,p need to be stored for each position p, p = 1, .. ,|Qi|. For 

efficient memory usage, the following approach is used: an interval Ii,p is formed at 

position p, and contains the following fields: 

(i) lb – the left endpoint of the interval: lb = p 

(ii) rb – the right endpoint of the interval; initially: rb = lb + Hi,p – 1 

(iii) sl – shulen at the beginning of the interval: sl = Hi,p 

(iv) Ssl – a subset of S, such that Ssl = {Sj ∈S | |hi,j,p| = Hi,p} 
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Interval Ii,p is denoted by [Ii,p.lb, Ii,p.rb]. The important property of the final form of 

an interval Ii,p is that the value Hi,p' for every p', p' = 1, .. ,|Qi|, can be reconstructed 

from Hi,p, as: 

Hi,p' = Hi,p - (p' -  Ii,p.lb) for Ii,p.lb ≤ p' ≤ Ii,p.rb. 

Notice that when an interval Ii,p is formed, the value at position p', Ii,p.lb ≤ p' ≤ 

Ii,p.rb, determined as Hi,p - (p' -  Ip.lb), does not have to be equal to Hi,p'. In that case, 

when a new interval Ii,r is formed starting at position r, where Ii,p.lb ≤ r ≤ p' ≤ Ii,p.rb: 

(i) the value at position p' is readjusted to Hi,r - (p' -  Ii,r.lb)  

(ii) the right endpoint of interval Ii,p is readjusted: Ii,p.rb = Ii,r.lb – 1 

 

Algorithm 2, which constructs an interval list Ii for every sequence Qi and a set S, is 

presented in Section 3.2.4. An interval list Ii consists of t elements (intervals), Ii = Ii,1, 

.., Ii,t, t ≤ |Qi| = l. Since t is at least several times smaller than l both for simulated and 

real data sets, this provides overall memory reduction over an approach where Hi,p 

and Si,p are stored for every position p.  

Finally, Ii is transformed into a list of segments Gi = Gi,1 ... Gi,k. For every 

segment Gi,d (d = 1, .., k), a set of subjects Si,d is determined as a set of subjects that 

are most locally similar to Qi over a segment Gi,d. The construction of Gi from Ii 

using a sliding window analysis is described in Section 3.2.5. 

3.2.3. Time complexity of computing a list of intervals Ii 

In order to compute the list of intervals Ii for the query sequence Qi, the values of Hi,p 

have to be found for every position p = 1, .., |Qi|. To determine Hi,p, a shustring hi,j,p 

needs to be found for every Sj.  

To find all hi,j,p, p = 1, .. ,|Qi|, a generalized suffix tree T for a pair of sequences 

(Qi, Sj) is constructed and traversed. In T, a terminal node (Qi, p) corresponds to a 

suffix Qi[p .. |Qi|], and a terminal node (Sj, r) corresponds to Sj[r .. |Sj|]. A shustring 

hi,j,p is the shortest prefix of Qi[p .. |Qi|] absent from Sj[r .. |Sj|], and is found in T as 

the path label of a branch node v, that is the lowest common ancestor of (Qi, p) and 

(Sj, r), plus the first character on the path from v to (Qi, p). 
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The time needed to construct and traverse a suffix tree is proportional to the total 

length of the input text. When a generalized suffix tree is constructed of a single 

query sequence (Qi) and n subject sequences (from S), then in a single tree traversal 

all shustrings hi,j,p for every Sj ∈  S, and for every position p = 1, .., |Qi| can be 

determined. The time-complexity of the construction and the traversal of a 

generalized suffix tree of n subject sequences and a query sequence is O(nl). If the 

computation is extended to m query sequences, then the construction and the 

traversal of the corresponding generalized suffix tree is O((m + n)l). 

I describe a new algorithm, Algorithm 2, that constructs an interval lists for every 

query Qi during a single traversal of the generalized suffix tree T of all queries and 

subjects. More precisely, instead of an interval list, an interval tree, ITi, is 

constructed. An interval tree is a binary tree of intervals. An interval-list can be 

obtained from an interval tree by traversing the tree inorder. 

In Algorithm 2, an interval tree is used instead of an interval list, since inserting 

an interval in an interval-list takes O(l) time, and inserting an interval-node in an 

interval-tree takes O(log l) time. Thus, the overall time to construct an interval tree 

for a single query takes O(l log l).  

The construction of m interval trees for m queries during a single traversal of a 

generalized suffix tree of m queries and n subjects takes O((m + n)l  + ml log l) = O(l 

(n + m(1 + log l)) ) time.  

3.2.4. Algorithm 2: Construction of an interval tree 

An interval tree ITi for Qi consists of non-overlapping interval-nodes. An interval-

node zi,p of ITi corresponds to an interval Ii,p = [Ii,p.lb, Ii,p.rb] from Ii, and contains 

following elements: 

(i) lb – the left endpoint of the interval-node; zi,p.lb = Ii,p.lb 

(ii) rb – the right endpoint of the interval; zi,p.rb = Ii,p.rb, and initially: zp.rb = 

zp.lb + Hi,p - 1 

(iii) sl – shulen at the beginning of the interval: sl = Hi,p 

(iv) Ssl – a subset of S, such that Ssl = {Sj ∈S | |hi,j,p|  = Hi,p} 
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(v) left – pointer to the left child of zi,p 

(vi) right – pointer to the right child of zi,p 

 

Each interval-node zi,p is formed in such a way that the following rules hold: 

(i) for every interval-node x in the left subtree of zi,p: x.rb < zi,p.lb 

(ii) for every interval-node x in the right subtree of zi,p: zi,p.rb < x.lb  

An interval node zi,p is denoted by [zi,p.lb, zi,p.rb]. 

The construction of an interval-tree ITi for Qi is described in Algorithm 2 (Figure 

3-3). ITi is constructed while traversing a generalized suffix tree T of Qi and n subject 

sequences, S = {S1, .., Sn}.  

Notice, at the moment of insertion of an interval-node in an interval-tree, an 

interval can have unadjusted endpoints, that is, a new interval-node can overlap with 

one or more intervals-nodes in ITi. In that case, the endpoints of both a new interval 

and the intervals in ITi are adjusted, so that the tree always contains non-overlapping 

intervals.  

Let every branch node v of T contain following fields: 

(i) subjectId - the set of subject identifiers {Sj | ∃  (Sj, p) that is a terminal node in 

the subtree rooted on v}; notice that this list is empty for the branch nodes that 

contain only terminal nodes that refer to the query 

(ii) branchChildren: the set of branch nodes which are children of v 

(iii) termChildren: the set of terminal nodes which are children of v  

(iv) stringDepth: the length of the path label of v; the string depth of v represents 

the length of the longest common prefix of all suffixes corresponding to the 

terminal nodes in the subtree rooted on v 

(v) unresolvedTerm: the set of unresolved terminal nodes of v that refer to the 

query 

I call a terminal node that refers to a query a query terminal node, and a terminal 

node that refers to a subject a subject terminal node. A query terminal node (Qi, p) is 
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said to be resolved, when the value Hi,p is determined for this node. The set 

unresolvedTerm contains query terminal nodes in the subtree rooted on v for which 

Hi,p has not yet been determined. That is, there are no subject terminal nodes in the 

subtree rooted on v, so the value Hi,p could not have been determined for any 

terminal node w in the subtree rooted on v (w ∈  v.unresolvedTerm). 

