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Introduction

Frameworks based on multiset rewrite systems have been recently proposed for mod-
eling collaborative systems [26, 27]. In such systems, participants, or agents collaborate
in order to reach a state (or system configuration) which contains some common goal.
They perform actions, specified by rewrite rules, which change the system’s state of
the world, specified by a multiset of facts. A sequence of actions that leads from an
initial configuration to a configuration containing the common goal is often called a
plan.

Since information can be passed from one agent to another while agents do not
necessarily trust each other completely, one is interested in showing that the system is
secure, i.e. some critical states cannot be reached. Such critical states do not appear
only in the domain of computer security, but in information security in general: a
configuration where an agent’s sensitive information, such as a password, is leaked to
other agents is an example of such critical state that should be avoided. In [26, 27],
this issue is addressed by different notions of policy compliance for a system. The
first, called system compliance, is satisfied if there is no way for the agents to reach a
critical configuration. The second, called weak plan compliance, is satisfied if there is
a plan for which no critical configuration is reached. Finally, the third notion, called
plan compliance, is satisfied by the system if no critical configuration for one agent can
be reached if this agent decides to no longer collaborate, that is, when only the other
agents perform actions.

In the light of the real-life restrictions of resources, agents in such systems often
have a limited storage capacity, that is, at any moment an agent can remember at
most a bounded number of facts. In order to reflect this intuition, these frameworks
use actions with same number of facts in their pre- and post-conditions, called balanced
actions. With such actions all configurations in a run have the same size as the initial
configuration.

We build on the framework in [26, 27]. On the one hand, we make two extensions
to the framework: We allow actions to create fresh values, which adds to the expres-
sivity of the systems. Fresh values, often called nonces in protocol security literature,
are essential not only in protocol security but also in other administrative processes

3



Introduction 4

that require for example unique identification: A fresh value is assigned to a bank
transaction, so that transactions are uniquely identified. Next, we introduce among
the available agents a leader who is trusted by all other agents. Each agent can also
interact with the leader directly.

On the other hand, we impose two restrictions to the framework: We allow balanced
actions to change exactly one fact, a, to another fact, a′, and in the process, one is
allowed to check the presence of a fact, b, which can also be seen as checking for a
condition. Furthermore, we introduce a class of collaborative systems called progressing
collaborative systems by not allowing the same instance of a balanced action to be
used more than once. This restriction incorporates the assumption that systems are
progressing: each transition rule can be seen as checking one of the check-boxes in a
to-do list necessary to achieve a final goal. Whenever one action is performed, one
never needs to repeat this action again. A similar notion of progressing also appears
in [18], where it was introduced to protocol theories through protocol role states.

Under both of the restrictions above we show that in our model the weak compliance
problem is NP-hard. It follows from [2, 36] that it is also in NP. Moreover, we also
observe that if we allow balanced actions to be used more than once, the same problem
for the resulting system becomes PSPACE-hard. The PSPACE upper bound follows
from [27]. The same problem is also PSPACE-hard if we allow balanced actions to
create values with fresh ones, but if each instance of a balanced action is used at
most once. The upper bound for this case with balanced actions is open and left for
future work. We prove our PSPACE-hard lower bounds by encoding Turing machines
in our framework. The main challenge here is to faithfully simulate the behavior of a
Turing machine that uses a sequential, non-commutative tape in our formalism that
uses commutative multisets. This contrasts with the encoding of Turing machines in
[22, p. 469] where the tape is encoded using non-commutative matrices.

Since rewrite rules can be used to model protocols and the relevant security prob-
lems, see [18], as an application we turn to security protocol analysis. In contrast
with traditional intruder models, such as in protocol security, which normally include
a powerful Dolev-Yao intruder [17] that has an unbounded memory, balanced systems
imply that all players inside our system, including inside adversaries, have a bounded
storage capacity, that is, they can only remember at any moment a bounded number
of facts. On the other hand, our adversaries and the standard Dolev-Yao intruder [17]
share many capabilities, namely, they are able, within their bounded storage capacity,
to compose, decompose, overhear, and intercept messages as well as create fresh values.

We show that the secrecy problem of whether or not an adversary can discover a
secret is PSPACE-complete when actions are balanced and can create fresh values. This
contrasts with previous results in protocol security literature [18], where it is shown
that the same problem is undecidable. However, there the intruder was allowed to have
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unbalanced actions, or in other words, it was assumed that the intruder’s memory was
not necessarily bounded. We further investigate the consequences of our results in the
domain of protocol security. In particular, we demonstrate that when our adversary
has enough storage capacity, then protocol anomalies, such as the Lowe anomaly [30]
of the Needham-Schroeder public key exchange protocol, can also occur.

This dissertation is structured as follows: in Section 1 we review the main defini-
tions of local state transition systems used to model collaborative systems with policy
compliance. We introduce progressing systems and extend the systems with nonce
generation. We then show connections to linear logic with focusing. In Section 2 we
point to existing problems and show how to circumvent them by formalizing a specific
notion of freshness for balanced systems. In Section 3 we summarize the main theoret-
ical results involving complexity of the different problems considered. We introduce an
intruder model with bounded memory in Section 4 and demonstrate some anomalies
in Section 4.4 and 5. Finally, in Section 6, we review related work and we conclude by
pointing out to future work.



Chapter 1

Collaborative Systems

Collaboration among organizations or individuals is common. It’s main purpose is
to achieve some common goal. It necessarily involves some information flow. While
much of the information shared may be general and harmless, some of the information
is sensitive, such as detailed sales reports at an organizational level or social security
numbers and credit card numbers at an individual level. The need to share informa-
tion and the desire to keep it confidential are two competing notions which affect the
outcome of a collaboration.

Models formalizing collaborative systems have been introduced in [26, 27]. In this
section we review the main vocabulary and concepts introduced in [26, 27] and also
extend the definitions to accommodate a leader and actions that can create fresh val-
ues. In addition to the local state transition systems introduced [26, 27] we will have
two special views on the agents of the system. The first one distinguishes among the
agents a special agent called the leader and the second one models the agent which is
adversary inside the system. We will point out the particular LSTS as we introduce
the problems we study.
The model has four main components. Being an evolving system, there must be a
way of describing the configuration of the system at any given moment. Additionally,
we describe how the agents transform the configurations from one to another via local
actions. In our setting the agents also have some (common) goal of the collabora-
tion, as well as (distinct) confidentiality concerns. These concerns are expressed as
confidentiality policies.

We introduce each of these four components in detail in the next subsections. We
start by giving examples of the scenarios we model by our collaborative systems.

6



Collaborative systems 7

Medical Test Scenario. Consider the scenario where a patient needs a medical
test, e.g., a blood test, to be performed in order for a doctor to correctly diagnose
the patient’s health. This process may involve several agents, such as a secretary, a
nurse, and a lab technician. Each of these agents have their own set of tasks. For
instance, the patient’s initial task could be to make an appointment and go to the
hospital. Then, the secretary would send the patient to the nurse who would collect
the patient’s blood sample and send it to the lab technician, who would finally perform
the required test. In such process of getting doctor’s professional opinion and eventually
receiving a treatment or a prescription, a patient must be willing to share some personal
information. Although he might give some information to the nurse and even more
personal information to the doctor, he might not be willing to do the same with the
hospital receptionist or other patients in the hospital’s waiting room. Some of the
hospital policies are imposed by law, others are specific for a particular institution.
The patient will necessarily feel more comfortable coming into a hospital with policies
that would guarantee a high level of confidentiality.

Scientific Research Scenario. As another example, consider a group of scientists
working on a joint paper. During such scientific research, scientists must find a balance
between sharing too much information and not enough. On one hand, a principal goal of
research is to obtain and publish results. On the other hand, if researchers provide their
raw data to others too soon, another group may announce the results first. Scientific
data sharing also has the converse problem. Scientists often rely on data from outside
sources.

1.1 Local State Transition Systems

At the lowest level, we have a first-order signature Σ that consists of a set of sorts
together with the predicate symbols P1, P2, . . ., function symbols f1, f2, . . ., and con-
stant symbols c1, c2, . . . all with specific sorts (or types). The multi-sorted terms over
the signature are expressions formed by applying functions to arguments of the correct
sort. Since terms may contain variables, all variables must have associated sorts.

Definition 1.1. A fact is a ground, atomic predicate over multi-sorted terms.

Facts have the form P (~t) where P is an n-ary predicate symbol and ~t is an n-tuple of
terms, each with its own sort.

Definition 1.2. A state, or a configuration of the system is a finite multiset W of
facts.
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We use both WX and W,X to denote the multiset resulting from the multiset union
of W and X. For any fact P (~t) we use P (~t)k to indicate that there are k instances of
the fact P (~t) in the configuration.

As in [26, 27], we assume that the global configuration is partitioned into different
local configurations each of which is accessible only to one agent. There is also a
public configuration which is accessible to all agents involved in the collaboration. We
are considering interactions that take place in a closed-room setting, so we can ignore
concerns about an outside intruder. However, differently from [26, 27], when we will be
modeling protocols, we assume that among the agents in the system, there is an agent
M that behaves like an adversary. We also assume the existence of a special constant
s in Σ denoting the secret that should not be discovered by the adversary.
The separation of the global configuration is done by partitioning the set of predicate
symbols in the signature. We typically annotate a predicate symbol with the name of
the agent that owns it or with pub if it is public. For instance, the fact FA(~t) belongs to
the agent A, while the fact Fpub(~t) is public. The predicate symbols act like fields of a
database in which information may be stored, and the syntactic form of the predicate
determines if the fact is local to a given agent or if it is public. The global configuration
is the multiset union of the local configurations and the public configuration:

Z = ZA1 , ZA2 , . . . , ZAn , Zpub

where ZAi
is the local configuration of agent Ai and Zpub is the public configuration.

More generally, we use XA to denote any multiset of facts all of which are local to
agent A, and Xpub to denote any multiset of facts all of which are publicly accessible.
As in [26, 27], each agent has a finite set of rules or actions which transform the
global configuration. Under the interpretation of the local predicates as accessibility
restrictions it is natural to restrict the actions to conform to that interpretation. Thus
the actions are local in the sense that each action can only depend on the local facts
of at most one agent:

XAXpub →A YAYpub .

The agent who owns an action is specified by the subscript on the arrow. For simplicity,
we often omit the name of the agent from the action and from predicates when the
agent is clear from the context.

Intuitively, agent A does not have neither read nor write access to any of the
predicates which are local to other agents. As actions are multiset rewriting rules,
the pre-conditions must be present in the configuration for the action to be enabled.
By applying the action, the pre-conditions are erased and replaced with the post-
conditions. Since several actions may be enabled simultaneously, we assume the actions
are applied nondeterministically.
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There is a small detail that deserves some attention. A public fact is accessible by
any agent, but only in principle. An agent might not have any action with that fact in
the pre-conditions, in which case the term is actually inaccessible to that agent. This
is in stark contrast to the standard Dolev-Yao intruder [17] who is always assumed to
be able to read messages from the network. No such assumption is made about the
agents in our system.

Although some or all of the predicates in a first-order action will contain free vari-
ables, we will often abuse terminology and call these predicates facts. So for example,
when we count the number of facts in the pre-condition of a first-order action, we are
really counting the number of facts that occur under any substitution. Since this num-
ber does not change under different substitutions, there is no ambiguity. Given a set
of first-order actions, it is possible to propositionalize them by applying every possible
substitution. If the underlying signature Σ is finite, then this process will expand the
size of the set of actions exponentially. We will be explicit about whether an action is
first-order or propositional whenever the distinction is important. In all other cases we
will simply use the word action.

1.1.1 Systems that Can Create Fresh Values

Here, as in [9, 18], we allow agents to have more general actions that can create fresh
values. These values are often called nonces in protocol security literature. Such fresh
values are often used in administrative processes. For example, when one opens a new
bank account, the number assigned to the account has to be fresh, that is, it has to
be different from all other existing bank account numbers. Similarly, whenever a bank
transaction is initiated, a fresh number is assigned to the transaction, so that it can
be uniquely identified. Fresh values are also used in the execution of protocols. At
some moment in a protocol run an agent might need to create a fresh values, or nonce,
that is not known to any other agent in the network. This nonce, when encrypted in
a message, is then usually used to establish a secure communication among agents.
Actions that belong to an agent A and create fresh values have the form:

XAXpub →A ∃~n.YAYpub .

The multisets XA and YA contain facts belonging to the agent A and the multisets
Xpub and Ypub contain only public facts. Actions work as multiset rewrite rules.
All free variables in a rule are treated as universally quantified. Facts XAXpub are
the pre-condition of the action and facts YAYpub are the post-condition of the ac-
tion. By applying the action for a ground substitution (σ), the pre-condition ap-
plied to this substitution (XAσXpubσ) is replaced with the post-condition applied to
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the same substitution (YAσYpubσ). In this process, the existentially quantified vari-
ables (~n) appearing in the post-condition are replaced by fresh variables. The rest
of the configuration remains untouched. Thus, for example, we can apply the action
PA(x) Qpub(y)→A ∃z.RA(x, z) Qpub(y) to the global configuration V PA(t) Qpub(s) to
get the global configuration V RA(t, c) Qpub(s), where the constant c is fresh.

Medical Test Scenario. The following multiset rewriting rules specify some of the
actions of the agents N (nurse) and L (lab technician) from the medical test scenario:

NurseN(blank, blank, blank) Patient(name, test)
→N NurseN(name, blank, test) Patient(name, test)

NurseN(x, blank, blood) →N ∃id.NurseN(x, id, blood)
NurseN(x, id, blood) →N Lab(id, blood) NurseN(x, id, blood)

Lab(id, blood) →L TestResult(id, result)

Predicates Patient, Lab and TestResult are public, while the predicate NurseN is pri-
vate to the nurse. Here ’blank’ is the constant denoting an unknown value, ’blood’
is the constant denoting the type of test that is a blood test, ’result’ is one of the
constants from the set denoting the possible test outcome, while test, name, x and
id are variables. The most interesting action is the second action which generates a
fresh value, an identification number, that is used for anonymising the patient. Each
patient (sample) should have a different identification number assigned. In that way
the nurse is able to anonymise the blood samples before passing them on to the lab,
so that the lab technicians receive samples with no name of the patient attached, only
identifiaction numbers. This is important for privacy concerns, as will be discussed in
more detail later.

In addition to the communication through public facts, we allow an agent to safely
communicate through a private channel with a privileged agent called leader. This
is different to communication introduced in [26, 27]. It is accomplished by further
partitioning the predicates in the signature. We annotate predicate symbols belonging
to a private channel between an agent A and the leader l with Al. Whenever an agent
and the leader need to communicate between each other, e.g., request a new password,
they can modify the facts in their corresponding private channel. Therefore we further
generalize the rules to allow private communication of an agent with the leader, and
have rules of the following form:

XAXAlXpub →A ∃~n.YAYAlYpub and XlXAlXpub →l ∃~n.YlYAlYpub.
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An agent that is not the leader owns only actions of the former form, where it also
owns the local facts and the facts in the private channel. The leader, on the other
hand, owns only rules of the latter form, where it also owns the local facts and any
fact in any private channel to any agent.

As an example consider the following rule from the medical test scenario:

NurseN(x, id, test) TestResult(id, y) →N NurseN(x, id, test) DoctorNl(x, y)

where the doctor is the leader and the predicate DoctorNl belongs to the private channel
between the nurse and the doctor. The nurse is therefore able to communicate with
the doctor through a private channel and safely pass the test results together with the
patients name to the doctor.

Having introduced the basic concepts of our systems, namely configurations and
agents with their actions, we can now define our local state transition systems which
model the collaborative systems.

Definition 1.3. A local state transition system T is a triple 〈Σ, I, RT 〉, where Σ is the
signature underlying the language, I = {A1, . . . , An} is the set of agents, and RT is the
set of (local) actions owned by those agents.

We often use the abbreviation LSTS for a local state transition system, as well as
abbreviating it to the one word system. When we consider an LSTS with a leader, we
have a tuple 〈Σ, I, l, RT 〉 where l ∈ I is the leader and when we consider an LSTS with
the inside adversary we have a tuple 〈Σ, I,M,RT , s〉 where M ∈ I is the intruder and
s ∈ Σ the constant representing the secret. Later, we will impose restrictions to the
types of actions allowed in a system as discussed in the Introduction.

Since we are considering situations in which the agents are collaborating, we need
a way of expressing the goals of collaboration as well as the reachability of those goals.
Naturally, the reachability of a configuration depends on what actions are available to
the agents. That is, systems with different actions behave differently, so we need a way
to specify which system we are studying.
We use the notation W >T U or W >r U to mean that there is an action in T which
can be applied to the configuration W to transform it into the configuration U . We let
>+
T and >∗T denote the transitive closure and the reflexive, transitive closure of >T

respectively.
Usually, however, agents do not care about the entire configuration of the system,

but only whether a configuration contains some particular facts. For example, in the
medical test scenario, a patient is only interested to know if his test results are ready
and is not interested in the results of other agents. Therefore we use the notion of partial
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goals. We write W  T Z or W  r Z to mean that W >r ZU for some multiset
of facts U . For example with the action r : X →A Y , we find that WX  r Y , since
WX >r WY . We define  +

T and  ∗T to be the transitive closure and the reflexive,
transitive closure of  T respectively. We say that the partial configuration Z is
reachable from configuration W using T if W  ∗T Z.

We also consider configurations which are reachable using the actions from all agents
except for one. Thus we write X >∗−Ai

Y to indicate that Y can be reached exactly
from X without using the actions of agent Ai. We may drop the subscript T for the
system and A for the agent if the system or the agent is clear from the context.

Definition 1.4. Given an initial configuration W and a partial configuration Z, a
plan is any sequence of actions that leads from state W to a state containing Z, i.e.
W  ∗ Z. We say that a plan exactly leads from W to Z when W >Z.

Along a plan r1, . . . , rn leading from W to Z we reach configurations Xi so that
X1 = W , Z ⊂ Xn and Xi >

1
T Xi+1 for 1 ≤ i < n. We also say that actions ri and

configurations Xi are contained in the plan.

Since we’re interested in formalizing systems of constant size, that is systems where all
agents have bounded memory, we first need to define how we measure the size of the
memory in the system.

Definition 1.5. The size of a fact is the number of term and predicate symbols it
contains. We count one for each predicate and function name, and one for each variable
or constant symbol. We use |F | to denote the size of a fact F .

For example, |F (x, c)| = 3, and |F (f(x, n), z)| = 5.

Definition 1.6. The size of a configuration S is the number of public and private facts
in S.

Generally, actions in LSTS can increase or decrease the number of facts in the global
configuration. When modeling systems with a fixed size, we should consider only rules
that do not change the number of facts of the global configuration, i.e. the size of the
configuration, and furthermore, it is also important to impose a bound on the size of
facts.

Definition 1.7. A balanced action is an action that has the same number of facts
in the pre-condition as the post-condition, counting multiplicity. If an action is not
balanced then it is unbalanced.
A system is called balanced if every action of the system is balanced. Otherwise, the
system is called unbalanced.
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For example the action:

NurseN(x, blank, blood)→N ∃id.NurseN(x, id, blood)

from the medical test scenario is balanced while the following action is unbalanced:

NurseN(x, id, blood)→N Lab(id, blood) NurseN(x, id, blood).

A total size of the configuration of a balanced system is constant. There is a fixed
number of facts in a configuration. Since we assume facts to have a bounded size, the
use of balanced actions imposes a bound on the storage capacity of the agents in the
system. Intuitively, this restriction forces each agent to have a buffer or database of a
fixed size before the collaboration. The agents may update values in this buffer and
erase values to leave empty slots, but they may not change the size of the buffer. Notice
that if we use balanced systems but do not impose an upper bound to the size of facts,
then we do not necessarily impose a bound on the memory of agents. This is because
agents could use functions and facts with unbounded depth to remember as many
constants (or data) they need. For instance, instead of using n facts, Q(c1), . . . , Q(cn),
to store n constants, c1, . . . , cn for some n, an agent could store all of these constants
by using a single fact Q(〈c1, 〈c2, 〈· · · , 〈cn−1, cn〉〉 · · · 〉〉) and the pairing function 〈·, ·〉.
Intuitively, by using balanced systems and assuming an upper bound on the size of
facts, we obtain a bound on the number of memory slots available in any configuration
in a plan or in a run of a protocol. Notice as well that such upper bound on the size
of facts was also assumed in previous work [18, 26, 27].

Later we will specifically look at systems with actions restricted to change exactly
one fact in the configuration. We call such actions monadic actions.

Definition 1.8. A rule is monadic if it changes exactly one state variable, possibly
checking a single condition, i.e. it has one of the following forms:

a→ a′, ab→ a′b and ab→ ∃~n.a′b.

The first type of mondic rules is also called context-free, and the second and the third
type are also called context-sensitive.

A context-free rule changes one state variable, a, to another state variable, a′,
without checking for the presence of any other variable. A context-sensitive rule check
for the presence of a state variable b, which can be seen as a condition for applying
such a rule. Moreover, in the third type of the rule new constants, ~n, are created, while
in the first and second type of rules no new constants are created.
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1.1.2 Policy Compliances

In order to achieve a final goal, it is often necessary for an agent to share some private
knowledge with some other agent. For example, in the medical scenario, the patient
needs to share his name with the secretary in order for the test to be run. However,
although agents might be willing to share some private information with some agents,
they might not be willing to do the same with other agents. For example, a client
could share his password with the bank, which is trusted, and not with another client.
One is, therefore, interested in determining whether a system complies with some
confidentiality policies, e.g. the secretary should not know the test results of the patient.

Such confidentiality concerns appear in the domain of computer security and in
information security in general: a configuration where an agent’s sensitive information,
such as a password, is leaked to other agents is an example of such critical state that
should be avoided.

In formalizing what it means for an agent’s secrets to leak, we need to know where
that agent is willing to let his information flow. We will assume that each agent
has a data confidentiality policy which specifies which pieces of data other agents are
prohibited from learning.

Definition 1.9. The confidentiality policy of an agent is a set of partial configurations
that the agent views as undesirable or bad. A configuration is called critical for A if
it contains one of the partial configurations from A’s policy. A configuration is simply
called critical if it is critical for some agent.

Notice that since policies only specify which configurations must not occur, no
conflict arises when combining policies. The combination of two policies simply specifies
the union of their critical configurations.

When modeling real situations these policies serve as constraints in the model,
which may not represent real constraints in the actual system. For example a policy
which is mandated by law will impose real restrictions on the system, while a patients
policy may simply represent his personal preferences.

The agents’ confidentiality policies are simply sets of configurations which the agents
want to avoid. However, they may want to avoid them in a looser or stricter sense
depending on the level of trust the agents have amongst themselves. We review three
types of policy compliances proposed in [26, 27].

Definition 1.10. (System compliance) A local state transition system T in initial
configuration W , given a set of confidentiality policies, is called compliant if no critical
state is reachable from W .

Compliant systems may be viewed as well-designed systems. Agents have the guarantee
that the actions of the system do not allow their critical configurations to be reached,
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whether by the malicious collusion of other agents or by the careless use of their own
actions. A compliant system dispenses with all confidentiality concerns before the col-
laboration even starts, and the agents can then focus on the separate problem of finding
a plan which leads to a goal configuration. Notice, however, that system compliance
depends on the initial configuration of the system. It is possible for a system to be
compliant in one initial configuration, and not be compliant in another. System com-
pliance protects each agent not only from any possible sequence of actions other agents
can take, it also protects each agent from their own actions.

This interpretation is most appropriate when the agents share a very low level of
trust. For example, a company may ask employees or external collaborators to sign a
non-disclosure agreement. System compliance is also appropriate for the medical test
example. No matter what happens, patients’ sensitive data should not be compromised,
regardless what actions the agents involved take. According to hospital policies, it
should never be possible that, for example, a patient’s test results publicly leak together
with the patient’s name.

System compliance is a very strong notion. However, for many scenarios this inter-
pretation of policies might be too strong. For this reason it is useful to consider weaker
definitions that can still provide some level of protection.

Definition 1.11. (Weak plan compliance) Given a local state transition system T ,
an initial configuration W , a (partial) goal configuration Z, and a set of confidentiality
policies, a plan is said to be weakly compliant if none of the configurations contained
in the plan are critical for any agent.

While system compliance requires that for any sequence of actions no critical state
is reachable from the initial configuration, weak plan compliance only requires the
existence of a plan that does not reach a critical state. Weak plan compliance may be
appropriate for a set of agents who are mutually trusting. If a system has a compliant
plan leading to a goal then each agent knows two things. Firstly, they know that there
is plan leading from the initial configuration to the goal configuration. Secondly, they
know that none of their critical configurations will be reached as long as everybody
follows the plan. This means that the agents must trust each other to follow the plan
because if they deviate from the plan, then all guarantees of compliance are lost.

As an example consider what happens when Alice eats at a restaurant and wants
to pay for the meal with a credit card. In order to do so, she must give her card to
the waiter, Bob, who takes it away for validation. She trusts the waiter, Bob, not to
write down her card details or share it with anybody else, although she is well aware
that he can do so. If she wants to achieve the goal of paying with a credit card, she
must necessarily trust the restaurant policy and Bob in particular. If she met Bob in
a different social situation, however, she might not give him her credit card in that
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context. Similarly, she doesnt give her credit card to her friends even though she may
trust them. This is because her friends have no legitimate reason to learn her card
number.

The third compliance provides an intermediate level of protection between the sys-
tem compliance and the weak plan compliance. Intuitively, if a plan is compliant it
protects those agents who follow the plan against those who may choose to deviate
from the plan. Any agent A following the plan is assured that the plan contains no
configurations critical for him. In addition, a compliant plan also guarantees to every
agent that, as long as he follows the plan, the other agents cannot collude to reach
a configuration critical for him. Agents are therefore assured that in case they drop
from the collaboration for any reason, others cannot violate their confidentiality poli-
cies. On the other hand, as soon as one agent deviates from the plan, the other agents
may choose to stop their participation. They can do so with the assurance that the
remaining agents will never be able to reach a configuration critical for those agents
that quit the collaboration.

Definition 1.12. (Plan compliance) Given a local state transition system T , an initial
configuration W , a (partial) goal configuration Z, and a set of confidentiality policies,
a plan is said to be compliant if it is weakly compliant and if for each agent Ai and for
each configuration Y along the plan, whenever Y >∗−Ai

V , then V is not critical for Ai.

Plan compliance is obviously stronger than weak plan compliance. In contrast to
system compliance, this interpretation considers only one plan at a time. Instead of
implying that any sequence of actions is safe to use, it implies that a specific sequence
is safe to use even if everybody else behaves differently.

Plan compliance problem can be re-stated as a weak plan compliance problem with
a larger set of configurations, called semi-critical. Intuitively, a semi-critical configura-
tion for an agent A is a configuration from which a critical configuration for A could
be reached by the other participants of the system without the participation of A.
Therefore in the plan compliance problem, a compliant plan not only avoids critical
configurations, but also avoids configurations that are semi-critical. Hence, the plan
compliance problem is the same as the weak plan compliance problem when considering
critical both the original critical configurations of the system as well as the semi-critical
configurations of any agent.

Definition 1.13. A configuration X is semi-critical for an agent A if a configuration
Y that is critical for A is reachable using the actions belonging to all agents except to
A, i.e. if X >∗−A Y . A configuration is simply called semi-critical if it is semi-critical
for some agent of the system.

Which compliance is more suitable will depend on the process that is modeled. In
some cases, when agents do not trust each other, one might require system compliance.
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This may be the case in the medical test scenario: According to hospital policies, it
should never be possible that, for example, the test results of the patient are publicly
leaked together with patient’s name. In other cases, however, when agents are more
trusting, one might only require weak plan compliance: A group of researchers proposes
their project for a grant and look for a plan for which the proposal is sent to the funding
agency before the deadline. Plan compliance might be appropriate for collaboration
between competing companies.

In [27] it’s been shown that the problem of checking whether a system satisfies
such policy compliances is PSPACE-complete under the condition that actions are
balanced. For general systems with possibly unbalanced actions, it’s been shown in
[26] that system compliance is EXPSPACE-complete, while weak plan compliance and
plan compliance are undecidable.

This thesis makes the additional assumption that initial and the goal configurations
are closed under renaming of nonces.

1.1.3 Progressing Collaborative Systems

Many administrative or business processes have not only a bounded number of trans-
actions, but also have a progressing behavior : whenever a transaction is performed, it
does not need to be repeated. For instance, whenever one initiates some administrative
task, one receives a “to-do” list containing the sub-tasks necessary for accomplishing
the final goal. Once one has “checked” an item on the list, one does not need to return
to this item anymore. When all items have been checked, the process ends.

For a more concrete example, consider the already introduced medical scenario
where a patient needs a medical test to be performed. Such administrative processes
are usually progressing: once a patient has made an appointment, he does not need to
repeat this action again. Even in cases where it may appear that the process is not
progressing, it is. For example, if the patient needs to repeat the test because his sample
was spoiled, then a different process is initiated with possibly a new set of actions: the
secretary is usually allowed to give the patient priority in scheduling appointments.
Moreover, it is not realistic to imagine that one would need to reschedule infinitely
many times, but only a very small number of times.

For another example, when submitting a grant proposal, or even this paper, one
must submit it before some deadline, otherwise the grant is not accepted. The use of
deadlines is another form of bounding processes: since actions take some positive time
to be performed, it must be the case that the whole operation is completed within a
bounded number of transactions.
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Administrative processes not only have a bounded number of transactions, but also
manipulate a bounded number of values. Consider, for example, the simple process
where a bank customer needs a new PIN number: The bank will either assign the
customer a new PIN number, which is often a four digit number and hence bounded.
Alternatively, the bank will allow the customer to select a password satisfying some
conditions, e.g., all its characters must be alphanumeric and it has to be of some
particular length, and hence again bounded. Even when the bank lets the customer
select a password of any particular length, in practice this password is bounded since
users are never able to use an unbounded password due to buffer sizes, etc.

Definition 1.14. A plan is progressing if and only if any instance of any action is used
at most once in the plan.

The notion of progressing is motivated in a similar way as the use of protocol roles
in [18]. The idea is that whenever one step of a protocol is performed, one never needs
to repeat this step again. While the progressing condition naturally appears in the
specification of security of protocols, note that in Section 4 we differ from [18] when
we represent memory bounded intruder and use only balanced actions. In particular,
in [18], the intruder can copy facts, i.e., the intruder’s memory is unbounded.

For another example, when a process has a deadline, such as a scientific paper
submission, one must complete it on time, before some deadline, otherwise the paper is
not accepted for a review. The use of deadlines is another form of bounding processes:
since actions take some positive time to be performed, it must be the case that the
whole operation is completed within a bounded number of transactions.

Grant Proposal Scenario. We now specify an example of a progressing collabora-
tive process, called grant proposal, where a leader is involved. There, different agents
or researchers collaborate to write a proposal, which includes a budget and a techni-
cal text. Among the agents, we distinguish a leader called PI (principal investigator)
and we call the remaining coPIs (co-principal investigators). The PI is responsible for
sending the complete project to the funding agency and for coordinating the coPIs.
The task is to find a plan so that all coPIs finish writing their part of the text and
budget and send them to the PI well before the deadline of the proposal, so that the
PI can wrap up and send the final project to the funding agency. The critical states of
this example is any state where the time has passed the deadline.

