
Proceedings of ELS 2011

4th European Lisp Symposium
Special Focus on Parallelism and Efficiency

March 31 – April 1 2011
TUHH, Hamburg, Germany

Preface

Message from the Programme Chair

Welcome to ELS 2011, the 4th European Lisp Symposium.

In the recent years, all major academic events have suffered from a decreasing level of atten-
dance and contribution, Lisp being no exception to the rule. Organizing ELS 2011 in this context
was hence a challenge of its own, and I’m particularly happy that we have succeeded again.

For the first time this year, we had a “special focus” on parallelism and efficiency, all very im-
portant matters for our community with the advent of multi-core programming. It appears that
this calling has been largely heard, as half of the submissions were along these lines. Another
notable aspect of this year’s occurrence is the fact that four dialects of Lisp are represented:
Common Lisp, Scheme, Racket and Clojure. This indicates that ELS is successful in attempting
to gather all crowds around Lisp “the idea” rather than around Lisp “one particular language”.
The European Lisp Symposium is also more European than ever, and in fact, more international
than ever, with people coming not only from western Europe and the U.S.A., but also from such
countries as Croatia and Bulgaria.

While attending the symposium is just seeing the tip of the iceberg, a lot have happened under-
water. First of all, ELS 2011 would not have been possible without the submissions we got from
the authors and the careful reviews provided by the programme committee members; I wish to
thank them for that. I am also indebted to the keynote speakers who have agreed to come and
spread the good word. I wish to express my utmost gratitude to our sponsors who contributed
to making the event quite affordable this year again. Ralf Möller was our local chair, the “Grey
Eminence” of the symposium, and we owe him a lot. Finally, my thanks go to Edgar Gonçalves
for taking care of the website with such reactivity and attentiveness.

I wish you all a great symposium!

Message from the Local Chair

Welcome to Hamburg University of Technology (TUHH). We hope you will enjoy your stay
at our university for the 2011 European Lisp Symposium. Not only interesting presentations
will be part of the programme, but also social events such as the the social dinner at the Feuer-
schiff (http://www.das-feuerschiff.de) and the Welcome Reception at Freiheit (http:
//www.freiheit.com). We would like to thank all sponsors for making the event possible.
For those of you staying over the weekend, a tour to Miniatur-Wunderland (http://www.
miniatur-wunderland.de) will be offered.

Yours sincerely,

Ralf Möller

ELS 2011 iii

TUHH (http://www.tuhh.de) is a competitive entrepreneurial university focussing on high-
level performance and high quality standards. TUHH is dedicated to the principles of Hum-
boldt (unity of research and education). TUHH has a strong international orientation and also
focusses on its local environment. It contributes to the development of the technological and
scientific competence of society, aiming at excellency at the national and international level in
its strategic research fields, and educating young scientists and engineers within demanding
programmes using advanced teaching methods.

Let’s not forget Hamburg, for why are we all here? People say Hamburg is Germany’s most at-
tractive city combining urbane sophistication, maritime flair, the open-mindedness of a metropo-
lis, and high recreational value. The second-largest city in Germany, it has traditionally been
seen as a gateway to the world. Its port is not only the largest seaport in Germany and the
second-largest in Europe, but a residential neighborhood with leisure, recreational and educa-
tional facilities. Hamburg is a very special place.

Organization

Programme Chair

• Didier Verna, EPITA Research and Development Laboratory, France

Local Chair

• Ralf Möller - Hamburg University of Technology, Germany

Programme Committee

• António Leitão, Instituto Superior Técnico/INESC-ID, Portugal

• Christophe Rhodes, Goldsmiths College, University of London, UK

• David Edgar Liebke, Relevance Inc., USA

• Didier Verna, EPITA Research and Development Laboratory, France

• Henry Lieberman, MIT Media Laboratory, USA

• Jay McCarthy, Brigham Young University, USA

• José Luis Ruiz Reina, Universidad de Sevilla, Spain

• Marco Antoniotti, Universita Milano Bicocca, Italy

• Michael Sperber, DeinProgramm, Germany

• Pascal Costanza, Vrije Universiteit of Brussel, Belgium

• Scott McKay, ITA Software, USA

ELS 2011 v

Sponsors

EPITA
14-16 rue Voltaire
FR-94276 Le Kremlin-Bicêtre CEDEX
France
www.epita.fr

LispWorks Ltd.
St John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England
www.lispworks.com