Let every terminal node w contain the following fields: 

(i) seqId: the sequence identifier referred to by w (Qi or S1, .., Sn) 

(ii) pos: starting position of the suffix (seqId[pos .. |seqId|]) referred to by w 

 

Algorithm 2 Construct an interval tree 

Require: T {suffix tree of n + 1 DNA sequences Q1,S1,S2,...,Sn} 

Ensure: IT {interval tree}  

 1:  traverse(root(T), root(IT)) 

 2:  updateITree(root(IT), -1) 

 3:  function traverse(v, z)  

 4:  for all w ∈ v.branchChildren do  

 5:    traverse(w, z) 

 6:  if v.subjectId is not empty then  

 7:    for all w ∈ v.termChildren do  

 8:      if w is a query node then 

 9:        formIntervalNode(w, v, z)  

10:    for all w ∈ v.unresolvedTerm do 

11:      formIntervalNode(w, v, z) 

12: end function  

13: function formIntervalNode(w, v, z) 

14:   new.lb = w.pos 

15:   new.sl = v.stringDepth + 1 

16:   new.Ssl = v.subjectId 

17:   addIntervalNode(z, new) 

18: end function 
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19: function addIntervalNode (z, new) 

20: if z == null then  

21:   z = new 

22: else if new.lb < z.lb then /* left subtree */ 

23:   if new.sl == z.sl + (z.lb – new.lb) then /* extend z */ 

24:     /* new is superinterval of z */ 

25:     z.lb = new.lb 

26:     z.rb = min(z.rb, new.rb) 

27:     z.sl = new.sl 

28:     z.Ssl = new.Ssl /* new.Ssl is subset of z.Ssl */  

29:     if z.left != null then 

30:       z.left.rb = min(z.left.rb, z.lb - 1) 

31:       /* rb of subtree nodes are fixed by updateITree */ 

32:   else /* add new to interval-tree */ 

33:     new.rb = min(z.lb - 1, new.rb) 

34:     if z.left == null then 

35:       z.left = new 

36:     else  

37:       z.left = addIntervalNode(z.left, new) 

38: else if new.lb > p.lb then /* right subtree */ 

39:   /* z is not superinterval of new */ 

40:   if (z.sl != new.sl + new.lb – z.lb) then 

41:     /* z.rb must be < any lb in its right subtree*/ 

42:     z.rb = min(z.rb, new.lb - 1) 

43:     if z.right == null then 

44:       z.right = new 

45:     else 

46:       z.right = addIntervalNode(z.right, new) 

47: end function 

 

48: function updateITree (z, maxRB) 

49: if z != null then 

50:   updateITree(z.left, z.lb – 1) 

51:   if maxRB != -1 then 
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52:     z.rb = min(z.rb, maxRB) 

53:   updateITree(z.right, maxRB) 

54: end function 

Figure 3-3. Algorithm 2 - Construction of an interval tree from a suffix tree. 

 

Example 3-1 

Let T be the generalized suffix tree constructed of Q1 and S = {S1, S2, S3} (Figure 3-

4a). Branch nodes of T are represented by red circles. Terminal nodes of T are 

represented by gray rectangles. T is traversed bottom-up.  

Algorithm 2 starts by calling function traverse, with a root node of T (v6) as 

argument. Then, at each branch node v of T (v = v1, .., v6), its terminal nodes are 

examined. If a terminal node w is a query terminal node, then a new interval-node z 

is formed by calling function addIntervalNode. An interval-node z has following 

fields: lb, rb, sl, Ssl, left and right, as previously explained, and is represented in the 

following form in Figure 3-4b: [lb, rb] Ssl, sl. In the subsequent sections this is 

abbreviated to as [lb, rb]. 
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Figure 3-4 Algorithm 2 – Example 3-1. a) The generalized suffix tree T is built from the set of four sequences {Q1, S1, S2, S3} listed in the 

top-left corner of the figure. Branch nodes of T are shown in red, and terminal nodes as gray rectangles designated as (Si, p) for subject 

terminal nodes, and (Q1, p) for query terminal nodes. b) State of the interval tree IT1 after each of the branch nodes of T {v1, v2, v3, v4, v5, 

v6} is encountered during the bottom-up traversal of T (the right-most column of the table). Algorithm 2 starts by calling the function 

traverse for the root node (v6). The function formIntervalNode adds a new interval node, or modifies the existing one for each query 

terminal child of vi. Each interval node is represented as: [lb, rb] Ssl, sl, where lb and rb are the left and the right endpoints of an interval; sl 

is the shustring length at the beginning of the interval, and Ssl is the set of subject sequences with the highest shustring lengths across 

that interval. Function min returns the minimum value of the specified parameters. 
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The construction of the interval-tree, IT1, from Q1 and S = {S1, S2, S3} starts with 

the branch node v1. The node v1 has 3 child nodes. Two subject terminal nodes of v1 

are (S1, 2) and (S3, 2). Thus, the list v1.subjectId contains S1 and S3. A query terminal 

node of v1 is (Q1, 2), so the first interval-node of IT1, z1,2, is formed from (Q1, 2). The 

shulen value of (Q1, 2) is the string depth of its parent node, v1, plus 1. The endpoints 

of z1,2 are initially set to lb = 2, and rb = lb + sl – 1 = 2 + 2 – 1 = 3, thus forming the 

interval [2, 3]. Since v1.subjectId = {S1, S3}, it follows that z1,2.Ssl = {S1, S3}. In 

summary, z1,2, which becomes the root of IT1, has the following structure: [2, 3] {S1, 

S3}, sl = 2 (see Figure 3-4b). 

The next node in the traversal of T is v2, with its terminal node (Q1, 4). The new 

interval-node, z1,4, is formed as: [4, 5], Ssl = {S2}, sl = 2. The root interval-node z1,2 = 

[2, 3] precedes z1,4 = [4, 5], so the new interval is added to the right subtree of the 

root (see Algorithm 2, lines 38-46). 

The branch node v3 has a query terminal node, (Q1, 3). The new interval, z1,3 = [3, 

5], is the superinterval of z1,4 = [4, 5] (see Algorithm 2, lines 22-30). In this case, a 

new interval-node is not added to the tree, but the previous interval, z1,4 = [4, 5], is 

extended to the left. Hence, the new node z1,3 replaces z1,4. Further, the list of subjects 

z1,4.Ssl is replaced by z1,3.Ssl, which is equal to v3.subjectId. Since v3.subjectId  

z1,4.Ssl, then only the subjects from v3.subjectId have the maximal shulen values 

across all positions in the extended interval [3, 5], so z1,3.Ssl = v3.subjectId. 

⊆

The branch node v4 has no query terminal children, and no changes are made to 

the interval tree.  

Similarly to the situation for the branch node v3, when the branch node v5 is 

encountered, a new interval is not added to the tree, but the existing interval z1,2 = [2, 

2] is extended to the left, and it becomes z1,1 = [1, 2]. In addition, the new subject list 

becomes the subset of the old one, so z1,1.Ssl = v5.subjectId = {S3}. 