Some of the actions belonging to a coPI are depicted in Figure 1.1. At the be-
ginning of a collaboration no coPI has a budget (noBudget). At some point, a coPI
starts working on the proposal by requesting his accounting office to write the budget
(writeBudget). This requires TW time units, as specified by the second action. By
the third action, the office sends the budget to the coPI. At this point, however, if the
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coPI does not know the title of the project (no title), he cannot send the final proposal
to the Dean’s office (uni) for final approval. Only when the title is made public by
the PI, a coPI can do so and the Dean’s office requires TU time units to approve the
budget. These are specified by the fourth and fifth actions. Finally, when the budget
is approved, the budget is made available only to the PI by using the private channel
to the leader Al. Here, time is another agent of the system whose unique action is to
move time forward by incrementing the value in the fact Time(t).

There are more actions to the scenario, such as the action where a coPI can also
revise the budget and send it back to his accounting office for modifications, as well as
the actions of the PI. Since the budget of one coPI is normally not available to the other
coPIs, we consider that in the process of writing the budgets, coPIs do not communicate
among themselves, but only with the leader, PI, and their internal organizations, e.g.,
accounting offices.

It is easy to check that the scenario described above is progressing. Each action
corresponds to checking a box, that is, once it is performed, it is not repeated. This is
enforced in the rules by using the time agent who moves time forward. Since actions
either require some time, e.g., TW and TU , to be performed or necessarily occur after
another action is performed, e.g., the coPI can only send the budget when the PI has
made the title public, an instance of an action can never be repeated. For instance, if
the example above is extended so that the coPI and his office send several versions of
the budget back and forward, with revisions, all these actions are different instances
of the same rules each with a different time value. Moreover, since time is discrete
and all actions need to be performed until a deadline is reached, there cannot be
infinitely many revisions. Hence, any computation run in this system is bounded. The
progressing nature of the process is syntactically emphasized by predicates Pi which
represent the phase of the process. Actions allow agents only to move forward to the
next phase.

Time(t) →time Time(t + 1)
Time(t),Al(noBudget,A) →A Time(t),P0(A, office,writeBudget, t + TW )

Time(t),P0(A, office,writeBudget, t) →A Time(t),P1(A, coPI , no title,budget)
Pub(title),P1(A, coPI ,no title, budget) →A Pub(title),P2(A, coPI , title,budget)

Time(t),P2(A, coPI , title, budget) →A Time(t),P3(A,uni, title, budget, t + TU)
Time(t),P3(A,uni, title, budget, t) →A Time(t),Al(budget,A)

Figure 1.1: The set of actions involving the writing of a budget for a coPI called A
and of the agent time. Here TW and TU are, respectively, the time needed for A’s
accounting office to write a budget and for the Dean of A’s university to approve the
final budget.
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With respect to confidentiality issues, this is a scenario where weak plan compliance
is best suited. The problem is to determine whether there exists a plan which allows
the researchers to write the grant proposal before the deadline.

1.1.4 The Computational Problems

Now that we have introduced all the relevant definitions we can state the computational
problems for which we would like to determine the computational complexity. They
can each be considered special cases of the following general problem.

The Collaborative Planning Problem with Confidentiality. Let T be a local
state transition system with a finite set of actions T , in initial configuration W , with
a finite set of goals G, and a finite set of critical configurations C. Determine whether
T has a plan leading from W to one of the goals in G, which complies with all the
agents confidentiality policies.

We will identify some restrictions to the actions of local state transition systems. These
restrictions are useful to obtain classes of LSTSes for which solving the policy compli-
ance problems becomes feasible. For instance, if no restrictions are made, one can show
that weak plan compliance is undecidable [26], even if actions do not create nonces.

We can make two independent choices. Firstly, we must choose which definition of
policy compliance we would like to use.

• (System compliance) Given a local state transition system T , an initial configu-
ration W , a (partial) goal configuration Z, and a set of critical configurations, is
no critical state reachable, and does there exist a plan leading from W to Z?

• (Weak plan compliance) Given a local state transition system T , an initial con-
figuration W , a (partial) goal configuration Z, and a set of critical configurations,
is there a compliant plan which leads from W to Z?

• (Plan compliance) Given a local state transition system T , an initial configuration
W , a (partial) goal configuration Z, and a set of critical configurations, is there
a compliant plan which leads from W to Z such that for each agent Ai and for
each configuration Y along the plan, whenever Y >∗−Ai

V , then V is not critical
for Ai?

• (Secrecy problem) Is there a plan from the initial configuration to a configuration
in which the adversary M owns the fact M?(s)

1, where s is a secret originally
owned by another participant?

1M?(s) stands for any memory fact of the intruder such as Mn(s) and Mk(s)
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The secrecy problem is basically an instantiation of the weak plan compliance prob-
lem with no critical configurations. It is interesting to note that this problem can also
be seen as a kind of a dual to the weak plan compliance problem; Is there is a plan
from the initial configuration to a critical configuration where the adversary M owns
the secret s, originally owned by another participant? What we mean by owning a
secret s, or any constant c in general, is that the agent has a private fact Q(c′) such
that c is a subterm of c′.

Second, we choose the type of actions used in the system. This yields different
computational problems. We will mostly consider balanced systems. In particular, we
will consider LSTSes with monadic, and, hence, balanced rules. In balanced systems
the size of configurations contained in a plan is always the same as in the initial
configuration. Specifically, for systems with only monadic actions, whenever an action
is used, only one fact is changed. As discussed in [26], the restriction of balanced actions
provides decidability of weak plan compliance. On the other hand, the restriction of
monadic actions is new and it will be explored later in this paper.

Additionally, we can consider the above problems in relation to progressing behav-
ior. In [26, 27], plans were allowed to use an instance of an action as many times
needed. Here, however, we can accommodate the assumption that a collaborative
system is progressing and consider following problems:

• (Progressing weak plan compliance) Given a local state transition system T , an
initial configuration W , a (partial) goal configuration Z, and a set of critical
configurations, is there a compliant progressing plan which leads from W to Z?

• (Progressing system compliance) Given a local state transition system T , an ini-
tial configuration W , a (partial) goal configuration Z, and a set of confidentiality
policies, is no critical configuration reachable by any plan, and does there exist
a progressing plan leading from W to Z?

• (Strictly progressing system compliance) Given a local state transition system
T , an initial configuration W , a (partial) goal configuration Z, and a set of
confidentiality policies, is no critical configuration reachable by a progressing
plan, and does there exist a progressing plan leading from W to Z?

• (Progressing plan compliance) Given a local state transition system T , an initial
configuration W , a (partial) goal configuration Z, and a set of critical config-
urations, is there a progressing compliant plan which leads from W to Z such
that for each agent Ai and for each configuration Y along the plan, whenever
Y >∗−Ai

V , then V is not critical for Ai?
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• (Strictly progressing plan compliance) Given a local state transition system T ,
an initial configuration W , a (partial) goal configuration Z, and a set of critical
configurations, is there a progressing compliant plan which leads from W to Z
such that for each agent Ai and for each configuration Y along the plan, whenever
Y >∗−Ai

V in progressing sequence of actions, then V is not critical for Ai?

• (Secrecy problem for progressing plans) Is there a progressing plan from the initial
configuration to a configuration in which the adversary M owns the fact M?(s),
where s is a secret originally owned by another participant?

The strictly progressing and progressing versions of system and plan compliance
problems differ in how the critical configurations may be reached. While the latter
problem requires that critical configurations cannot be reached by any plan, the former
considers only progressing plans. The secrecy problem for progressing plans is the same
as the secrecy problem but it is restricted to progressing plans only. Since all players
in the system have the same capabilities, if we assume that the system is progressing,
then so is the adversary, that is, the adversary is also not allowed to repeat an instance
of any action.
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1.2 Connections to Linear Logic

In this section, we provide a precise semantics for LSTSes with actions that can create
nonces in the terms of linear logic [20], as is done in [27, 11]. However, here we obtain
a tighter correspondence by using the notion of focusing introduced by Andreoli in [3].

Firstly, we review some of linear logic’s basic proof theory. Literals are either atoms
or their negations. The connectives ⊗ and O and the units 1 and ⊥ are multiplicative;
the connectives & and ⊕ and the units > and 0 are additive; ∀ and ∃ are (first-order)
quantifiers; and ! and ? are the exponentials. We assume that all formulas are in
negation normal form, that is, negation has atomic scope.

We encode a rule of the form XAXAlXpub →A ∃~t.YAYAlYpub as the linear logic
formula ∀~x[

⊗
{qAXAXAlXpub}( ∃~t.

⊗
{qAYAYAlYpub}], where ~x are the free variables

appearing in the rule and where the atomic formula qA is used only to mark that this
action belongs to agent A. Moreover, the encoding of a set of transition rules pRTq is
the set with the encoding of all the transition rules in RT , and the set of propositions
used to mark a rule to an agent is defined as QI = {qA : A ∈ I}. One feature of
this particular encoding is that the creation of nonces is specified by using standard
quantifiers.

The proof of the correspondence relies on the completeness theorem of the focused
proof system for linear logic, LLF, depicted in Figure 1.2. LLF is a one-sided version
of linear logic, where sequents of the form Γ ` ∆ appear instead in the form ` Γ⊥,∆.
Moreover, the structural rules are not explicitly mentioned in the system, but instead
they are incorporated in the introduction rules. This is accomplished by distinguishing
unbounded and bounded formulas into two different contexts Θ : Γ to the left of the
⇑ and ⇓, where Θ contains the multiset of unbounded formulas and Γ the multiset of
bounded formulas. For example, in the tensor introduction rule, while the bounded
context is split among the premises, the unbounded context is copied to both premises.

In order to introduce LLF, we first classify the connectives 1,⊗,⊕, and ∃ as positive
and the remaining as negative. This distinction is natural as the introduction rules for
the positive connectives are not-necessarily invertible, while the rules for the negative
connectives are invertible. The same distinction, however, does not apply so naturally
to literals and hence these are arbitrarily classified as positive or negative. Positive
polarity literals and formulas whose main connective is positive are classified as positive
formulas and the remaining as negative formulas. There are two different sequents
in LLF: those containing ⇑ which belong to the negative phase where only negative
formulas are introduced, and those containing ⇓ which belong to the positive phase
and only positive formulas are introduced.

A focused proof is a normal-form proof for proof search. Inference rules that are not
necessarily invertible are classified as positive, and the remaining rules as negative. Us-
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ing this classification, focused proof systems reduce proof search space by allowing one
to combine a sequence of introduction rules of the same polarity into larger derivations,
which can be seen as “macro-rules”.

Introduction Rules

` Θ : Γ ⇑ L
` Θ : Γ ⇑ L,⊥ [⊥]

` Θ : Γ ⇑ L, F,G
` Θ : Γ ⇑ L, F O G

[O]
` Θ, F : Γ ⇑ L
` Θ : Γ ⇑ L, ?F [?]

` Θ : Γ ⇑ L,> [>]
` Θ : Γ ⇑ L, F ` Θ : Γ ⇑ L,G

` Θ : Γ ⇑ L, F &G
[&]

` Θ : Γ ⇑ L, F [c/x]

` Θ : Γ ⇑ L,∀xF [∀]

` Θ :⇓ 1
[1]

` Θ : Γ ⇓ F ` Θ : Γ′ ⇓ G
` Θ : Γ,Γ′ ⇓ F ⊗G [⊗]

` Θ :⇑ F
` Θ :⇓ !F

[!]

` Θ : Γ ⇓ F
` Θ : Γ ⇓ F ⊕G [⊕l]

` Θ : Γ ⇓ G
` Θ : Γ ⇓ F ⊕G [⊕r]

` Θ : Γ ⇓ F [t/x]

` Θ : Γ ⇓ ∃xF [∃]

Identity, Reaction, and Decide rules

` Θ : A⊥p ⇓ Ap
[I1] ` Θ, A⊥p :⇓ Ap

[I2]
` Θ : Γ, S ⇑ L
` Θ : Γ ⇑ L, S [R ⇑]

` Θ : Γ ⇓ P
` Θ : Γ, P ⇑ [D1]

` Θ, P : Γ ⇓ P
` Θ, P : Γ ⇑ [D2]

` Θ : Γ ⇑ N
` Θ : Γ ⇓ N [R ⇓]

Figure 1.2: The focused proof system, LLF, for linear logic [3]. Here, L is a list of
formulas, Θ is a multiset of formulas, Γ is a multiset of literals and positive formulas,
Ap is a positive literal, N is a negative formula, P is not a negative literal, and S is a
positive formula or a negated atom.

For example, the macro-rule obtained from (focusing on) the encoding of a transition
rule XA, XAlXpub →A ∃~t.YA, YAlYpub can be made to match the following “macro-rule”:

Γ, qA, YAσ, YAlσ, Ypubσ ` C
Γ, qA, XAσ,XAlσ,Xpubσ ` C

where σ is the substitution used to trigger the rule and where new eigenvariables are
created when introducing the existential quantifiers appearing in the encoding of the
rule. Once the goal is reached, that is, the bounded context to the left of the ` contains
all facts in the partial goal, R, we finish the proof by using the linear logic formula >
to consume all other facts, Y , that are not mentioned in the partial goal, as illustrates
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the following derivation (focused on the formula in the right-hand-side):

!pRTq, QI `
⊗
{QI} !pRTq, R `

⊗
{R} !pRTq, Y ` >

!pRTq, QI , Y, R `
⊗
{QI , R} ⊗ >

Theorem 1.15. Let T = 〈Σ, I, l, RT 〉 be a local transition system. Let W and R be
two states under the signature Σ. Then the sequent !pRTq, QI ,W `

⊗
{QI , R} ⊗ > is

provable in linear logic iff W  ∗T R.

Proof Consider the encoding of the transition ruleXA, XAl, Xpub →A ∃~t.YA, YAl, Ypub:

F = ∀~x[
⊗
{qAXAXAlXpub}( ∃~t

⊗
{qAYAYAlYpub}]

which is on the left-hand-side of the sequent and therefore we use its negation in the
one-sided LLF system:

F⊥ = ∃~x[
⊗
{qAXAXAlXpub} ⊗ ∀~t

¸
2{q⊥AY ⊥A Y ⊥AlY ⊥pub}].

Assume now that all atomic formulas have positive polarity, and consequently their
negation negative polarity. The focused derivation introducing F⊥ has to be necessarily
of the form:

` Θ : ∆ ⇓
⊗
{qAXAXAlXpub} ` Θ : Γ ⇓ ∀~t

˙
{q⊥AY ⊥A Y ⊥AlY ⊥pub}

` Θ : Γ,∆ ⇓
⊗
{qAXAXAlXpub} ⊗ ∀~t

˙
{q⊥AY ⊥A Y ⊥AlY ⊥pub}

[⊗]

` Θ : Γ,∆ ⇓ F⊥
[n× ∃]

` Θ : Γ,∆ ⇑ · [D2]

Since ⊗ is a positive connective, the left-premise is necessarily introduced by a com-
pletely positive phase introducing all tensors in

⊗
(qAXAXAlXpub) until one is focused

only on atomic formulas. Since atomic formulas are positive, the only applicable rule
at this point is an initial rule. This forces ∆ to be exactly the negation of the facts
in the pre-condition of the transition rule union the fact q⊥A . In contrast, since ∀ and
O are negative connectives, the right-premise is necessarily introduced by a negative
phase introducing these connectives. Hence, the macro-rule introducing an encoding
of the transition rule is necessarily of the form:

` Θ : Γ, q⊥A , Y
⊥
A σ, Y

⊥
Alσ, Y

⊥
pubσ ⇑ ·

` Θ : Γ, q⊥A , X
⊥
Aσ,X

⊥
Alσ,X

⊥
pubσ ⇑ ·

2If you have problems seeing this symbol (big par), please use the CMLL fonts available at http:
//iml.univ-mrs.fr/~beffara/soft/.

http://iml.univ-mrs.fr/~beffara/soft/
http://iml.univ-mrs.fr/~beffara/soft/
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Notice that if the pre-condition of the rule is not satisfied, then there is no focused
proof which focuses on the encoding of this transition. This handles the inductive case.

The base case consists in checking if a partial goal is reached. This is specified in a
similar way by the “macro-rule” introducing the formula

⊗
{R,QI} ⊗ >:

` Θ : ∆ ⇓
⊗
{R,QI} ` Θ : Γ ⇓ > [R ⇓,>]

` Θ : Γ,∆ ⇓
⊗
{R,QI} ⊗ >

[⊗]

` Θ : Γ,∆ ⇑ · [D2]

The focusing discipline forces that ∆ contains exactly the negation of the facts appear-
ing in R and QI and that Γ are the remaining facts in the state.

At the end, we obtain a one-to-one correspondence between focused proofs and runs
of the encoded local state transition system. 2

The use of the > is enough to specify partial goals in linear logic, obtaining hence
the same effect as in [27] where they used instead affine linear logic. However, since
there is no clear focused proof system for affine linear logic, we prefer the encoding in
linear logic.

In the encoding above, we have not captured the operational semantics of LSTSes
with progressing behavior. In order to do so, one would need to remember the instances
of the rules that were used before and disallow them to be used again. A logical
specification of such operation does not seem to be trivial and is left for future work.



Chapter 2

Formalizing Freshness for LSTSes
with Balanced Actions

In principle a plan can be exponentially long. Moreover, since actions in a plan can
create fresh values such exponentially long plans may involve exponentially many fresh
values. In Section 2.1 we provide examples of such plans including a solution for the
Towers of Hanoi puzzle suitably modified to include nonce creation, which would, in
principle, introduce an exponential number of fresh values in the plan. Such plans,
and in particular the use of an exponential number of fresh values, in principle seems
to preclude PSPACE membership of the secrecy problem and all compliance problems
given in Section 1.1.4.

In Section 2.2 we show how to circumvent this problem by reusing obsolete constants
instead of creating fresh values. We show that one only requires a small number of
nonces in a plan.

2.1 Examples of Exponentially Long Plans

In this section, we illustrate that plans can, in principle, be exponentially long. In
particular, we discuss an encoding of the well-known puzzle the Towers of Hanoi and
an exponential attack of a simple protocol introduced in [18]. Such plans seem to
preclude PSPACE membership, especially when nonces are involved, since there can
bean an a priori exponential number of nonces in such plans.

2.1.1 Towers of Hanoi

Towers of Hanoi is a well-known mathematical game or puzzle. It consists of three pegs
b1, b2, b3 and a number of disks a1, a2, a3, . . . of different sizes which can slide onto

27
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any peg. The puzzle starts with the disks neatly stacked in ascending order of size on
one rod, the smallest disk at the top. The objective is to move the entire stack stacked
on one peg to another peg, obeying the following rules:

(a) Only one disk may be moved at a time.

(b) Each move consists of taking the upper disk from one of the pegs and sliding it
onto another peg, on top of the other disks that may already be present on that
peg.

(c) No disk may be placed on top of a smaller disk.

The puzzle can be played with any number of disks and it is known that the minimal
number of moves required to solve a Tower of Hanoi puzzle is 2n − 1, where n is the
number of disks.

The problem can be represented by an LSTS: We introduce the type disk for the
disks, type diskp for either disks or pegs, with disk being a subtype of diskp. The
constants a1, a2, a3, ..., an are of type disk and b1, b2, b3 of type diskp. We use facts
of the form On(x, y), where x is of type disk and y is of type diskp, to denote that
the disk x is either on top of the disk or on the peg y, and facts of the form Clear(x),
where x is of type diskp, to denote that the top of the disk x is clear, i.e., no disk is
on the top of or on x, or that no disk is on the peg x. Since disks need to be placed
according to their size, we also use facts of the form S(x, y), where x is of type disk and
y is of type diskp, to denote that the disk x can be put on top of y. In our encoding,
we make sure that one is only allowed to put a disk on top of a larger disk or on an
empty peg, i.e., that x is smaller than y in the case of y being a disk. This is encoded
by the following facts in the initial configuration:

S(a1, a2) S(a1, a3) S(a1, a4) . . . S(a1, an) S(a1, b1) S(a1, b2) S(a1, b3)
S(a2, a3) S(a2, a4) . . . S(a2, an) S(a2, b1) S(a2, b2) S(a2, b3)

...
S(an−1, an) S(an−1, an) S(an−1, b1) S(an−1, b2) S(an−1, b3)

The initial configuration also contains the facts that describe the initial placing of the
disks:

On(a1, a2) On(a2, a3) . . . On(an−1, an) On(an, b1)
Clear(a1) Clear(b2) Clear(b3) ,

The goal configuration consists of the following facts and encodes the state where all
the disks are stacked on the peg b3:

On(a1, a2) On(a2, a3) . . . On(an−1, an) On(an, b3)
Clear(a1) Clear(b1) Clear(b2)
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Finally, the only action in our system is:

Clear(x) On(x, y) Clear(z) S(x, z)→ Clear(x) Clear(y) On(x, z) S(x, z)

where x has type disk, while y and z have type diskp. Notice that the action above is
balanced. This action specifies that if there is a disk, x, that has no disk on top, it can
be either moved to the top of another disk, z, that also has no disk on top, provided
that x is smaller than y, specified by predicate S(x, z), or onto a clear peg.

The Towers of Hanoi puzzle representation with LSTSes above can be suitably
modified so that each move in this game is identified/accompanied by replacing the
previous “ticket” with a fresh identifier:

T (t) Clear(x) On(x, y) Clear(z) S(x, z)→
∃t′.T (t′) Clear(x) Clear(y) On(x, z) S(x, z)

so that T (t) means that the current value is t. As before, given n disks, all plans must
be of the exponential length 2n−1, at least. Consequently, within the modified version,
a straightforward plan includes, a priori, an exponential number of nonces.

2.1.2 Exponential Protocol Anomaly

Protocols and the relevant security problems have been modeled with multiset rewriting
rules, see for example [18]. We are therefore able to apply our LSTSes to protocol
security analysis, as we do in Sections 4 and 5. There are protocols and the respective
anomalies or attacks that involve an exponential number of sessions, i.e., an exponential
number of actions needs to be applied. In the Section 5.5 we encode such a protocol,
originally introduced in [18], using LSTSes with balanced actions.

This protocol, informally described in Figure 2.1, is a fragment of an audited key
distribution protocol, for one key server and s clients. The protocol assumes that a
private symmetric key K is shared between the principals A,B1, . . . , Bs and C. Here
A is a key server, B1, . . . , Bs are clients, and C is an audit process. There are s
Server/Client sub-protocols, one for each client. In these sub-protocols A sends a value
which corresponds to a certain binary pattern, and Bi responds by incrementing the
pattern by one. We use the notation xi to indicate the “don’t care” values in the
messages in the Server/Client sub-protocols. The protocol also includes two audit
sub-protocols. In the first audit protocol the server A sends a message of all zero’s
to C to indicate that the protocol finished correctly. In the second audit protocol, A
sends a message of all one’s to indicate that there is an error. It has the side-effect of
broadcasting the SECRET if C receives the error message.
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Server / Client Protocols
A −→ B1 : {x1, x2, x3, 0}K
B1 −→ A : {x1, x2, x3, 1}K

A −→ B2 : {x1, x2, 0, 1}K
B2 −→ A : {x1, x2, 1, 0}K

A −→ B3 : {x1, 0, 1, 1}K
B3 −→ A : {x1, 1, 0, 0}K

A −→ B4 : {0, 1, 1, 1}K
B4 −→ A : {1, 0, 0, 0}K

Audit Protocols
A −→ C : {0, 0, 0, 0}K
C −→ A : OK

A −→ C : {1, 1, 1, 1}K
C −→ A : SECRET

Figure 2.1: Audited Key Distribution Protocol for s = 4

It is easy to check that when a Dolev-Yao intruder is present, he can discover the
secret in an exponential number of steps, assuming he does not possess the key K. In
particular, he routes the initial message {0, 0, 0, 0}K from the server A through 2s − 1
sessions. In each session, the value of the encrypted binary number is increased by one
and after 2s − 1 sessions the encrypted messages contains only 1’s. This message is
then sent to C, and causes the broadcast of the SECRET unencrypted. The intruder,
therefore, learns the secret using an exponentially long plan.
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2.2 Guarded Nonce Creation

In this section we show how to circumvent the problem of possibly having an exponen-
tial number of nonces in a plan by reusing obsolete constants instead of updating with
fresh values. We show that one only requires a small number of nonces in a plan.

There are two main views on fresh values, one is quite strict and the other is more
local. For example, when an artist creates his original work of art, it is different to
any other song, sculpture or painting made in human history. However, a fresh value
can also be seen as a local object, that is a fresh value can be considered as any value
that does not belong to any agent of the system in a particular configuration or at a
particular moment or period of time. Under the latter interpretation, even values that
appeared before in a plan, but that do not appear in a configuration anymore, can be
considered fresh.

Consider as an intuitive example the scenario where customers are waiting at a
counter. Whenever a new customer arrives, he picks a number and waits until his
number is called. Since only one person is called at a time, usually in a first come first
serve fashion, a number that is picked has to be a fresh value, that is, it should not
belong to any other customer in the waiting room. Furthermore, since only a bounded
number of customers wait at the counter in a period of time, one only needs a bounded
number of tickets: once a customer is finished, his number can be in fact reused and
assigned to another customer.

We can generalize the idea illustrated by the example above to systems with bal-
anced actions. Since in such systems all configurations have the same number of facts
and the size of facts is bounded, in practice we do not need an unbounded number of
new constants in order to reach a goal, but just a small number of them. Namely, there
are at most mk occurences of constants (including nonces) in any configuration of m
facts of the size k. We can imagine them as memory slots. Therefore, any balanced
action that involves nonces, inserts nonces into the memory providing there is an empty
slot available, or replaces a stored value with a fresh one, different to any of mk values
stored in system memory at that moment.

Consequently, in a given planning problem we only need to consider a small number
of fresh nonces, which can be fixed in advance. This is formalized by the following
theorem:

Theorem 2.1. Given an LSTS with balanced actions that can create nonces, any plan
leading from an initial configuration W to a partial goal Z can be transformed into
another plan also leading from W to Z that uses only a polynomial number of nonces,
2mk, with respect to the number of facts, m, in W and an upper bound on the size of
facts, k.
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The proof of Theorem 2.1 relies on the observation that from the perspective of
an insider of the system two configurations can be considered the same whenever they
only differ on the names of the nonces used.

Consider for example the following two configurations, where the nis are nonces
and tis are constants in the initial signature:

{FA(t1, n1), GB(n2, n1), Hpub(n3, t2)} and {FA(t1, n4), GB(n5, n4), Hpub(n6, t2)}

Since these configurations only differ on the nonce’s names used, they can be regarded
as equivalent: the same fresh value, n1 in the former configuration and n4 in the latter,
is shared by the agents A and B, and similarly, for the new values n2 and n5, and n3

and n6. Inspired by a similar notion in λ-calculus [13], we say that these configurations
above are α-equivalent.

Definition 2.2. Two configurations S1 and S2 are α-equivalent, denoted by S1 =α S2,
if there is a bijection σ that maps the set of all nonces appearing in one configuration to
the set of all nonces appearing in the other configuration, such that the set S1σ = S2.

The two configurations given above are α-equivalent because of the following the
bijection {(n1, n4), (n2, n5), (n3, n6)}. It is easy to show that the relation =α is indeed
an equivalence, that is, it is symmetric, transitive, and reflexive.

The following lemma formalizes the intuition described above that from the point
of view of an insider two α-equivalent configurations are the same, that is, one can
apply the same action to one or the other and the resulting configurations are also
equivalent. This is similar to the notion of bisimulation in process calculi [32].

Lemma 2.3. Let m be the number of facts in a configuration S1 and k be an upper
bound on the size of facts. Let Nm,k be a fixed set of 2mk nonce names. Suppose
that the configuration S1 is α-equivalent to a configuration S ′1 and, in addition, each
of the nonce names occurring in S ′1 belongs to Nm,k. Let an instance of the action r
transform the configuration S1 into the configuration S2. Then there is a configuration
S ′2 such that: (1) an instance of action r transforms S ′1 into S ′2; (2) S ′2 is α-equivalent
to S2; and (3) each of the nonce names occurring in S ′2 belongs to Nm,k.

Proof We transform the given transformation S1 →r S2, which can in principle
include nonce creation, into S ′1 →r′ S

′
2 so that the action r′ does not create new values,

instead chooses nonce names from a fixed set given in advance, in such a way that the
chosen nonce names differ from any values in the enabling configuration S ′1. Although
these names have been fixed in advance, they can be considered fresh, and we say r′ is
an action of guraded nonce generation.

Let r be a balanced action that does not create nonces. Let r’s instance used to
transform S1 to S2 contain nonces ~n that are in S1. Let σ be a bijection between the



Formalizing Freshness for LSTSes with Balanced Actions 33

nonces of S1 and S ′1. Then an instance of r where the nonces n are replaced by (~nσ)
transforms the configuration S ′1 into S ′2. Configurations S ′2 and S2 are α-equivalent
since these configurations differ only in nonce names, as per bijection σ.

The most interesting case is when a rule r creates nonces ~n2 resulting in S2. Since
the number of all places (slots for values) in a configuration is bounded by mk, we

can find enough elements ~n′2 (at most mk in the extreme case where all nonces are
supposed to be created simultaneously) in the set of 2mk nonce names, Nm,k, that do

not occur in S ′1. Values ~n′2 can therefore be considered fresh and used instead of ~n2.
Let δ be the bijection between nonce names ~n2 and ~n2

′ and let σ be a bijection between
the nonces of S1 and S ′1. Then the action r′ = rδσ of guarded nonce creation is an
instance of action r which is enabled in configuration S ′1 resulting in configuration S ′2.
Configurations S2 and S ′2 are α-equivalent because of the bijection δσ.

Moreover, from the assumption that critical configurations are closed under renam-
ing of nonces, if S2 is not critical, the configuration S ′2 is also not critical. 2

We are now ready to prove Theorem 2.1:

Proof (of Theorem 2.1). The proof is by induction on the length of a plan and
it is based on Lemma 2.3. Let T be an LSTS with balanced actions that can create
nonces, m the number of facts in a configuration, and k the bound on size of each fact.
Let Nm,k be a fixed set of 2mk nonce names. Given a plan P leading from the initial
configuration W to a partial goal Z we adjust it so that all nonces along the plan P ′

are taken from Nm,k.
For the base case, assume that the plan is of the length 0, that is, the configuration

W already contains Z. Since we assume that goal and initial configurations are closed
under renaming of nonces, we can rename the nonces in W by nonces from Nm,k.

Assume that any plan of length n can be transformed in a plan that uses the fixed
set of nonce names. Let a plan P of the length n + 1 be such that W >∗T ZU . Let r
be the last action in P and Z1 →r ZU . By induction hypothesis we can transform
the plan W →∗T Z1 into a plan W ′ →∗T Z ′1, with all configurations α-equivalent
to corresponding configurations in the original plan, such that it only contains nonces
from the set Nm,k.

We can then apply Lemma 2.3 to the configuration Z1 and conclude that there is
a configuration Z ′U ′ that is α-equivalent to configuration ZU such that all nonces
in the configuration Z ′U ′ belong to Nm,k. Therefore, all nonces contained in the
transformed plan P ′, i.e. in the plan W ′ →∗T Z ′U ′ are taken from Nm,k.