Franz Inc.
2201 Broadway, Suite 715
Oakland, CA 94612
www.franz.com

NovaSparks
86 Sherman Street
Cambridge, MA 02140
USA
www.hpcplatform.com

Freiheit Technologies gmbh
Straßenbahnring 22
20251 Hamburg
Germany
www.freiheit.com

TUHH
Schwarzenbergstraße 95
D-21073 Hamburg
Germany
http://www.tu-harburg.de

vi ELS 2011

Contents

Preface iii
Message from the Programme Chair . iii
Message from the Local Chair . iii

Organization v
Programme Chair . v
Local Chair . v
Programme Committee . v
Sponsors . vi

Invited Talks 1
Compiling for the Common Case – Craig Zilles . 1
Reconfigurable Computing on Steroids – Marc Battyani 1
Scala: an Object-Oriented Surprise – Apostolos Syropoulos 1

Session I: Parallelism 3
Supercomputing in Lisp – Valentin Pavlov . 4
A Futures Library and Parallelism Abstractions for a Functional Subset of Lisp – David

L. Rager, Warren A. Hunt and Matt Kaufmann . 13

Session II: Performance & Distribution 17
Implementing Huge Term Automata – Irène Durand . 18
Jobim: an Actors Library for the Clojure Programming Language – Antonio Garrote and

María N. Moreno García . 28

Session III: Common Lisp 33
SICL: Building Blocks for Implementers of Common Lisp – Robert Strandh and Matthieu

Villeneuve . 34
Using Common Lisp in University Course Administration – Nicolas Neuß 39

Session IV: Scheme & Racket 43
Bites of Lists: Mapping and Filtering Sublists – Kurt Nørmark 44
The Scheme Natural Language Toolkit (S-NLTK): NLP Library for R6RS and Racket –

Damir Cavar, Tanja Gulan, Damir Kero, Franjo Pehar and Pavle Valerjev 58

ELS 2011 vii

The Scheme Natural Language Toolkit (SNLTK)

NLP libraries for R6RS and Racket

D. Ćavar, T. Gulan,
D. Kero, F. Pehar,

P. Valerjev
University of Zadar

ABSTRACT
The Scheme Natural Language Toolkit (SNLTK) is a collec-
tion of procedures, example scripts and programs for natu-
ral language processing (NLP). The SNLTK library is fully
documented and includes implementations of common data-
structures and algorithms for text processing, text mining,
and linguistic, as well as statistic analysis of linguistic data.
Additionally, it also provides basic language data, word lists
and corpus samples from various languages.

The SNLTK target group is Scheme and Lisp enthusiasts,
computational linguists, linguists and language technology
software developers. It is aiming at researchers and teachers,
as well as students, who are interested in language related
cognitive science, psychology, and linguistics.

Categories and Subject Descriptors
I.2.7 [Computing Methodologies]: Natural Language Pro-
cessing; D.2.8 [Software Engineering]: Design Tools and
Techniques—Software libraries

General Terms
Theory

Keywords
Scheme, Racket, NLP, SNLTK

1. INTRODUCTION
The SNLTK project started as a joint activity of faculty,
assistants, and students from various departments at the
University of Zadar, i.e. the Schemers in Zadar:

ling.unizd.hr/~schemers

The Schemers in Zadar is an open group of Scheme and Lisp
enthusiasts. The goals of the group include, among others,
the development of practical tools for computational linguis-
tics, language related informatics and cognitive science in

Scheme and Lisp. The resulting material should also serve
as educational material for courses in the domain of Natu-
ral Language Processing, statistical language analysis and
machine learning models.

The SNLTK is an outcome of joint NLP coding activities,
and an attempt to aggregate the developed code and ex-
amples in an openly available general and specific text and
language processing library.

www.snltk.org

The SNLTK is a collection of Scheme modules for various
tasks in natural language processing (NLP), text mining,
language related machine learning and statistical analysis of
linguistic data.

