DELAYED ENSO IMPACT ON SPRING PRECIPITATION OVER NORTH/ATLANTIC EUROPEAN REGION # Ivana Herceg Bulić¹ & Fred Kucharski² ¹Geophysical Department, Faculty of Science, Zagreb, Croatia ²The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy # Aim - ➤ Investigation of delayed winter (JFM) ENSO impact on spring precipitation over the North Atlantic/European (NAE) region - ➤ Dynamical interpretation underpinning time delayed tropicalextratropical teleconnections - ➤ Relative contribution of contemporaneous (AMJ) and delayed (JFM) ENSO impact # Experimental design **Time period:** 1901 – 2002 **NAE region:** 25 N-75 N; 20 W-60 E #### DATA **Precipitation:** Climate Research Unit (CRU) gridded monthly dataset (0.5 0.5) **Sea-surface temperature:** NOAA_ERSST_V2 data (provided by NOAA/OAR/ESRL PSD, USA) Sea-ice climatology: provided by Hadley Centre, UK MODELLED DATA: ensembles of numerical simulations performed by ICTP AGCM (T30L8) - CTRL experiment: ensemble of 20 ICTP AGCM integrations forced with observed global monthly SST anomalies - MIX experiment: ensemble of 10 integrations performed by ICTP AGCM coupled with a passive slab ocean mixed layer in North Atlantic while SST anomalies were prescribed in the tropics - *MIX_winter_ENSO* experiment: same as MIX experiment but with tropical SST forcing prescribed during the cold part of year (Oct, Nov, Dec, Jan, Feb, Mar) - MIX_summer_ENSO experiment: same as MIX experiment but with tropical SST forcing prescribed during the warm part of every year (Apr, May, Jun, Jul, Aug, Sep) - ➤ **Analysis**: seasonal anomalies calculated as 3-month averages (JFM, FMA, MAM ...) #### > COMPOSITE ANALYSIS: Warm (El Niño) ENSO events: JFM PC1 (SSTA Niño3.4) > 1 Cold (La Niña) ENSO events: JFM PC1 (SSTA Niño3.4) < -1 #### References **Herceg Bulić I, Branković Č** ENSO forcing of the Northern Hemisphere climate in a large ensemble model simulations. (*Climate Dyn 2007*) **Herceg Bulić I, Branković Č, F. Kucharski** Winter ENSO teleconnections in a warmer climate (*Climate Dyn 2011*) **Herceg Bulić I** The sensitivity of climate response to the wintertime Niño3.4 sea surface temperature anomalies of 1855–2002. (*Int J Climatol 2011*) Herceg Bulić I, Kucharski F Delayed ENSO impact on spring precipitation over North/Atlantic European region (Climate Dyn; submitted) ## **CORRELATION MAPS** **Fig.1** Correlation maps representing correlations between global winter (JFM) SST anomalies and PC associated with the first EOF mode of a) JFM; b) FMA; c) MAM; d) AMJ; e) MJJ and f) JJA CRU precipitation anomalies over the NAE region. Correlations exceeding the 98% confidence level of the *t* statistics are *shaded*. **Fig. 2** Correlation maps representing correlations between tropical Pacific winter (JFM) SST anomalies and PC associated with the first EOF mode of AMJ precipitation anomalies obtained from following datasets: a) CRU; b) CTRL experiment, c) MIX experiment and d) MIX_winter_ENSO experiment. Correlations exceeding the 98% confidence level of the *t* statistics are *shaded*. **Time-lagged correlations:** suggestion of time delayed (JFM \rightarrow AMJ) impact of tropical Pacific SST anomalies on spring precipitation in the NAE region. The experiment with tropical Pacific SST forcing restricted to the cold part of the year (MIX_winter_ENSO experiment) confirms delayed precipitation response. # PHYSICAL MECHANISM **Fig. 5** Correlation map representing correlations between PC associated with the first EOF mode of winter (JFM) SST anomalies in Niño3.4 region and spring (AMJ) a) MIX_winter_ENSO SST anomalies; b) MIX SST anomalies; c) MIX surface temperature; d) MIX temperature at 850 hPa level; e) MIX sea-level pressure and f) MIX zonal wind at 850 hPa level. A chain of air-sea interactions: Tropical Pacific and eastern North Atlantic are connected by a wave-train of Rossby waves ("atmospheric bridge") → ocean response to atmospheric forcing resulting in SST anomalies in eastern N. Atlantic (with time-delay of one season) → eastern N. Atlantic forcing of the underlying atmosphere: changes of zonal wind and onshore moisture advection → downstream MSLP and precipitation modification. # CONTAMPORENOUS AND DELAYED ENSO IMPACT **Fig.** 7 ENSO composites of spring (AMJ) precipitation anomalies for a) MIX_summer_ENSO; b) MIX_winter_ENSO and c) CTRL experiment. ### ENSO COMPOSITES **Fig. 3** Warm ENSO composites of spring (AMJ) precipitation anomalies for a) CTRL; c) MIX; d) MIX_winter_ENSO and cold ENSO composites of spring (AMJ) precipitation anomalies for b) CTRL; d)MIX; f) MIX_winter_ENSO experiment. ### EOF1 PATTERNS - COMPOSITES: Similar response patterns are obtained for all SPEEDY experiments as well as for CRU data - Warm ENSO events: associated with unusually dryer (wetter) precipitation conditions at the north (south) part of the domain - Cold ENSO events: associated with unusually wetter (dryer) precipitation conditions at the - north (south) part of the domainSpatial distributions of the composites project onto EOF1 spatial pattern ## CONCLUSIONS - ❖ Observed as well as modelled data show significant time-delayed NAE precipitation response to the winter ENSO forcing - ❖ JFM warm (cold) ENSO events are associated with wetter (drier) AMJ precipitation conditions in the central part of the NAE region - * Results obtained by SPEEDY simulations with the ENSO forcing restricted to the cold part of year underlie those findings and exclude ENSO seasonal persistence as a major mechanism causing delayed atmospheric response - ❖ Physical mechanism underpinning time-delayed atmospheric response to the ENSO forcing includes Rossby wave-train which constitutes atmospheric bridge between the tropical Pacific and North Atlantic. Induced mid−latitude Atlantic SST anomalies interact with the overlaying atmosphere altering westerly winds and onshore moisture advection. As a result, downstream sea-level pressure pattern is modulated likewise the precipitation - ❖ Contemporaneous and delayed ENSO impact induce opposite precipitation response over the central continental part of the NAE region; thus the strongest precipitation response is expected for the years with developed winter ENSO that does not persist till the spring Acknowledgments: This work has been supported by the Ministry of Science, Educational and Sports of the Republic of Croatia (grants No. 119-1193086-1323). Ivana Herceg Bulić also acknowledges support by the European Science Foundation (ESF) activity entitled Mediterranean Climate Variability and Predictability (MedCLIVAR).