Notice that no critical configuration is reached in this process because we assume
that critical configurations are closed under renaming of nonce names. 2
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Corollary 2.4. For LSTSes with balanced actions that can create nonces, we only need
to consider the planning problem with a polynomial number of fresh values, which can
be fixed in advance, with respect to the number of facts in the initial configuration and
the upper bound on the size of facts.

Notice that, since plans can be of exponential length, a nonce name from Nm,k can,
in principal, be used in guarded nonce creation an exponential number of times.



Chapter 3

Complexity Results

In this Section we discuss complexity results for different problems introduced in Section
1.1.4, namely, the weak plan compliance problem, the plan compliance problem, the
system compliance problem and the secrecy problem.

3.1 Complexity of Some Problems without Nonces

We start, mainly for completeness, with the simplest form of systems, namely, those
that contain only actions of the form a→ a′, called context-free monadic actions, which
only change a single fact from a configuration. The following result can be inferred
from [18, Proposition 5.4].

Theorem 3.1. Given an LSTS with only actions of the form a → a′, the weak plan
compliance, the plan compliance problem, and the secrecy problems are in P.

Our next result improves the result in [27, Theorem 6.1] since any type of balanced
actions was allowed in that encoding. Here, on the other hand, we allow only monadic
actions, that is actions of the form ab→ a′b, i.e., balanced actions that can modify at
most a single fact and in the process check whether a fact is present in the configuration.
We tighten the lower bound by showing that weak plan compliance problem for LSTSes
with monadic actions is also PSPACE-hard. The main challenge here is to simulate
operations over a non-commutative structure by using a commutative one, namely, to
simulate the behavior of a Turing machine that uses a sequential, non-commutative
tape in our formalism that uses commutative multisets.

Theorem 3.2. Given an LSTS with only actions of the form ab→ a′b, then the prob-
lems of weak plan compliance, plan compliance, system compliance and the secrecy
problem are PSPACE-hard.

35
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The PSPACE upper bound for this problem can be inferred directly from [17].

Proof We start the proof with the weak plan compliance problem. In order to prove
the lower bound, we encode a non-deterministic Turing machine M that accepts in
space n within actions of the form ab→ a′b, whenever each of these actions is allowed
any number of times. In our proof, we do not use critical configurations and need just
one agent A. Without loss of generality, we assume the following:

(a) M has only one tape, which is one-way infinite to the right. The leftmost cell
(numbered by 0) contains the marker $ unerased.

(b) Initially, an input string, say x1x2 . . . xn, is written in cells 1, 2,. . . , n on the tape.
In addition, a special marker # is written in the (n+1)-th cell.

$ x1 x2 · · · xn # . . .

(c) The program of M contains no instruction that could erase either $ or #. There
is no instruction that could move the head ofM either to the right whenM scans
symbol #, or to the left whenM scans symbol $. As a result,M acts in the space
between the two unerased markers.

(d) Finally, M has only one accepting state qf , and, moreover, all accepting configu-
rations in space n are of one and the same form.

For each n, we design a local state transition system Tn as follows:
Firstly, we introduce the following propositions: Ri,ξ which denotes that “the i-th
cell contains symbol ξ”, where i = 0, 1, . . . , n+1, ξ is a symbol of the tape alphabet
of M, and Sj,q which denotes that “the j-th cell is scanned by M in state q”, where
j=0, 1, . . . , n+1, q is a state of M.
Given a machine configuration of M in space n - that M scans j-th cell in state q,
when a string ξ0ξ1ξ2 . . . ξi . . . ξnξn+1 is written left-justified on the otherwise blank tape,
we will represent it by a configuration of Tn of the form (here ξ0 and ξn+1 are the end
markers):

Sj,qR0,ξ0R1,ξ1R2,ξ2 · · ·Rn,ξnRn+1,ξn+1 . (3.1)

Second, each instruction γ inM of the form qξ→q′ηD, denoting “if in state q looking
at symbol ξ, replace it by η, move the tape head one cell in direction D along the tape,
and go into state q′”, is specified by the set of 5(n+2) actions of the form:

Si,qRi,ξ →A Fi,γRi,ξ, Fi,γRi,ξ →A Fi,γHi,γ, Fi,γHi,γ →A Gi,γHi,γ,
Gi,γHi,γ →A Gi,γRi,η, Gi,γRi,η →A SiD,q′Ri,η,

(3.2)
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where i=0, 1, . . . , n+1, Fi,γ, Gi,γ, Hi,γ are auxiliary atomic propositions, iD := i+1 if
D is right, iD := i−1 if D is left, and iD := i, otherwise.

The idea behind this encoding is that by means of such five monadic rules, applied
in succession, we can simulate any successful non-deterministic computation in space n
that leads from the initial configuration, Wn, with a given input string x1x2 . . . xn, to
the accepting configuration, Zn.

The faithfulness of our encoding heavily relies on the fact that any machine con-
figuration includes exactly one machine state q. Namely, because of the specific form
of our actions in (3.2), any configuration reached by using a plan P , leading from Wn

to Zn, has exactly one occurrence of either Si,q or Fi,γ or Gi,γ. Therefore the actions
in (3.2) are necessarily used one after another as below:

Si,qRi,ξ →A Fi,γRi,ξ →A Fi,γHi,γ →A Gi,γHi,γ →A Gi,γRi,η →A SiD,q′Ri,η.

Moreover, any configuration reached by using the plan P is of the form similar to (3.1),
and, hence, represents a configuration of M in space n.
Passing through this plan P from its last action to its first v0, we prove that whatever
intermediate action v we take, there is a successful non-deterministic computation
performed byM leading from the configuration reached to the accepting configuration
represented by Zn. In particular, since the first configuration reached by P is Wn, we
can conclude that the given input string x1x2 . . . xn is accepted by M.

By the above encoding we reduce the problem of a Turing machine acceptance in n-
space to a weak plan compliance problem with no critical configurations and conclude
that the weak plan compliance problem is PSPACE-hard.

The secrecy problem is a special case of the weak plan compliance problem with no
critical configurations and with the goal configuration having a negative connotation of
intruder learning the secret. To the above encoding we add the action Si,qf →Ms(s),
for the accepting state qf and the constant s denoting the secret. This action reveals
the secret to the intruder. Consequently, the secrecy problem is also PSPACE-hard.

Finally, since the encoding involves no critical configurations both the plan compli-
ance and the system compliance problem are also PSPACE-hard. 2

In order to obtain a faithful encoding, one must be careful, specially, with commu-
tativity. If we attempt to encode these actions by using, for example, the following
four monadic actions

Si,qRi,ξ →A Fi,γRi,ξ, Fi,γRi,ξ →A Fi,γHi,γ,
Fi,γHi,γ →A Fi,γRi,η, Fi,γRi,η →A SiD,q′Ri,η,

then such encoding would not be faithful because of the following conflict:

(Fi,γRi,ξ →A Fi,γHi,γ) and (Fi,γRi,η →A SiD,q′Ri,η).
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Also notice that one cannot always use a set of five monadic actions similar to those
in (3.2) to faithfully simulate non-monadic actions of the form ab → cd. Specifically,
one cannot always guarantee that a goal is reached after all five monadic actions are
used, and not before. For example, if our goal is to reach a state with c and we consider
a state containing both c and d as critical, then with the monadic rules it would be
possible to reach a goal without reaching a critical state, whereas, when using the
non-monadic action, one would not be able to do so. This is because, after applying
the action ab→ cd, one necessarily reaches a critical state. In the encoding of Turing
machines above, however, this is not a problem since all propositions of the form Si,q
do not appear in the intermediate steps, as illustrated above.

3.2 Complexity in Systems with Nonces

We turn our attention to the case when actions can create nonces. We show that the
problems of the weak plan compliance, plan compliance and system compliance as well
as the secrecy problem for LSTSes with balanced actions that can create nonces are in
PSPACE. Combining this upper bound with the lower bound given in Theorem 3.2,
we can infer that this problem is indeed PSPACE-complete.

Recall that, in Section 2.2 we introduce a formalization of freshness in balanced
systems. Instead of (proper) nonce generation, in balanced systems we consider guarded
nonce generation, see Lemma 2.3. We are then able to simulate plans that include
actions of nonce generation with plans containing α-equivalent configurations such that
the whole plan only includes a small number of nonce names, polynomial in the size of
the configurations and in the bound on size of facts. This is an important assumption
in all of the results in the next sections related to balanced systems.

To determine the existence of a plan we only need to consider plans that never
reach α-equivalent configurations more than once. If a plan loops back to a previously
reached configuration, there is a cycle of actions which could have been avoided. Thus,
at worst, a plan must visit each of the LT (m, k) configurations, where m is the number
of facts in the initial configuration and k an upper bound on the size of facts.

The following lemma imposes an upper bound on the number of different configu-
rations given an initial finite signature.

Lemma 3.3. Given an LSTS T under a finite signature Σ, then the number of con-
figurations, LT (m, k), that are pairwise not α-equivalent and whose number of facts
(counting repetitions) is exactly m is such that LT (m, k) ≤ Jm(D + 2mk)mk, where J
and D are, respectively, the number of predicate symbols and the number of constant
and function symbols in the initial signature Σ, and k is an upper bound on the size
of facts.
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Proof Since a configuration contains m facts and each fact can contain only one
predicate symbol, there are m slots for predicate names.

Moreover, since the size of facts is bounded by k, there are at most mk slots in a
configuration for constants and function symbols. Constants can be either constants
in the initial signature Σ or nonce names.

However, following Theorem 2.1, we need to consider only 2mk nonces. Hence,
there at most Jm(D + 2mk)mk configurations that are not α-equivalent, where J and
D are, respectively, the number of predicate symbols and the number of constant and
function symbols in the initial signature Σ. 2

Clearly, the upper bound above on the number of configurations is an overestimate.
It does not take into account, for example, the equivalence of configurations that only
differ on the order of the facts. For our purposes, however, it will be enough to assume
such a bound.

Although the secrecy problem as well as the weak plan compliance, plan compliance
and system compliance problems are stated as decision problems, we prove more than
just PSPACE decidability. Ideally we would also be able to generate a plan in PSPACE
when there is a solution. Unfortunately, as we have illustrated in Section 2.1, the
number of actions in the plan may already be exponential in the size of the inputs
precluding PSPACE membership of plan generation.

Moreover, these plans could, in principle, also involve an exponential number of
nonces, as discussed at the end of Section 2. For the reason above we follow [27] and
use the notion of “scheduling” a plan in which an algorithm will also take an input i
and output the i-th step of the plan.

Definition 3.4. An algorithm is said to schedule a plan if it
(1) finds a plan if one exists, and
(2) on input i, if the plan contains at least i actions, then it outputs the ith action of
the plan, otherwise it outputs no.

Following [27], we assume that when given an LSTS, there are three programs,
C,G, and T , such that they return the value 1 in polynomial space when given as
input, respectively, a configuration that is critical, a configuration that contains the
goal configuration, and a transition that is valid, that is, an instance of an action in
the LSTS, and return 0 otherwise.

Theorem 3.5. Given an LSTS with balanced actions that can create nonces, then the
weak plan compliance problem and the secrecy problem are in PSPACE.
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Proof Assume as inputs an initial configuration W containing m facts, an upper
bound, k, on the size of facts, programs G, C, and T , as described above, and a natural
number 0 ≤ i ≤ LT (m, k).

We first prove that the weak plan compliance problem is in PSPACE. We modify
the algorithm proposed in [27] in order to accommodate the updating of nonces. The
algorithm must return “yes” whenever there is compliant plan from the initial con-
figuration W to a goal configuration. In order to do so, we construct an algorithm
that searches non-deterministically whether such configuration is reachable, that is, a
configuration S such that G(S) = 1. Then we apply Savitch’s Theorem to determinize
this algorithm.

The algorithm begins with W0 := W . For any t ≥ 0, we first check if C(Wt) = 1. If
this is the case, then the algorithm outputs “no”. We also check whether the config-
uration Wt is a goal configuration, that is, if G(Wt) = 1. If so, we end the algorithm
by returning “yes”. Otherwise, we guess a transition r such that T (r) = 1 and that
is applicable using the configuration Wt. If no such action exists, then the algorithm
outputs “no”. Otherwise, we replace Wt by the configuration Wt+1 resulting from ap-
plying the action r to Wt. Following Lemma 3.3 we know that a goal configuration is
reached if and only if it is reached in LT (m, k) steps. We use a global counter, called
step-counter, to keep track of the number of actions used in a partial plan constructed
by this algorithm.

In order to accommodate nonce creation, we use guarded nonce creation. This is
done, as in the proof of Theorem 2.1, by replacing the relevant nonce occurrence(s)
with nonce names from a fixed set of nonce names so that they are different from any
of the nonces in the enabling configuration.

We now show that this algorithm runs in polynomial space. We start with the
step-counter: The greatest number reached by this counter is LT (m, k). When stored
in binary encoding, this number takes only space polynomial to the given inputs:

log2(LT (m, k)) ≤ log2(J
m(D + 2mk)mk) = log2(J

m) + log2((D + 2mk)mk)
= m log2(J) +mk log2(D + 2mk).

Therefore, one only needs polynomial space to store the values in the step-counter.
Following Theorem 2.1 there are at most polynomially many nonces contained in any
plan, namely at most 2mk. Hence nonces can also be stored in polynomial space.

We must also be careful to check that any configuration, Wt, can also be stored in
polynomial space with respect to the given inputs. Since our system is balanced and
we assume that the size of facts is bounded, the size of a configuration remains the
same throughout the run. Finally, the algorithm needs to keep track of the action r
guessed when moving from one configuration to another and for the scheduling of a
plan. It has to store the action that has been used at the ith step. Since any action
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can be stored by remembering two configurations, one can also store these actions in
space polynomial to the inputs.

A similar algorithm can be used for the secrecy problem. The only modification to
the previous algorithm is that one does not need to check for critical configurations as
in the secrecy problem there are no such configurations. 2

In order to show that the system compliance problem for LSTS-es that can create
nonces is in PSPACE we modify the algorithm proposed in [27] to accommodate the
guarded nonce creation.

Theorem 3.6. Given an LSTS with balanced actions that can create nonces, then the
system compliance problem is in PSPACE.

Proof Again we rely on the fact that NPSPACE, PSPACE, and co-PSPACE are all
the same complexity class. We use the same notation from the proof of Theorem 3.5
and make the same assumptions. Following Theorem 2.1 we can accommodate nonce
creation by replacing the relevant nonce occurrence(s) with nonces from a fixed set, so
that they are different from any of the nonces in the enabling configuration. As before,
this set of 2mk nonce names is not related to a particular plan, but fixed in advance
for a given LSTS, where m is the number of facts in the configuration of the system
and k is the bound on the size of the facts.

We first need to check that none of the critical configurations are reachable from
W . To do this we provide a non-deterministic algorithm which returns “yes” exactly
when a critical configuration is reachable. The algorithm starts with W0 := W . For
any t ≥ 0, we first check if C(Wt) = 1. If this is the case, then the algorithm outputs
”yes”. Otherwise, we guess an action r such that T (r) = 1 and that it is applicable
in the configuration Wt. If no such action exists, then the algorithm outputs “no”.
Otherwise, we replace Wt by the configuration Wt+1 resulting from applying the action
r to Wt. Following Lemma 3.3 we know that at most LT (m, k) guesses are required,
and therefore we use a global step-counter to keep track of the number of actions. As
shown in the proof of Theorem 3.5, the value of this counter can be stored in PSPACE.

Next we apply Savitch’s Theorem to determinize the algorithm. Then we swap the
accept and fail conditions to get a deterministic algorithm which accepts exactly when
all critical configurations are unreachable.

Finally, we have to check for the existence of a compliant plan. For that we apply the
same algorithm as for the weak plan compliance problem from Theorem 3.5, skipping
the checking of critical states since we have already checked that none of the critical
configurations are reachable from W . From what has been shown above we conclude
that the algorithm runs in polynomial space. Therefore the system compliance problem
is in PSPACE. 2
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Next we turn to the plan compliance problem for systems with balanced actions that
can create nonces. As we have already pointed out, the plan compliance problem can be
re-stated as a weak plan compliance problem which considers critical both the original
critical configurations of the system as well as the semi-critical configurations of any
agent. We will follow this intuition and construct an algorithm for the plan compliance
problem similar to the one used for the weak plan compliance problem, that will include
a sub-procedure that checks if a configuration is semi-critical for an agent. Recall that
a configuration is semi-critical for an agent A if a configuration critical for A can be
reached by other participants of the system without the participation of A.

Theorem 3.7. Given an LSTS with balanced actions that can create nonces, then the
plan compliance problem is in PSPACE.

Proof The proof is similar to the proof of Theorem 3.5 and the proof of the PSPACE
result of the plan compliance for balanced systems in [35]. Again we rely on the fact
that NPSPACE, PSPACE, and co-PSPACE are all the same complexity class.

Assume as inputs an initial configuration W containing m facts, an upper bound
on the size of facts k, a natural number 0 ≤ i ≤ LT (m, k), and programs G, C, and
T , that run in polynomial space and that are slightly different to those in Theorem
3.5. This is because for plan compliance it is important to know as well to whom an
action belongs to and similarly for which agent a configuration is critical. Program T
recognizes actions of the system so that T (j, r) = 1 when r is an instance of an action
belonging to agent Aj and T (j, r) = 0 otherwise. Similarly, program C recognizes
critical configurations so that C(j, Z) = 1 when configuration Z is critical for agent Aj
and C(j, Z) = 0 otherwise. Program G is the same as described earlier, i.e., G(Z) = 1
if Z contains a goal and G(Z) = 0 otherwise.

We start by constructing the algorithm φ that checks if a configuration is semi-
critical for an agent. While guessing the actions of a compliant plan at each configura-
tion Z reached along the plan we need to check whether for any agent Aj other agents
could reach a configuration critical for Aj. More precisely, at configuration Z, for an
agent Aj and Z0 = Z, the following nondeterministic algorithm looks for configurations
that are semi-critical for the agent Aj:

1. Check if C(j, Zt) = 1, then ACCEPT; otherwise continue;

2. Guess an action r and an agent Al 6= Aj such that T (l, r) = 1 and that r is
enabled in configuration Zt; if no such action exists then FAIL;

3. Apply r to Zt to get configuration Zt+1.

After guessing LT (m, k) actions, if the algorithm has not yet returned anything, it
returns FAIL. We can then reverse the accept and reject conditions and use Savitch’s
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Theorem to get a deterministic algorithm φ(j, Z) which accepts if every configuration
V satisfying Z>∗−Aj

V also satisfies C(j, V ) = 0, and rejects otherwise. In other words,
φ(j, Z) accepts only in the case when Z is not semi-critical for agent Aj. Next we
construct the deterministic algorithm C ′(Z) that accepts only in the case when Z is
not semi-critical simply by checking if φ(j, Z) accepts for every j; if that is the case
C ′(Z) = 1, otherwise C ′(Z) = 0.

Now we basically approach the weak plan compliance problem considering all semi-
critical configurations as critical by using the algorithm from the proof of Theorem 3.5
with the C ′ as the program that recognizes the critical configurations.

We now show that algorithm C ′ runs in polynomial space.
Following Theorem 2.1 we can accommodate nonce creation in polynomial space by

replacing the relevant nonce occurrence(s) with nonces from a fixed set of 2mk nonce
names, so that they are different from any of the nonces in the enabling configuration.

The algorithm φ stores at most two configurations at a time which are of the
constant size, same size the initial configuration W . Also, the action r can be stored
with two configurations. At most two agent names are stored at a time. Since the
number of agents n is much less than the size of the configuration m, simply by the
nature of our system, we can store each agent in space log n. As in the proof of
Theorem 3.5 only a polynomial space is needed to store the values in the step-counter,
even though the greatest number reached by the step counter is LT (m, k), which is
exponential in the given inputs. Since checking if C(j, Zt) = 1 and T (l, r) = 1 can be
done in space polynomial to |W |, |C| and |T |, algorithm φ, and consequently C ′, work
in space polynomial to the given inputs.

We combine that with Theorem 3.5 to conclude that the plan compliance problem
is in PSAPCE. 2

Given the PSPACE lower bound for the secrecy, weak plan compliance, system
compliance, and the plan compliance problem in Theorem 3.2 and the PSPACE up-
per bound given in the theorems above, we can conclude that all these problems are
PSPACE-complete.

Table 3.1 summarizes the complexity results for the compliance and secrecy prob-
lems.

Discussion on related work This PSPACE-complete result contrasts with results
in [18], where the secrecy problem is shown to be undecidable. Although in [18] an
upper bound on the size of facts was imposed, the actions were not restricted to be
balanced. Therefore, it was possible for the intruder to remember an unbounded num-
ber of facts, while here the memory of all agents is bounded. Moreover, for the DEXP
result in [18], a constant bound on the number of nonces that can be created was
imposed, whereas such a bound is not imposed here.
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Table 3.1: Summary of the complexity results for the weak compliance and the secrecy
problems. We mark the new results appearing here with a ?. The complexity for the
system compliance problem when actions are possibly unbalanced and can create fresh
values is shown to be undecidable in Section 3.4.2.

Compliance Balanced Actions Possibly unbalanced
Problems No fresh values Possible fresh values actions and no fresh values

Secrecy
PSPACE- PSPACE- Undecidable [18]

complete [27] complete?

Weak Plan
PSPACE- PSPACE- Undecidable [26]

complete [27] complete?

System
PSPACE- PSPACE- EXPSPACE-

complete [27] complete? complete [26]

Plan
PSPACE-complete PSPACE- Undecidable [26]

[27, 35] complete?
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3.3 Complexity in Balanced Progressing Systems

Now, we investigate the complexity of the progressing weak plan compliance problem
when one is allowed to use only monadic actions that cannot create nonces. These
restrictions reflect the assumptions discussed in the Introduction, namely, that many
systems have a constant number of names and that they have a progressing behavior.
For instance, the grant proposal example introduced in Section 1.1.3 is in this class of
LSTSes. We show that this problem is NP-complete.

Theorem 3.8. Given a local state transition system with only monadic actions of the
form ab → a′b, the progressing weak plan compliance problem, the progressing plan
compliance problem and the secrecy problem for progressing plans are NP-complete
when the size of facts is fixed.

Proof We start by proving the NP-hard lower bound for the partial reachability
problem. In our proof, we do not use critical states nor function symbols, and use only
one single agent. In particular, we reduce the 3-SAT problem which is well-known to be
NP-complete [16] to the problem of reachability using transition rules and a bounded
number of state variables. Consider the formula below in conjunctive normal form
with three variables per clause, classified as 3-CNF, to be the formula for which one is
interested in finding an model: C = (l11 ∨ l12 ∨ l13) ∧ · · · ∧ (ln1 ∨ ln2 ∨ ln3), where each
lij is either an atomic formula vk or its negation ¬vk. We encode the 3-SAT problem
by using two sets of rules. The first one builds an interpretation for each variables, vk,
appearing in C as follows

vk →A tk and vk →A f k,

where the first rule rewrites the variable vk to true, denoted by tk, and the second to
false, denoted by f k. The second set of rules checks if the formula C is satisfiable given
an interpretation:

S(vk∨lj2∨lj3)∧C , tk →A SC , tk S(¬vk∨lj2∨lj3)∧C , f k →A SC , f k
S(lj1∨vk∨lj3)∧C , tk →A SC , tk S(lj1∨¬vk∨lj3)∧C , f k →A SC , f k
S(lj1∨lj2∨vk)∧C , tk →A SC , tk S(lj1∨lj2∨¬vk)∧C , f k →A SC , f k

where 1 ≤ j ≤ n and vk is a variable appearing in C. Thus, we have a total of
(2×m+6×n) rules and a total of (3×m+n+1) state variables, where m and n are,
respectively, the number of variables and clauses in C.

Given a 3-CNF formula C and the set of rewrite rules, RT , shown above, we prove
soundness and completeness as shown below.
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(⇒) If C is satisfiable, we rewrite the variables in C according to the model of C
by using the first set of rules in RT and then check for satisfiability using the second
set of rules in RT .

(⇐) It is similar to the previous direction. A state containing S∅ is reached only if
a partial interpretation for the variables in C is build by using the first set of rules in
RT . This interpretation can be completed by assigning, for example, false to all other
variables and will be necessarily a model of C.

For the NP upper bound, we propose the following algorithm:
Let T = 〈Σ, I, l, RT 〉 be a local transition system, such that n is the number of rules

in RT , d is the number of constant and function symbols in Σ, k1 the upper bound
on the size of facts, where the size of a fact is total number (including repetitions)
of function and constant symbols in it, and k2 the upper bound on the number of
different variables appearing in a rule. Here we assume k1 and k2 to be much smaller
than d. Since facts are bounded, we do not need to consider terms that have a size
greater than k1; therefore we need to consider at most dk1 terms. Since, in progressing
plans, one is allowed to use only one instance of a rule, the length of runs is bounded
by n × (dk1)k2 = n × dk1k2 , which is polynomial on the number of rules and symbols.
Assume that W is the initial configuration and Z the goal configuration and that one
can check in polynomial time whether a configuration is critical or not.

We show below that there is a polynomial-time algorithm that checks for valid
computation runs.

Let Si be the state at step i, so S0 = W ; Ri be the set of pairs, 〈r, σ〉, of rules and
substitutions used before step i, so R0 = ∅; and let the following rule, ri : ab → a′b,
be used with the substitution σi at step i

1. Check if Z ⊆ Si−1, then ACCEPT; otherwise continue;

2. Check if Z is not a critical state, then continue; otherwise FAIL;

3. Check if aσi, bσi ∈ Si−1, then continue; otherwise FAIL;

4. Check if 〈ri, σi〉 ∈ Ri−1, then FAIL; otherwise continue;

5. Si = Si−1 ∪ {a′σi} \ {aσi};

6. Ri = Ri−1 ∪ {〈ri, σi〉};

7. Increment i.

Since the size of facts is bounded, all steps are done in polynomial time. The only step
that may not be apparent is step 3. However, the set Ri is bounded by i, that is, by
the length of the computation run. Therefore, the reachability problem is in NP. 2
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Notice that the above upper bound works even if actions are not monadic. It even
works if we assume that actions can create a bounded number, n, of nonces. One would
only need to extend the number of constants by n and the algorithm would work in a
similar way, as states the following proposition:

Proposition 3.9. Given a local transition system, T , such that all its rules are of
the form a, b → ∃~x.a′, b, then the progressing weak plan compliance problem, the
progressing plan compliance problem and the secrecy problem for progressing plans
are in NP when only a bounded number of nonces are allowed and when the size of
facts is fixed.

Proof Let T = 〈Σ, I, l, RT 〉 be a local transition system, such that n is the number of
rules in RT , d is the number of constants in Σ, k1 the upper bound on the size of facts,
where the size of a fact is total number (including repetitions) of function and constant
symbols in it, k2 the upper bound on the number of different variables appearing in
a rule, and m be the bound on the number of nonces allowed. Following [18], we
can assume that all nonces are created before hand extending, hence, the number of
constants to d + m. Thus the length of computation is bounded by n × (d + m)k1k2 .
Moreover we remove the existential quantifiers of all rules. Then the proof follows in
the same way as in Theorem 3.8. 2

The NP upper bound obtained above relies on the progressing fact, since this bounds
the length of a computation run. This is different from the NP upper bound obtained
[2, 36] in the context of protocol security. In their models, the progressing condition
is incorporated syntactically into the rules of the theories. Specifically, they use role
predicates of the form Ai contain an index i denoting the stage in the protocol a
principal is: once a stage of one instance of a protocol role is reached it is never
repeated again. The NP-complete result in [2, 36] is obtained by further restricting
systems to have only a bounded number of roles. This implicitly bounds the signature
used to be finite. As shown in our proof, this restriction, together with the implicit
progressing behavior of protocols, is enough to ensure that runs have a polynomial
length and from there, show that the reachability problem is in NP.

Interestingly, the NP-hardness result obtained above is replaced by a PSPACE-
hardness result, see Theorem 3.2, if we allow actions to be used as many times needed,
even when LSTSes are restricted to have only monadic actions that do not create
nonces. This shows that the notion of progressing is indeed important to guarantee
the lower complexity. This result also improves the result in [27, Theorem 6.1] since in
their encoding they allowed any balanced actions including non-monadic ones, whereas
here we use only monadic actions. The main challenge here is to simulate operations
over a non-commutative structure (tape) by using a commutative one (multiset).
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We now return to the problem of progressing weak plan compliance, where an in-
stance of an action can be used at most once, but now, we allow monadic actions to
create nonces. That is, we trade the absence of the progressing condition for the ability
to create nonces. It turns out that such problem is also PSPACE-hard. Therefore, the
progressing condition alone is not enough to guarantee an NP complexity, but one also
needs to forbid the creation nonces.

Theorem 3.10. Given a local state transition system with only monadic actions of the
form ab→ ∃~x.a′b, the progressing weak plan compliance problem, the progressing plan
compliance problem and the secrecy problem for progressing plans are PSPACE-hard.

Proof (Sketch) The proof goes in a similar fashion as the lower bound proof of
Theorem 3.2. However, we cannot use the same encoding appearing in (3.2). Since
only one instance of any rule in the LSTS can be used, we would only be allowed to
encode runs that use an action of M once. In order to overcome this problem, here,
instead of using propositional rules, we use 6(n+ 2) first-order actions of the form:

Si,q(t)Ri,ξ →A ∃tn.Fi,γ(tn)Ri,ξ, Fi,γ(t)Ri,ξ →A Fi,γ(t)Hi,γ(t),
Fi,γ(t)Hi,γ(t)→A Gi,γ(t)Hi,γ(t), Gi,γ(t)Hi,γ(t)→A Gi,γ(t)Ri,η,
Gi,γ(t)Ri,η →A SiD,q′(t)Ri,η, Si,q(t)→A Si,q.

(3.3)

where i=0, 1, .., n+1. The initial state contains a variable Si,q(c) with some constant c
and the goal state is the accepting configuration with a propositional variable Sj,q (of
arity zero). Intuitively, the first five rules above are used in the same way as before
to encode M ’s actions of the form Si,qRi,ξ →A SiD,q′Ri,η, but, now, we create a new
constant, tn, every time we apply the first rule. This allows us to encode runs where
the same action of M is used more than once, since, for each use of this action, we use
a different instance of the rules in (3.3). Moreover, since in the accepting state one is
not interested in the constant t appearing in the variables Si,q(t), we use the last rule
in (3.3) when the accepting state is reached. Notice that after this last action is used,
no other rule in (3.3) is applicable. 2

However, regarding the upper bound for the case when systems are progressing, it
is no longer possible to use the same algorithm use in the proof of Theorem 3.5. The
problem is that one needs to check that the plan is progressing, which requires to check
that in the whole plan, any instance of any action is used at most one. In order to do
so, it seems that one needs to remember the whole plan. It remains to be seen if the
restriction of progressing LSTS to only monadic actions gives lower complexity result.

