
Cross-context Web browser communication with
unified communication models and context types

Ivan Zuzak, Marko Ivankovic, Ivan Budiselic
School of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

 E-mail: {izuzak, ivankovic.42, ibudiselic}@gmail.com

Abstract - Modern Web applications are developed and
executed as a set of interacting browser contexts, such as
windows, frames and background workers. Cross-context
communication systems have been rapidly evolving to
support this interaction, but are still behind modern Web
application demands. In this paper we present Pmrpc, a
cross-context communication system with several novel
properties important for future Web applications. First, the
system provides three communication models, message-
based, remote procedure call and publish-subcribe, and
exposes them through a single unified programming
interface. Second, the system enables communication
between both window-type contexts and worker-type
contexts using the same unified programming interface.
Third, the system enables dynamic discovery of contexts.
We present the architecture of Pmrpc, based on secure
message-oriented browser primitives introduced in the
HTML5 group of standards. Lastly, we compare the
execution times of achieving specific application goals when
using Pmrpc to those of HTML5 native browser primitives.
We show that although Pmrpc is slower than native
primitives, the reduction in performance is not significant
and the system is still usable in real-world Web applications.

I. INTRODUCTION
Web browsers are rapidly evolving in response to the

increasing demands of modern Web applications. One
trend is seen in developing Rich Internet Applications [1]
which execute in a Web browser as a composition of
contexts, such as browser frames. This trend is mainly
visible in mashup Web applications [2], complex widget-
based applications, such as Geppeto [3], and applications
which use GUI-less threads for background processing [4]
[5]. Therefore, Web browsers are becoming environments
for execution of Web applications and support the
interaction between execution contexts, similar to
operating systems executing multi-process applications
and supporting inter-process communication [6].

 Although cross-context communication in Web
browsers has historically been a difficult task due to strict
browser security policies, many systems that enable such
communication were developed. However, most of the
developed systems are unresearched with regard to
aspects unrelated to security and little research was
dedicated to future Web applications requirements for
cross-context communication. Consequently, Web
researchers and developers face a complex ecosystem in
which it is often difficult to comprehend the capabilities

worth observing, discern each system’s capabilities and
evaluate benefits over other systems.

In our research, we have conducted a systematization
of the cross-context communication ecosystem and an
evaluation of over 25 systems. The evaluation of existing
systems gave the following insights our research. First, a
small number of systems supports communication with
worker contexts and even a smaller number of systems
enable communication with both window and worker
contexts. Second, a small number of evaluated systems
support high-level communication models like remote
procedure call and publish-subscribe. Third, a small
number of systems provide more than one
communication model. Fourth, context discovery is not
addressed by any of the evaluated systems. Lastly,
although security features of cross-communication
systems have been the most researched, the authorization
aspect of security is still significantly underdeveloped.

We believe that future cross-context communication
systems should be guided by the principle of economy of
liabilities [7] and hide the complexity of cross-context
communication by providing high-level functionalities. In
this paper we present Pmrpc, a novel cross-context
communication system which addresses the stated issues
of existing systems. Pmrpc is a JavaScript library based
on the standardized HTML5 primitives which provide
secure message-based communication between Web
application contexts. The architecture of Pmrpc provides
and unifies three different types of communication
models under the same interface - message-based
communication, remote procedure call (RPC) and
publish-subscribe. Furthermore, the same interface
enables communication with both window-type and
worker-type contexts. Lastly, the system enables dynamic
discovery of Web application contexts and specification
and a whitelist-based access control model of
authorization. We evaluate the system by comparing the
execution times of achieving specific application goals
when using Pmrpc to those of HTML5 primitives.

The rest of the paper is organized as follows. In
section 2 we outline the related work of our research while
in section 3 we present the architecture of the Pmrpc
cross-context communication system. In section 4 we
present the evaluation of the system while Section 5
concludes the paper with directions for future work.

II. BACKGROUND
Browsers manage the execution of each Web

application using semi-isolated environments called
browser execution contexts, sometimes also called script
contexts [8] [9]. Web applications may be built from
many parts, each part executing in its own context. There
are two main types of execution contexts: GUI-based
browsing contexts [8], such as windows and iframes, and
GUI-less thread-like worker contexts [4], which are
further divided into shared and dedicated worker contexts.
We use the term cross-context communication to define
the process of transferring data across context boundary.

Many systems have been developed to enable cross-
context communication. Early systems, such as FIM [10]
and window.name [11], were based on browser
mechanisms and quirks for bypassing the Same Origin
Policy (SOP) [12] [13]. SOP is a browser security policy
which almost completely restricts Web applications
executing in a browser to communication between
contexts on the same trust domain, also called an origin.
Only the recent HTML5 [8] and Web Workers
specifications [4] have defined standard browser APIs for
secure massage-based cross-origin cross-context
communication. Recent client-side frameworks, such as
Google Closure [14], easyXDM [15] and jsChannel [16],
are built upon these primitives to provide high-level
communication models such as RPC, backward
compatibility with older browsers which do not support
the HTML5 group of standards, cross-browser support
and other advanced features.