The core libraries are written in R6RS Scheme, as well as in
Racket (racket-lang.org). The code is tested for compatibil-
ity with common interpreters and compilers, e.g. Larceny.

The libraries are kept independent of external extensions
and modules as much as possible, using the SRFI libraries
where necessary. Additional programs, libraries and scripts
are made available based on Racket. Racket is the recom-
mended working and learning environment.

2. EXISTING TOOLKITS
Numerous other natural language processing tools, libraries
and resources are implemented and available in various pro-
gramming languages, e.g. Java, Perl, Python. Given the vast
amount of NLP components and toolkits, we cannot discuss
all the existing tools and libraries here. We will focus on
the three most prominent packages and toolkits available
for Java, Perl, and Python that are related to SNLTK and
some of its goals.

In general, we should differentiate between speech and lan-
guage processing. These two domains differ with respect to
their nature and formal properties. While speech is con-
cerned with the spoken signal, a non-discrete continuous
event or phenomenon along the time axis, with specific is-
sues related to its digitization, feature recognition and ex-
traction, and consequently specific technologies, approaches,
and algorithms, language refers to the indirectly observable
properties of natural language that are related to combina-
tory and order relations and restrictions of sound groups,
syllables, morphemes, words, and sentences. It is the lan-

58 ELS 2011

guage domain that the SNLTK is concerned with, and tex-
tual representations of natural language, rather than speech
and signal processing.

Among the most popular of NLP toolkits is the Python Nat-
ural Language Toolkit (NLTK) [1]. The Python NLTK is a
large collection of many common and popular algorithms
for various text and natural language processing tasks. It
contains algorithms for statistical NLP, as well as for rule-
based analysis using common grammar types and symbolic
approaches. Among the available libraries and tools it is
the one widely used in educational computational linguistics
programs worldwide. It is well documented, and significant
amounts of teaching material and examples for it are freely
available online. It contains implementations of the most
important algorithms used in computational linguistics, as
well as samples of common and valuable language data and
corpora.

For Perl, a rich collection of tools and algorithms can be
found in the CPAN archive (see www.cpan.org). Numer-
ous sub-modules are available under Lingua::* module, in-
cluding parsers for Link Grammars [9], WordNet ([14], [6])
access, and many other useful text mining and language pro-
cessing tasks. Numerous valuable introductions to Perl for
text processing and computational linguistic tasks are freely
available online, or published as books, see e.g. [10].

Various tools and algorithms implemented in Java can be
found online. Among the most prominent might be the
OpenNLP (http://incubator.apache.org/opennlp/) collection
of NLP tools, and the Stanford NLP software
(http://nlp.stanford.edu/software/).

The coverage of the Python NLTK is most impressive, as
well as the quality of the implementation. The mentioned
Perl modules do as well offer impressive functionalities for
various NLP oriented tasks and problems. Nevertheless,
these implementations lack overall transparency at the im-
plementation level, and provide less documentation and in-
structions related to the efficient and ideal implementation
of particular algorithms and tools in the particular languages.
It appears that they seem to have been designed with a clear
usage orientation, rather than focusing on the educational
goals of a deeper understanding of the particular algorithms
and their implementation in the respective language or pro-
gramming language paradigm.

Besides all the different implementations of computational
linguistic algorithms for text processing, language and speech
analysis, there are also numerous frameworks for the inte-
gration of specific language processing components for text
mining. Among the most popular environments are Gate
(cf. [21], [11]) and UIMA . These environments do not fo-
cus on particular language processing tasks, but provide an
architecture for handling of sub-components in a language
processing chain.

3. SNLTK GOALS
As mentioned in the previous section, for various compu-
tational linguistic tasks and problems, related to language,
or even speech processing, many tools, libraries and com-
ponents can be found online. The SNLTK is not intended

to compete with these tools for applied computational lin-
guistics tasks. It does not even intend to provide better,
faster, or new solutions for common problems, or new types
of implementation strategies for known or new algorithms.
Its main goal is in fact an educational, experimental, and
research oriented one. In addition, it provides alternative
functional implementations of common, and potentially also
new NLP algorithms.