The last query terminal node, (Q1, 5), is a child node of the root of T, v6. Here, no 

change has been made in IT1, since (Q1, 5) is already included in the interval node [3, 

5], that is, z1,5 is the subinterval of z1,3. 
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The process of adding an interval in the left subtree of an interval-node is similar 

to the process of adding an interval to the right subtree just described (Algorithm 2, 

lines 21-36). However, there is one difference. Let z denote an existing interval-node, 

and let a new interval new extend z to the left (see Algorithm 2, lines 31-36). Here, 

not only the right endpoint of extended z has to be adjusted, but also, possibly, the 

right endpoints of some other nodes in the subtree of z. This is done only once by 

calling the function updateITree after all interval-nodes have been added to the 

tree. The function updateITree takes O(l) time to traverse an interval-tree and 

fixes all right endpoints. In comparison, if the right endpoints of interval-nodes were 

adjusted during the insertion of every new interval-node, then the total procedure for 

all inserted interval-nodes would take O(l log l) time.  

Further, a branch node v may contain only query terminal nodes in its subtree, i.e. 

v may have an empty list of subjects (this situation is not shown in Figure 3-4). In 

that case, interval-nodes cannot be formed from the query terminal nodes of v. These 

unresolved query terminal nodes are stored in the set v.unresolvedTerm. The set of 

unresolved query terminal nodes is passed from v to its ancestral branch nodes, until 

a node w is encountered, which is the lowest common ancestor of v and at least one 

subject terminal node. When w is encountered, interval-nodes can be formed of 

query terminal nodes stored in v.unresolvedTerm. 

3.2.5. Computing a list of segements Gi 

A segment list Gi is formed from an interval list Ii. Every segment Gi,d of Qi (d =1, .., 

k) is said to be most closely related to Si,d  S, if the sum of shulens sumi,d over Gi,d 

is maximal for the shustrings of Qi when compared to Sj 

⊆

∈  Si,d: 

(i) maxsumi,d = max {sumi,d(Sj) | Sj ∈  S},   

and for a query Qi when compared to Sj ∑
=

=
rbG

lbGp
pjijdi

di

di

hSsum
.

.
,,,

,

,

)(

(ii) Si,d = { Sj ∈  S | sumi,d(Sj) = maxsumi,d} 
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End-points of a segment Gi,d are determined by sliding window-analysis. A 

sliding window10 wi,e represents a segment of Qi of a predefined length. Subjects 

which are locally homologous to Qi over wi,e are those with the maximal value of the 

sum of shulens over wi,e. Thus, wsumi,e is defined as the sum of shulens over a 

window wi,e: 

(i) wmaxsumi,e = max {wsumi,e(Sj) | Sj ∈  S},  

and for a query Qi when compared to Sj ∑
=

=
rbw

lbwp
pjijei

ei

ei

hSwsum
.

.
,,,

,

,

)(

(ii) Si,e = { Sj ∈  S | wsumi,e(Sj) = wmaxsumi,e} 

 

When two adjacent windows, wi,e and wi,e+1, have different list of subjects with 

maximal sums of shulens over windows (Si,e ≠ Si,e+1), then an end-point of a segment 

is formed as a middle point of the overlapping part of these two windows. 

However, in an interval list Ii only the values Hi,p are stored, and values hi,j,p ≠ 

Hi,p cannot be obtained from Ii for all positions p in Qi when compared to every 

subject Sj ∈  S. In order to use as much information as possible to compute sumi,d and 

wsumi,e, some additional information is derived from intervals in Ii. As explained in 

Section 3.2.4, each interval Ii,p contains the following fields:  

(i) lb – the left endpoint of the interval: lb = p 

(ii) rb – the right endpoint of the interval; initially: rb = lb + Hi, p – 1 

(iii) sl – shulen at the beginning of the interval: sl = Hi, p 

(iv) Ssl – a subset of S, such that Ssl = {Sj ∈S | |hi,j,p|  = Hi, p} 

 

The window size w can be set by a user, or a default value (1 nucleotide) is used. 

The windows are advanced by an increment that is also either set by the user, or 

defaults to the window size divided by 10. Further, the minimal fragment length f is 

                                                 
10 Let w be the window size, and inc the increment step in a sliding windows analysis. The first sliding 
window wi,1 represents the substring Qi[0 .. w - 1], the second window wi,2 represents Qi[inc .. inc + w 
- 1], etc.  

  81



 

introduced as the minimal length of the segment that can be considered as a relevant 

match between a subject and a query. The value f can be also set by the user, or its 

default value is the length of an increment step. If a segment length is shorter than f, 

that segment is discarded, and two neighboring segments are fused across this 

segment. 

3.3. Analysis of st on simulated data sets 

3.3.1. Run-time and memory usage analysis of st 

Run-time and memory usage analysis were computed for simulated data sets of 

nucleotide sequences of length (l) 10 kb, 100 kb and 1 Mb. Samples were simulated 

using the program Dawg (Cartwright, 2005). Each sample consists of a query 

sequence, and a set of subject sequences. In experiments (i) and (ii), the subject set 

contains n = 10 sequences, and in experiment (iii) n = 100 sequences. The summary 

characteristics of these three experiments are shown in Table 3-1. Notice that a query 

sequence is generated as a different recombinant in each of experiments: 

Experiment (i) (n = 10): a query is a recombinant of subject sequences 1 and 2 in 

the following order: 1-2-1-2-1, i.e. the first segment is most closely related to subject 

1, the second segment is most closely related to subject 2, and so on. Thus, for the 

data sets of l = 10 kb and l = 100 kb, a query sequence consists of 5 segments of 

equal lengths (2 kb and 20 kb, respectively), and of 50 segments for the data sets of l 

= 1 Mb. Notice that for the data sets of l = 1 Mb, the mosaic 1-2-1-2-1 is repeated 10 

times to construct 50 segments. 

Experiment (ii) (n = 10): a query is a recombinant of subject sequences 1, 2, 6, 

and 9 in the following order: 1-2-6-1-9,  i.e. the first segment is most closely related 

to subject 1, the second segment is most closely related to subject 2, the third 

segment is most closely related to subject 6, and so on. Again, for the data sets of l = 

10 kb and l = 100 kb, a query sequence consists of 5 segments of equal length (2 kb 

and 20 kb, respectively), and of 50 segments for the data sets of l = 1 Mb. The 

mosaic 1-2-6-1-9 is repeated 10 times to construct 50 segments in the case of the data 

sets of l = 1 Mb. 
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Experiment (iii) (n = 100): a query is a recombinant of subject sequences 1 and 2, 

in the following order: 1-2-1-2-1 as in Experiment (i). As before, for the data sets of l 

= 10 kb and l = 100 kb, a query sequence consists of 5 segments of equal length (2 

kb and 20 kb respectively), and of 50 segments for the data sets of l = 1 Mb. As in 

Experiment (i), the mosaic 1-2-1-2-1 is repeated 10 times to construct 50 segments 

for the data sets of l = 1 Mb. 