Theorem 3.11. The problems of progressing weak plan compliance, progressing plan
compliance, and the secrecy problem for progressing plans for LSTSes with balanced
actions that can create nonces are in EXPSPACE.
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Proof The algorithms are similar to algorithms for the plans that are not necessar-
ily progressing but there are additional steps for checking of the progress, both when
checking for compliance and when constructing a plan. Each time an action is nonde-
terministically chosen as the candidate for the next action in the plan, the algorithm
has to check that it has not already been used. It does that by comparing it to the
actions used so far. Therefore we have to store the plan. As we have already seen
an action takes O(|W |) space, but the length of a plan can be up to LT (m) which is
exponential in respect to the given inputs. 2

3.4 Complexity in Not Necessarily Balanced Sys-

tems with Nonces

In this section we show that the weak plan compliance problem for progressing systems
with possibly unbalanced actions that can create nonces as well as system compliance
problem for systems with possibly unbalanced actions with nonces are undecidable.
This is shown by faithfully encoding the two counter Minsky Machine in a similar way
as in [26] and by encoding the Turing machine with unbounded tape similarly to [18],
respectively.

3.4.1 Undecidability in Progressing Systems

We use a standard two-counter Minsky machine M of a certain form as shown in
Figure 3.1. We assume the instructions alternate between instructions for register 1 and
instructions for register 2. Instructions labeled by ai will be run by Alice, instructions
labeled by bj will be run by Bob.

Jump ai : goto bj;
Add ai : r1 := r1 + 1; goto bj;
Substract ai : r1 := r1 − 1; goto bj;
0-test ai : if (r1 = 0) goto bj else goto bk;

Jump bj : goto ak;
Add bj : r2 := r2 + 1; goto ak;
Substract bj : r2 := r2 − 1; goto ak;
0-test bj : if (r2 = 0) goto ak else goto al;

(3.4)

Figure 3.1: The form of Minsky machine instructions
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Each instruction is labeled with the unique label. States a1 and a0 are the initial
and final states of M , respectively. Furthermore, a0 is a halting state so it is distinct
from the label of any of M ’s instructions. M ’s configuration where M is in state m,
and k1 and k2 are the current values of counters r1 and r2, respectively, is denoted by
(m; k1, k2). A computation performed by M is a sequence of M ’s configurations such
that each step is made by one of the above instructions:

(a1;n, 0) a1−−−−→ . . . −−−→ (ai; k1, k2) ai−−−−→ (bj; k
′
1, k
′
2) bj−−−−→

. . .

A terminating computation is one that ends in a configuration (a0; ∗, ∗), that is, the
final state a0 with any values in the counters.

Following [26] and [23] we embed a given Minsky machine M into a local state transition
system. The soundness and completeness of the translation imply the undecidability
of the problem.

Theorem 3.12. The problems of progressing weak plan compliance and progressing
plan compliance, as well as the secrecy problem for progressing plans are undecidable
for LSTSes that may have unbalanced actions that can create nonces.

Proof (Sketch) We modify the encoding in [26] by introducing a dummy one arity
predicate Aux(·) to all the actions in their specification. This predicate is used to
allow one to circumvent the progressing condition with the use of nonces. By using
this predicate, one is able to repeat the effect of an instruction of the machine without
needing to repeat an instance of an action twice. Bob’s actions are shown below:

Aux(x) SBj →B ∃y.Aux(y) RB C1(ak)

Aux(x) SBj →B ∃y.Aux(y) RB R2 C1(ak)

Aux(x) SBj R2 →B ∃y.Aux(y) RB C1(ak)

Aux(x) SBj →B ∃y.Aux(y) RB C1(ak̃)

Aux(x) SBj R2 →B ∃y.Aux(y) RB R2 C1(al)

Aux(x) RB C2(bj) →B ∃y.Aux(y) SBj

The initial state contains exactly one fact of the form Aux(t), where t is some constant.
All the actions above remove such a fact and include fact Aux(y) with a new constant
y. This forces that all instances of actions used in a plan to be different from each
other. Moreover, as in [26], to avoid the unintended non-determinism in the above
actions specifying the command if (r2 = 0) then ak else al, we make of critical states.
In particular, states containing either the facts C1(âj), R1 or the facts C1(b̃j), R2 are
critical. 2
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Remark We would like to point out that this work on progressing systems is a
preliminary work and express our doubts on this approach to progressing. Although
we were able to get an improvement in the complexity of the problems when only a
bounded number of nonce creations was allowed, in other cases our notion of progressing
backfired, see Theorem 3.3. It turned out that in the systems with unbounded number
of nonce creations progressing was too expensive. We found progressing with nonces
quite complicated and unclear. We are currently working on an alternative notion of
progressing which would provide more efficient systems.

3.4.2 Undecidability of System Compliance

For LSTSes with possibly unbalanced actions that cannot create fresh values, it was
shown in [26] that the complexity of both the weak plan and the plan compliance
problems are undecidable, while the complexity of the system compliance problem is
EXPSPACE-complete. Given these results we can immediately infer that the complex-
ity of the weak plan and plan compliance are also undecidable when we further allow
actions to create fresh values. We show next that when actions are possibly unbalanced
and can create fresh values, it turns out that the system compliance problem is also
undecidable.

Theorem 3.13. The system compliance problem for general LSTSes with actions that
can create fresh values is undecidable.

Proof The proof relies on undecidability of acceptance of Turing machines with
unbounded tape. The proof is similar to the undecidability proof of multiset rewrite
rules with existentials in [18].

Without loss of generality, we assume the following:

(a) M has only one tape, which is one-way infinite to the right. The leftmost cell
contains the marker $.

(b) Initially, an input string, say x1x2 . . . xn, is written in cells 1, 2,. . . , n on the tape.
In addition, a special marker # is written in the (n+1)-th cell.

$ x1 x2 · · · xn # . . .

(c) The program ofM contains no instruction that could erase $. There is no instruc-
tion that could move the head of M to the left when M scans symbol $ and in
case whenM scans symbol #, tape is adjusted, i.e. another cell is inserted so that
M scans symbol a0 and the cell immediately to the right contains the symbol #.
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(d) Finally, M has only one accepting state qf .

Given a machine M we construct an LSTS TM with actions that create fresh values.
The signature of TM has four sorts: state for the Turing machine states, cell and
nonce < cell for the cell names, and symbol for the cell contents.
We introduce constants a0, a1, . . . , am : symbol to represent symbols of the tape
alphabet with a0 denoting blank; constants q0, q1, . . . , qf : state for the machine
states, where q0 is the initial state and qf is the accepting state; and finally constants
$, c1, . . . , cn,# : cell for the names of the cells including the leftmost cell $ denoting
the beginning of the tape and the rightmost cell # denoting end of tape.
Predicates Curr : state × cell, Cont : cell × symbol and Adj : cell × cell denote,
respectively, the current state and tape position, the contents of the cells, and the
adjacency between the cells.
The tape maintenance is formalized by the following action:

Adj(c,#)→ ∃c′.Adj(c, c′) Adj(c′,#) Cont(c′,#) . (3.5)

By using this actions, one is able to extend the tape by labeling the new cell with a
fresh value, c′. Notice that due to the rule above, one needs an unbounded number
of fresh values since an unbounded number of cells can be used. To each machine
instruction qias → qjatL denoting “if in state qi looking at symbol as, replace it by
at, move the tape head one cell to the left and go into state qj” we associate action:

Curr(qi, c) Cont(c, as) Adj(c
′, c)→ Curr(qj, c

′) Cont(c, at) Adj(c
′, c). (3.6)

Notice that we move to the left by using the fact Adj(c′, c) denoting that the cell c′ is
to the cell immediately to the left of the cell c. Similarly, to each machine instruction
qiaj → qsatR denoting “if in state qi looking at symbol as, replace it by at, move the
tape head one cell to the right and go into state qj” we associate action:

Curr(qi, c) Cont(c, as) Adj(c, c
′)→ Curr(qj, c

′) Cont(c, at) Adj(c, c
′) . (3.7)

This action assumes that there is an available tape cell to the right of the tape head.
If this is not the case, one has to use the tape maintenence rule first which creates a
new cell in the tape.

Given a machine configuration ofM, whereM scans cell c in state q, when a string
$x1x2 . . . xk# is written left-justified on the otherwise blank tape, we represent it by
the following initial configuration of TM

Cont(c0, $) Cont(c1, x1) . . . Cont(ck, xk) Cont(ck+1,#)
Curr(q, c) Adj(c0, c1) . . . , Adj(ck, ck+1) .

(3.8)
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The goal configuration is the one containing the fact Curr(qf , c).
The faithfulness of our encoding relies on the fact that any machine configuration

includes exactly one machine state q. This is because of the specific form of actions
(3.5), (3.6) and (3.7), which enforce that any reachable configuration has exactly one
occurrence of Curr(q, c). Moreover, any reachable configuration is of the form similar
to (3.8), and, hence, represents a configuration of M.
Passing through the plan P from the initial configuration W to the goal configuration
Z, from its last action to its first r0, we prove that whatever intermediate action r
we take, there is a successful non-deterministic computation performed by M leading
from the configuration reached to the accepting configuration represented by Z. In
particular, since the first configuration reached by P is W , we can conclude that the
given input string x1x2 . . . xn is accepted by M.

Notice that the above encoding involves no critical configurations so we achieve
undecidability already for that simplified case. Consequently we get undecidability of
LSTSes with actions that can create nonces for all three types of compliances. 2

Table 3.2 gives the summary of complexity results and the comparison between the
progressing and not necessarily progressing problems.
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Table 3.2: Summary of the complexity results for the weak plan compliance and the
secrecy problems. New results appearing in this paper are marked with a ?.

Weak plan compliance problems Progressing Not necessarily progressing

Balanced Actions

Bounded No NP- PSPACE-
of Nonces complete? complete [27]

Unbounded No PSPACE- hard? PSPACE-
of Nonces in EXPSPACE? complete?

Actions not necessarily balanced Undecidable? Undecidable [26]

Secrecy problems Progressing Not necessarily progressing

Balanced Actions

Bounded No NP- PSPACE-
of Nonces complete? complete [27]

Unbounded No PSPACE-hard? PSPACE-
of Nonces in EXPSPACE? complete?

Actions not necessarily balanced Undecidable? Undecidable [18]



Chapter 4

Balanced Protocol and Intruder
Theories

In this section we investigate whether malicious agents, or intruders, with the same
capabilities of the other agents are able to discover some secret information. In partic-
ular, we assume that all agents have a bounded storage capacity, that is, they can only
remember, at any moment, a bounded number of facts. This is technically imposed
by considering LSTSes with only balanced actions. Namely, if we restrict actions to
be balanced, they neither increase nor decrease the number of facts in the system con-
figuration, therefore throughout a run the size of the configurations remains the same
as in the initial configuration. Since we assume facts to have a bounded size, the use
of balanced actions imposes a bound on the storage capacity of all the agents in the
system, including the inside adversary.

4.1 Representing Protocols with Multiset Rewrit-

ing Rules

Protocols and the relevant security problems can be modeled with multiset rewriting
rules, see [18]. In that scenario a set of rewrite rules, or a theory, was proposed for
modeling the standard Dolev-Yao intruder. Here, we adapt that theory to model
instead an intruder that is an agent of the system, i.e. adversary is an insider not an
outside attacker. Furthermore we model an intruder that has a bounded memory, but
that still shares many capabilities of the Dolev-Yao intruder, such as the ability to
compose, decompose, intercept messages as well as to create nonces.

55
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Generally, actions in LSTS can increase or decrease the number of facts in the
global configuration. Balanced actions, however, do not change the number of facts
in al configuration. A total size of the configuration of a balanced system is constant.
There is a fixed number of number of facts in a configuration, say m facts. Also, each
fact is of a bounded size, i.e. there are at most a slots for the term-symbols, resulting
in a total of m · a slots in a configuration. Balanced actions are therefore useful in
modeling systems with fixed resources. Intuitively, a global configuration is a fixed
amount of total system memory. Each agent has a buffer or database of a fixed size
and there’s the remaining fixed public buffer. During the collaboration with other
agents values in the relevant buffers are updated or erased to leave empty fields.

In reality, balanced systems are more flexible than that. There is one global buffer
of a fixed size, and the agents are free to release some fields for use by the group and
claim others from the group. The model allows for a potential fight for space resources
which could result in a form of denial of service.

While at first balanced systems might seem very restrictive compared to general
systems which allow unbalanced actions, in practice we are still able to model most
scenarios in a natural way using balanced systems. It is possible to transform any unbal-
anced system into a balanced one. Assume that our language has a special constant ∗.
A predicate of the form P (∗) can be interpreted as saying that the field P is empty. We
can add P (∗) facts to the pre-condition or alternatively to the post-condition of an un-
balanced action so that it becomes balanced. This modification can affect reachability.
Some configurations become no longer reachable. For example, if along a plan of an
unbalanced LSTS a configuration contains more than m facts, the goal configuration
is no longer reachable in the modified system. Therefore that particular plan is not a
plan of the balanced system. However, this is not a really significant problem, it is,
as we have already called it, a fight for space. Although using only balanced actions
forces us to fix the number of fields of this database, there is no a priori bound on the
number of fields we may choose.

We will be interested in the same secrecy problem as in [18], namely, in determining
whether or not there is a plan which the intruder can use to discover a secret. We
assume that in the initial state some agent has a secret s, that is, an agent A owns a
fact FA(s′) with the secret s being a subterm of s′. Intruder discovers the secret once
he owns a fact containg the secret term s. It’s been shown in [18] that the secrecy
problem is undecidable. However, since in modeling a bounded memory systems we
only allow balanced actions, the secrecy problem becomes PSPACE-complete.
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4.1.1 Protocols and Intruders with Bounded Memory

Since we need to take care of the limited memory available to the agents, we relax the
form of the protocols introduced in [18]. We modify the well-founded protocol theory
and the two-phase intruder theory introduced in [18] so that all the rules become
balanced.

Instead of well-founded protocol theories, we introduce semi-founded protocol theo-
ries, where protocol roles are not necessarily created before any protocol instance starts,
but can be created while other protocol instances are already running. That allows
us to model an unbounded number of protocol sessions. Even though we are able to
represent an unbounded number of protocol sessions in a fixed (bounded) memory, we
are clearly unable to represent a concurrent run of any number of protocols, such as
the generalization of the necessarily parallel attack on an artificial protocol in [31].

Having only a bounded amount of memory, the intruder may have to manage its
memory capacity in order to discover a secret. Whenever the intruder needs to create
a fresh value or remember some public fact, he will have to check whether there is
some free fact available. We also adapt the two-phase intruder theory from [18] so that
our memory bounded Dolev-Yao intruder uses his memory economically, as wisely as
possible. This includes deleting data and digesting only those messages and parts of
messages that contain useful data.

Furthermore, we extend the basic signature given in [18] that was related mainly
to the Needham-Schroeder protocol, to be able to represent other protocols and the
related anomalies as well. For example, our model will include symmetric encryp-
tion, encryption with composed keys, key generation, messages with signatures and
timestamps.

Notice that since the size of configurations is bounded, there is a bound on the
number of messages in the public domain. Although the intruder is one of the agents
and can therefore use all public facts (provided he has the necessary rules), for our
formal results it will be useful to distinguish the memory storage capacity of the intruder
from the storage capacity of all the other agents of the system. We use the fact R(∗)
private to the intruder to specify a memory slot available only to the intruder, while
the fact P (∗) is public and can be used by the remaining agents and by the network.
Notice that technically the intruder also has access to P (∗) fact. However, when we
specify his actions, we will make sure that he only creates memory facts, i.e., stores
data, whenever he has a free memory slot R(∗). He might however free a P (∗) when, for
example, he intercepts a message from the network. As we show in the next sections,
the intruder might have to manage his memory capacity in order to discover a secret.
Whenever the intruder needs to create a fresh value or remember some public fact, he
will have to check whether there is some empty fact available.
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In our analysis of the memory needed by the intruder to carry out an anomaly or
to compose messages, we will often provide bounds with respect to the number of facts
that are public or that belong to agents different from the intruder. For this purpose,
we introduce the notion of size of configurations modulo the intruder.

Definition 4.1. The size modulo the intruder of a configuration S is the number of
public facts in S plus the number of private facts in S that do not belong to the
intruder.

When we introduce the theory of our memory bounded intruder with balanced actions
and protocol theories also with balanced actions, we will make sure that the size modulo
the intruder of configurations in a plan derived from these theories is always the same.

In the next sections, we introduce the LSTS with balanced actions that includes
a balanced protocol theory, introduced in Section 4.2, a balanced two-phase intruder
theory with a memory management theory, both introduced in Section 4.3. We also
illustrate in Section 4.2.1, a balanced protocol theory for the Needham-Schroeder public
key exchange protocol [33].

4.2 Balanced Protocol Theories

We modify the rules from [18] that specify protocol theories so that only balanced ac-
tions are used. We also relax the protocol form imposed in [18], called well-founded the-
ories. In such theories, protocols executions runs are partitioned into three phases: The
first phase, called the initialization phase, distributes the shared information among
agents, such as the agents’ public keys. Only after this phase ends, the second phase
called role generation phase starts, where all protocol roles used in the run are assigned
to the participants of the system. Finally, after these roles are distributed, the protocol
instances run to their completion.

Since whenever a protocol role is created in [18] an extra fact is added to the con-
figuration, when using balanced systems one is not allowed to generate an unbounded
number of protocol roles. The number of roles in balanced systems with well-founded
theories is bounded by the number of empty facts available after the initialization
phase. Imposing bounds on the number of protocol session is not always acceptable.
In reality it is often expected that agents establish secure channels using the same pro-
tocols an unbounded number of times and creating an unbounded number of nonces.
For instance, in online banking, a bank customer checks his online statement, accessing
his personal online bank homepage and inserting his online PIN number, possibly an
unbounded number times.
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To overcome this problem, we introduce semi-founded protocol theories, where pro-
tocol roles are not necessarily created before any protocol instance starts, but can be
created while other protocol instances are already running. Hence, whenever a protocol
instance finishes, agents can delete them from their memory and start new protocol
instances, allowing an unbounded number of protocol runs.

Before we enter into the details of semi-founded protocol theories, we introduce
some more notation involving encryption taken from [18].

We introduce the signature that allows modeling of perfect encryption. The en-
crypted message represents a ”black box” or an opaque message which does not show
its contents until it is decrypted with the right key. Consider the following sorts: cipher
for ciphertext i.e., encrypted text, ekey for encryption keys, dkey for decryption keys,
and a sort msg for any type of message. Here we use order-sorted signature and have
msg as a super-sort because different types of data can be encrypted and in that en-
crypted form their sorts are unknown, until the message is decrypted. The following
order relations hold among these sorts:

nonce < msg, cipher < msg, dkey < msg, ekey < msg.

We also use two following functions symbols, the pairing function and the encryption
function:

〈·, ·〉 : msg ×msg → msg and enc : ekey ×msg → cipher.

As their names suggest, the pairing function is used to pair two messages and the
encryption function is used to encrypt a message using an encryption key. Notice that
there is no need for a decryption function, since we use pattern-matching (encryption
on the left-hand-side of a rule) to express decryption as in [18].

For simplicity we will sometimes use 〈t1, . . . , tn−1, tn〉 for multiple pairing to denote
〈t1, 〈. . . , 〈tn−1, tn〉〉 . . . 〉.

Also, notice that, as in [18], with the use of the pairing function and the encryption
function a protocol message is always represented by a single term of the sort msg.

Predicates used in the protocol theory will depend of the particular protocol that
is represented. For instance, all the predicates of the well-known Needham-Schroeder
protocol [33], discussed in the next section, are shown in Figure 4.1. For simplicity,
with asymmetric encryption we identify the principal with its public key (i.e., we use
the public key “ka” to indicate that A is participating in the protocol and has the
public key ka).
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Sorts :
ekey : encryption key (and principal name)
dkey : decryption key
cipher : cipher text (encrypted)
nonce : nonces
msg : data of any type

Subsorts :
nonce < msg, cipher < msg,
ekey < msg, dkey < msg

Functions :
enc : ekey ×msg → cipher : encryption
〈·, ·〉 : msg ×msg → msg : pairing

Predicates :
GoodGuy(ekey, dkey) : identity of an honest participant
BadKey(ekey, dkey) : keys of a dishonest participant
KP (ekey, dkey) : encryption key pair
AnnK(ekey) : published public key
A0(ekey) : Role state 0 for initiator
A1(ekey, ekey, nonce) : Role state 1 for initiator
A2(ekey, ekey, nonce, nonce) : Role state 2 for initiator
B0(ekey) : Role state 0 for responder
B1(ekey, ekey, nonce, nonce) : Role state 1 for responder
B2(ekey, ekey, nonce, nonce) : Role state 2 for responder
NS(cipher) : (i = 1, 2, 3) encrypted message (sent)
NR(cipher) : (i = 1, 2, 3) encrypted message (received)
N(cipher) : encrypted message on the network

(sent or received)

Figure 4.1: Signature for the Needham-Schroeder Public Key Protocol.
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Predicate KP (ekey, dkey) represents the pair of associated encryption and decryp-
tion (public and private) keys. Predicate AnnK(ekey) indicates that a public key
has been published. The distinction between honest participants and participants
with compromised keys is achieved with two predicates, GoodGuy(ekey, dkey) and
BadKey(ekey, dkey). There are also role state predicates for the initiator A0(ekey),
A1(ekey, ekey, nonce), A2(ekey, ekey, nonce, nonce), role state predicates for the re-
sponder B0(ekey), B1(ekey, ekey, nonce, nonce), B2(ekey, ekey, nonce, nonce) and the
network predicates N(cipher), NRi(cipher) and NSi(cipher). We will further explain
the intended interpretation and use for the predicates when we get to the examples.

We now introduce the necessary definitions.

Definition 4.2. Let T be a theory, Q be a predicate and r be a rule, where L is the
multiset of facts F1, . . . , Fk on the left hand side of r excluding empty facts R(∗) and
P (∗), and R is the multiset of facts G1, . . . , Gn, possibly with one or more existential
quantifiers, on the right hand side of r excluding empty facts R(∗) and P (∗). A rule in
a theory T creates Q facts if some Q(~t) occurs more times in R than in L. A rule in
a theory T preserves Q facts if every P (~t) occurs the same number of times in R and
L. A rule in a theory T consumes Q facts if some fact Q(~t) occurs more times in L
than in R. A predicate Q in a theory T is persistent if every rule in T which contains
Q either creates or preserves Q facts.

For example, the following rule consumes the predicate A, preserves the predicate
B, and creates the predicate D :

A(x) B(y)→ ∃z.B(z) D(x).

The request on excluding empty facts in preserving and creating facts captures the
idea that the empty facts hold no information.

Definition 4.3. A rule r = L → R enables a rule r′ = L′ → R′ if there exist
substitutions σ, σ′ such that some fact P (~t) ∈ σR created by rule r, is also in σ′L′. A
theory T precedes a theory S if no rule in S enables a rule in T .

Intuitively, if a theory T precedes a theory S, then no facts that appear in the left
hand side of rules in T are created by rules that are in S.

Definition 4.4. A theory A is a balanced role theory if there is a finite list of predicates
called the role states S0, S1, . . . , Sk for some k, such that for each rule L → R in A
is balanced and there is exactly one occurrence of a state predicate in L, say Si, and
exactly one occurrence of a state predicate in R, say Sj, such that i < j. We call the
first role state, S0, initial role state, and the last role state Sk final role state. Only
rules with final role states can have an empty fact in the post-condition.



Balanced protocol and intruder theories 62

Defining roles in this way, ensures that each application of a rule in A advances the
state forward. Each instance of a role can only result in a finite number of steps in the
derivation. The request on empty facts formalizes the fact that one of the participants,
either the initiator or the responder, sends the “last” protocol message. For example,
with the Needham-Schroeder Public Key protocol the responder goes to the final state
and does not send any message at that point. With the Kerberos it could be either the
responder or the initiator, depending on whether acknowledgement is required or not.

The following definition formalizes our previous intuition that roles can be created
not only before any protocol instance has started, but also while protocol instances
are running. In particular, we add a rule that allows one to delete a role state which
generates an empty fact. This empty fact can then be used to generate a new role
state, starting hence a new protocol instance.

Definition 4.5. If A1, . . . ,Ak are balanced role theories, a role regeneration theory is
a set of rules that either have the form

Q1(~x1) · · ·Qn(~xn)P (∗)→ Q1(~x1) · · ·Qn(~xn)S0(~x)

where Q1(~x1) . . . Qn(~xn) is a finite list of persistent facts not involving any role states,
and S0 is the initial role state for one of theories A1, . . . ,Ak, or the form

Sk → P (∗)

where Sk is the final state for one of theories A1, . . . ,Ak.

The following definition relaxes well-founded protocols theories in [18] in order to
accommodate the creation of roles while protocols are running.

Definition 4.6. A pair (P , I) is a semi-founded protocol theory if I is a finite set
of persistent facts (called initial set), and P = R ] A1 ] · · · ] An where R is a role
regeneration theory involving only facts from I and the initial and final roles states of
A1, . . . ,An, and A1, . . . ,An are balanced role theories. For role theories Ai and Aj,
with i 6= j, no role state predicate that occurs in Ai can occur in Aj.

The finite initial set of persistent facts normally contains all the information necessary
to start protocol sessions, for instance, shared and private keys as well as the names of
the participants of the network. Intuitively, this means that we analyze protocols after
all initialization, such as key distribution, has been already completed.

Remark. We could hide the complexity of our problems by encoding complex prob-
lems into initialization theory, but that would not result in real complexity of the
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protocol analysis. To avoid this we allow initialization theories to consist only of a
finite number of ground facts and no rewrite rules. Intuitively, this means that we ana-
lyze decidability and complexity of the role generation and protocol execution phases,
under the assumption that initialization has already been completed.

In our analysis, we consider several protocols, some of which require additional data
types such as timestamps and certificates, and different types of encryption to the
private/public key encryption in the Needham-Schroeder protocol. While Figure 4.1
shows types and predicates needed for modeling Needham-Schroeder protocol, Figures
4.2, 4.3 and 4.4 show the extended typed signature.

Sorts :
ekey : encryption key (and principal name)
dkey : decryption key
keys : key for symmetric encryption
key : key for any encryption
cipher : cipher text (encrypted)
nonce : nonces
msgaux : auxiliary type for generic message generation
guy : participant in the protocol
time : timestamp or lifetime
cert : certificate in PKINIT
msg : data of any type

Subsorts :
nonce < msg, cipher < msg,
ekey < key, dkey < key
skey < key, key < msg
msgaux < msg guy < msg
time < msg, cert < msg

Functions :
enc : key ×msg → cipher : encryption
〈, 〉 : msg ×msg → msg : pairing

Figure 4.2: Types and functions for the protocol theories
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Predicates :

GoodGuy(ekey, dkey) : identity of an honest participant
with private and public keys

Guy(guy, key) : identity of a participant with symmetric key
BadKey(ekey, dkey) : keys of a dishonest participant
KP (ekey, dkey) : encryption key pair
AnnK(ekey) : published public key
Server(guy) : name of a Server
ServerKey(guy, key) : identity of a Server with symmetric key
N(cipher) : encrypted message on the network (sent or received)
NS(cipher) : encrypted message (sent)
NR(cipher) : encrypted message (received)

Ai, Bi, . . . role state predicates (types change per protocol)

R(∗), B(∗) : empty facts in intruder’s memory
D(msg) : decomposable fact in intruder’s memory
C(msg) : fact being composed by intruder in intruder’s memory
A(msg) : auxiliary opaque fact in intruder’s memory
Mek(ekey) : agent’s public key in intruder’s memory
Mdk(dkey) : agent’s private key in intruder’s memory
Mk(key) : symmetric key in intruder’s memory
Mn(nonce) : nonce in intruder’s memory
Mg(guy) : participant’s name in intruder’s memory
Mm(msgaux) : generic message in intruder’s memory
Ms(msg) : intercepted submessage in intruder’s memory
Mt(time) : timestamp in intruder’s memory
Ml(time) : lifetime in intruder’s memory
Mp(cert) : certificate in intruder’s memory

Figure 4.3: Predicates for the Protocol theories
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While in the case of private/public encryption we can identify the participants name
with his public key, for protocols that use symmetric encryption, we identify the set
of participants owning symmetric keys by using the predicate Guy. For the intruder
we use the predicate Mg for storing participants’ (guys’) names and Mk for storing
symmetric keys for encryption/decryption.

In addition to symmetric encryption, we model the encryption with composed keys
to allow some type-flaw anomalies, such as the anomaly for the Otway-Reese protocol
described in [14]. Such attacks are prevented by typed signatures such as ours so we
need to allow this kind of encryption to represent these attacks by adding the new type
msgaux.

Finally, there are protocols that use digital signatures. We represent signatures
with encryptions with private keys whose public keys are announced and therefore the
signature can be checked by “decrypting” with public keys. Notice that with the use
of subsorts the function enc has been extended to include other types of encryption.

Predicates Server, ServerKey, KAS, TGS, TGSKey are related to Servers par-
ticipating in protocols, including specific Kerberos servers. There are additional pred-
icates related to Kerberos protocol that represent tickets, authentication, clocks and
validity constrains: AuthC , ServiceC , V alildK , V alildT , V alildS. ClockC , ClockK ,
DoneMutC and MemS.

Predicates in Kerberos 5 Protocol:

KAS(guy) : name of a Kerberos Authentication Server
TGS(guy) : name of a Ticket Granting Server
TGSKey(guy, key) : identity of a TGS with symmetric key
AuthC(msg, guy, keys) : memory predicate for the ticket granting ticket
ServiceC(msg, guy, keys) : memory predicate for the service ticket
V alidK(guy, guy, nonce) : constraint for validitiy of request to KAS
V alidT (guy, guy, nonce) : constraint for validitiy of request to TGS
V alidS(guy, time) : constraint for validitiy of request to Server
ClockC(time) : constraint for time in Kerberos 5 and PKINIT
ClockK(time) : constraint for time in PKINIT
DoneMutC(guy, keys) : memory predicate for succesful mutual authentication
MemS(guy, keys, time) : memory predicate for mutual authentication completed

Figure 4.4: Predicates specific to the Kerberos Protocols
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Other predicates private to the intruder include predicates R and B exclusively de-
noting empty facts, i.e. intruder’s available memory. Predicate Ms stores any submes-
sage intruder intercepted, predicate Mt represents timestamps, Ml represents lifetimes,
Mp represents cerificates in Public key extension of Kerberos PKINIT.

Also notice that all the predicates private to the intruder, e.g., D, C, A and various
M? predicates, are unary predicates. This is because complex messages are built by
using the pair, 〈·〉, and encryption function, enc. Therefore, in order to interact with
the other participants, the intruder does not require predicates with greater arity, but
only pattern match terms using these functions.

4.2.1 Semi-founded Protocol Theory for the Needham-Schro-
eder Protocol

This section illustrates semi-founded protocol theory defined in the previous section by
using the Needham-Schroeder for public key exchange protocol [33]. In particular, facts
P (∗) represent empty facts available to all participants. We use predicates depicted in
Figure 4.1. Figure 4.5 presents the protocol using a common informal notation. The
complete Needham-Schroeder Public Key protocol includes distribution of public keys
by a trusted server, those steps are omitted here.

A −→ B : {A, na}kb
B −→ A : {na, nb}ka
A −→ B : {nb}kb

Figure 4.5: Needham-Schroeder Public Key Protocol.