One the one hand, many algorithms that we implemented for
research and experimental purposes in the past, have been
generalized and added to the library, some have been sim-
plified in order to be easier understandable and analyzable.
Many more will be prepared and added in the near future.
Thus, an initial set of algorithms and tools in SNLTK is
based on implementations from experiments and research
projects that had a potential of being usable elsewhere.

On the other hand, we have chosen Scheme as our devel-
opment and educational language (in addition to, and also
replacing Python) for various reasons. Scheme is a very sim-
ple, but powerful language. It is easy and fast to learn, and
simple to use. Further, various tools, in particular the intu-
itive IDE DrRacket (former DrScheme) for learning Scheme
is available as a cross-platform environment, free of charge,
and without runtime restrictions. It contains various learn-
ing packages, and freely available books and tutorials are
distributed with it, and also available elsewhere online. Dr-
Racket appeared to be the ideal environment for educational
purposes. It is used in many programs in computer sci-
ence, and large amounts of teaching material and examples
are available online. However, it has not been widely used
for computation linguistic courses, which made it necessary
to collect and also re-implement algorithms for educational
purposes.

In addition to being a very good educational and research
language, with very good development tools like DrRacket,
there are many useful tools for Scheme that allow it to be
used for professional software development as well. In par-
ticular, compilers and interpreters exist that generate bi-
naries, or code translation into other languages (e.g. C),
or very good connectivity between languages like Java and
C]. Among the most interesting implementations of such in-
terpreters and compilers we should mention Gambit-C (e.g.
[5]), Larceny (e.g. [2]), Bigloo ([20], 1995; [19]), and Chicken
Scheme (see www.call-cc.org). The possibility to generate
standalone binaries, or translate code automatically into
other programming languages is rather limited or non-existent
in some of the other languages (e.g. Python and Perl) that
natural language toolkits exist for.

Various books and educational material for computational
linguistics based on Common Lisp are already available.
One of the seminal publications on Lisp and Computational
Linguistics is [8]. In addition, [18] offer many computa-
tional linguistics related Lisp implementations of algorithms.
While we consider these textbooks extremely valuable and
important, they nevertheless lack a discussion of modern
approaches and implementation strategies in the domain of
computational linguistics.

While we focus on the implementation of Scheme libraries,

ELS 2011 59

future releases or parallel versions might be geared towards
ANSI Common Lisp. The use of CUSP and Eclipse as a de-
velopment environment is a possible path, since affordable
commercial Lisp development environments tend to be out-
side of the range for the academic and research community.

4. LIBRARY CONTENT
In its current state the SNLTK contains basic procedures
and data from domains like:
– Finite State Automata
– Parsing with Context Free Grammars
– N-gram models
– Vector Space Models and algorithms for classification and
clustering
– Basic language data for various languages
– Additional components

Specific statistical procedures for the processing of N-gram
models are being developed, as well as document classifica-
tion and clustering functionality.

In the following we shall describe some of the subcomponents
and functionalities implemented in the SNLTK.

4.1 Finite State Automata
Finite State technologies for spell checkers, morphological
analyzers, part of speech taggers, shallow parsers, and vari-
ous other approaches to NLP are well known and discussed
in the literature, see for example [15], and [16]. Finite State
Automata are used for spell checkers, and shallow parsers,
wherever regular grammars or languages are sufficient for
natural language processing.

We made various implementations of FSAs for lexicon com-
pression, morphological analyzes (Croatian morphological
analyzer), and simple word class recognition available in
the SNLTK. The current implementation makes use of table
based FSA implementations. Basic functionalities include
the generation of acyclic deterministic FSAs (ADFSA) from
finite word lists, as well as common operations like unions,
minimization, and concatenations over ADFSAs. Missing
functionalities include conversions of non-deterministic au-
tomata to deterministic ones, the construction of transduc-
ers or Moore/Mealy machines ([17], [12]), and various other
optimizations and code export.