 

Table 3-1. Run-time and memory usage analysis of st on simulated data sets. 
For each of three experiments, three data sets of different sequence length (l) were 

generated. In experiments (i) and (ii), the set of subjects contains n = 10 sequences. 

In experiment (iii), n = 100. For each experiment, the mosaic form (mosaic) of a 

recombinant sequence (query) is shown. The table contains two statistics for each 

experiment: the run-time required for the execution of st (t), and the memory usage 

peak of st (m). 

 

Experiment (i) 
n = 10  
mosaic: 1-2-1-2-1

Experiment (ii) 
n = 10  
mosaic: 1-2-6-2-9

Experiment (iii) 
n = 100 

mosaic: 1-2-1-2-1 

 m [MB] t [s] m [MB] t [s] m [MB] t [s] 

l = 10 kb 2.9 0.072 2.8 0.072 23.4 1.874 

l = 100 kb  29.0 2.088 28.9 2.083 233.9 37.839 

l = 1 Mb 293.8 39.358 292.96 39.274 2344.3 482.188 
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n = 100 (a recombinant form 1-2-1-2-1)

Figure 3-5. Memory usage of st on simulated data sets. The analysis shows that 

the memory usage is linear in the size of the input data set. 
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Figure 3-6. Run-time of st on simulated data sets. Three graphs are shown, each 

representing a different combination of the number of subject sequences in the data 

set (n), and a mosaic form representing the recombinant query sequence.  

 

3.3.2. Consistency of st 

In this Section, the consistency of my program, st, is tested on simulated data sets. 

The analysis is based on the samples simulated by Dawg (Cartwright, 2005). In all 

three experiments, the model and the parameters used were as set by Kosakovsky 

Pond et al. (2009) in order to simulate HIV-1 scenario: the general time reversible 

model of nucleotide substitution with gamma and invariant rate heterogeneity (the 

shape parameter of α = 0.8); the four stationary nucleotide frequencies are πA = 0.4, 

πC = 0.2, πG = 0.1, and πT = 0.3; and the six substitution rates are θAC = 2.0, θAG = 

4.0, θAT = 0.8, θGC = 0.9, θCT = 5.0, and θGT = 1.0. 
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In Experiment 1, 100 samples of 4 sequences of length 10 kb were simulated. In 

each data set, three sequences represent subject sequences (sequences denoted 1, 2, 

and 3), and one sequence represents a query sequence (denoted Q), which is 

constructed as a recombinant of sequences 1 and 2. More precisely, a query sequence 

contains 5 fragments of length 2 kb, where each fragment is most closely related to 

sequence 1 or sequence 2, in alternation (see Figure 3-7). Parameter d in Figure 3-7 

represents the length of the shortest branch in a model, and is scaled as 2d and 3d in 

other branches. Moreover, the length of each branch in the model is the expected 

number of the substitutions per site. For example, the first fragment of Q is the most 

closely related to sequence 1, and its evolutionary distance to sequence 1 is 0.01 + 

0.01 = 0.02. The value of d ranges from 0.001 to 0.25 in order to analyze the 

accuracy of st over different substitution rates (see Figure 3-7). In summary, there are 

two phylogenies that involve a recombinant sequence Q. The first phylogeny refers 

to the fragments of Q which are locally homologous to 1 and it is (((Q:d, 1:d): d, 

2:2d): d, 3:3d); and the second phylogeny refers to the fragments of Q which are 

most closely related to 2: (((Q:d, 2:d): d, 1:2d): d, 3:3d); 

Figure 3-8 contains three graphs, each corresponding to the analysis based on a 

different window length (w = 600 bp, 1 kb, and 2 kb). Each point on the graph 

represents the mean accuracy +/- standard deviation of recombination detection over 

100 samples. The accuracy can range from 0 to 1, and it refers to the ratio of 

correctly classified nucleotide positions in a query sequence. For example, let Q be 

constructed in the form 1-2-1-2-1, where each fragment is of length 2 kb, as in 

Experiment 1. If Q is then predicted by st to be most closely related to the sequence 1 

over its whole length, then the prediction accuracy is 0.6, since 6 kb out of 10 kb 

were correctly determined, and 4 kb (which were most closely related to the 

sequence 2) were misclassified. 

In Experiment 2, 100 samples of 4 sequences of length 100 kb were simulated. A 

query sequence in each sample is constructed as a recombinant of sequences 1 and 2 

and contains 50 fragments of length 2 kb, where the pattern 1-2-1-2-1 is repeated 10 

times (Figure 3-9). Again, the windows analysis (w = 600 bp, 1 kb, 2 kb, 10 kb) is 

applied to see the prediction accuracy of this more complicated model over a range 

of d values. 
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Finally, in Experiment 3, 100 samples of 4 sequences of length 100 kb were 

simulated, where a query sequence contains 5 fragments of length 20 kb in the 

recombination form 1-2-1-2-1 (Figure 3-10). Windows analysis (w = 600 bp, 1 kb, 2 

kb, 10 kb, 20 kb) is applied over a range of d. 

 

 

Figure 3-7. Phylogeny of simulated recombinants. In each of three scenarios, 

used in Experiments 1-3, 4 sequences were constructed: three subject sequences 

(denoted 1, 2, and 3), and a query sequence (denoted Q). A recombinant query Q is 

constructed as a concatenation of either 5 fragments (in Experiments 1 and 3), or of 

50 fragments (in Experiment 2). Each fragment is most closely related to either a 

subject sequence 1 or a subject sequence 2. Here, 5 fragments of Q are drawn, 

each corresponding to either the sequence 1 (a fragment denoted by 1), or to the 

sequence 2 (a fragment denoted by 2). In Experiments 1 and 3, a recombinant is of 

the form 1-2-1-2-1, and in Experiment 2, these form is repeated 10 times, as there 

are 50 fragments in a recombinant. A parameter d = 0.001, 0.0025, 0.005, 0.01, 

0.05, 0.1, 0.2, 0.25, which is the shortest branch in both shown phylogenies, also 

represents the expected number of substitutions per site. For example, since here d 

is 0.01, then the left phylogenetic tree is depicted as (((Q:0.01, 1:0.01): 0.01, 

2:0.02): 0.01, 3:0.03); 
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The following conclusions can be derived from the analysis in Experiments 1-3, as 

seen in Figures 3-8 to 3-11: 

(i) as the fragment length growths, the detection accuracy is better; for example, for 

d = 0.001, the average accuracy in Figure 3-8 is around 0.7 (a recombinant 

sequence is formed of 5 fragments of 2 kb), and in Figure 3-10 is around 0.8 (a 

recombinant sequence is formed of 5 fragments of 20 kb) 

(ii) the window size, w, only slightly influences the overall prediction accuracy as 

long as w is not longer than a recombinant fragment length; when w is greater 

than the fragment length, the prediction accuracy starts declining. For example, 

in Figure 3-9 (a recombinant sequence is formed of 50 fragments of 2 kb) the 

accuracy is consistent for w ≤ 2 kb, but significantly worse results are obtained 

for w = 10 kb. 