The initiator A (commonly referred to as Alice) sends a message to the responder
B (commonly referred to as Bob). The message contains Alice’s name, and a freshly
chosen nonce, na (typically a large random number) encrypted with Bob’s public key.
Assuming perfect encryption, only somebody with Bob’s private key can decrypt that
message and learn its content. When Bob receives a message encrypted with his public
key, he uses his private key to decrypt it. If it has the expected form (i.e., a name and
a nonce), Bob replies with a nonce of his own, nb, along with initiator’s (Alice’s) nonce,
encrypted with Alice’s public key. Alice receives the message encrypted with her public
key, decrypts it, and if it contains her nonce, Alice replies by returning Bob’s nonce,
encrypted with his public key. At the end they believe that they are communicating
with each other.



Balanced protocol and intruder theories 67

Role Regeneration Theory :

ROLA : GoodGuy(ke, kd)P (∗)→ GoodGuy(ke, kd)A0(ke)
ROLB : GoodGuy(ke, kd)P (∗)→ GoodGuy(ke, kd)B0(ke)
ERASEA : A2(ke, k

′
e, x, y)→ P (∗)

ERASEB : B2(ke, k
′
e, x, y)→ P (∗)

Protocol Theories A and B :

A1 : AnnK(k′e) A0(ke)P (∗)
→ ∃x.A1(ke, k

′
e, x) N(enc(k′e, 〈x, ke〉)) AnnK(k′e)

A2 : A1(ke, k
′
e, x) N(enc(ke, 〈x, y〉))→ A2(ke, k

′
e, x, y) N(enc(k′e, y))

B1 : B0(ke) N(enc(ke, 〈x, k′e〉)) AnnK(k′e)
→ ∃y.B1(ke, k

′
e, x, y) N(enc(k′e, 〈x, y〉)) AnnK(k′e)

B2 : B1(ke, k
′
e, x, y) N(enc(ke, y))→ B2(ke, k

′
e, x, y) P (∗)

Figure 4.6: Semi-founded protocol theory for the Needham-Schroeder Protocol.

The rules of a semi-founded Needham-Schroeder Protocol theory are shown in Fig-
ure 4.6. Predicate KP (ekey, dkey) denotes the pair of associated encryption and de-
cryption (public and private) keys. Predicate AnnK(ekey) indicates that a public
key has been published. The distinction between honest participants and participants
with compromised keys is achieved by using respectively the following two predicates
GoodGuy and BadKey. There are also role state predicates Ai and Bi, where 0 ≤ i ≤ 2,
and a network predicate N . For simplicity, we identify the principal with its public
key (i.e., we use the public key “ka” to indicate that A is participating in the protocol
and has the public key ka).

The protocol execution is separated into stages. There is an initialization phase,
represented by the initial set of facts, that distributes key pairs to participants and
announces their public keys which is essential for the protocol communication. Follow-
ing the initialization phase, there is a protocol execution phase. With the rules from
the role regeneration theory each agent, within their bounded memory, may choose to
carry out the protocol some number of times, in any combination of roles. For example
a principal A may play the role of initiator twice, and responder once, at the beginning
of a protocol run. Then the rules characterizing different roles are applied. Later on,
A may decide to replay some of the roles or choose different ones.
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Initial set of facts The initial set of facts includes persistent facts KP (ke, kd) denot-
ing pairs of public and private (encryption and decryption) keys. The GoodGuy(ke, kd)
facts represent honest principals participating in the protocol exchange, parameterized
by their public and private keys. The BadKey(ke, kd) facts specify a number of com-
promised key pairs. Such keys appear to belong to valid principals, but their private
keys are known to the intruder who can then play the role (or a part of the role) of an
honest principal if he wants. Therefore there is no need to include both GoodGuy(k, k′)
and BadKey(k, k′) facts for the same keys. Key distribution is accomplished by all
principals announcing their public keys through AnnK(ke) facts indicating a public key
that is available for communication, so from this point the honest participants can not
distinguish the good guys from the bad guys. Notice that the number of participants
is not unlimited since the size of the configurations is bounded. One way to overcome
this problem is by allowing the deletion of key pairs from system configurations. That
would, however, disallow some principals from participating further in the protocol
exchange.

Role regeneration theory In the role regeneration theory facts representing initial
role states are created and facts representing final role states are deleted. Predicates
A0, A1, A2, B0, B1, B2 are role state predicates. Rules ROLA and ROLB generate the
roles for any principal to act in the role of either Alice (the initiator) or Bob (the
responder). A0 and B0 denote the initial role states for the A and B roles, respectively,
parameterized by the public key (principal) acting in that role. The rules ERASEA and
ERASEB allow an unbounded number of roles to be created: Deleting a role creates
an empty fact that can be reused by ROLA and ROLB rules to create a new protocol
instance. Notice that the last two rules were not necessary in [18] since agents were
allowed to have unbounded memory. Here on the other hand, an agent needs to allocate
a piece of his memory in order to create a new session.

Protocol Role Theories Rules from the protocol theories replace initial role state
facts with facts representing other role states. This replacement always replaces a role
state, Ai, by a role state, Aj, with a greater number associated to it, that is j > i. The
protocol role theories in Figure 4.6 are derived from the specification of the Needham-
Schroeder protocol in Figure 4.5. Theory A corresponds to the role of Alice, and
theory B corresponds to Bob. Predicate N represents network messages being sent
and received. With no intruder present we model the protocol execution by having a
single predicate N for network messages. However, in the rest of this paper, as in [18],
protocol execution assumes that the intruder acts as the network, so we use predicates
NS and NR. This will be explained in more detail later.
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In rule A1, which corresponds to the first line of the protocol, a principal ke, in its
initial state A0, decides to communicate to another principal k′e, whose key has been
announced. A new nonce x is generated, along with a network message corresponding
to the first message sent in the protocol, and Alice remembers the values of x and k′e
and moves to the next state A1. Rule B1 corresponds to the second step of the protocol.
Principal ke, in the initial state B0, responds to a message from the network if it is
of the expected format (i.e., encrypted with ke’s public key, and with the identity of
a participant whose key has been announced, embedded inside). Then he generates
another nonce, replies to the message, sending both nonces, and moves to the next state
B1 remembering all the information (the two nonces and the two principals). Similarly,
rule A2 corresponds to the third line of the protocol, and rule B2 corresponds to the
implicit step where the responder actually receives the final message.
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4.3 Memory Bounded Intruder Theory

We now adapt the two-phase intruder theory from [18] in such a way that all the rules
in the resulting theory are balanced and represent an intruder with bounded memory.
In order to do so, we use empty facts R(∗) to fill the left or the right side of rules to
make them balanced.

As the Dolev-Yao intruder specified in [18], our memory bounded intruder is still
able, provided he has enough memory slots available, to intercept messages from the
network, send messages onto the network, compose and decompose, and decrypt and
encrypt messages with available keys. In addition to these capabilities our intruder
is able to use his memory as economically as possible and therefore carry out anoma-
lies using less memory space. This new, more clever intruder, will digest only those
messages and parts of the messages that contain data that is useful for the attack.

With memory bounds in mind, we introduce memory maintenance theories that
delete facts, i.e.replace memory facts with empty facts.

Definition 4.7. A theory E is a memory maintenance theory if all its rules are balanced
and their post-conditions consist of the fact R(∗), i.e., all the rules have the form
F → R(∗), where F is an arbitrary fact belonging to the intruder.

Remark We restrict the type of facts the intruder is allowed to delete, i.e.we allow
only the deletion of intruder’s memory facts including auxiliary memory facts. Alterna-
tively, we could also allow the intruder to delete public facts and in that way obstruct
the normal protocol exchange. For example, deleting facts representing key distribu-
tion or participants’ names or deleting role state predicates would exclude a principal
form participating further in the protocol exchange. Even with above restrictions, we
can still model such obstructions by the intruder, within his memory bounds, simply
by removing messages (coming to and from a particular principal) from the network
using REC rules.

The balanced two-phase intruder theory with the rules similar to those in [18] plus
the additional rules for new sorts and types of encryption is depicted in Figure 4.7.
Additional rules that enable the intruder to use his memory more cleverly are depicted
in Figure 4.9. Finally, his memory maintenance theory is depicted in Figure 4.8.
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I/O Rules:
REC : NS(x)R(∗)→ D(x)P (∗)
SND : C(x)P (∗)→ NR(x)R(∗)

Decomposition Rules:
DCMP : D(〈x, y〉)R(∗)→ D(x)D(y)
LRNEK : D(ke)→Mek(ke)
LRNDK : D(kd)→Mdk(kd)
LRNK : D(ke)→Mk(k)
LRNN : D(n)→Mn(n)
LRNG : D(G)→Mg(G)
LRNT : D(t)→Mt(t)
LRNL : D(l)→Ml(L)
LRNP : D(x)→Mp(x)
LRNM : D(m)→Mm(m)
DEC : Mdk(kd)KP (ke, kd)D(enc(ke, x))R(∗)→Mdk(kd)KP (ke, kd)D(x)Mc(enc(ke, x))

LRNA : D(enc(ke, x))R(∗)→Mc(enc(ke, x))A(enc(ke, x))
DECA : Mdkn(kd)KP (ke, kd)A(enc(ke, x))→Mdk(kd)KP (ke, kd)D(x)
DECS : Mk(k) D(enc(k, x)) R(∗)→Mk(k) Mc(enc(k, x)) D(x)

LRNAS : D(enc(k, x))R(∗)→Mc(enc(k, x))A(enc(k, x))
DECAS : Mk(k)A(enc(k, x))→Mk(k)D(x)

DSIG : Mek(ke)KP (ke, kd)D(enc(kd, x))R(∗)→Mek(ke)KP (ke, kd)D(x)Mc(enc(kd, x))

Composition Rules:
COMP : C(x)C(y)→ C(〈x, y〉)R(∗)
USEEK : Mek(ke)R(∗)→ C(ke)Mek(ke)
USEDK : Mdk(kd)R(∗)→ C(kd)Mdk(kd)
USEK : Mk(k)R(∗)→ C(k)Mk(k)
USEN : Mn(n)R(∗)→ C(n)Mn(n)
USEC : Mc(c)R(∗)→ C(c)Mc(c)
USEG : Mg(c) R(∗)→ C(c) Mg(c)
USET : Mt(t)R(∗)→Mt(t) C(t)
USEL : Ml(L)R(∗)→Ml(L) C(L)
USEM : Mm(m)R(∗)→Mm(m) C(m)
USEP : Mp(x)R(∗)→Mp(x) C(x)
ENC : Mek(ke)C(x)→ C(enc(ke, x))Mek(ke)

ENCS : Mk(k) C(x)→Mk(k) C(enc(k, x)),
ENCM : C(x)C(y)→Mk(x)C(enc(x, y))

SIG : Mdk(kd)C(x)→Mdk(kd)C(enc(kd, x))
GEN : R(∗)→ ∃n.Mn(n)

GENM : R(∗)→ ∃m.Mm(m)

Figure 4.7: Two-phase Intruder theory.
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Memory maintenance rules:

DELEK : Mek(x)→ R(∗)
DELDK : Mdk(x)→ R(∗)

DELK : Mk(x)→ R(∗)
DELN : Mn(x)→ R(∗)
DELC : Mc(x)→ R(∗)
DELG : Mg(G)→ R(∗)
DELT : Mt(t)→ R(∗)
DELL : Ml(l)→ R(∗)
DELP : Mp(x)→ R(∗)
DELM : Mm(m)→ R(∗)

Figure 4.8: Memory maintenance theory.

Decomposition Rules:
DM : D(x)→Ms(x)

DELD : D(m)→ B(∗)
DELAB : A(m)→ B(∗)
DELMC : Mc(m)→ B(∗)
DCMPB : D(〈x, y〉) B(∗)→ D(x) D(y)

DECB : Mdk(kd) KP (ke, kd) D(enc(ke, x)) B(∗)→
Mdk(kd) KP (ke, kd) D(x) Mc(enc(ke, x))

DSIGB : Mek(ke)KP (ke, kd)D(enc(kd, x))B(∗)→
Mek(ke)KP (ke, kd)D(x)Mc(enc(kd, x))

LRNAB : D(enc(ke, x)) B(∗)→Mc(enc(ke, x)) A(enc(ke, x))

Composition Rules:
USES : Ms(∗) R(∗)→Ms(m) C(m)

Memory maintenance rules:
FWD : NS(m) R(∗)→ NR(m) R(∗)

DELB : B(∗)→ R(∗)
DELMS : Ms(∗)→ R(∗)

Figure 4.9: Additional rules for the Two-phase Intruder theory.
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Rules REC and SND, as depicted in Figure 4.7, connect the intruder to the network
used by the participants for protocol exchange. The REC rule intercepts a message
from the network and saves it as a decomposable fact. The SND rule sends composed
messages onto the network. As in [18], the protocol execution assumes that the intruder
acts as the network, i.e., all messages sent by any agent are received by the intruder
and all messages received by any agent are sent by the intruder. In our formalization,
this corresponds to transforming the sent messages, represented by the facts NS(m),
into messages that can be received by an honest participant, represented by the facts
NR(m). With no intruder(network) protocol cannot execute.

Intruder uses the COMP rule to compose parts of messages into pairs, while he uses
the DCMP rule for decomposition of pair terms into smaller ones. Various LRN rules
convert decomposable facts into intruder knowledge, and USE rules convert intruder
knowledge into a composable fact. These sets of rules are typed, i.e., USEN reads a
nonce from the intruder memory and makes that nonce available for composition of a
message. The ENC and DEC rules allow the intruder to decrypt a message if it knows
the private key, and to generate encrypted message from known public keys. Rules
LRNA and DECA are decomposition rules with auxiliary facts that handle the case
when the message can’t be decrypted because the private key isn’t currently known to
the intruder. LRNA remembers the encrypted message with the special ”Auxiliary”
predicate, A. The DECA rule allows Auxiliary messages to be decrypted at a later time,
if the decryption key becomes known. Symmetric encryption is modeled by encryption
and decryption rules, ENCS and DECS, as well as the auxiliary rules LRNAS and
DECAS. Encryption with composed keys is represented by the ENCM rule. The rules
SIG and DSIG represent signatures by encrypting with a private keys whose public key
is announced and by checking the signature ”decrypting” with the matching public key.
GEN rule allows the intruder to generate new facts (i.e., nonces) when needed. GENM
rule generates a generic message to perform “ticket anomaly” in Kerberos 5 shown
in Section 5.6.1. Intruder should be able to generate a generic message of the type
msgaux < msg in a separate memory predicate Mm representing a “false ticket”.
Type msgaux is required to retain storing of different subtypes of messages in separate
memory facts. If the msg type was used instead, any term could be stored in the
memory fact Mm.

Notice the role of the facts P (∗) and R(∗) in the rules. For instance, in the REC
rule, when the intruder intercepts a message from the network, one of the intruder’s
free memory slots, R(∗), is replaced with a fact containing the intercepted message
and a free memory slot, P (∗), belonging to the other agents replaces the network fact.
The intruder is not allowed to intercept a new network fact if he does not have any
free memory slot left. Similarly, in the GEN rule, the intruder needs a fact R(∗) in
order to generate a nonce. Since the intruder in our system has bounded memory,
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he should use it rationally. In particular, he should delete facts that are not useful
for an attack, freeing some of his storage capacity for more useful information. This
is formalized by using the memory management rules depicted in Figure 4.8. Using
these rules intruder can forget any facts stored in his memory which are of the form
M?. This contrast with [18], where these predicates were persistent throughout a run,
that is, they were always present in the intruder’s memory. Since in [18] intruder had
unbounded memory, storing facts did not pose a problem.

In order to attack a protocol intruder does not need to digest every message put
on the network. Furthermore, ignoring some messages can save intruder’s memory.
Therefore we extend intruder’s theory with additional rules depicted in Figure 4.9 that
enable the intruder to use his memory more economically.

The FWD rule, for example, is a rule that is used to just forward sent messages
to their destinations, and where the intruder does not learn any new data. That it,
it just transforms a sent message NR(m) into a message NS(m) that can be received
by other participants. Since this rule is not of the form of rules that belong to the
memory maintenance theory, that is, its postcondition is not R(∗), for simplicity, we
adapt Definition 4.7 to include this rule. Alternatively, in a standard trace we could
simulate this rule with the following derivation:

NS(m) R(∗) →REC D(m) R(∗) →DM Ms(m) R(∗) →USES

Ms(m) C(m) →SND Ms(m) NR(m) →DELMS NR(m) R(∗)

The intruder’s DM rule allows the intruder to remember complex sub-terms of a
message being decomposed that might not be of interest at that moment, but that might
be useful later. That can save memory when the intruder receives large submessages.
It also is useful when intruder slightly modifies an intercepted messages, by using the
USES rule, which allows the intruder to use complex terms in the composition phase.
The DELD rule, on the other hand, allows the intruder to delete any decomposition
fact, D, whenever it contains a message that is not useful to the intruder, such as
data that he already knows. Therefore, with this rule, he does not need to expend his
memory to further decompose such messages. It also reduces the number of steps, i.e.,
the number of rules intruder has to perform to carry out an anomaly. Finally, the rule
DELAB deletes auxiliary A facts and the rule DELMB deletes any Mc fact, freeing the
intruder’s memory.

Notice that in some rules we use the auxiliary predicate B, instead of the fact R(∗).
This is a technicality in order to keep the intruder’s theory two-phased, which will
become clear after the following definitions. Intuitively, B(∗) facts represent “binned
data” and can also be considered as empty facts. We therefore, from this point on,
extend Definition 4.2 to consider the empty facts B(∗) as well.
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4.3.1 Two-phase Intruder Theory and Memory Maintenance
Theory

As in [18] intruder’s theory is a two-phase theory. In order to formalize this intuition,
we follow [18] and define the following weighting function.

Definition 4.8. A weighting function is a function ω : F → N that maps atomic
formulas to numeric weights. We use ω(A) to denote the weight of the atomic formula
A. The relative weight of formulas must be preserved under substitution, i.e., if A and
B are atomic formulas and σ is a substitution, then

ω(A) > ω(B)⇒ ω(σA) > ω(σB).

We define the weight of empty facts to be zero, that is:

val(R(∗)) = val(P (∗)) = val(B(∗)) = 0 .

We use weighting functions to guarantee termination of normalized derivations.
Many weighting functions could be used. Here, we use such functions that calculate the
weight of facts based on the predicate symbol used and the size of the fact. We define a
strict (non-reflexive) partial-ordering on the predicates of a theory. A particular theory
has a particular ordering. For instance, for the intruder theory specified in Figure 4.7
we could use the following weighting function:

ω1(F (x)) := 10 · (|F (x)| − 1) + val(F )

where

val := {(N, 4), (NS, 4), (NR, 4), (D, 3), (A, 2), (M?, 1), (C, 3), (R, 0), (P, 0), (B, 0)},

and the value “10” was arbitrarily chosen to be larger than any of the values appearing
in the val function.

Definition 4.9. A rule r = L → R is a decomposition rule with respect to weighting
function ω if the total weight of the facts in R is less than the total weight of the facts
in L. A rule r = L → R is a composition rule with respect to weighting function ω if
the total weight of the facts in R is greater than the total weight of the facts in L. By
total weight of a multiset of facts we mean the sum of the weights of all the facts in
the multiset.

For example, D(〈x, y〉) R(∗) → D(x) D(y) is a decomposition rule with respect to
weighting function ω1, and C(x) C(y) → C(〈x, y〉) R(∗) is a composition rule with
respect to weighting function ω1.
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As in [18] intruder’s theoryM = C]D is a two-phase theory. Such a theory provides
normalized derivations, i.e., derivations where all rules from the decomposition theory
D are applied before any rules from the composition theory C.

Definition 4.10. A theory M is a two-phase theory if its rules can be divided into
two theories, M = D ] C, where C contains only composition rules, D contains only
decomposition rules, and no rules in C precede any rules in D.

Rules from the intruder theory depicted in Figure 4.7 and Figure 4.9 can be divided
into composition and decomposition rules. Rule REC is a decomposition rule and rule
SND is a composition rule. Therefore, as per Definition 4.10, this is a two-phase
intruder theory with respect to weighting function ω1.

In order to have a two-phase intruder theory we need to treat empty facts with care,
i.e., we do not say that empty facts are created nor consumed as per Definition 4.2.
Empty facts generated by some composition rules such as COMP, appear in the pre-
conditions of some decomposition rules. Therefore the theory depicted in Figure 4.7 is
indeed a two-phase intruder theory as per Definition 4.10.

Definition 4.11. A normalized derivation is a derivation where the rules from the
decomposition theory are applied eagerly until no more decomposition rules are enabled
in the configuration and only then rules from the composition theory are applied.
An extended normalized derivation is a normalized derivation in which all REC rules
are applied at the beginning of the derivation, and all SND rules are applied at the end
of the derivation.

The intuition behind the definition of extended normalized derivations is that in-
truder first intercepts messeges, then decomposes them and sends intended messages
only after he has composed all of them.

The following lemma states that any derivation obtained using a two-phased in-
truder can be transformed into a normalized derivation provided the intruder has
enough memory. In other words, if the intruder has enough memory, one only needs
to search for normalized derivations.

Lemma 4.12. In a two-phase theory all derivations can be transformed into the
(extended) normal form, provided its first configuration has kl empty facts, where
l is the size modulo the intruder of configurations and k is the upper bound on the size
of facts.

Proof Let M = D ] C. Since no rules from C enables rules in D, all rules from D
can be applied before any rules from C. We have to consider memory requirements for
such rearrangement of rules. We look at the rules that free memory slots: COMP and
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SND. Moving them forward in a derivation could result in not having enough empty
facts to enable other rules earlier in a derivation. Along the given derivation there
could be a configuration with no empty facts followed by the COMP rule. COMP rule
frees one slot so another rule that consumes an empty fact can be applied, for example:

C(a) C(b) D(c, d)→COMP C(a, b) R(∗) D(c, d)→DCMP C(a, b) D(c) D(d) .

When we try to switch DCMP and COMP rules, we cannot do that because there is
no empty fact in the configuration:

C(a) C(b) D(c, d)→DCMP not enabled →COMP .

Pushing COMP rule to the right disabled a rule, since an empty fact is no longer there.
We, therefore, need an extra memory slot to push the COMP rule to the right, as
illustrated below:

C(a) C(b) D(c, d) R(∗) →DCMP C(a) C(b) D(c) D(d) →COMP

C(a, b) R(∗) D(c) D(d) .

Note that now there is an empty fact in the resulting configuration, but there are no
empty facts in the configuration which enables the COMP rule. Therefore, we need at
most one additional empty slot for permuting a COMP rule in the derivation. We need
to see how many of such permutations could there be. Notice that there is a bounded
number of decomposition rules in a derivation, since only intercepted messages are
decomposed and only l messages of size k could be intercepted. Therefore, there could
be at most (l − 1)(k − 1) decomposition rules in a derivation. On the other hand,
intruder can compose messages (create C facts) within his memory capacity, so the
number of composition rules in a derivation is not bounded by l, but with the size of
intruder’s memory instead.

With above in mind, we transform the derivation into a normalized derivation by
moving all decomposition rules to the beginning of the derivation, starting from the
leftmost decomposition rule, d, that needs to be moved. As we have shown before,
with respect to memory, the problematic configurations are ones with no empty facts
which enable COMP rules. We add an empty fact to the memory of the intruder, swap
d with COMP rule, and now there are no such problematic configurations before the
rule d in the trace, only one such problematic configuration just after d. We proceed in
the obtained trace in the same way, by permuting the leftmost decomposition rule, d′,
that needs to be moved. By repeating the process we obtain a normalized derivation.

To cover the worst case, we count an additional empty fact each time we swap a
decomposition rule with a COMP rule, resulting in at most (l − 1)(k − 1) additional
empty facts.



Balanced protocol and intruder theories 78

To obtain the extended normalized derivation we procede the rearrangement of
rules by moving SND rules to the end of derivation. Similarly, we need an additional
R(∗) fact for each application of SND rule. That is bounded by the number of facts in
the configuration modulo the intruder because SND rules create NR facts that intruder
cannot consume. There should be at least one P (∗) fact in the configuration to enable
a SND rule. Therefore the number on SND rules applied is bounded by l. When we
add requirements for SND and COMP we can see that additional kl empty facts allow
the transformation.

The required number of P (∗) facts is there since the original derivation was possible
and P (∗) facts do not appear in any other rule. 2

Remark Notice that a separate memory maintenance theory that includes deletion
rules is necessary for normalized derivations of a two-phase theory. By their form, these
new deletion rules in the maintenance theories are also decomposition rules, see Figure
4.8. However, if we were to consider the decomposition theory D with the rules that
delete facts, then D would no longer precede C. For example composition rule GEN
enables decomposition rule DELN.
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4.3.2 Alternative Definition of Semi-founded Protocol Theory

We include this subsection purely for completeness of the comparison of our theories
to those in [18].

In well-founded protocol theories in [18] initialization was achieved by initialization
theory I that preceded role generation and protocol role theories. In that way all the
rules form initialization theory were applied before any other rules. That could also be
seen as initial creation of persistent facts that we call initial facts. For simplicity, we
follow the assumption in [18, Section 5.1] and prefer the above definition of initialization
consisting of a finite number of persistent facts. However, we are equally able to
formulate our theories with a so called bounded sub-theory I similar to [18]. We can
than prove that every derivation in a semi-founded protocol theory can be transformed
into a derivation where the rules from initialization theory are applied first.

We now give this alternative definition and the proof of this claim.

Definition 4.13. A theory S ⊂ T with only balanced rules is a bounded sub-theory of
T if all formulas on the right hand side of the rules R in S either contain existentials
or are persistent in T .

Initialization theory is a bounded sub-theory, therefore all the facts created by
initialization theory are either persistent facts or contain fresh values such as keys
associated to the participants.

Definition 4.14. A theory P is a semi-founded protocol theory if P = I]R]A1]· · ·]
An where I is a bounded sub-theory (called the initialization theory) not involving any
role states, R is a role regeneration theory involving only facts created by I and the
initial and final roles states of A1, . . . ,An, and A1, . . . ,An are balanced role theories,
with I preceding R and R preceding A1, . . . ,An. For role theories Ai and Aj, with
i 6= j, no role state predicate that occurs in Ai can occur in Aj.

Figure 4.10 shows the initialization theory rules for the Needham-Schroeder Protocol.
Rules GOODGUY and ANNK announce honest participants’ keys while BADGUY
and ANNKB do the same for the compromised key pairs. By using the same predicate

GOODGUY : P (∗)P (∗)→ ∃ke.kd.GoodGuy(ke, kd)KP (ke, kd)
BADKEY : P (∗)P (∗)→ ∃ke.kd.BadKey(ke, kd)KP (ke, kd)

ANNK : GoodGuy(ke, kd)P (∗)→ AnnK(ke)GoodGuy(ke, kd)
ANNKB : BadKey(ke, kd)P (∗)→ AnnK(ke)BadKey(ke, kd)

Figure 4.10: Initialization theory for the Needham-Schroeder Protocol.
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AnnK for public key announcement, we achieve that honest participants cannot tell
the honest public keys from compromised ones.

The next proposition shows that semi-founded protocol form allows derivations in
a protocol theory to be broken down into two stages: the initialization stage and the
stage in which the rules from the role regeneration theory and the protocol role theories
are interleaved to allow an unbounded number of roles. Also, from the point of view of
the memory deleting final role states provides some free space for storage of any facts,
not just for new initial role predicates.

Proposition 4.15. In a semi-founded protocol theory P = I ] R ] A, where A =
A1]· · ·]Ap, for any derivation S>∗T with n participants there exists such a derivation

SP (∗)3p·n2

 ∗I S ′ , S ′  ∗R]A T.

In other words, all rules from I are applied before any rules from R and any rules from
A.

Proof Since P is a semi-founded protocol theory, no rules in R and A can enable
rules in I, therefore all rules from I can be applied before any rules in R and A.
Anyway, when the rules from the given derivations are rearranged in the above way,
the treatment of memory has to be considered. Initialization rules consume empty
facts and create persistent facts, so they do not free any memory slots. Therefore the
number of empty facts consumed by initialization rules is the same regardless of the
order in which the rules are applied. Since the given derivation S >∗ T was possible,
the required number of empty slots was available in S or it was created by other rules
that consume facts to leave free memory slots. One such rule is the rule that deletes
final role state: ERASE : Sk → R(∗) .
Each time ERASE rule creates an empty fact, it is there in the configuration, available
for another session, i.e.for the rule that creates an initial state. Since there are 2
ERASE rules per role theory and the roles are parameterized by key pairs (ke, k

′
e),

there are at most 2p · n(n − 1) opportunities for initialization rules to consume those
empty fact (the number of possible combinations of initiator and responder per role
theory).
Another rule that leaves empty fact is the rule from balanced role theories; the rule
that has the final role state together with an empty fact in the post-condition. In
bounded protocol role theories, other rules from role theories do not create empty
facts. Therefore we need additional n(n− 1) empty facts for these rules; one for each
combination of keys (i.e.participants) for the session, but only one of them has the final
rule with the empty fact. Therefore, in total, we need 3p · n(n − 1) additional empty
facts required the transformation. 2
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4.4 Standard Protocol Traces

The analysis of security properties of protocols looks for the design flaws and either
tries to find them or tries to prove that they cannot occur. Undesirable scenarios
include leakage of secret data, such as one’s PIN number, or failure in authentication,
such as when participants think they are communicating with another participant, but
in fact they are communicating with the intruder.

In our model we look for such flaws by trying to find some sort of normalized run
which would represent an anomaly. We look at the interaction of the two-phase intruder
with bounded memory and the protocol theory in a semi-founded form by using the
notion of standard traces, as in [18]. In these traces we allow additional application
of memory maintenance rules (rules for deletion of facts), both before and after the
intruder’s normalized derivations.

Definition 4.16. Given a semi-founded protocol theory (P , I), where P = R ] A,
a two- phase intruder theory M, and a memory maintenance theory E , a standard
trace is a derivation that interleaves the steps from R, A and E and with normalized
derivations from the intruder theory M.

We represent an attack by a goal state in which the intruder learns the secret s,
i.e., there is the fact M?(s) in the configuration. Learning the secret data gives the
intruder the power to affect authentication and secrecy of the protocol. If such a
secret is a private key of a participant, learning that key would enable intruder to
decrypt messages or parts of messages that would otherwise look opaque to him. He
could learn private data such as nonces (in the Needham-Schroeder protocol) or tickets
for communication with servers (in the Kerberos protocol). Using such information
the intruder is able to trick an honest participant, for example, by impersonating the
participant whose private key he possesses.

In Section 5.1 we demonstrate that the well-known Lowe anomaly [30] can be carried
out in a standard trace by a memory bounded intruder. In Sections 5.2 - 5.7 we also
give similar encodings for a number of known anomalies for different protocols.



Chapter 5

Encoding Known anomalies with a
Memory Bounded Intruder

We can show that many protocol anomalies, such as Lowe’s anomaly [30], can also occur
when using our memory bounded adversary. We assume that the reader is familiar with
such anomalies, see [14, 18, 30, 8, 10]. In this Section, we demonstrate in detail encoding
of Lowe’s anomaly of the Needham-Schroeder protocol and encoding of anomalies for
other protocols, such as Yahalom [14], Otway-Reese [14, 39], Woo-Lam [14], Kerberos
5 [8, 10] and PKINIT, the public key extension of Kerberos 5.