Currently ADFSAs can be exported as DOT definitions for
visualization and interoperability (e.g. code generation, trans-
formation using Graphviz and related tools). A future ver-
sion should be able to export C code definitions of automata,
maybe even directly assembler.

4.2 Parsing with Context Free Grammars
Natural language syntax is formally beyond regular lan-
guages and the coverage of regular grammars. Thus, for
syntactic processing, various parsing algorithms are imple-
mented that use context free grammars (CFG). Simple al-
gorithms like bottom-up or top-down parsers are part of the
parser library, as well as an Earley Parser [4], and other types
of chart parsers, using agenda-based processing strategies.

In addition to the simple parser implementations, graphical

visualization widgets for Racket have been implemented that
display balanced syntactic parse trees.

For higher level syntactic processing that makes use of lexical
feature structures, first versions of unification parsers are
included in the library as well, see [3].

4.3 N-gram models
Various language processing algorithms make use of statis-
tical models of distributional properties of linguistic units,
e.g. sounds, morphemes, words and phrases. An approxima-
tion of such distributional properties can be achieved using
N-gram models.

Various tools for different types of N-gram models are in-
cluded in the SNLTK. It is possible to create character-based
N-gram models from textual data, that are useful for lan-
guage identification and approximations of syllable struc-
ture. In addition, word token-based N-gram model gen-
erators exist as well, that extract statistical distributional
models over word co-occurrences.

Besides token co-occurrence patterns, bags of tokens or types
can be generated from N-gram models as well. Frequency
profiles can be calculated in terms of absolute and relative
frequencies. Some other language tools which include filter-
ing of functional words, lemmatization and normalization
can be applied in different stages of N-gram model genera-
tion. Once a N-gram model is generated frequencies can be
weighted by tf-idf weight (term frequencyâĂŞinverse docu-
ment frequency) before generation of vector space models.

Information theoretic measures are included as well. The
Mutual Information score for example can be calculated for
models and individual N-grams, which is useful for find-
ing correlation between uni-grams or for bi-gram weight-
ing. Other implemented statistical testing functions include
chi-squares and t-tests for testing similarities or differences
between models.

4.4 Vector Space Models and algorithms for
classification and clustering

For various models of distributional properties of tokens and
words in text, as well as complex text models, vector space
models appear to be very useful. Not only multivariate sta-
tistical properties can be processed using such models, but
these models are also language independent, i.e. generalize
well over multiple languages with fundamentally different
properties at various linguistic levels (e.g. syllable structure,
syntactic word order restrictions).

One the one hand, simple mapping algorithms of raw text
and N-gram models to Vector Space Models are provided in
the SNLTK.

For classification and clustering tasks various similarity met-
rics algorithms are implemented, that are used among oth-
ers in a K-Means algorithm for text clustering. As similarity
metrics, various distance measures like Euclidean Distance
and Cosine Similarity are provided. Further scaling algo-
rithms for vector models are provided, including re-ranking
on the basis of tf-idf, as well as statistical significance testing

60 ELS 2011

on the basis of e.g. chi-square tests.

4.5 Basic language data for various languages
Besides example corpora and word lists for specific languages,
in particular stop word lists for various languages are pro-
vided. The creation of additional stop word lists is facili-
tated by a library which exports them as lists or a hashtable
data structure. In addition to hashtable based lookup lists,
finite state automata can be generated from word lists.

4.5.1 Example corpora
Text collections for various languages are being prepared
that facilitate language model training and tuning, as well
as testing of existing algorithms.

4.6 Additional components
4.6.1 Basic tree visualization (Racket)

The SNLTK also allow us to use Racket interpreter to gen-
erate N-gram models and produce DOT representations of
directed graphs based on the underlying N-grams that can
be visualized with Graphviz or any other alternative tool for
DOT-based graph visualization. The current n-gram2dot re-
lease represents frequencies via heavier weights and length
of edges and also different weight of nodes [7]. Graphviz
can generate different output formats for graphs like PDF,
PNG, SVG.

4.7 Documentation
The documentation of the SNLTK library and tools is pro-
vided initially in English. All documents are translated to
German, Polish and Croatian as well.