(iii) with the constant window size, the number of fragments in a recombinant only 

slightly reduces the accuracy; for example, compare the results in Figures 3-8 (a 

recombinant sequence is formed of 5 fragments of 2 kb), and in Figure 3-9 (a 

recombinant sequence is formed of 50 fragments of 2 kb) 
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Figure 3-8. Recombination detection accuracy for data samples of sequences 
of length 10 kb, and a recombinant consisting of 5 fragments of length 2 kb. 
Figure contains 3 graphs, each for a different window length (w). Each point 

represents a mean value +/- SD of 100 samples. 
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Figure 3-9. Recombination detection accuracy for data samples of sequences 
of length 100 kb, and a recombinant consisting of 50 fragments of length 2 kb. 
Figure contains 4 graphs, each for a different window length (w). Each point 

represents a mean value +/- SD of 100 samples. 
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Figure 3-10. Recombination detection accuracy for data samples of sequences 
of length 100 kb, and a recombinant consisting of 5 fragments of length 20 kb. 
Figure contains 5 graphs, each for a different window length (w). Each point 

represents a mean value +/- SD of 100 samples. 
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Figure 3-11. Recombination detection accuracy for data samples of sequences 
of length 10 kb, and a recombinant consisting of 5 fragments of length 2 kb. 
Figure contains 5 graphs, each for a different window length (w). Each point 

represents the number of samples (out of generated 100) which were completely 

correctly classified. That is, all 4 recombinant breakpoints were correctly classified, 

and the correct parental sequences were determined for both sides of each 

breakpoint. 
 

3.3.3. Comparison to SCUEAL on simulated data sets 

Finally, the recombinant detection performance of st is compared to SCUEAL 

(Kosakovsky Pond et al., 2009), since this tool was specifically designed for the 

highly precise analysis of HIV sequence. The authors extensively analyzed SCUEAL 

over both real and simulated data sets, and the availability of these data together with 

the results was another reason for choosing this program as the accuracy standard. 

However, as a trade-off, SCUEAL implementation is time consuming, and thus 

impractical for very large sequences (e.g. SCUEAL analysis of an HIV recombinant 

lasted more than 6 hours, while st analysis of the same sequence took 0.4 seconds; 

Section 3.4.2). Therefore, in this Section, I only concentrate on the accuracy 

  92



 

performance of st in comparison to SCUEAL on simulated data sets provided by 

Kosakovsky Pond et al. (2009). 

The simulated data sets used in the experiments resemble the simple and the 

complex HIV-like mosaic. In each experiment, 100 samples were generated, where 

each sequence is 10 kb long, with the recombinant fragment length of 2 kb 

(Kosakovsky Pond et al., 2009). For each sample, a recombinant query sequence is 

compared to 11 subject sequences (sequences denoted 1 to 11). 

In the simple mosaic scenario, a query sequence is constructed in three forms: 1-

2-1-2-1, 1-6-1-6-1, and 1-9-1-9-1. In the first case, evolutionary distance between 

sequences 1 and 2 is close; in the second case, evolutionary distance between 

sequences 1 and 6 is medium, and in the last case, sequences 1 and 9 are divergent 

(Kosakovsky Pond et al., 2009). In the complex mosaic scenario, the recombinant 

form is 1-2-6-1-9, and the subject sequences are close (sequence 2), medium 

(sequence 6), or distantly-diverged (sequence 9) from the sequence 1. The results of 

SCUEAL-based analysis on these data sets (Kosakovsky Pond et al., 2009) are 

presented in Table 3-2. 

 

Table 3-2. Results of SCUEAL analysis of HIV-like recombinant detection 
(Kosakovsky Pond et al., 2009).  

SCUEAL close medium divergent complex mosaic

Correct 95/100 100/100 99/100 94/100 

Subset 1/100 0 0 5/100 

Superset 2/100 0 1/100 0 

Mismatch 2/100 0 0 1/100 

 

 

The summary results of st analysis and the comparison to SCUEAL are shown in 

Figures 3-12 and 3-13. The analysis shows that the window size, w, close to the 

fragment length gives better results, but the results obtained from the windows 

analysis with w up to the half of the fragment length (for w = 1kb) are also 

acceptable. These results agree with the previous analysis (see Section 3.4.2). In 

addition, results with the greater value of f (f is the minimal length of st fragment to 
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be considered as a relevant), are better as long as window size does not exceed the 

true fragment length. 

Further, the best overall results are obtained for the simple HIV-mosaic scenario, 

where the parental sequences of a recombinant are at medium evolutionary distance 

(mosaic form: 1-6-1-6-1). The only case where st outperforms SCUEAL is the 

complex HIV mosaic scenario for window size at least 1 kb. In all other cases, st is 

surpassed by SCUEAL results. With a proper choice of the window size (w), and the 

minimal fragment length (f), st results are closely matching those obtained by the 

SCUEAL analysis (Figures 3-12 and 3-13).  
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Figure 3-12. Comparison of st and SCUEAL results, where the minimal 
fragment length (f) of st was set to 200 bp. These programs were compared over 

4 different scenarios (see text). The st windows analysis is shown in for a range of 

window size (600 bp, 1 kb, 2 kb, 2.6 kb) (black graphs). The value Count on y-axis 

refers to the number of samples (out of 100) for which all 4 breakpoints in a 

recombinant were correctly recognized (the position, and the parental sequences). 

SCUEAL results are shown in b) (see also Table 3-2), and denoted as red circles, 

and red triangles in a). 
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Figure 3-13. Comparison of st and SCUEAL results, where the minimal 
fragment length (f) of st was set to 400 bp. The programs were compared over 4 

different scenarios (see text). The size of a window in st windows analysis ranges 

from 600 bp to 2.6 kb (black graphs). The value Count on y-axis refers to the 

number of samples (out of 100) for which all 4 breakpoints in a recombinant were 

correctly recognized. SCUEAL results are shown in b) (see also Table 3-2), and 

denoted as red circles, and red triangles in a). 
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3.4. Application of st 

The program st was used to detect local sequence similarity in real data sets. The 

results are compared to the results of existing tools, and where possible, to the 

published annotation. The following data sets were analyzed (Table 3-3): 

(i) Neisseria meningitidis in comparison to N. gonorrhoeae and N. cinerea 

(ii) HIV-1 strain A_DQ083238 in comparison to 37 reference strains from the HIV 

sequence database (http://www.hiv.lanl.gov) 

(iii) 91 HIV-1 circulating recombinant forms in comparison to HIV-1 42 pure  

subtype strains (Leitner et al., 2005; Wu et al., 2007) 

(iv) 266 HIV-1 circulating recombinant forms in comparison to HIV-1 42 pure 

subtype strains, and  65 recombinant strains (Leitner et al., 2005; Wu et al., 

2007) 

(v) avian pathogenic E. coli strain O1:K1:H7 (Johnson et al., 2007) in comparison to 

human pathogenic E. coli genomes 
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Table 3-3. Analyzed data sets. The table contains following statistics for each data 

set: the number of subject sequences in the data set (n), the number of query 

sequences in the data set (m), the average sequence length (lavg), the size of the 

whole data set (size), the reference for the analysis of the data set (Compared to), 

the time required for the execution of st (tst), st memory usage peak (mst). 