Table 5.1 summarizes the number of P (∗) and R(∗) facts and the upper bound on
the size of facts needed to encode normal runs, where no intruder is present, and to
encode the anomalies where the memory bounded intruder is present. For instance,
to realize the Lowe anomaly to the Needham-Schroeder protocol, the intruder requires
only seven R(∗) facts.1

One can interpret the total number of facts needed as an upper bound on how hard
is it for a protocol analysis tool to check whether a particular protocol is secure, while
the number of R(∗) facts can be interpreted as an upper bound on how much memory
the intruder needs to carry out an anomaly. We believe, therefore, that such values
can be used as a quantitative measure on how secure a protocol is.

1Notice that here we only encode standard anomalies described in the literature [8, 14, 39]. This
does not mean, however, that there are not any other anomalies that can be carried out by an intruder
with less memory, that is, with less R(∗) facts.

82
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Table 5.1: The size of configurations (m), the number of R(∗) facts, the size of con-
figurations modulo intruder (l), and the upper-bound on the size of facts (k) needed
to encode protocol runs and known anomalies when using LSTSes with balanced ac-
tions. The largest size of facts needed to encode an anomaly is the same as in the
corresponding normal run of the protocol. In the cases for the Otway-Rees and the
Kerberos 5 protocols, we encode different anomalies, which are identified by the num-
bering, as follows: (1) The type flaw anomaly in [14]; (2) The attack 5 in [39]; (3) The
ticket anomaly and (4) the replay anomaly in [8]; (5) The PKINIT anomaly also for
Kerberos 5 described in [10].

Needham Otway Woo Kerberos
Protocol

Schroeder
Yahalom

Rees Lam 5
PKINIT(5)

Normal run
Size of conf. (m) 9 8 8 7 15 18

Anomaly

Size of conf. (m) 19 15 11(1), 17(2) 8 22(3), 20(4) 31

No of R(∗) 7 9 5(1), 9(2) 2 9(3), 4(4) 10

Size mod. intruder (l) 12 6 6(1),8(2) 6 13(3),16(4) 21

Upper-bound
on size of facts (k) 6 16 26 6 16 28
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5.1 Lowe Attack to Needham-Schroeder Protocol

We formalize the well known Lowe attack to the Needham-Schoreder protocol [30],
informally depicted in Figure 5.1. We show how the intruder uses his two-phase theory
and the memory maintenance theory to perform the attack.

A −→ B : {A, na}kb
B −→ A : {na, nb}ka
A −→ B : {nb}kb

Figure 5.1: Needham-Schroeder Public Key Protocol.

Description of the Needham-Schroeder protocol and its semi-founded theory was
given in Section 4.2.1. Differently to the theory shown in Figure 4.6 where the protocol
runs with no intruder present and the network is represented by the predicate N , in
the theory represented in Figure 5.2 network is modeled by two predicates, NS and NR.
Participants of the protocol send messages through NS(m) facts and can read messages
from NR(m) facts. It is the intruder who controls the network by transforming NS(m)
facts into NR(m) facts. In other words, intruder is the network and the protocol cannot
run without the intruder (network).

Role Regeneration Theory :

ROLA : GoodGuy(ke, kd)P (∗)→ GoodGuy(ke, kd)A0(ke)
ROLB : GoodGuy(ke, kd)P (∗)→ GoodGuy(ke, kd)B0(ke)
ERASEA : A2(ke, k

′
e, x, y)→ P (∗)

ERASEB : B2(ke, k
′
e, x, y)→ P (∗)

Protocol Theories A and B :

A1 : AnnK(k′e) A0(ke)P (∗)
→ ∃x.A1(ke, k

′e, x) NS(enc(k′e, 〈x, ke〉)) AnnK(k′e)
A2 : A1(ke, k

′
e, x) NR(enc(ke, 〈x, y〉))→ A2(ke, k

′
e, x, y) NS(enc(k′e, y))

B1 : B0(ke) NR(enc(ke, 〈x, k′e〉)) AnnK(k′e)
→ ∃y.B1(ke, k

′
e, x, y) NS(enc(k′e, 〈x, y〉)) AnnK(k′e)

B2 : B1(kek
′
e, x, y) NR(enc(ke, y))→ B2(ke, k

′
e, x, y) P (∗)

Figure 5.2: Semi-founded protocol theory for the Needham-Schroeder Protocol.
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A {A, na}KB−−−−−−−−→
B {A, na}KC−−−−−−−−→

C

A {na, nc}KA←−−−−−−−−
B {na, nc}KA←−−−−−−−−

C

A {nc}KB−−−−−−−−→
B {nc}KC−−−−−−−−→

C

Figure 5.3: Lowe attack to Needham-Schroeder Protocol

The informal description of Lowe’s anomaly is depicted in Figure 5.3. This attack
has 3 participants to the protocol: Alice, Bob (the beautiful brother) and Charlie
(the ugly brother). Alice wants to talk to Bob. However, unfortunately, Bob’s key is
compromised, so the intruder who knows his decryption key can impersonate Bob, and
play an unfair game of passing Alice’s messages to Charlie who is very happy to talk
to Alice. In particular, the intruder is capable of creating a situation where Alice is
convinced that she’s talking to Bob while at the same time Charlie is convinced that
he’s talking to Alice. In reality Alice is talking to Charlie.

This attack shows two main points of insecurity of this protocol. Firstly, the nonces
na and nc are not secret between participants who are communicating, Alice and Char-
lie, because the intruder learns these nonces. The second point regards authentification.
The participants in the protocol choose a particular person they want to talk to and
at the end of the protocol run they are convinced to have completed a successful con-
versation with that person. In reality they talk to someone else.

Let us take a closer look at the protocol trace with above anomaly. The initial set of
facts contains 9 facts for the protocol participants and 4 facts for the intruder’s initial
memory. We will call those initial facts WI .

WI = GoodGuy(ke1, kd1) KP (ke1, kd1) AnnK(ke1)
BadKey(ke2, kd2) KP (ke2, kd2) AnnK(ke2)
GoodGuy(ke3, kd3) KP (ke3, kd3) AnnK(ke3)
Mke(ke1) Mek(ke2) Mdk(kd2) Mk3(ke3)

A trace representing the anomaly is shown below.

Alice starts the protocol by sending the message to Bob, but the intruder intercepts it.

WIA0(ke1) B0(ke3) R(∗)R(∗)R(∗)P (∗)→A1

WIA1(ke1, ke2, na) B0(ke3) NS(enc(ke2, 〈na, ke1〉)) R(∗)R(∗)R(∗)→REC

WIA1(ke1, ke2, na)B0(ke3)D(enc(ke2, 〈na, ke1〉)) R(∗)R(∗)P (∗)→
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Intruder has Bob’s private key and can therefore decrypt the message. He encrypts
the contents with Charlie’s public key, so he sends the message to Charlie pretending
to be Alice.

→DEC

WIA1(ke1, ke2, na) B0(ke3) D(〈na, ke1〉) Mc(enc(ke2, 〈na, ke1〉)) R(∗)P (∗)→DM

WIA1(ke1, ke2, na) B0(ke3) Ms(〈na, ke1〉) Mc(enc(ke2, 〈na, ke1〉)) R(∗)P (∗)→DELMC

WIA1(ke1, ke2, na) B0(ke3) Ms(〈na, ke1〉) B(∗) R(∗)P (∗)→USES

WIA1(ke1, ke2, na) B0(ke3) Ms(〈na, ke1〉) C(〈na, ke1〉) B(∗)P (∗)→ENC

WIA1(ke1, ke2, na) B0(ke3) Ms(〈na, ke1〉) C(enc(ke3, 〈na, ke1〉)) B(∗)P (∗)→SND

WIA1(ke1, ke2, na) B0(ke3) Ms(〈na, ke1〉) NR(enc(ke3, 〈na, ke1〉)) B(∗)R(∗)→DELS

WIA1(ke1, ke2, na) B0(ke3) NR(enc(ke3, 〈na, ke1〉) B(∗)R(∗)R(∗)→DELB

WIA1(ke1, ke2, na) B0(ke3) NR(enc(ke3, 〈na, ke1〉) R(∗)R(∗)R(∗)→

Additionally intruder deletes some facts from his memory. Charlie receives the message
and responds thinking that he is responding to Alice.

→B1 WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc) NS(enc(ke1, 〈na, nc〉) R(∗)R(∗)R(∗)→

The Intruder forwards the message received to Alice.

→FWD WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc) NR(enc(ke1, 〈na, nc〉) R(∗)R(∗)R(∗)→

Alice receives the message, responds (to Charlie) and goes to the final state thinking
that she has completed a successful run with Bob.

→A2

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) NS(enc(ke2, nc)) R(∗)R(∗)R(∗)→REC

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) D(enc(ke2, nc)) R(∗)R(∗)P (∗)→DEC

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) Mc(enc(ke2, nc)) D(nc) R(∗)P (∗)→DELMC

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) B(∗) D(nc) R(∗)P (∗)→LRNN

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) B(∗) Mn(nc) R(∗)P (∗)→USEN

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) B(∗) Mn(nc) C(nc) P (∗)→ENC

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) B(∗) Mn(nc) C(enc(ke3, nc)) P (∗)→SND

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) B(∗) Mn(nc)
NR(enc(ke3, nc)) R(∗)→(DELN,DELB)

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) NR(enc(ke3, nc)) R(∗)R(∗)R(∗)→

Intruder learns Charlie’s nonce from Alice’s message by decrypting it with the key kd2.
He then sends the nonce encrypted with Charlie’s public key.
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→B2 WIA2(ke1, ke2, na, nc) B2(ke3, ke1, na, nc) R(∗)R(∗)R(∗)P (∗)

Charlie receives the message sent and goes to the final state thinking that he has
completed a successful run with Alice.

The attack requires a configuration of at least 19 facts in total: 12 P (∗) facts (for
the honest participants) and 7 R(∗) facts (for the intruder). The size of facts has to
be at least 6, to be able to represent the largest message sent in the protocol.

5.2 Yahalom Protocol

The informal description of the Yahalom protocol is given in figure 5.4. The protocol
has been shown to be flawed by several authors.

A −→ B : A, na
B −→ S : B, {A, na, nb}kBS

S −→ A : {B, kAB, na, nb}kAS
, {A, kAB}kBS

A −→ B : {A, kAB}kBS
, {nb}kAB

Figure 5.4: Yahalom Protocol.

Yahalom is an authentication and secure key distribution protocol designed for use
on an insecure network such as the internet. It involves a trusted server S. Symmetric
keys kAS and kBS are shared between the server S and agents A and B, respectively.
The server generates a fresh symmetric key kAB which will be the session key to be
shared between the two participants. Namely, the server sends to Alice a message
containing the generated session key kAB and a message to be forwarded to Bob.

A semi-founded protocol theory for the Yahalom protocol is given in Figure 5.5.
Initial set of facts represents key distribution and announcement; 2 facts with keys

for communication with the server and 2 facts for announcement of the participants’
names:

W = Guy(A, kAS) Guy(B, kBS) AnnN(A) AnnN(B) .

There should be 3 additional facts for the role states and another fact for the network
predicate. The largest message sent is the message that the server S sends to A and it
has 15 symbols. Therefore, a protocol run between A and B with no intruder involved
requires a configuration of at least 8 facts of the size of at least 16.
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Role Regeneration Theory :

ROLA : Guy(G, kGS) AnnN(G) P (∗)→ Guy(G, kGS) AnnN(G) A0(kGS)
ROLB : Guy(G, kGS) AnnN(G) P (∗)→ Guy(g, kGS) AnnN(G) B0(kGS)
ROLS : AnnN(G) P (∗)→ AnnN(G) S0()
ERASEA : A2(k,G, x)→ P (∗)
ERASEB : B3(k,G, x, y)→ P (∗)
ERASES : S1(G,G

′)→ P (∗)

Protocol Theories A, B, and S :

A1 : A0(kGS) AnnN(G′) P (∗)→ ∃x.A1(kGS, G
′, x) NS(〈G, x〉) AnnN(G′)

A2 : A1(kGS, G
′, x) NR(〈 enc(kGS, 〈G′, 〈kGG′ , 〈x, y〉〉), z 〉)

→ A2(kGS, G
′, x, y) NS(〈 z, enc(kGG′ , y) 〉)

B1 : B0(kGS) NR(〈G′, x〉) AnnN(G′)
→ ∃y.B1(kGS, G

′, x, y) NS(〈 G, enc(kGS, 〈G′, 〈x, y〉) 〉)AnnN(G′)
B2 : B1(kGS, G

′, x, y) NR(〈 enc(kGS, 〈G′, kG′G〉), enc(kG′G, y) 〉))
→ B2(kGS, G

′, x, y, kG′G) R(∗)
S1 : S0() Guy(G, kGS) Guy(G′, kGS′) NR(〈 G, enc(kGS, 〈G′, 〈x, y〉) 〉)
→ ∃kG′G.S1(G

′, G) Guy(G, kGS) Guy(G′, kGS′)
NS(〈 enc(kG′S, 〈G, 〈kG′G, 〈x, y〉〉), enc(kGS, 〈G′, kG′G〉) 〉)

Figure 5.5: Semi-founded protocol theory for the Yahalom Protocol.

5.2.1 An Attack on Yahalom Protocol

An anomaly on the Yahalom protocol is shown in Figure 5.6.
The attack assumes that the intruder knows the key kBS shared between the server S
and Bob. Intruder pretends to be Alice. He initiates the protocol by generating a nonce
and sending it together with Alice’s name to Bob. Since it is assumed that the intruder
has the symmetric key kBS that Bob shares with the server, intruder will be able do
learn the nonce nb. He can then compose a message that has the expected format of
the last protocol message exchanged, i.e. the first part of the message is encrypted with
the key kBS and contains the freshly generated session key kAB, and the second part
of the message is the nonce nb encrypted with that session key. Therefore intruder is
able to trick Bob into thinking he had performed a valid protocol run with Alice and
the trusted server. In reality Bob has only received messages from the intruder. The
server hasn’t been involved at all.
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I(A) −→ B : A, na
B −→ I(S) : B, {A, na, nb}kBS

−→ : omitted
I(A) −→ B : {A, na, nb}kBS

, {nb}na,nb

Figure 5.6: An attack on Yahalom Protocol.

Initial set of facts for the anomaly is:

W = Guy(A, kAS) Guy(B, kBS) AnnN(A) AnnN(B) .

For the symmetric encyption and decryption intruder uses ENCS and DECS rules.
This attack requires encryption with a composed key so intruder needs ENCM rule for
such encyption: ENCM : C(x)C(y)→Mk(x)C(enc(x, y)) .

The trace with the anomaly is shown below.

WB0(kBS)Mg(A)Mk(kBS)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→USEG

WB0(kBS)Mg(A)Mk(kBS)C(A)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→GEN

WB0(kBS)Mg(A)Mk(kBS)C(A)Mn(na)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→USEN

WB0(kBS)Mg(A)Mk(kBS)C(A)Mn(na)C(na)R(∗)R(∗)R(∗)R(∗)P (∗)→COMP

WB0(kBS)Mg(A))Mk(kBS)
Mn(na)C(〈A, na〉)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→SND

WB0(kBS)Mg(A)Mk(kBS)Mn(na)
NR(〈A, na〉)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→DEL2

WB0(kBS)Mk(kBS)NR(〈A, na〉)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→

Bob receives the message intruder has sent and thinks it is a message from Alice,
therefore sends a message to Server containing Alice’s name.

→B1 WB1(kBS, A, na, nb) Mk(kBS) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈B, enc(KBS, 〈A, 〈na, nb〉〉)〉)→

Intruder intercepts the message intended for the server.

→REC

WB1(kBS, A, na, nb) Mk(kBS) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)
D(〈B, enc(KBS, 〈A, 〈na, nb〉〉)〉)→DCMP

WB1(kBS, A, na, nb) Mk(kBS) D(B)
D(enc(KBS, 〈A, 〈na, nb〉〉))R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→LRNG

WB1(kBS, A, na, nb) Mk(kBS)Mg(B)
D(enc(KBS, 〈A, 〈na, nb〉〉))R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→
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It is assumed that the intruder had previously learnt the key kBS shared between the
server and Bob, so he’s able to decompose the encrypted submessage.

→DECS

WB1(kBS, A, na, nb) Mk(kBS)Mg(B) P (∗)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))D(〈A, 〈na, nb〉〉)R(∗)R(∗)R(∗)R(∗)R(∗)→DCMP

WB1(kBS, A, na, nb) Mk(kBS)Mg(B) P (∗)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))D(A)D(〈na, nb〉)R(∗)R(∗)R(∗)R(∗)→DCMP

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))D(A)D(na)D(nb)R(∗)R(∗)R(∗)P (∗)→LRNG

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)D(na)D(nb)R(∗)R(∗)R(∗)P (∗)→LRNN

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)D(nb)R(∗)R(∗)R(∗)P (∗)→LRNN

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)R(∗)R(∗)R(∗)P (∗)→

Intruder starts composing the message that Bob expects to receive from Alice.

→USEN

WB1(kBS, A, na, nb) Mk(kBS)Mg(B)C(na)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)R(∗)R(∗)P (∗)→USEN

WB1(kBS, A, na, nb) Mk(kBS))Mg(B)C(na)C(nb)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb) R(∗)P (∗)→COMP

WB1(kBS, A, na, nb) Mk(kBS)Mg(B)C(〈na, nb〉)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)R(∗)R(∗)P (∗)→USEG

WB1(kBS, A, na, nb) Mk(kBS)Mg(B)C(〈na, nb〉)C(A)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb) R(∗)P (∗)→COMP

WB1(kBS, A, na, nb) Mk(kBS)Mg(B)C(〈A, 〈na, nb〉〉)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)R(∗)R(∗)P (∗)→ENCS

WB1(kBS, A, na, nb) Mk(kBS)Mg(B)
C(enc(kBS, 〈A, 〈na, nb〉〉))Mc(enc(KBS, 〈A, 〈na, nb〉〉))
Mg(A)Mn(na)Mn(nb) R(∗)R(∗)P (∗)→USEN

WB1(kBS, A, na, nb) Mk(kBS)Mg(B)Mg(A)Mn(na)Mn(nb)C(na)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))C(enc(kBS, 〈A, 〈na, nb〉〉)) R(∗)P (∗)→USEN

WB1(kBS, A, na, nb) Mk(kBS)Mg(B)Mg(A)Mn(na)Mn(nb)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))C(na)C(nb)C(enc(kBS, 〈A, 〈na, nb〉〉)) P (∗)→
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Notice there are no R(∗) facts in the configuration.

→COMP

WB1(kBS, A, na, nb) Mk(kBS)Mg(B)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)C(〈na, nb〉)
C(enc(kBS, 〈A, 〈na, nb〉〉)) R(∗)P (∗)→USEN

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)C(〈na, nb〉)
C(nb)C(enc(kBS, 〈A, 〈na, nb〉〉))P (∗)→

He uses the composed key for encryption to compose the message that matches the
format that Bob expects to receive.

→ENCM

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)Mk(〈na, nb〉)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)
C(enc(〈na, nb〉, nb))C(enc(kBS, 〈A, 〈na, nb〉〉))P (∗)→COMP

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)Mg(A)Mk(〈na, nb〉)
Mn(na)Mn(nb)Mc(enc(KBS, 〈A, 〈na, nb〉〉))
C(〈enc(kBS, 〈A, 〈na, nb〉〉), enc(〈na, nb〉, nb)〉)R(∗)P (∗)→SND

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)Mg(A)Mk(〈na, nb〉)
Mn(na)Mn(nb)Mc(enc(KBS, 〈A, 〈na, nb〉〉))
NR(〈enc(kBS, 〈A, 〈na, nb〉〉), enc(〈na, nb〉, nb)〉) R(∗)R(∗)→

Bob receives what he believes is a message from Alice containing the session key freshly
generated by the server. Therefore he stores the false key and thinks he had completed
a successful protocol run with Alice.

→B2

WB2(kBS, A, na, nb, 〈na, nb〉)Mk(kBS)Mg(B)Mk(〈na, nb〉)
Mg(A)Mn(na)Mn(nb)Mc(enc(KBS, 〈A, 〈na, nb〉〉))R(∗)R(∗)P (∗)

Since the attack assumes that the intruder knows the key kBS shared between the
server and Bob, so another memory fact, Mk(kBS), stores that key. As shown above,
the attack requires a configuration of at least 15 R(∗) facts (6 for honest participants
and 9 for the intruder). The protocol role predicates for Alice and Server are not used
so 2 facts less are needed for honest participants. As per messages exchanged, the size
of the facts should be at least 14.
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5.3 Otway-Rees Protocol

The Otway-Rees Protocol is another well-known protocol that has been shown to be
flawed. It’s informal description is depicted in Figure 5.7.

A −→ B : M,A,B, {na,M,A,B}kAS

B −→ S : M,A,B, {na,M,A,B}kAS
, {nb,M,A,B}kBS

S −→ B : M, {na, kAB}kAS
, {nb, kAB}kBS

B −→ A : M, {na, kAB}kAS

Figure 5.7: Otway-Rees Protocol.

The protocol also involves a trusted server. Keys kAS and kBS are symmetric
keys for communication of the participants with the server. In the above protocol
specification M is a nonce (a run identifier). Initiator A sends to B the nonce M and
names A and B unencrypted together with an encrypted message readable only by
the server S of the form shown. B forwards the message to S together with a similar
encrypted component. The server S decrypts the message components and checks that
the components match. If so, then it generates a key kA,B and sends message to B,
who then forwards part of this message to A. A and B will use the key kA,B only if
the message components generated by the server S contain the correct nonces na and
nb respectively.

A semi-founded protocol theory for Otway-Rees protocol is given in Figure 5.8.
In a normal protocol run, initial set of facts represents key distribution and an-

nouncement; 2 facts with keys for communication with the server and 2 facts for an-
nouncement of the participants’ names:

W = Guy(A,KAS) Guy(B, kBS) AnnN(A) AnnN(B) .

There should be additional 3 facts for role states and another fact for the network
predicate. Therefore, a protocol run between A and B with no intruder involved
requires a configuration of at least 8 facts of the size of at least 26. The fact representing
the network message that the B sends to S has 25 symbols.
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Role Regeneration Theory :

ROLA : Guy(G, kGS) AnnN(G) P (∗)→ Guy(G, kGS) AnnN(G) A0(kGS)
ROLB : Guy(G, kGS) AnnN(G) P (∗)→ Guy(G, kGS) AnnN(G) B0(kGS)
ROLS : P (∗)→ S0()
ERASEA : A2(k,G, x, y, k

′)→ P (∗)
ERASEB : B2(k,G, x, y, z, w, k

′)→ P (∗)
ERASES : S1(G,G

′)→ P (∗)

Protocol Theories A, B, and S :

A1 : A0(kGS) AnnN(G′) P (∗)→ ∃x.y.A1(kGS, G
′, x, y)AnnN(G′)

NS(〈x, 〈G, 〈G′, enc(kGS, 〈y, 〈x, 〈G,G′〉〉〉)〉〉〉)
A2 : A1(kGS, G

′, x, y) NR(〈x, enc(kGS, 〈y, 〈kGG′〉) 〉)
→ A2(kGS, G

′, x, y, kGG′) P (∗)
B1 : B0(kGS) AnnN(G′) NR(〈x, 〈G′, 〈G, z〉〉〉)
→ ∃w.B1(kGS, G

′, x, z, w) AnnN(G′)
NS(〈x, 〈G′, 〈G, 〈z, enc(kGS, 〈w, 〈x, 〈G′, G〉〉〉)〉〉〉〉)

B2 : B1(kGS, G
′, x, z, w) NR(〈 x, 〈t, enc(kGS, 〈w, kGG′〉)〉 〉))

→ B2(kGS, G
′, x, z, w, t, kGG′) N(〈x, t〉)

S1 : S0() Guy(G, kGS) Guy(G′, kGS′)
NR(〈x, 〈G, 〈G′, 〈 enc(kGS, 〈y, 〈x, 〈G,G′〉〉〉), enc(kG′S, 〈w, 〈x, 〈G,G′〉〉〉) 〉 〉〉〉)
→ ∃kGG′ .S1(G,G

′) Guy(G, kGS) Guy(G′, kGS′)
NS(〈 x, 〈enc(kGS, 〈y, kGG′〉), enc(kG′S, 〈w, kGG′〉)〉 〉)

Figure 5.8: Semi-founded protocol theory for the Otway-Rees Protocol.



Encoding Known anomalies with a Memory Bounded Intruder 94

5.3.1 A Type Flaw Attack on Otway-Reese Protocol

In this anomaly, shown in Figure 5.9, principal A is fooled into believing that the triple
〈M,A,B〉 is in fact the new key. This triple is of course public knowledge. This is an
example of a type flaw. It is also possible to wait until B sends the second message of
the original protocol and then reflect appropriate components back to both A and B
and then monitor the conversation between them.

A −→ I(B) : M,A,B, {na,M,A,B}kAS

I(B) −→ A : M, {na,M,A,B}kAS

Figure 5.9: A type-flaw attack on Otway-Rees Protocol.

Intruder intercepts Alice’s message and replies with a message of the format Alice
expects to receive from Bob containing the fresh key. She gets the ”key” 〈M,A,B〉
that is the public knowledge, not a secret. Neither Bob nor the server get involved.

Initial set of facts is: W = Guy(A,KAS) Guy(B, kBS) AnnN(A) AnnN(B) .
The trace representing the anomaly is shown below.

WA0(kAS) R(∗)R(∗)R(∗)R(∗)P (∗)→A1

WA1(kAS, B,M, na) R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈M, 〈A, 〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉〉)→REC

WA1(kAS, B,M, na) R(∗)R(∗)R(∗)R(∗)P (∗)
D(〈M, 〈A, 〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉〉)→DCMP

WA1(kAS, B,M, na) R(∗)R(∗)R(∗)P (∗)
D(M) D(〈A, 〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉)→DCMP

WA1(kAS, B,M, na) R(∗)R(∗)P (∗)
D(M) D(A) D(〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉)→DELD

WA1(kAS, B,M, na) R(∗)R(∗)P (∗)
D(M) B(∗) D(〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉)→DCMPB

WA1(kAS, B,M, na) R(∗)R(∗)P (∗)
D(M) D(B) D(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→DELD

WA1(kAS, B,M, na) R(∗)R(∗)P (∗)
D(M) B(∗) D(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→DM

WA1(kAS, B,M, na) R(∗)R(∗)P (∗)
D(M) B(∗) Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→LRNN

WA1(kAS, B,M, na) Mn(M) B(∗)R(∗)R(∗)P (∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→
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→USEN

WA1(kAS, B,M, na) Mn(M) C(M) B(∗)R(∗)P (∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→USEC

WA1(kAS, B,M, na) Mn(M) C(M) B(∗)P (∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)) C(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→

Notice that at this point there are no R(∗) facts in the configuration.

→COMP

WA1(kAS, B,M, na) Mn(M) Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))
C(〈M, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉) B(∗)R(∗)P (∗)→SND

WA1(kAS, B,M, na) Mn(M) Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))
NR(〈M, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉) B(∗)R(∗)R(∗)→A2

WA2(kAS, B,M, na, 〈M, 〈A,B〉〉 ) Mn(M) B(∗)R(∗)R(∗)P (∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))

As has been just shown, this attack requires a configuration of at least 11 facts in total:
6 P (∗) facts (for the honest participants) and 5 R(∗) facts (for the intruder). Intruder
needs 2 R(∗) facts to learn participants’ names.
The size of facts has to be at least 15. Although some protocol messages were not
sent it could be reasonable to allow a normal protocol execution, i.e. to require the
facts to have size of at least 25 slots for constant names. However, in the attack itself,
the messages sent have the size of at most 14 symbols. Additional 1 counts for the
predicate name.

This type of anomalies can be prevented by a typed signature. Since we allow only
atomic keys within our typed signature this attack is not possible. The tuple of terms
〈M,A,B〉 cannot be confused with a term of type ”key”.

5.3.2 Replay Attack on Otway-Rees Protocol

This attack, shown in figure 5.10, was presented by Wang and Qing (Two new at-
tacks on Otway-Rees Protocol, In: IFIP/SEC2000, Beijing: International Academic
Publishers, 2000. 137-139.).

It is a replay anomaly, that is, an intruder overhears a message in a protocol session
and can therefore replay this message or some of its parts to form messages of the ex-
pected protocol form, later, in another protocol session and trick an honest participant.
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A −→ B : M,A,B, {na,M,A,B}kAS

B −→ S : M,A,B, {na,M,A,B}kAS
, {nb,M,A,B}kBS

S −→ I(B) : M, {na, kAB}kAS
, {nb, kAB}kBS

I(B) −→ S : M,A,B, {na,M,A,B}kAS
, {nb,M,A,B}kBS

S −→ I(B) : M, {na, k′AB}kAS
, {nb, k′AB}kBS

I(S) −→ B : M, {na, kAB}kAS
, {nb, k′AB}kBS

B −→ A : M, {na, kAB}kAS

Figure 5.10: Replay attack on Otway-Rees Protocol.

As shown in figure 5.10, intruder intercepts a request to the server and stores data so
he’s able to replay the message. The server responds to a replayed request generating
a fresh session key. Intruder is able to modify the messages so that Alice and Bob get
different keys.

Alice and Bob start the protocol. Intruder copies the message that Bob sends to
the server and then he replays it later. The attack is successful if the server cannot
recognize duplicate requests.

When the attack run is over, Alice and Bob do get the session keys, but they get
two different ones; Alice gets kAB and Bob gets k′AB.

Initial set of facts is: W = Guy(A,KAS) Guy(B, kBS) AnnN(A) AnnN(B) .
The trace representing the anomaly is shown below. Alice starts a protocol session by
sending the first protocol message to Bob.

WA0(kAS) B0(kBS) S0() R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→A1

WA1(kAS, B,M, na) B0(kBS) S0() R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NS((〈M, 〈A, 〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉〉)

Intruder does not need data from this message, so he simply forwards it to Bob.

→FWD

WA1(kAS, B,M, na) B0(kBS) S0() R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈M, 〈A, 〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉)〉〉〉)→B1

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()
NS(〈M, 〈A, 〈B, 〈enc(kAS, 〈na, 〈M, 〈A,B〉〉〉, enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→

Bob responds. This time intruder needs to intercept the message to store the message
parts in order to replay this message to the server later on. Intruder performs a
normalized derivation and deletes unnecessary data.
For simplicity, we use z = (enc(kAS, 〈na, 〈M, 〈A,B〉〉〉).



Encoding Known anomalies with a Memory Bounded Intruder 97

→REC

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()
D(〈M, 〈A, 〈B, 〈enc(kAS, 〈na, 〈M, 〈A,B〉〉〉, enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→DCMP 4

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()
D(M) D(A) D(B) R(∗)R(∗)R(∗)R(∗)P (∗)
D(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) D(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
→(LRNN,LRNG,LRNG,DM2)

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0() Mn(M) Mg(A) Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)) R(∗)R(∗)R(∗)R(∗)
Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) P (∗)→USES2

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0() Mn(M) Mg(A) Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) P (∗)
C(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) C(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) R(∗)R(∗)→COMP

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0() Mn(M) Mg(A) Mg(B) P (∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) R(∗)R(∗)
C(〈enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉), enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉)R(∗)→USEG

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0() Mn(M) Mg(A) Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) C(M)
Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) R(∗)R(∗)P (∗)
C(〈enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉), enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉)→COMP

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0() Mn(M) Mg(A) Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)
Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) R(∗)R(∗)R(∗)P (∗)
C(〈M, 〈enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉), enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉)→SND

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0() Mn(M) Mg(A) Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)
Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) R(∗)R(∗)R(∗)R(∗)
NR(〈M, 〈enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉), enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉)→

Intruder has to be careful with deletion rules, since he will need some knowledge for
reproducing messages later in the protocol attack.