The SNLTK documentation contains the library description,
as well as example documents related to the use of specific
library functions, and algorithm implementation issues. One
of the main goals of SNLTK is to provide a detailed docu-
mentation of the algorithms, their implementation, as well
as different examples of use.

5. CONCLUSION
On the one hand, from our experience, we can conclude that
Scheme and current Scheme development environments like
DrRacket are very useful for the development of NLP tools,
as well as for learning and education purposes.

The SNLTK in its current form is subject to further devel-
opment and extension. Its further directions are guided by
the research and educational interests of the participating
researchers and developers.

Future releases of the SNLTK will most likely include more
NLP algorithms, as well as machine learning algorithms, re-
lated, but not restricted to the domain of cognitive modeling
and language learning.

References
6. REFERENCES
[1] Bird, S., Klein, E., and Loper, E. 2009. Natural

Language Processing with Python: Analyzing Text with
the Natural Language Toolkit. O’Reilly Media.

[2] Clinger, W.D. 2005. Common Larceny. In the
Proceedings of the 2005 International Lisp Conference,
June 2005, pages 101–107.

[3] Dybvig, R.K. 2009. The Scheme Programming
Language. 4th edition. Cambridge, MA: MIT Press.

[4] Earley, J. 1970. An efficient context-free parsing
algorithm, Communications of the Association for
Computing Machinery 13.2, 94–102.

[5] Feeley, M. 2010. Gambit-C. Online documentation,
http://www.iro.umontreal.ca/ gambit/doc/gambit-
c.html.

[6] Fellbaum, C. 1998. WordNet: An Electronic Lexical
Database. Cambridge, MA: MIT Press.

[7] Gansner, E., Koutsofios, E., and North, S. 2006.

Drawing graphs with dot. dot UserâĂŹs Manual, 1–40.

[8] Gazdar, G., Mellish, C. 1990. Natural Language
Processing in LISP: An Introduction to Computational
Linguistics. Boston, MA: Addison-Wesley Longman
Publishing.

[9] Grinberg, D., Lafferty, J., Sleator, D. 1995. A robust
parsing algorithm for link grammars, Carnegie Mellon
University Computer Science technical report
CMU-CS-95-125.

[10] Hammond, M. 2003. Programming for Linguists: Perl
for Language Researchers, Blackwell.

[11] Konchady, M. 2008. Building Search Applications:
Lucene, LingPipe, and Gate. Mustru Publishing.

[12] Mealy, G.H. 1955. A Method to Synthesizing
Sequential Circuits. Bell Systems Technical Journal
34. 1045–1079.

[13] Sperber, M., Dybvig, R.K., Flatt, M., Straaten, A.v.,
Findler, R., and Matthews, J. 2010. Revised [6]
Report on the Algorithmic Language Scheme.
Cambridge University Press.

[14] Miller, G.A. 1995. WordNet: A Lexical Database for
English. Communications of the ACM Vol. 38, No. 11:
39–41.

[15] Mohri, M. 1996. On Some Applications of Finite-State
Automata Theory to Natural Language Processing.
Natural Language Engineering 1.1.

[16] Mohri, M. 1997. Finite-State Transducers in Language
and Speech Processing. Computational Linguistics
23.2, 269–312.

[17] Moore, E.F. 1956. Gedanken-experiments on
Sequential Machines. Automata Studies, Annals of
Mathematical Studies 34, 129–153.

[18] Russell, S., and Norvig, N. 2009. Artificial
Intelligence: A Modern Approach. 3rd edition. Upper
Saddle River, NJ: Prentice Hall.

[19] Serrano, M. 1996. Bigloo user’s manual. Technical
Report, Inria.

[20] Serrano, M., and Weis, P. 1995. Bigloo: a portable
and optimizing compiler for strict functional
languages, SAS 95, 366–381.

[21] Wilcock, G., and Hirst, G. 2008. Introduction to
Linguistic Annotation and Text Analytics (Synthesis
Lectures on Human Language Technologies). Claypool
Publishers.

ELS 2011 61