Data set n m 
lavg 

[kb] 
size 
[kb] 

Compared to 
tst  
[s] 

mst 

[MB] 

Neisseria 2 1 0.9 2.7 

Boni et al. 2007;  

Westesson and 

Holmes, 2009 

0.005  0.1 

HIV 37 1 9 342 
SCUEAL (Kosakovsky 

Pond et al. 2009) 
0.4 8 

HIV 42 91 9 1169 

Wu et al. 2007;  

NCBI genotyping tool 

(Rozanov et al., 2004) 

4 43 

HIV 42+65 266 9 3329 

Wu et al. 2007;  

NCBI genotyping tool 

(Rozanov et al., 2004) 

23 112 

E. coli 13 1 4756 66588 Johnson et al. 2007 325 1582 

 

3.4.1. The analysis of Neisseria meningitidis 

The first data set analyzed consists of sequences representing argF gene of three 

species from the genus Neisseria: N. meningitidis, N. cinerea, and N. gonorrhoeae. 

Previous studies have already shown the mosaic structure of argF gene of N. 

meningitidis (e.g. Boni et al., 2007; Westesson and Holmes, 2009). Their results 

suggest that the first part of argF gene of N. meningitidis (nucleotide positions from 1 

to approximately 200) is most closely related to the N. cinerea argF gene, and that 

the ancestry of the second part of the gene is in N. gonorrhoeae. However, the 

position of another possible breakpoint (around nucleotide positions 50 or 750) 

remains unclear (Boni et al., 2007; Westesson and Holmes, 2009). 
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The results obtained from st confirm the previous results (Boni et al., 2007). The 

results shown in Figure 3-14 were based on st analysis using windows size: 30 bp, 

the increment step: 10 bp, and the minimal length of the fragment to be considered as 

a relevant transfer: 10 bp. The similar results were obtained with windows size 

varying from 30–200. However, if the size of the minimal relevant transfer is 

increased, then the second break point (around nucleotide position 750) is not 

detected. 

 

 

Figure 3-14. The mosaic structure of N. meningitidis detected by st. The 

segments of N. meningitidis which are locally homologous to N. cinerea are 

represented as pink rectangles (nucleotide positions 0-189, and 750-766), and 

segments which are locally homologous to N. gonorrhoeae are represented as blue 

rectangles (nucleotide positions 190-749, and 767-786). The recombination form of 

N. meningitidis derived from st analysis agrees with the previous results (e.g. Boni et 

al., 2007). However, the existence of the second breakpoint (around nucleotide 

position 750) remains unclear. 

 

3.4.2. The analysis of a recombinant form of HIV-1  

The next example shows the recombinant form of an HIV-1 strain, A_DQ083238, 

which was not classified according to its official subtype, A (see Section 2.4.4, and 

Figure 2-13). The strain was compared to the set of 37 HIV-1 reference strains (HIV 

sequence database, http://www.hiv.lanl.gov). It was analyzed both by st, and by 

SCUEAL, a recently developed phylogeny-based tool for the sequence subtyping 
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(Kosakovsky Pond et al., 2009). Both st and SCUEAL found that the ancestry of 

most of A_DQ083238 strain is of A1 sub-subtype, but with a significant part (around 

30%) of C subtype genome (Figures 3-15 to 3-17). The st-based results were 

computed with window size 300, increment step 50, and the minimal fragment length 

of 100. The precise results generated by SCUEAL were produced in 379 minutes ≈ 

6.3 h, and the memory usage peak was 169 MB. 

The strong local sequence homology between A_DQ083238 and C strains 

resulted in the misclassification of A_DQ083238 in Kr-based phylogeny (the strain 

was clustered with C, instead of A strains). The strong signal was based on the high 

values of shortest unique substrings between A_DQ083238 and C strains, which 

resulted in higher average length of shortest unique substrings when compared to the 

average length of shustrings of A_DQ083238 when compared to A strains.



 

b) The SCUEAL-based analysis of A_DQ083238 

a) The st analysis of A_DQ083238 

 

Figure 3-15. The analysis of the strain A_DQ083238 by st and SCUEAL. Both methods showed the recombinant form of this strain: it 

consist of mostly A subtype and around 30% of C subtype. In addition, both programs detected two regions of C subtype: the first regions 

from roughly 1000-1800 bp, and the second region from 2700-4200 bp. 
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Figure 3-16. Analysis of strain A_DQ083238 by st. A_DQ083238 was compared to 37 reference pure subtype strains (see text). The 

segments of A_DQ083238 which are most locally homologous to A1 strains are represented as four shades of blue rectangles (e.g. 

nucleotide positions 0-499), and segments which are locally homologous to C strains are represented as three shades of pink 

rectangles (nucleotide positions 1050-1849, and 2700-4249). The st results suggest that A_DQ083238 is a recombinant form of mostly 

A1 sub-subtype with 30% of the genome derived from C subtype, and some traces of G subtype.  
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Figure 3-17. A part of the report generated by SCUEAL for strain A_DQ083238. 
A_DQ083238 was compared to 37 reference pure subtype strains. This phylogeny-

based analysis reveals the recombinant nature of the strain, with prevailing A1 sub-

subtype, and about 30% of C derived genome. 

 

3.4.3. The analysis of circulating recombinant forms of HIV-1 

Wu et al. (2007) analyzed 331 circulating recombinant forms (CRFs) of HIV-1. They 

analyzed the data set using NCBI genotyping tool, also designed for the analysis of 

HIV recombinant forms (Rozanov et al. 2004), and their solution based on the 

nucleotide composition of string vectors. 
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First, the subset of 91 recombinant strains was analyzed in comparison to the set 

of 42 HIV-1 reference sequences (Leitner et al., 2005; Wu et al., 2007). Each strain 

from this subset is officially classified as a recombinant of two subtypes, e.g. a strain 

classified as CRF02AG is a recombinant of A and G subtypes. The authors reported 

the prediction accuracy of 87.3% for their method, and 73.4% and 66.2% for NCBI 

genotyping tool. In the st analysis of these 91 strains, parental subtypes were 

determined as the two top subject strains returned by st windows analysis. The 

accuracy of st was 93.4%.  

Next, from the set of 331 CRFs, 65 of them were chosen as reference 

recombinant forms. Thus, the remaining 266 strains were compared to the reference 

set of 42 pure subtypes and 65 recombinant forms to find the most closely related 

strain. NCBI tool correctly classified 264, and Wu et al. (2007) 242 strains. For this 

data set, st correctly subtyped 263 strains. Among three strains for which st did not 

return the correct most closely related strain, two strains, AY771588 and AY771589, 

were most closely related to a strain of pure subtype (B), which was also the result of 

NCBI genotyping tool reported by Wu et al. (2007). The closer inspection showed 

that the top result (a strain of subtype B) was closely followed by strains of BF 

recombinant form, which was the official result. The third strain, DQ354120, was 

classified by st as CRF01AE recombinant, although its official recombinant form is 

CRF1501B. 