→DEL3

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0() Mg(A)Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈M, 〈A, 〈B, 〈enc(kAS, 〈na, 〈M, 〈A,B〉〉〉, enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)〉〉〉〉)→
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The server responds to the request and finishes the session by deleting its final role
state predicate and creating an initial role state for the new session.

→S1 WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S1(A,B) Mg(A)Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈 M, 〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, kAB〉)〉 〉)
→ERASES,ROLS

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0() Mg(A)Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈 M, 〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, kAB〉)〉 〉)→

Intruder removes the message server has sent so Bob never receives it. He replays Bob’s
request message using the data he had learnt from Bob’s original request.

→REC

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0() Mg(A)Mg(B)R(∗)R(∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) R(∗)R(∗)
D(〈 M, 〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, kAB〉)〉 〉) P (∗)→DCMP

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0() Mg(A)Mg(B) R(∗)R(∗)R(∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
D(M)D(〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, kAB〉)〉) P (∗)→LRNN

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0() Mg(A)Mg(B) R(∗)R(∗)R(∗)
Mn(M) Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
D(〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, kAB〉)〉) P (∗)→DCMP

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0() Mg(A)Mg(B) R(∗)R(∗)
Mn(M) Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
D(enc(kAS, 〈na, kAB〉)) D(enc(kBS, 〈nb, kAB〉)) P (∗)→DELD

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0() Mg(A)Mg(B) R(∗)R(∗)
Mn(M) Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
D(enc(kAS, 〈na, kAB〉)) B(∗)P (∗)→DM

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0() Mg(A)Mg(B) R(∗)R(∗)
Mn(M) Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
Ms(enc(kAS, 〈na, kAB〉)) B(∗)P (∗)→(USES2)

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0() Mg(A)Mg(B)
Mn(M) Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
Ms(enc(kAS, 〈na, kAB〉)) B(∗)P (∗)
C(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) C(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)→

Notice that at this point there are no R(∗) facts in the configuration.



Encoding Known anomalies with a Memory Bounded Intruder 99

Intruder continues to compose the request message, sends it to the server and deletes
unnecessary data from his memory.

→(COMP,USEG,COMP,USEG,COMP,USEN,COMP,SND,DEL5)

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb)) S0() Mc(enc(kAS, 〈na, kAB〉))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈M, 〈A, 〈B, 〈enc(kAS, 〈na, 〈M, 〈A,B〉〉〉, enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)〉〉〉〉)→

The Server does not detect the replay message and replies with a fresh message con-
taining a new key k′Ab. Intruder intercepts second server’s reply and sends a modified
message to Bob. That is an incorrect protocol message but Bob cannot detect it.

→(S1,ERASES)

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0() Ms(enc(kAS, 〈na, kAB〉))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈 M, 〈enc(kAS, 〈na, k′AB〉), enc(kBS, 〈nb, k′AB〉)〉 〉)→

Intruder intercepts the second reply from the Server, switches submessages and sends
the modified message to Bob.

→REC

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0() Ms(enc(kAS, 〈na, kAB〉))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)
D(〈 M, 〈enc(kAS, 〈na, k′AB〉), enc(kBS, 〈nb, k′AB〉)〉 〉)→DCMP 2

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0() Mc(enc(kAS, 〈na, kAB〉))
D(M) D(enc(kAS, 〈na, k′AB〉)) D(enc(kBS, 〈nb, k′AB〉))
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→(LRNN,DELD,LRNA)

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0() Mc(enc(kAS, 〈na, kAB〉))
Mn(M) B(∗) Mc(enc(kBS, 〈nb, k′AB〉)) A(enc(kBS, 〈nb, k′AB〉))
R(∗)R(∗)R(∗)R(∗)P (∗)→(USEC2,COMP,USEN,COMP,SND,DEL5)

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈 M, 〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, k′AB〉)〉 〉)→

Bob receives a message that looks like the normal server’s reply and sends the next
message to Alice. For simplicity, we use t = enc(kAS, 〈na, kAB〉).

→B2

WA1(kAS, B,M, na)B2(kBS, A,M, z, nb, t, k
′
AB) S0()

R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈 M, enc(kAS, 〈na, kAB〉) 〉)→
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Intruder simply forwards the message to Alice, who receives it and moves into final
state believing she and Bob now share a fresh session key.

→FWD

WA1(kAS, B,M, na) B2(kBS, A,M, z, nb, t, k
′
AB) S0()

R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈 M, enc(kAS, 〈na, kAB〉) 〉)→A2

WA2(kAS, B,M, na, kAB) B2(kBS, A,M, z, nb, t, k
′
AB)) S0()

R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)

As a result both Alice and Bob do get the session key, but they get different keys; Alice
get kAB while Bob gets k′AB.

This attack requires a configuration of at least 17 facts in total: 8 P (∗) facts (for the
honest participants) and 9 R(∗) facts (for the intruder).
The size of facts has to be at least 26.

5.4 Woo-Lam Protocol

The informal description of this one-way authentication protocol is shown in Figure 5.11
and a semi-founded protocol theory is given in Figure 5.12.

A −→ B : A
B −→ A : nb
A −→ B : {nb}kAS

B −→ S : {A, {nb}kAS
}kBS

S −→ B : {A, nb}kBS

Figure 5.11: Simplified Woo-Lam Protocol.

Woo and Lam presented this authentication protocol using symmetric cryptography in
which Alice tries to prove her identity to Bob using a trusted third party, the server
S. Firstly, Alice claims her identity. In response, Bob generates a nonce. Alice then
returns this challenge encrypted with the secret symmetric key kAS that she shares
with the server. Bob passes this to server for translation and then the server returns
the nonce received to Bob. Both bob and the server use the shared symmetric key kBS
for that communication. Finally, Bob verifies the nonce.
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Role Regeneration Theory :

ROLA : Guy(G, kGS) AnnN(G)P (∗)→ Guy(G, kGS) AnnN(G)A0(kGS)
ROLB : Guy(G, kGS) AnnN(G)P (∗)→ Guy(G, kGS) AnnN(G)B0(kGS)

ERASEA : A2(k,G, x)→ P (∗)
ERASEB : B3(k,G, x, y)→ P (∗)

Protocol Theories A, B, and S :

A1 : A0(kGS) AnnN(G′)P (∗)→ A1(kGS, G
′) NS(G) AnnN(G′)

A2 : A1(kGS, G
′) NR(x)→ A2(kGS, G

′, x)NS(enc(kGS, x))
B1 : B0(kGS) NR(G′) AnnN(G′)

→ ∃x.B1(kGS, G
′, x) NS(x) AnnN(G′)

B2 : B1(kGS, G
′, x) NR(y)→ B2(kGS, G

′, x, y) NS(enc(kGS, 〈G′, y〉))
B3 : B2(kGS, G

′, x, y) NR(enc(kGS, x))→ B3(kGS, G
′, x, y) P (∗)

S1 : NR(enc(kGS, 〈G′, enc(KGS′ , x)〉)) Guy(G, kGS) Guy(G′, kGS′)
→ NS(enc(kGS, x)) Guy(G, kGS) Guy(G′, kGS′)

Figure 5.12: Semi-founded protocol theory for the simplified Woo-Lam Protocol.

Initial set of facts represents key distribution and announcement. It includes 2 facts
with keys for communication with the server and 2 facts for announcement of the
participants’ names:

W = Guy(A,KAS) Guy(B, kBS) AnnN(A) AnnN(B) .

There should be additional 2 facts for role states and another fact for the network
predicate. Therefore, a protocol run between A and B with no intruder involved
requires a configuration of at least 7 facts of the size of at least 6.
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5.4.1 An Attack on Simplified Woo-Lam Protocol

The Woo-Lam protocol in its various versions appear to be subject to various attacks.
We present one such anomaly in Figure 5.13.

I(A) −→ B : A
B −→ I(A) : nb
I(A) −→ B : nb
B −→ I(S) : {A, nb}kBS

I(S) −→ B : {A, nb}kBS

Figure 5.13: An attack on simplified Woo-Lam Protocol.

Intruder pretends to be Alice and sends Alice’s name to Bob. Bob replies and than
receives a message that he believes comes from Alice therefore he encrypts it with his
key. Than the intruder send the message that looks like the valid server’s reply. Bob
finishes the role thinking he had completed a successful protocol run with Alice. Neither
Alice nor the server were involved. Intruder initiates the protocol impersonating Alice.
Then he also impersonates the server and although intruder does not know the keys
shared between the server and Alice and Bob, respectively, he is able to trick Bob into
thinking that he had completed a proper protocol exchange with Alice.

Initial set of facts is: W = Guy(A,KAS) Guy(B, kBS) AnnN(A) AnnN(B) .

W B0(kBS) Mg(A) R(∗) P (∗)→USEG

W B0(kBS) Mg(A) C(A) P (∗)→SND

W B0(kBS) Mg(A) NR(A) R(∗)→B1

W B1(kBS, A, nb) Mg(A) NS(nb) R(∗)→FWD

W B1(kBS, A, nb) Mg(A) NR(nb) R(∗)→B2

W B2(kBS, A, nb, nb) Mg(A) NS(enc(kBS, 〈A, nb〉)) R(∗)→FWD

W B2(kBS, A, nb, nb) Mg(A)) NR(enc(kBS, 〈A, nb〉)) R(∗)→B3

W B3(kBS, A, nb, nb) Mg(A) R(∗)P (∗)

This attack requires a configuration of at least 8 facts (6 for the protocol and additional
2 for the intruder) of the size 6.
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5.5 An Audited Key-distribution Protocol

The following protocol was introduced in [18]. It is a fragment of an audited key
distribution protocol, for one key server and s clients. The protocol assumes that a
private symmetric key K is shared between the principals A,B1, . . . ;Bs and C. Here
A is a key server, B1; . . . , Bs are clients, and C is an audit process. There are s
Server/Client sub-protocols, one for each client. In these sub-protocols A sends a value
which corresponds to a certain binary pattern, and Bi responds by incrementing the
pattern by one. We use the notation xi to indicate the ”don’t care” values in the
messages in the Server/Client sub-protocols.

Figure 5.14 shows the protocol for s = 4 and its semi-founded protocol theory is
given in Figure 5.15. The protocol also includes two audit sub-protocols. In the first
audit protocol the server A sends a message of all zero’s to C to indicate that the
protocol finished correctly. In the second audit protocol, A sends a message of all one’s
to indicate that there is an error. It has the side-effect of broadcasting the SECRET
if C receives the error message.

Server / Client Protocols
A −→ B1 : {x1, x2, x3, 0}K
B1 −→ A : {x1, x2, x3, 1}K

A −→ B2 : {x1, x2, 0, 1}K
B2 −→ A : {x1, x2, 1, 0}K

A −→ B3 : {x1, 0, 1, 1}K
B3 −→ A : {x1, 1, 0, 0}K

A −→ B4 : {0, 1, 1, 1}K
B4 −→ A : {1, 0, 0, 0}K

Audit Protocols
A −→ C : {0, 0, 0, 0}K
C −→ A : OK

A −→ C : {1, 1, 1, 1}K
C −→ A : SECRET

Figure 5.14: Exponential Protocol
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If no intruder is present the protocol consists in 2s+ 1 messages, ends by OK message
and the SECRET if not revealed. Initial set of facts represents key distribution for
communication with the server and includes additional 4 facts representing principals’
names. One fact is required for the network predicate. There should be additional 2
facts for role states, one for the server state Ai and another for the principal currently
having a session with the server A.

Role Regeneration Theories :

ROLA : P (∗)→ A0(K) ERASEA : A4(K)→ P (∗)
ROLB1 : P (∗)→ B10(K) ERASEB1 : B11(K)→ P (∗)
ROLB2 : P (∗)→ B20(K) ERASEB2 : B21(K)→ P (∗)
ROLB3 : P (∗)→ B30(K) ERASEB3 : B31(K)→ P (∗)
ROLB4 : P (∗)→ B40(K) ERASEB4 : B41(K)→ P (∗)
ROLC : P (∗)→ C0(K) ERASEC : C1(K)→ P (∗)

Protocol Theories :

A1 : P (∗)A0(K) → NS(enc(K, (x1, x2, x3, 0)))A1(K)
A2 : NR(enc(K, (x1, x2, x3, 1)))A1(K) → NS(enc(K, (x1, x2, 0, 1)))A2(K)
A3 : NR(enc(K, (x1, x2, 1, 0)))A2(K) → NS(enc(K, (x1, 0, 1, 1)))A3(K)
A4 : NR(enc(K, (x1, 1, 0, 0)))A3(K) → NS(enc(K, (0, 1, 1, 1)))A4(K)

B1 : NR(enc(K, (x1, x2, x3, 0)))B10(K)→ NS(enc(K, (x1, x2, x3, 1)))B11(K)
B2 : NR(enc(K, (x1, x2, 0, 1)))B20(K) → NS(enc(K, (x1, x2, 1, 0)))B21(K)
B3 : NR(enc(K, (x1, 0, 1, 1)))B30(K) → NS(enc(K, (x1, 1, 0, 0)))B31(K)
B4 : NR(enc(K, (0, 1, 1, 1)))B40(K) → NS(enc(K, (1, 0, 0, 0))B41(K)

A5 : NR(enc(K, (1, 0, 0, 0)))A4(K) → NS(enc(K, (0, 0, 0, 0)))A5(K)
C1 : NR(enc(K, (0, 0, 0, 0)))C0(K) → NS(OK)C1(K)

A6 : NR(enc(K, (0, x1, x2, x3)))A4(K) → NS(enc(K, (1, 1, 1, 1)))A5(K)
A7 : NR(enc(K, (x1, 1, x2, x3)))A4(K) → NS(enc(K, (1, 1, 1, 1)))A5(K)
A8 : NR(enc(K, (x1, x2, 1, x3)))A4(K) → NS(enc(K, (1, 1, 1, 1)))A5(K)
A9 : NR(enc(K, (x1, x2, x3, 1)))A4(K) → NS(enc(K, (1, 1, 1, 1)))A5(K)
C2 : NR(enc(K, (1, 1, 1, 1)))C0(K) → NS(SECRET )C1(K)

Figure 5.15: Protocol theory rules in semi-founded form
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Role regeneration theory optimizes the number of facts required by deleting final
role states with ERASE rules. It is therefore possible to run the protocol with only 2
role state predicates in a configuration at a time, i.e. with no more than one protocol
session running in parallel.

Therefore, a protocol run between A, B1, B2, B3, B4 and C with no intruder involved
requires a configuration of at least 11 facts of the size of at least 10.

5.5.1 An Exponential Attack

It is argued in the [18] that this protocol, which was in the restricted well-founded form,
is secure against polynomial-time attack and insecure under Dolev-Yao assumptions.
There is an attack which requires an exponential number of protocol sessions. Since in
a well-founded protocol theory the initial role states are created before protocol exe-
cution, this attack would no longer be possible with a balanced well-founded protocol
theory and a bounded memory intruder. In a fixed configuration the number of roles
would be bounded by the number of facts in the configuration.

In a semi-founded protocol theory there are rules from role regeneration theory
which delete final protocol state facts, so the protocols runs with even an exponential
number of roles are possible. Although there is only a bounded number of parallel
(concurrent) sessions, it is even possible to have an infinite number of roles in a run.

When a Dolev-Yao intruder is present, he can route an initial message (0, 0, 0, 0)
encrypted by K from the server A through 2s−1 principals creating an exponential run
of the protocol. The value of the encrypted binary number gets increased and finally
reaches all 1’s which is then sent to C and causes broadcasting of the SECRET.

The intruder only forwards the messages without being able to decrypt them. He
uses the FWD rule which does not require any additional intruder’s memory. These
actions are repeated for each of the 2s protocol sessions with principals Bi. Finally he
sends the last message consisting of all 1’s encrypted by K to C who then broadcasts the
SECRET. Intruder learns the secret by using the rules REC, DM and then forwards the
message to A using USEC and SND rules. For that he needs 2R(∗) facts. Consequently,
the exponential attack requires a configuration of at least 13 facts of the size 10, of
which 2 R(∗) facts.
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5.6 Symmetric Key Kerberos 5 Protocol

Kerberos is a widely deployed protocol, designed to repeatedly authenticate a client
to multiple application servers based on a single login. The protocol uses various
credentials (tickets), encrypted under a servers key and thus opaque to the client,
to authenticate the client to the server. This allows the client to obtain additional
credentials or to request service from an application server.

We follow the Kerberos 5 representation in [8]. We use the level ”A” formalization of
Kerberos 5 with mutual authentication which allows the ticket anomaly of the protocol.
For simplicity we use t instead of tC,Sreq timestamp in the last two messages of the
protocol shown in Figure 5.16. A semi-founded protocol theory is given in Figure 5.17.

C −→ K : C, T, n1

K −→ C : C, {AKey,C}kT , {AKey, n1, T}kC
C −→ T : {AKey,C}kT , {C}AKey, C, S, n2

T −→ C : C, {SKey, C}kS , {SKey, n2, S}AKey
C −→ S : {SKey, C}kS , {C, tc,Sreq}SKey
S −→ C : {tc,Sreq}SKey

Figure 5.16: Kerberos 5 Protocol.

A standard run of Kerberos 5 consists of three successive phases which involve three
different servers. It accomplishes a repeated authentification of a client to multiple
servers while minimizing the use of the long-term secret key(s) shared between the client
and the Kerberos infrastructure. The client C who wishes to authenticate herself to an
application server S starts by obtaining a long-term credential, whose use requires her
long term (shared) key, and then uses this to obtain short-term credentials for particular
servers. In the first phase, C sends a message to the Kerberos Authentication Server
(KAS) K requesting a ticket granting ticket (TGT) for use with a particular Ticket
Granting Server (TGS) T . K is expected to reply with message consisting of the ticket
TGT and an encrypted component containing a fresh authentication key AKey to
be shared between C and T . In the second phase, C forwards TGT, along with an
authenticator encrypted under AKey, to the TGS T as a request for a service ticket
for use with the server S. Server T is expected to respond with a message consisting
of the service ticket (ST) and an encrypted component containing a fresh service key
SKey to be shared between C and S. In the third phase, C forwards ST and a new
authenticator encrypted with SKey to S. If all credentials are valid, this application
server will authenticate C and provide the service. The last protocol message is an
optional acknowledgment message.
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Role Regeneration Theory :

ROLC : Guy(G, kG) AnnN(G) P (∗)→ Guy(G, kG) AnnN(G) C0(C)
ROLK : KAS(K) P (∗)→ KAS(K) K0(K)
ROLT : TGS(T ) P (∗)→ TGS(T ) T0(T )
ROLS : Server(S) P (∗)→ Server(S) S0(S)
ERASEC : C4(C, S, SKey, t, Y )→ P (∗)
ERASEK : K1(K)→ P (∗)
ERASET : T1(T )→ P (∗)
ERASES : S1(S)→ P (∗)

Protocol Theories C, K, T and S :

C1 : C0(C) TGS(T ) P (∗)→ ∃n1.C1(C, T, n1) TGS(T ) NS(〈C, 〈T, n1〉〉)
C2 : C1(C, T, n1) Server(S) NR(〈C, 〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉) P (∗)
→ ∃n2.C2(C, T, S,AKey, n2) Server(S) Auth(X,T,AKey)

NS(〈X, 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉)
C3 : C2(C, T, S,AKey, n2) ClockC(t)

NR(〈C, 〈Y, enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
→ C3(C, S, SKey, t, Y ) NS(〈Y, enc(SKey, 〈C, t〉)〉) Service(Y, S, SKey)

C4 : C3(C, S, SKey, t, Y ) NR(enc(SKey, t))
→ C4(C, S, SKey, t, Y ) DoneMutC(S, SKey)

K1 : K0(K) Guy(C, kC) TGSKey(T, kT ) NR((〈C, 〈T, n1〉〉)) V alidK(C, T, n1)
→ ∃AKey.K1(K) Guy(C, kC) TGSKey(T, kT ) P (∗)

NS(〈C, 〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
T1 : T0(T ) TGSKey(T, kT ) ServerKey(S, kS) V alidT (C, S, n2)

NR(〈enc(kT , 〈AKey,C〉), 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉)
→ ∃SKey.T1(T ) TGSKey(T, kT ) SerevrKey(S, kS) P (∗)

NS(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
S1 : S0(S) ServerKey(S, kS) V alidS(C, t)

NR(〈enc(kS, 〈SKey, C〉), enc(SKey, 〈C, t〉)〉)
→ S1(S) ServerKey(S, kS) NS(enc(SKey, t)) MemS(C, SKey, t)

Figure 5.17: Semi-founded protocol theory for the Kerberos 5 Protocol.
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A single ticket-granting ticket can be used to obtain several service tickets, possibly
from several application servers, while it is valid. Similarly, a single service ticket for
the application server S can be used for repeated service from S before it expires. In
both cases, a fresh authenticator is required for each use of the ticket.

Initial set of facts consists in facts representing participant’s names and servers par-
ticipating in the protocol, and facts representing secret keys distribution. We assume
the secret key of the participant kC has previously been stored in the key database
accessible by the Kerberos Authentication Server K. Similarly we assume the secret
key of the Ticket Granting Server T has been stored in the key database accessible by
K and the secret key of the Server S has been stored in the key database accessible by
the Ticket Granting Server T .

Initial set of facts includes the following 7 facts:

W = AnnN(C) KAS(K) TGS(T ) Server(S)
Guy(C, kC) TGSKey(T, kT ) ServerKey(S, kS) .

There should be additional 4 facts for role state predicates and another fact for the
network predicate.
Rules marked with→clock,→constraintK ,→constraintT and→constraintS represent constraints
related to timestamps and to validity of relevant Kerberos messages. They are deter-
mined by an external process and we represent them with separate rules:

constraintK : P (∗)→ V alidK(C, T, n1)
constraintT : P (∗)→ V alidT (C, S, n2)
constraintS : P (∗)→ V alidS(C, t)

clock : P (∗)→ ClockC(t)

Additional facts representing memory, clock and validity constraints, i.e.Auth, Service,
DoneMutC , MemS, Clock, V alidK , V alidT , V alidS, require 3 facts (not all are per-
sistent so we don’t need all 8 facts). Therefore, a protocol run between the client C
and Kerberos servers K,T and S with no intruder involved requires a configuration of
at least 15 facts of the size of at least 16.
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The standard trace representing the normal protocol run is given below:

W C0(C) K0(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗)→C1

W C1(C, T, n1) K0(K) T0(T ) S0(S) N(〈C, 〈T, n1〉〉)
P (∗)P (∗)P (∗)→constraintK

W C1(C, T, n1) K0(K) T0(T ) S0(S)
N(〈C, 〈T, n1〉〉) V alidK(C, T, n1)P (∗)P (∗)→K1

W C1(C, T, n1) K1(K) T0(T ) S0(S) P (∗)P (∗)P (∗)
N(〈C, 〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→C2

W C2(C, T, S,AKey, n2) K1(K) T0(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
N(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→constraintT

W C2(C, T, S,AKey, n2) K1(K) T0(T ) S0(S) P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) V alidT (C, S, n2)
N(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→T1

W C2(C, T, S,AKey, n2) K1(K) T1(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
N(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→clock

W C2(C, T, S,AKey, n2) K1(K) T1(T ) S0(S) ClockC(t)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
N(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→C3

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S0(S) P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
Service(enc(kS, 〈SKey, C〉, S, SKey)
N(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→constraintS

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S0(S)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
Service(enc(kS, 〈SKey, C〉, S, SKey) V alidS(C, t)
N(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→S1

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S1(S)
Service(enc(kS, 〈SKey, C〉, S, SKey) MemS(C, SKey, t)
Auth(enc(kT , 〈AKey,C〉), T, AKey) N(enc(SKey, t))→C4

W C4(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S1(S)
Service(enc(kS, 〈SKey, C〉, S, SKey) MemS(C, SKey, t)
Auth(enc(kT , 〈AKey,C〉), T, AKey) DoneMutC(S, SKey)
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5.6.1 Ticket Anomaly in Kerberos 5 Protocol

The informal description of the ticket anomaly in Kerberos 5 protocol is given in
Figure 5.18. Intruder intercepts the message from K and replaces the ticket with a
generic (dummy) message X and stores the actual ticket in his memory. C cannot
detect this as he aspects the opaque sub-message representing the ticket therefore just
forwards the received meaningless X. Intruder intercepts this message and replaces X
with the original ticket from K. He forwards the well-formed message to server T and
rest of the protocol proceeds as normal.

C −→ K : C, T, n1

K −→ I(C) : C, {AKey,C}kT , {AKey, n1, T}kC
I(K) −→ C : C,X, {AKey, n1, T}kC
C −→ I(T ) : X, {C}AKey, C, S, n2

I(C) −→ T : {AKey,C}kT , {C}AKey, C, S, n2

T −→ C : C, {SKey, C}kS , {SKey, n2, S}AKey
C −→ S : {SKey, C}kS , {C, tc,Sreq}SKey
S −→ C : {tc,Sreq}SKey

Figure 5.18: Ticket anomaly in Kerberos 5 protocol

As the result of the intruder’s actions the server T has granted the client C a ticket
for the server S even though C has never received nor sent a valid second Kerberos 5
message to T (C only thinks he has). Furthermore, since Kerberos 5 allows multiple
ticket use, subsequent attempts from C to get the ticket for the server S with a dummy
ticket granting ticket X will fail for reasons unknown to C.

In order to perform this attack intruder should be able to generate a generic message
of the type msgaux < msg representing a ”false ticket”. Later on he should store
this type of data in a separate memory predicate Mm. Therefore we use rules GENM,
LRNM and USEM from the intruder theory.

GENM : R(∗)→ ∃m.Mm(m)
LRNM : D(m)→Mm(m)
USEM : Mm(m)R(∗)→Mm(m) C(m)

As in the normal run with no intruder present, initial set of 7 facts is:

W = AnnN(C) KAS(K) TGS(T ) Server(S)
Guy(C, kC) TGSKey(T, kT ) ServerKey(S, kS) .

A trace representing the anomaly is shown below.
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WC0(C)K0(kC , kT )T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→C1

WC1(C, T, n1)K0(kC , kT )T0(kS)S0(S) NS(〈C, 〈T, n1〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→

Intruder forwards the message to the server K.

→FWD

WC1(C, T, n1)K0(kC , kT )T0(kS)S0(S) NR(〈C, 〈T, n1〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→constraintK

WC1(C, T, n1)K0(kC , kT )T0(kS)S0(S) V alidK(C, T, n1)
NS(〈C, 〈T, n1〉〉) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→K1

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)
NS(〈C, 〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→

Intruder intercepts the reply from the server K and digests parts of its contents.

→REC

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
D(〈C, 〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→DCMP

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
D(C)D(〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉)→DCMP

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
D(C)D(enc(kT , 〈AKey,C〉)) D(enc(kC , 〈AKey, 〈n1, T 〉〉)〉)→LRNG

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
Mg(C)D(enc(kT , 〈AKey,C〉))D(enc(kC , 〈AKey, 〈n1, T 〉〉)〉)→

Intruder bins the part of the message he does not need since he will replace it later
with a fresh generic message that he generates.

→DM2

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)
Ms(enc(kT , 〈AKey,C〉)) Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→
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→GENM

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey,C〉)) Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→USES

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey,C〉)) Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
C(enc(kC , 〈AKey, 〈n1, T 〉〉))
P (∗)P (∗)P (∗)P (∗)P (∗)→USEM

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey,C〉)) Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
C(enc(kC , 〈AKey, 〈n1, T 〉〉)) C(X)
P (∗)P (∗)P (∗)P (∗)→COMP

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey,C〉)) Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
C(〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉)
P (∗)R(∗)P (∗)P (∗)P (∗)→USEG

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey,C〉)) Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
C(〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉) C(C)
P (∗)P (∗)P (∗)P (∗)→COMP

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey,C〉)) Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
C(〈C, 〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)P (∗)P (∗)P (∗)P (∗)→SND

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey,C〉)) Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
NR(〈C, 〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)P (∗)P (∗)P (∗)→

Intruder uses memory maintenance rules to free the memory of unnecessary facts in-
cluding the B(∗) facts. In order to perform the attack ne needs to keep the ticket
granting ticket in his memory.

→DEL4

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Ms(enc(kT , 〈AKey,C〉))
NR(〈C, 〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→
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Client C does not notice the faulty message since he expects to receive an opaque
submessage representing a ticket granting ticket, therefore re replies as if the message
was a valid message from K.

→C2

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
NS(〈X, 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey,C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→

Intruder intercepts the message and needs to replace the generic message X with the
original ticket granting ticket.
We use the notation X = enc(kT , 〈AKey,C〉).

→REC

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
D(〈X, 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey,C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→DCMP

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
D(X) D(〈enc(AKey,C), 〈C, 〈S, n2〉〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey,C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→DELD

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
B ∗ (∗) D(〈enc(AKey,C), 〈C, 〈S, n2〉〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey,C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→DCMPB

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
D(enc(AKey,C)) D(〈C, 〈S, n2〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey,C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→DM2

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
Ms(enc(AKey,C)) Ms(〈C, 〈S, n2〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey,C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→

For the composition of the message intruder needs 2 additional R(∗) facts.
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→(USES2,COMP,USES,COMP )

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
Ms(enc(AKey,C)) Ms(〈C, 〈S, n2〉〉) Auth(X,T,AKey)
C(〈enc(kT , 〈AKey,C〉), 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→SND

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
Ms(enc(AKey,C)) Ms(〈C, 〈S, n2〉〉) Auth(X,T,AKey)
NR(〈enc(kT , 〈AKey,C〉), 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→DEL2

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
Auth(X,T,AKey)
NR(〈enc(kT , 〈AKey,C〉), 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→

In the rest of the protocol intruder only forwards the messages using FWD rule.

→constraintT

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)P (∗)
Auth(X,T,AKey) V alidT (C, S, n2)
NR(〈, enc(kT , 〈AKey,C〉), 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→T1

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)P (∗)P (∗)
Auth(X,T,AKey)
NS(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→

Intruder only forwards the remaining messages since it does not help him in any way
to keep any data from the message in the memory.
We use the notation Y = enc(kS, 〈SKey, C〉).