3.4.4. The analysis of an avian pathogenic Escherichia coli strain 

Recently, Johnson et al. (2007) compared an avian pathogenic strain of Escherichia 

coli (APEC), O1:K1:H7, to strain K-12 MG1655, and 3 uropathogenic E. coli 

(UPEC) strains: CFT073, UTI89, and 536. Their result, based on chromosome 

alignment and BLAST (Altschul et al., 1990) comparison of proteins, suggests that 

the genome of O1:K1:H7 is most closely related to the genome of UTI89. However, 

they also showed that a genomic island of O1:K1:H7 (between nucleotide positions 

4711722 and 4769233) exists only in strain CFT073, and not in the genomes of the 

other three strains, K-12 MG1655, UTI89 and 536. 
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In the st analysis of E. coli O1:K1:H7, I used an extended set of subject 

sequences to show the scalability of the method. Thus, the set of 4 subject strains (K-

12 MG1655, CFT073, UTI89, and 536) was extended to set of 13 E. coli genomes 

comprising 63 Mb. The strains used as subject sequences were also used by van 

Passel et al. (2008) for the phylogenetic analysis of E. coli strains. The st analysis 

agreed with the previous results: most of the O1:K1:H7 genome (around 90%) is 

most closely related to UTI89. In addition, in the st analysis the segment from 

positions 4715950 to 4763749 was predicted to be the most closely related sequence 

of O1:K1:H7 is CFT073, which corresponds to the results reported by Johnson et al. 

(2007) for positions 4711722 and 4769233 (see Figure 3-18). In conclusion, the st 

results agree with the previous results showing that UPEC and APEC are more 

closely related to each other than to other E. coli strains.  

The whole st comparison of O1:K1:H7 to 13 subject sequences took less than 6 

minutes on our test computer, and the memory usage peak was 1.5 GB. 

 



 

 

Figure 3-18. The st analysis of an avian pathogenic E. coli strain, O1:K1:H7. The genome of O1:K1:H7 was compared to the 

complete genomes of 13 E. coli strains, including UPEC strains (UTI89, CFT073, 536). The results show that O1:K1:H7 is the most 

similar to a UPEC strain UTI89 (dark green rectangles), but there is a significant segment from approximately 4.71 Mb to 4.77 Mb (light 

green rectangle) where O1:K1:H7 is the most similar to CFT073, which is in agreement with a previous study (Johnson et al., 2007). 
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3.5. Discussion 

Recombination is typically detected from the conflicting phylogenies along genome. 

However, recombination detection based on the phylogeny-based methods does not 

scale well for large genomes; e.g., SCUEAL-based analysis of a recombinant HIV-1 

strain took more than 6 hours, while the same analysis performed by st lasted less 

than a second (Section 3.4.2). To complement phylogeny-based methods on genome-

scale, I developed an efficient solution for the detection of locally homologous 

regions, which is then applied to recombination detection (Section 3.2). In particular, 

the implementation of the solution, in the program st, is designed as a subtyping tool. 

That is, st determines the subtype or the mosaic form of a query sequence; both the 

recombination breakpoints, and the parental sequences.  

As a part of this solution, I developed a new algorithm (Algorithm 2, Section 

3.2.4), that efficiently finds intervals representing exact matches between a query 

sequence, and one or more subject sequences. The locally homologous regions are 

then derived from a sliding window analysis of the list of intervals (Section 3.2.5). 

For a single query and n subject (parental) sequences of length l, the time required 

for the computation of an interval list is O(l(n + log l)). This time complexity 

becomes O(nl) for n >> log l. Hence, for the data set with numerous subject 

sequences, the recombinant form of a single query sequence is computed in linear 

time with respect to the size of the data set. In addition, the program st enables the 

computation of recombinant forms of multiple queries in a single run. In particular, 

determining the subtype of m queries in comparison to n subject sequences takes O(l 

(n + m(1 + log l))) time, which is significantly faster than computing each query on 

its own. This scales very well for large genomes. Moreover, to assess st in the 

context of established subtyping tools, I compared its prediction accuracy and 

efficiency to other subtyping tools (Section 3.4): to two popular alignment-free tools 

(Rozanov et al., 2004; Wu et al., 2007), and a recently developed phylogeny-based 

tool, SCUEAL (Kosakovsky Pond et al., 2009).  

The st run-time scales well for large data sets. For example, the st analysis of an 

avian pathogenic Escherichia coli strain, when compared to the set of 13 E. coli and 
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Shigella strains (the total size of the data set is 65 million base pairs), lasted 6 

minutes (Section 3.4.4). However, for the analysis of this strain, st was compared 

only to the alignment-based results (Johnson et al. 2007), since the three programs to 

which st was compared in the analysis of HIV-1 sequences (Rozanov et al., 2004; 

Wu et al., 2007; Kosakovsky Pond et al., 2009) are not easily applicable to this 

problem. In particular, the phylogeny based method, SCUEAL, is too slow for the 

analysis of such a large genome. The NCBI genotyping tool (Rozanov et al., 2004) is 

a web-based tool, with currently no stand-alone version, and the program developed 

by Wu et al. (2007) depends on HIV-specific parameters. 

 Next, I compared the st prediction accuracy to other subtyping tools (Section 

3.4). In comparison to alignment-free methods (Rozanov et al., 2004; Wu et al., 

2007), st-based results were on the same level or better than the results obtained by 

the other two methods (Section 3.4.3). However, a phylogeny-based tool, SCUEAL, 

outperformed st on almost all simulated data sets (Section 3.3.3). Nevertheless, in the 

analysis of the HIV-1 strain A_DQ083238, both programs predicted that around 30% 

of A_DQ083238 genome is of C subtype (Section 3.4.2; Figures 3-15, 3-16 and 3-

17). The rest of the genome was mostly classified as A subtype by both st and 

SCUEAL. In addition, SCUEAL-based results also indicated the existence of smaller 

regions which are most closely related to an ancestral strain of A/G, and A/G/H/J 

subtypes. Finally, in the analysis of a large genome of an avian pathogenic 

Escherichia coli strain (Section 3.4.4; Figure 3-18) the results obtained by st agreed 

with the alignment-based analysis (Johnson et al., 2007).  

The analysis of simulated data sets showed that st performs best when applied to 

closely related sequences (Section 3.3.2): the highest precision in determining the 

recombination breakpoints and parental sequences is obtained if a query and the most 

similar subject sequence are separated between 0.01 and 0.1 substitutions per site 

(Sections 3.3.2 and 3.3.3). Interestingly, the st prediction accuracy only slightly 

declines with the number of recombination breakpoints, i.e., the results of the 

analysis of a recombinant containing 49 breakpoints was only slightly worse than the 

results for the recombinant with 4 breakpoints (Section 3.3.2). Finally, these 

simulations provide a clue for choosing the window size in st windows analysis, i.e. 

the expected size of the recombinational fragment should determine the window size. 
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Specifically, the window size should not exceed the expected fragment length, for 

example: for the detection of fragments of length 2000 base pairs, the best results are 

obtained for the window size 600-2000 base pairs (Section 3.3.2; Figures 3-8 to 3-

10). 
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4. Conclusion 

Modern biology relies on the comparison of sequences, which is typically based on 

their alignment. However, the alignment of whole genomes is a computationally 

challenging task. The goal of my thesis was to find the alignment-free solutions for 

two problems: (i) efficient computation of Kr pair-wise distances between genomes, 

and (ii) detecting local sequence similarity (homology).  

As a solution to the first problem, I developed a new algorithm (Algorithm 1), 

which computes pair-wise distances between all input sequences in a single traversal 

of a generalized suffix tree of all sequences (Domazet-Lošo and Haubold, 2009). I 

implemented the algorithm in the program kr version 2, and successfully applied it 

on both assembled and unassembled genomes (Domazet-Lošo and Haubold, 2009). 

The analysis of kr 2 showed the significant speed gain over the previous solution (kr 

1), and efficiency and scalability in the analysis of large data sets. Thus, it is 

particularly suitable for the clustering of unassembled genomes, and the rapid 

computation of guide trees. 

As a solution to the second problem, I developed a new algorithm (Algorithm 2), 

which computes a list of matching intervals between a query and a set of subject 

sequences in a single traversal of a generalized suffix tree of all input sequences. The 

implementation of this solution in the program st efficiently detects locally 

homologous regions, and was successfully applied to the recombination detection of 

HIV-1 circulating recombinant forms, and the analysis of an avian pathogenic 

Escherichia coli strain. The analysis of st showed that it is particularly useful for the 

rapid detection of longer recombinational fragments in large genomes. As a possible 

future direction of this research, the extension of Algorithm 2 could be used for the 

computation of sequence alignment: the locally similar regions found by this 

algorithm can represent the alignment anchors (the initial regions from which the 

alignment can be extended).  

Finally, the applications of Algorithm 1 and Algorithm 2 do not have to be 

restricted to biological sequence analysis, i.e. they can be applied for the analysis of 

regular text. For example, Algorithm 1 can be used for clustering similar text, and 
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Algorithm 2 can be used for finding matching regions between a query text and a text 

database.  
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6. List of abbreviations and symbols 

Symbol Explanation 

∑ alphabet 

T text – a longer string (Chapter 1); a (generalized) suffix tree (Chapters 2 

and 3) 

P pattern – a shorter string 

z number of occurrences of a pattern (P) in a text (T) 

S arbitrary string (Chapter 1) 

|S| length of a string S 

S[i .. j] a substring of a string S starting at the position i, and ending at the 

position j 

$ sentinel character of a string S 

Hk(S) k-th order entropy of S 

BWT Burrows-Wheeler Transform 

SA suffix array 

ST suffix tree 

c a character from ∑ 

C(c) function that returns number of characters smaller than c in a string S 

Occ(c, i) number of occurrences of c in B[1..i], where B is a BWT of a string S 

[LP,  RP] Interval of SA which covers occurrences of a prefix P in a string S 

con k-length substring (context) of a string S 

Scon concatenation of characters following con in a string S, taken from the left 

to the right of S 

n number of sequences (Chapter 2); number of subject sequences (Chapter 

3) 

m number of query sequences 

l length of a sequence 

S = {S1, .., Sn} a set of nucleotide sequences (Chapter 2); a set of subject sequences 

(Chapter 3)  
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Q = {Q1, .., Qm} a set of query sequences 

(Si, Sj) a pair of sequences from {S1, .., Sn} 

hi,j,p a shortest prefix of Si[p .. |Si|] absent from Sj (shustring) 

oi,j observed average shustring length for a pair (Si, Sj) 

di,j number of pair-wise mismatches per nucleotide between Si and Sj 

Hi,p the maximal value of hi,j,p for a position p in a query Qi when compared to 

subjects Sj ∈  S, j = 1, .., n, and i ≠ j 

K Jukes-Cantor evolutionary distance 

Kr evolutionary distance measure between Si and Sj, where di,j is converted 

to the number of nucleotide substitutions using Jukes-Cantor formula 

(Chapter 2) 

Gi = Gi,1...Gi,k a mosaic structure of Qi, where each segment Gi,d is the most similar to 

members of Si,d, where Si,d is a subject of S 

Si,d a subset of subjects of S to which Qi is the most similar over Gi,d 

Si,p a subset of subjects of S to which Qi is the most similar at a position p 

πA, πC, πG, πT stationary nucleotide frequencies 

θAC, θAG, θAT, 

θGC, θCT, θGT 

substitution rates 

w length of a sliding window in a sliding window analysis (in the program st) 

f minimal length of a recombinant fragment to be considered as a relevant 

(in the program st) 

kb kilo base pair (thousand base pairs) 

Mb mega base pair (million base pairs) 

Gb giga base pair (billion base pairs) 
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Abstract 

Sequence comparison is an essential tool in modern biology. It is used to identify 

homologous regions between sequences, and to detect evolutionary relationships 

between organisms. Sequence comparison is usually based on alignments. However, 

aligning whole genomes is computationally difficult. As an alternative approach, 

alignment-free sequence comparison can be used. In my thesis, I concentrate on two 

problems that can be solved without alignment: (i) estimation of substitution rates 

between nucleotide sequences, and (ii) detection of local sequence homology. In the 

first part of my thesis, I developed and implemented a new algorithm for the efficient 

alignment-free computation of the number of nucleotide substitutions per site, and 

applied it to the analysis of large data sets of complete genomes. In the second part of 

my thesis, I developed and implemented a new algorithm for detecting matching 

regions between nucleotide sequences. I applied this solution to the classification of 

circulating recombinant forms of HIV, and to the analysis of bacterial genomes 

subject to horizontal gene transfer. 

 

Keywords: alignment-free method, evolutionary distance, local sequence homology, 

genome comparison, HIV, horizontal gene transfer, suffix tree, suffix array, shortest 

unique substring. 
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Sažetak 

Algoritmi za učinkovitu usporedbu sekvenci bez korištenja 

sravnjivanja  

Uspoređivanje sekvenci je osnovni alat u modernoj biologiji, a koristi se za 

pronalaženje homolognih dijelova između sekvenci te za otkrivanje evolucijskih 

odnosa između organizama. Uspoređivanje je sekvenci obično temeljeno na 

sravnjivanju. Međutim, sravnjivanje cijelih genoma je računalno zahtijevan 

postupak. Kao alternativni pristup, mogu se koristiti metode koje ne koriste 

sravnjivanje sekvenci. U sklopu svoje doktorske disertacije, koristila sam pristup koji 

ne zahtijeva sravnjivanje sekvenci u rješavanju dvaju problema: (i) procjena brzine 

supstitucije između nukleotidnih sekvenci; (ii) određivanje lokalne homologije 

između nukleotidnih sekvenci. U sklopu prvog dijela disertacije razvila sam i 

implementirala algoritam za učinkovito računanje procjene relativnog broja 

supstitucija između dviju nukleotidnih sekvenci bez korištenja sravnjivanja, koji sam 

primijenila za analizu velikih skupova cijelih genoma. U drugom dijelu disertacije 

razvila sam i implementirala novi algoritam za određivanje jednakih dijelova između 

nukleotidnih sekvenci. Rješenje sam primijenila za određivanje roditeljskih tipova 

rekombinantnih oblika virusa HIV te za analizu bakterijskih genoma pod utjecajem 

horizontalnog prijenosa gena. 

 

Ključne riječi: usporedbe sekvenci bez sravnjivanja, lokalna homologija, 

evolucijska udaljenost, usporedba genoma, HIV, horizontalni prijenos gena, sufiksno 

stablo, sufiksno polje, najkraći jedinstveni podniz. 
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