→FWD

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)P (∗)P (∗)
Auth(X,T,AKey)
NR(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→clock

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)P (∗)
Auth(X,T,AKey) ClockC(t)
NR(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→
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→C3

WC3(C, S, SKey, t, Y ) K1(kC , kT , AKey)T0(kS)S0(S)P (∗)
Auth(X,T,AKey) Service(Y, S, SKey)
NS(〈Y, enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→FWD

WC3(C, S, SKey, t, Y ) K1(kC , kT , AKey)T0(kS)S0(S)P (∗)
Auth(X,T,AKey) Service(Y, S, SKey)
NR(〈Y, enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→constraintS

WC3(C, S, SKey, t, Y ) K1(kC , kT , AKey)T0(kS)S0(S)
Auth(X,T,AKey) Service(Y, S, SKey) V alidS(C, t)
NR(〈Y, enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→S1

WC3(C, S, SKey, t, Y ) K1(kC , kT , AKey)T0(kS)S0(S)
Auth(X,T,AKey) Service(Y, S, SKey) MemS(C, SKey, t)
NS(enc(SKey, t))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→FWD

WC3(C, S, SKey, t, Y ) K1(kC , kT , AKey)T0(kS)S0(S)
Auth(X,T,AKey) Service(Y, S, SKey) MemS(C, SKey, t)
NR(enc(SKey, t))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→C4

WC4(C, S, SKey, t, Y ) K1(kC , kT , AKey)T0(kS)S0(S)
Auth(X,T,AKey) Service(Y, S, SKey) MemS(C, SKey, t)
DoneMutC(S, SKey)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)

With respect to memory, it does help the intruder to be ”clever”. The attack requires
a configuration of at least 22 facts (15 for the protocol and additional 7 facts for the
intruder) of the size 16.
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5.6.2 Replay Anomaly in Kerberos 5 Protocol

”A” level formalization of Kerberos 5 does not include some nonces and timestamps of
the protocol, so it precludes detection of replayed messages.

Request messages that client sends to servers can therefore be stored in intruder’s
memory when he intercepts them. Later on he can put them on the network as ad-
ditional requests. If the original requests were accepted by the servers, so may be
the replayed ones as well. In that case the server generates fresh credentials based on
replayed requests. Differently than in the case of ticket anomaly, fresh credentials are
granted.

C −→ K : C, T, n1

K −→ C : C, {AKey,C}kT , {AKey, n1, T}kC
C −→ G : {AKey,C}kT , {C}AKey, C, S, n2

G −→ C : C, {SKey, C}kS , {SKey, n2, S}AKey
C −→ I(S) : {SKey, C}kS , {C, tc,Sreq}SKey
I(C) −→ S : {SKey, C}kS , {C, tc,Sreq}SKey
S −→ C : {tc,Sreq}SKey

I(C) −→ S : {SKey, C}kS , {C, tc,Sreq}SKey
S −→ I(C) : {tc,Sreq}SKey

Figure 5.19: Replay anomaly of Kerberos 5 Protocol

We will model the replay of the third request message from the protocol as shown in
Figure 5.19.

Intruder basically observes the protocol run remembering the request message to
the Server. He starts by only forwarding the network predicates, i.e. transforms the
NS to NR predicate. The last request message is digested with the data from the
request message kept in intruder’s memory for later replay. If the original requests was
accepted byS, so may be the replayed one as well. In that case the server S generates
fresh credentials based on replayed requests. Differently from ticket anomaly, intruder
does not generate any fresh data.

As in the normal run with no intruder present, initial set of 7 facts is:

W = AnnN(C) KAS(K) TGS(T ) Server(S)
Guy(C, kC) TGSKey(T, kT ) ServerKey(S, kS) .
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The standard trace of the anomaly is given below:

WC0(C)K0(kC , kT )T0(kS)S0() P (∗)P (∗)P (∗)P (∗)P (∗)
R(∗)R(∗)R(∗)R(∗)→C1

W C1(C, T, n1) K0(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗) NS(〈C, 〈T, n1〉〉)
R(∗)R(∗)R(∗)R(∗)→

Intruder simply forwards the messages he’s not interested in.

→FWD

W C1(C, T, n1) K0(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗) NR(〈C, 〈T, n1〉〉)
R(∗)R(∗)R(∗)R(∗)→constraintK

W C1(C, T, n1) K0(K) T0(T ) S0(S) P (∗)P (∗)P (∗)
NR(〈C, 〈T, n1〉〉) V alidK(C, T, n1)
R(∗)R(∗)R(∗)R(∗)→K1

W C1(C, T, n1) K1(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗)
NS(〈C, 〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→FWD

W C1(C, T, n1) K1(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗)
NR(〈C, 〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→C2

W C2(C, T, S,AKey, n2) K1(K) T0(T ) S0(S) P (∗)P (∗)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
NR(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→constraintT

W C2(C, T, S,AKey, n2) K1(K) T0(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) V alidT (C, S, n2)
NR(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→T1

W C2(C, T, S,AKey, n2) K1(K) T1(T ) S0(S) P (∗)P (∗)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
NS(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→FWD

W C2(C, T, S,AKey, n2) K1(K) T1(T ) S0(S) P (∗)P (∗)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
NR(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→
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→clock

W C2(C, T, S,AKey, n2) K1(K) T1(T ) S0(S) ClockC(t) P (∗)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
N(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→C3

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey,C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
NS(〈enc(kS, 〈SKey, C〉), enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→

Intruder needs data contained in this message therefore he intercepts the message and
stores its data.

→REC

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey,C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
D(〈enc(kS, 〈SKey, C〉), enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→DCMP

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey,C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
D(enc(kS, 〈SKey, C〉)) D(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)P (∗)P (∗)→DM2

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey,C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
Ms(enc(kS, 〈SKey, C〉)) Ms(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)P (∗)P (∗)→

Intruder starts composing the message.

→USES2

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey,C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
Ms(enc(kS, 〈SKey, C〉)) C(enc(kS, 〈SKey, C〉))
Ms(enc(SKey, 〈C, t〉) C(enc(SKey, 〈C, t〉))
P (∗)P (∗)P (∗)→

Notice that there are no R(∗) facts in the configuration.
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→COMP

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey,C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
Ms(enc(kS, 〈SKey, C〉)) Ms(enc(SKey, 〈C, t〉))
C(enc(kS, 〈SKey, C〉)), enc(SKey, 〈C, t〉))
R(∗)P (∗)P (∗)P (∗)→SND

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey,C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
Ms(enc(kS, 〈SKey, C〉)) Ms(enc(SKey, 〈C, t〉))
NR(enc(kS, 〈SKey, C〉)), enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)P (∗)→

Intruder keeps the data necessary for the request replay in his memory.

→constraintS

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey,C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
V alidS(C, t) NR(〈enc(kS, 〈SKey, C〉), enc(SKey, 〈C, t〉)〉)
Ms(enc(kS, 〈SKey, C〉)) Ms(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)→S1

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S1()
Auth(enc(kT , 〈AKey,C〉), T, AKey) MemS(C, SKey, t)
Service(enc(kS, 〈SKey, C〉), S, SKey) NS(enc(SKey, t))
Ms(enc(kS, 〈SKey, C〉)) Ms(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)→

Again intruder only forwards the message.

→FWD

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S1()
Auth(enc(kT , 〈AKey,C〉), T, AKey) MemS(C, SKey, t)
Service(enc(kS, 〈SKey, C〉), S, SKey) NR(enc(SKey, t)
Ms(enc(kS, 〈SKey, C〉)) Ms(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)→C4

WC4(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S1()
Auth(enc(kT , 〈AKey,C〉), T, AKey) MemS(C, SKey, t)
Service(enc(kS, 〈SKey, C〉), S, SKey) DoneMutC(S, SKey)
Ms(enc(kS, 〈SKey, C〉)) Ms(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)→
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After this run has completed, intruder replays the request to the Server S.
Role regeneration theory rules ROLS and ERASES allow another session with the
Server.

→(ERASES,ROLS,USES2,COMP,SND)

WC4(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey,C〉), T, AKey) MemS(C, SKey, t)
Service(enc(kS, 〈SKey, C〉), S, SKey) DoneMutC(S, SKey)
Ms(enc(kS, 〈SKey, C〉)) Ms(enc(SKey, 〈C, t〉))
NR(〈enc(kS, 〈SKey, C〉), enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)→S1

WC4(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(kC , kT , AKey)T0(kS)S1()
Auth(enc(kT , 〈AKey,C〉), T, AKey) MemS(C, SKey, t)
Service(enc(kS, 〈SKey, C〉), S, SKey) DoneMutC(S, SKey)
Ms(enc(kS, 〈SKey, C〉)) Ms(enc(SKey, 〈C, t〉)) NS(enc(SKey, t))
R(∗)R(∗)

This attack requires a configuration of at least 20 facts (16 for the protocol and addi-
tional 4 facts for the intruder ) of the size 16.



Encoding Known anomalies with a Memory Bounded Intruder 121

5.7 Public Key Extension of Kerberos 5 - PKINIT

The Public Key extension of Kerberos 5 differs from the symmetric version of Kerberos 5
in the initial round between the client and the KAS. Public key encryption is used in-
stead of a shared key between the client and the KAS.

In the PKINIT the client C and the KAS possess independent public and secret
key pairs, (pkC , skC) and (pkK , skK), respectively. Certificate sets CertC and CertK
testify the binding of the principal and her public key. The rest of the protocol remains
unchanged, see Fig. 5.20, where for simplicity we use t instead of tC,Sreq timestamp in
the last two messages of the protocol. We keep a similar level of abstraction as in the
previous section on Kerberos 5.

A semi-founded protocol theory for the PKINIT protocol is given in Figure 5.21.

C −→ K : CertC , {tC , n2}skC , C, T, n1

K −→ C : {CertK , {k, n2}skK}pkC , C, {AKey,C}kT , {AKey, n1, tK , T}k
C −→ T : {AKey,C}kT , {C}AKey, C, S, n3

T −→ C : C, {SKey, C}kS , {SKey, n3, S}AKey
C −→ S : {SKey, C}kS , {C, tc,Sreq}SKey
S −→ C : {tc,Sreq}SKey

Figure 5.20: PKINIT Protocol.

Initial set of facts consists of facts representing participant’s names and servers
participating in the protocol, and facts representing secret keys and public/private key
distribution. We assume the secret key of the Ticket Granting Server T has been stored
in the key database accessible by K and the secret key of the Server S has been stored
in the key database accessible by the Ticket Granting Server T .
Initial set of facts has 10 facts:

W = Client(C, pkC) KP (pkC , skC) AnnK(pkC)
KAS(K) KP (pkK , skK) AnnK(pkK)
TGS(T ) TGSKey(T, kT )
Server(S) ServerKey(S, kS) .

(5.1)

There should be additional 4 facts for role state predicates and another fact for the net-
work predicate. Additional facts representing memory, clock and validity constraints,
i.e.Auth, Service, DoneMutC , MemS, ClockC , ClockK , V alidK , V alidT , V alidS, re-
quire 3 facts (not all are persistent so we don’t need all 8 facts). We show that a
PKINIT protocol run between the client C and Kerberos servers K,T and S with no
intruder involved requires a configuration of at least 18 facts of the size of at least 28.
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Role Regeneration Theory :

ROLC : Client(C, pkC) P (∗)→ Client(C, pkC) C0(C)
ROLK : KAS(K) P (∗)→ KAS(K) K0(K)
ROLT : TGS(T ) P (∗)→ TGS(T ) T0(T )
ROLS : Server(S) P (∗)→ Server(S) S0(S)
ERASEC : C4(C, S, SKey, t, Y )→ P (∗)
ERASEK : K1(K)→ P (∗)
ERASET : T1(T )→ P (∗)
ERASES : S1(S)→ P (∗)

Protocol Theories C, K, T and S :

C1 : C0(C) TGS(T ) ClockC(tC)→ ∃n1.n2.C1(C, T, n1, n2, tC) TGS(T )
NS(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉)

C2 : C1(C, T, n1, n2, tC) Server(S) P (∗)
NS(〈enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉),

〈C, 〈X, enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)
→ ∃n3.C2(C, T, S,AKey, n3) Server(S) Auth(X,T,AKey)

NS(〈X, 〈enc(AKey,C), 〈C, 〈S, n3〉〉〉〉)
C3 : C2(C, T, S,AKey, n3) NR(〈C, 〈Y, enc(AKey, 〈SKey, 〈n3, S〉〉)〉〉) ClockC(t)
→ C3(C, S, SKey, t, Y ) NS(〈Y, enc(SKey, 〈C, t〉)〉) Service(Y, S, SKey)

C4 : C3(C, S, SKey, t, Y ) NR(enc(SKey, t))
→ C4(C, S, SKey, t, Y ) DoneMutC(S, SKey)

K1 : K0(K) Client(C, pkC) TGSKey(T, kT ) V alidK(C, T, n1) ClockK(tK)
NR(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉)

→ ∃k.AKey.K1(K) Client(C, pkC) TGSKey(T, kT ) P (∗)P (∗)
NS(〈enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉),
〈C, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)

T1 : T0(T ) TGSKey(T, kT ) ServerKey(S, kS) V alidT (C, S, n2)
NR(〈enc(kT , 〈AKey,C〉), 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉)

→ ∃SKey.T1(T ) TGSKey(T, kT ) SerevrKey(S, kS) P (∗)
NS(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)

S1 : S0(S) ServerKey(S, kS) V alidS(C, t)
NR(〈enc(kS, 〈SKey, C〉), enc(SKey, 〈C, t〉)〉)

→ S1(S) ServerKey(S, kS) NS(enc(SKey, t)) MemS(C, SKey, t)

Figure 5.21: Semi-founded protocol theory for the PKINIT
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The standard trace representing the protocol run with no intruder present is shown
below:

W C0(C) K0(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗)→clockC

W C0(C) K0(K) T0(T ) S0(S) ClockC(tC) P (∗)P (∗)P (∗)→C1

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T )
N(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉) P (∗)P (∗)P (∗)→constraintK

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) V alidK(C, T, n1)
N(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉) P (∗)P (∗)→clockK

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) V alidK(C, T, n1) ClockK(tK)
N(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉) P (∗)→K1

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) P (∗)P (∗)P (∗)
N(〈enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉),

〈C, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)→C2

W C2(C, T, S,AKey, n2) K1(K) T0(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
N(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→constraintT

W C2(C, T, S,AKey, n2) K1(K) T0(T ) S0(S) P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) V alidT (C, S, n2)
N(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→T1

W C2(C, T, S,AKey, n2) K1(K) T1(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
N(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→clock

W C2(C, T, S,AKey, n2) K1(K) T1(T ) S0(S) ClockC(t)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
N(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→C3

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S0(S) P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
Service(enc(kS, 〈SKey, C〉, S, SKey)
N(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→constraintS

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S0(S)
Auth(enc(kT , 〈AKey,C〉), T, AKey)
Service(enc(kS, 〈SKey, C〉, S, SKey) V alidS(C, t)
N(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→S1

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S1(S)
Service(enc(kS, 〈SKey, C〉, S, SKey) MemS(C, SKey, t)
Auth(enc(kT , 〈AKey,C〉), T, AKey) N(enc(SKey, t))→C4

W C4(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S1(S)
Service(enc(kS, 〈SKey, C〉, S, SKey) MemS(C, SKey, t)
Auth(enc(kT , 〈AKey,C〉), T, AKey) DoneMutC(S, SKey)
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Same as with the symmetric Kerberos 5, rules that are marked with →clockC ,→clockK ,
→constraintK , →constraintT and →constraintS represent constraints related to timestamps
and to validitiy of relevant Kerberos messages. They are determined by an external
process and we represent them with separate rules:

constraintK : P (∗)→ V alidK(C, T, n1)
constraintT : P (∗)→ V alidT (C, S, n2)
constraintS : P (∗)→ V alidS(C, t)

clockC : P (∗)→ ClockC(t)
clockK : P (∗)→ ClockK(t)

5.7.1 Man-in-the-middle Attack on PKINIT

A Man-in-the-middle attack on PKINIT is informally shown in Figure 5.22. For this
attack to succeed intruder has to be a legitimate Kerberos client so that the KAS server
could grant him credentials. We model that by introducing a compromised client B
whose keys and certificates are known to intruder.

C −→ I(K) : CertC , {tC , n2}skC , C, T, n1

I(C) −→ K : CertB, {tC , n2}skB , B, T, n1

K −→ I(C) : {CertK , {k, n2}skK}pkB , B, {AKey,C}kT , {AKey, n1, tK , T}k
I(K) −→ C : {CertK , {k, n2}skK}pkC , C, {AKey,C}kT , {AKey, n1, tK , T}k
C −→ G : {AKey,C}kT , {C}AKey, C, S, n3

G −→ C : C, {SKey, C}kS , {SKey, n3, S}AKey
C −→ S : {SKey, C}kS , {C, tc,Sreq}SKey
S −→ C : {tc,Sreq}SKey

Figure 5.22: Man-in-the-middle attack on PKINIT Protocol.

This flaw allows an attacker to impersonate Kerberos administrative principals and
end-servers to a client, hence breaching the authentication guarantees of Kerberos
PKINIT. It also gives the attacker the keys that the server K would normally generate
to encrypt the service requests of this client, hence defeating confidentiality as well.
The consequences of this attack are quite serious. For example, the attacker could
monitor communication between an honest client and a Kerberized network file server.
This would allow the attacker to read the files that the client believes are being securely
transferred to the file server.



Encoding Known anomalies with a Memory Bounded Intruder 125

Initial set of facts has 17 facts:

W = Client(C, pkC) KP (pkC , skC) AnnK(pkC)
Client(B, pkB) KP (pkB, skB) AnnK(pkB)
Mek(pkB) Mdk(skB) Mg(B) Mp(CertB)
KAS(K) KP (pkK , skK) AnnK(pkK)
TGS(T ) TGSKey(T, kT ) Server(S) ServerKey(S, kS) .

The standard trace representing this anomaly is given below:

W C0(C) K0(K) T0(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
P (∗)P (∗)P (∗)P (∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→(clockC ,C1)

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)R(∗)
R(∗)R(∗)R(∗)R(∗)R(∗) NS(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉)→

Intruder has to intercept and digest the message in order to modify it.

→REC

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T )
D(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→DCMP

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
D(CertC) D(〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉) R(∗)R(∗)R(∗)R(∗)→DELD

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
B(∗) D(〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉) R(∗)R(∗)R(∗)R(∗)→DCMPB

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
D(enc(skC , 〈tC , n2〉)) D(〈C, 〈T, n1〉〉) R(∗)R(∗)R(∗)R(∗)→DSIG

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
D(〈tC , n2〉) Mc(enc(skC , 〈tC , n2〉)) D(〈C, 〈T, n1〉〉) R(∗)R(∗)R(∗)→DELMB

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
D(〈tC , n2〉) B(∗) D(〈C, 〈T, n1〉〉) R(∗)R(∗)R(∗)→DM

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
Ms(〈tC , n2〉) B(∗) D(〈C, 〈T, n1〉〉) R(∗)R(∗)R(∗)→DCMPB

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T )
Ms(〈tC , n2〉) D(C) D(〈T, n1〉) R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→DM

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T )
Ms(〈tC , n2〉) D(C) Ms(〈T, n1〉) R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→(LRNG)

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T )
Ms(〈tC , n2〉) Mg(C) Ms(〈T, n1〉) R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→

Intruder starts composing the modified message replacing CertC , C and C’s signature
with CertB, B and B’s signature. Since B is compromised intruder knows all the
required data.
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→(USES,USEG,COMP,USES,SIG)

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
Ms(〈tC , n2〉) Mg(C) Ms(〈T, n1〉)
C(〈I, 〈T, n1〉〉) C(enc(skB, 〈tC , n2〉))→

At this point intruder has no R(∗) facts left.

→(COMP,USEP,COMP )

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T )
Mt(tC) Mn(n2) Mg(C) Mg(T ) Mn(n1) P (∗)P (∗)P (∗)P (∗)R(∗)
C(〈CertB, 〈enc(skB, 〈tC , n2〉), 〈B, 〈T, n1〉〉〉〉)→SND

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)R(∗)R(∗)
Mt(tC) Mn(n2) Mg(C) Mg(T ) Mn(n1)
NR(〈CertB, 〈enc(skB, 〈tC , n2〉), 〈B, 〈T, n1〉〉〉〉)→DEL4

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T )
Mg(C) P (∗)P (∗)P (∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈CertB, 〈enc(skB, 〈tC , n2〉), 〈B, 〈T, n1〉〉〉〉)→

Intruder sends the modified message to K and deletes some of the data from the
memory, keeping the name of the client in the memory for later use.

→constraintK

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) Mg(C) V alidK(C, T, n1)
NR(〈CertB, 〈enc(skB, 〈tC , n2〉), 〈B, 〈T, n1〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→clockK

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) Mg(C) V alidK(C, T, n1) ClockK(tK)
NR(〈CertB, 〈enc(skB, 〈tC , n2〉), 〈B, 〈T, n1〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→K1

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)
NS(〈enc(pkB, 〈CertK , enc(skK , 〈k, n2〉)〉),

〈B, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)→

Intruder intercepts the message intended for C and decomposes it cleverly, i.e.uses the
already existing submessages and only decomposes what’s necessary for learning the
information contained.
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→REC

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C)
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
D(〈enc(pkB, 〈CertK , enc(skK , 〈k, n2〉)〉),
〈B, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)→DCMP

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C) P (∗)P (∗)P (∗)P (∗)
D(enc(pkB, 〈CertK , enc(skK , 〈k, n2〉)〉)) R(∗)R(∗)R(∗)R(∗)
D(〈B, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→DEC

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C)
R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
Mc(enc(pkB, 〈CertK , enc(skK , 〈k, n2〉)〉)) D(〈CertK , enc(skK , 〈k, n2〉)〉)
D(〈B, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→DELMC

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C)
R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)B(∗) D(〈CertK , enc(skK , 〈k, n2〉)〉)
D(〈B, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→DM

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C) P (∗)P (∗)P (∗)P (∗)
B(∗) Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)R(∗)
D(〈B, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→DCMPB

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)R(∗)
D(B)D(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)→DELD

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)R(∗)
B(∗)D(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)→DM

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)R(∗)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)→

Intruder starts composing the message form the parts of the intercepted message and
the data stored previously.

→USES

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)→
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→USEG

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C) R(∗)P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(C) C(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)→COMP

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(〈C, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→USES

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C) R(∗)P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) C(〈CertK , enc(skK , 〈k, n2〉)〉)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(〈C, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→SIG

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C) R(∗)P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) C(enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉))
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(〈C, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→COMP

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(〈enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉),
〈C, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)→SND,DEL3

W C1(C, T, n1, n2, tC) K1(K) T0(T ) S0(S) Mg(C)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)
NR(〈enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉),
〈C, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)→

In the remaining part of protocol intruder only forwards the messages, i.e. plays the
role of the network.

→C2

W C2(C, T, S,AKey, n2) K1(K) T0(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→constraintT

W C2(C, T, S,AKey, n2) K1(K) T0(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) V alidT (C, S, n2) P (∗)
NS(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→FWD

W C2(C, T, S,AKey, n2) K1(K) T0(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) V alidT (C, S, n2) P (∗)
NR(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→
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→T1

W C2(C, T, S,AKey, n2) K1(K) T1(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) P (∗)P (∗)
NS(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→clockC

W C2(C, T, S,AKey, n2) K1(K) T1(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) ClockC(t) P (∗)
NS(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→FWD

W C2(C, T, S,AKey, n2) K1(K) T1(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) ClockC(t) P (∗)
NR(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→C3

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S0(S) R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) R(∗)R(∗)R(∗)P (∗)
Service(enc(kS, 〈SKey, C〉, S, SKey)
NS(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→constraintS

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S0(S)
Auth(enc(kT , 〈AKey,C〉), T, AKey) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Service(enc(kS, 〈SKey, C〉, S, SKey) V alidS(C, t)
NS(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→FWD

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S0(S)
Auth(enc(kT , 〈AKey,C〉), T, AKey) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Service(enc(kS, 〈SKey, C〉, S, SKey) V alidS(C, t)
NR(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→S1

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S1(S) R(∗)R(∗)R(∗)
Service(enc(kS, 〈SKey, C〉, S, SKey) MemS(C, SKey, t) R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) NS(enc(SKey, t))→FWD

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S1(S) R(∗)R(∗)R(∗)
Service(enc(kS, 〈SKey, C〉, S, SKey) MemS(C, SKey, t) R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) NR(enc(SKey, t))→C4

W C4(C, S, SKey, t, enc(kS, 〈SKey, C〉)) K1(K) T1(T ) S1(S) R(∗)R(∗)R(∗)
Service(enc(kS, 〈SKey, C〉, S, SKey) MemS(C, SKey, t) R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey,C〉), T, AKey) DoneMutC(S, SKey)

There should be 4 facts for role state predicates and another fact for the network
predicate. Memory, clock and validity constraints, i.e.Auth, Service, DoneMutC ,
MemS, ClockC , ClockK , V alidK , V alidT , V alidS, require 3 additional facts.

The attack requires a configuration of at least 31 facts (21 for the protocol and addi-
tional 10 for the intruder) of the size 28.



Chapter 6

Conclusions, Related and Future
Work

6.1 Related Work

As previously discussed, we build on the framework described in [26, 27]. In particular,
we introduce the notion of progressing collaborative systems and investigate the use
of actions that can create nonces. We tighten the lower bounds from [26, 27] by
using the progressing assumption, and we also provide new results for when nonces
can be created. In [5, 6, 28], a temporal logic formalism for modeling collaborative
system is introduced. In this framework, one relates the scope of privacy to the specific
roles of agents in the system. For instance, in our medical scenario, the patient’s test
results, which normally should not be accessible to any agent, are accessible to the
agent that has the role of the patient’s doctor. We believe that our system can be
adapted or extended to accommodate such roles depending on the scenario considered.
In particular, the health insurance scenario discussed in [28] has many connections with
our medical scenario and it seems possible to implement it in our framework.

In [22] Harrison et al. present a formal approach to access control. In their proofs,
they faithfully encode a Turing machine in their system. However, differently from
our encoding, they use a non-commutative matrix to encode the sequential, non-
commutative tape of a Turing machine. We, on the other hand, encode Turing machine
tapes by using commutative multisets. Specifically, they show that if no restrictions are
imposed to the systems, the reachability problem is undecidable. However, if actions
are not allowed to create nonces, then the same problem is PSPACE-complete. Fur-
thermore, if actions can delete or insert exactly one fact and in the process one can also
check for the presence of other facts and even create nonces, then it is NP-complete,
but in their proof they implicitly impose a bound on the number of nonces that can be
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created. Although related to our case with LSTSes containing monadic actions, their
result is different from ours since they do not add the notions of progressing systems
nor of balanced actions to their system.

Our paper is closely related to frameworks based on multiset rewriting systems used
to specify and verify security properties of protocols [1, 2, 12, 15, 18, 36]. While here we
are concerned with systems where agents are in a closed room and collaborate, there,
the concern was with systems in an open room where an intruder tries to attack the
participants of the system by manipulating the transmitted messages. This difference
is reflected in the assumptions used by the frameworks. In particular, the security
research considers a powerful intruder that has an unbounded memory and that can,
for example, copy messages. On the other hand, we assume here that each agent has a
bounded memory, technically imposed by the use of balanced actions. Therefore, the
lower bounds obtained here are tighter than the results obtained in those papers.

Much work on reachability related problems has been done within the Petri nets
(PNs) community, see e.g., [19]. Specifically, we are interested in the coverability
problem which is closely related to the partial goal reachability problem in LSTSes
[26]. To our knowledge, no work that captures exactly the conditions in this paper
has yet been proposed. For instance, [19, 29] show that the coverability problem is
PSPACE-complete for 1-conservative PNs. While this type of PNs is related to LSTSes
with balanced actions, it does not seem possible to provide direct, faithful reductions
between LSTSes and PNs.

6.2 Conclusions and Future Work

In this paper we introduced an important class of collaborating systems called progress-
ing collaborative systems. These systems seem to capture well many administrative
processes, namely, those in which the same action does not need to be performed more
than once. We obtain exact lower bounds for the weak plan compliance problem when
using such systems under different conditions, tightening results from the literature.
However, we have already expressed our doubts on our current approach to progressing.
Although we were able to get an improvement in the complexity of some problems, we
found progressing with nonces quite complicated and unclear. We are currently working
on an alternative notion of progressing which would provide more efficient systems.

We extend existing models and also investigate systems with actions that can create
nonces. Introducing nonces increases the expressivity of our systems. Many real life
processes involve fresh values, such as processes that involve unique identification,
e.g. bank transactions or security protocols. We use focused proofs in linear logic to
formalize the operational semantics of such actions. We provide various complexity
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results for the three types of compliance problems for these systems. In particular,
using balanced actions and bounding the size of facts, we concentrate on systems with
a fixed memory.

As an application of our results, we turn to security protocol analysis and the
complexity of the secrecy problem. We also demonstrate that many protocol anomalies,
such as the Lowe anomaly in the Needham-Schroeder public key exchange protocol,
can also occur when the intruder is one of the insiders with bounded memory.

There are many interesting directions to follow from this work, some of which we
are already pursuing. For instance, we are further extending the expressivity of our
systems by adding the explicit time. One the other hand, we are comparing the power
of memory bounded intruder with the standard Dolev-Yao intruder with unbounded
memory, by providing an upper bound on the memory needed by a memory bounded
intruder to find an attack on a given protocol. Also, we believe that, despite of our
idealized model, the numbers appearing in Table 5.1 provide some measure on the
security of protocols. In general, we seek to provide further quantitative information on
the security of protocols. Some of these parameters appear in existing model checkers,
such as Murφ. We are investigating precise connections to such tools. In particular, we
would like to understand better the impact of our work to existing protocol analysis
tools, in particular, our PSPACE upper-bound result. On the implementation side, we
hope to provide the means to model-check systems with actions that can create nonces.
It is also interesting to leverage the work in [5, 6, 28] and specify policies in temporal
logic, instead of intuitionistic logic. We expect to do so in the near future.
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Summary

In this thesis we consider existing models for collaborative systems with confidentiality
policies. We extend these systems with nonce creation. We also consider a restriction
that each instance of an action is used at most once in a process. Administrative
processes usually involve such progressing behavior, that is, whenever a transaction
is performed, it does not need to be repeated. We investigate the complexity of the
decision problem whether there exists a sequence of transitions from an initial state to
a final state that avoids any critical states, e.g., states which conflict with the given
confidentiality policies. Collaborative systems allow modeling of the protocols and the
relevant security problems. We model systems with limited resources to allow a new
view on the standard Dolev-Yao intruder, namely, an intruder with bounded memory.
The power of such an intruder is analyzed.
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Sažetak

Ovaj se rad zasniva na modelima za sustave suradnje (collaborative systems) sa strate-
gijama povjerenja (confidentiality policies). Ti se modeli proširuju uvodjenjem novih ili
svježih vrijednosti (nonce). Proučavaju se svojstva sustava uz ograničenje da se svaka
instanca pravila može koristiti najvǐse jedanput u procesu. Administrativni procesi
obično imaju takvo svojstvo, tj. provedena akcija ne treba se ponoviti. Istažiti ćemo
složenost problema postojanja plana, tj. niza akcija od nekog početnog do završnog
stanja koji ne vodi do kritičnih stanja, odnosno stanja koja su u suprotnosti sa strategi-
jom povjerenja. Sustavi za suradnju pogodni su za modeliranje protokola i njihovih sig-
urnosnih svojstava. Balansirani sustavi modeliraju ograničene resurse, pa omogućavaju
novi pogled na napadača na protokole. Za razliku od standardnog Dolev-Yao intrudera
modelira se napadač s ograničenom memorijom i proučava njegova snaga.
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