As a part of our research, we have conducted a broad
analysis of over 25 existing cross-context communication
systems. The analysis has highlited the following
directions for future research of cross-context
communication. First, in order to reduce application-level
complexity of multi-context applications that require
cross-context communication, cross-context
communication systems should unify both window and
worker context comunnication as well as more than one
communication model behind a uniform interface. This
makes it possible to achieve required cross-context
interaction using only a single system instead of several,
consequently reducing overall complexity and increasing
performance due to fewer network requests for fetching
systems' libraries. Furthermore, cross-context
communication systems should support high-level
communication models, like RPC. These communication
models are often preferable over simple message-oriented
models since they require a smaller code overhead for
achieving application goals. Finally, context discovery,
reliable communication and authorization aspects of
security should be supported to enable the use of the
systems in dynamic Web applications created as mash-
ups of contexts from different trust domains.

The Pmrpc system presented in this paper uses the
HTML5 and WebWorkers standard primitives as the
transport mechanism and JSON-RPC [17] as the
communication protocol. HTML5 and WebWorker

primitives are based on the postMessage API for sending
messages to remote contexts and the onMessage event for
receiving messages in those remote contexts. JSON-RPC
is a transport-agnostic and stateless RPC protocol which
uses JSON as the message data format. The protocol
defines two message types, a request and response. The
request contains a request identifier, remote method name
and parameters, while the response contains the identifier
of the request message, result of the invocation and an
error object.

III. PMRPC CROSS-CONTEXT COMMUNICATION
SYSTEM

Pmrpc [18] is a JavaScript library for cross-context
communication. The purpose of the Pmrpc project is to
research interesting directions of cross-context
communication. Specifically, we explore the challenges
in and advantages of unifying different communication
models, such as RPC and publish-subscribe, and
communication between contexts of any type, such as
window and worker types, in a single system. Unification
implies that the same methods of the system's interface
may be used to achieve cross-context communication
between contexts of any type using any supported
communication model. The main benefit of unification is
that a single cross-context communication system may be
used in place of many systems which support only
specific communication models or context types. The
main challenge for unification of all context types are the
differences in interfaces of native browser primitives for
communicating with these context types. The main
challenge for unification of different communication
models are the implementation of higher-level models
using native browser message-oriented primitives and the
differences in context naming used in different models.

The Pmrpc system may be classified as follows.
Pmrpc is a client-side framework that doesn’t use
external components for establishing communication nor
for transferring data. The system supports communication
between contexts on different origins and its usage is not
restricted to any specific Web applications. The standard
HTML5 and WebWorker postMessage primitives are
used as a transport system and JSON-RPC is used as the
communication protocol. Consequently, Pmrpc may be
used on browsers that implement the HTML5 and
WebWorker specifications. The system unifies
communication between contexts of any type and three
communication models: message-based communication,
RPC and publish-subscribe.Two types of naming may be
used with Pmrpc: context object references combined
with custom string names for message-based and RPC
communication, and custom string channel names for
publish subscribe communication. Pmrpc supports
discovery of procedures and channels within a single
Web application. Reliability of communication and fault
tolerance is based on a retry mechanism. For message-
based and RPC communication, Pmrpc supports unicast
and multicast communication, while broadcast
communication may be achieved using the discovery

mechanism. The confidentiality, integrity and
authentication security features are inherited from the
HTML5 and WebWorkers primitives while Pmrpc
provides advanced authorization through a whitelist
access control list mechanism. In the following sections
we first give an outside view of Pmrpc by describing its
programming interface (API) and then give an inside
view by describing its architecture

A. Pmrpc programming interface
When loaded into a browser execution context, the

Pmrpc library exposes a generic API based on a RPC
model. This API, depending on parameters passed to the
methods, may also be used for message-based and
publish-subscribe communication. The API consists of
the following four methods.

Register(p, name, ?acl) – exposes a procedure p,
defined in the current context, under the name name so
that it may be called from remote contexts. Procedure
names are specified using custom character strings with
no restriction on the format of the string. Furthermore, an
optional access control list acl may be passed, specifying
a whitelist of remote context origins which may invoke
the procedure. In a publish-subscribe model, this method
is used as a subscription to a channel with name name.

Unregister(name) – removes a previously exposed
procedure with name name.

Call(name, ?dest, ?args, ?acl, ?retries, ?timeout, ?o
nSucc, ?onErr) – invokes a remote procedure exposed
with name name in every context defined in the dest array.
Contexts in the dest array are defined by a window or
worker object reference. If the destination array is not

specified, the named procedure will be called on every
discoverable context, which simulates publishing a
message to a channel named name in a publish-subscribe
context. Arguments for invoking the remote procedure
may be passed through the args array. Optionally, an
access control list acl may be passed, specifying a
whitelist of origins. If the origin of a destination context
specified in dest is not listed in acl, the call will not be
made to that context. If specified, the retries parameter
defines how many times will Pmrpc attempt to call a
specified destination context before giving up, and
timeout defines how many milliseconds should the
system wait for a response before concluding that the
called procedure is not available. The argument passed as
the optional function parameter onSucc will be invoked in
case a call was successful and a result was received while
onErr will be invoked in case the remote call has failed
for any reason. If neither of the function parameters were
passed arguments, the Pmrpc call method simulates a
one-way message without a response.

Discover(dest, cb, ?origin, ?name) – discovers
Pmrpc procedures registered on contexts specified in the
optional array dest. If the dest array is not specified,
Pmrpc procedures are discovered on all directly reachable
contexts. In case this method is called from within a
window context, all window contexts in the Web
application and directly nested worker context will be
found. However, if this method is called from within a
worker context, only the parent context of the worker and
directly nested worker contexts will be found. Optionally,
origin and name lists of regular expression strings may be
specified to filter discovered methods based on the origin
of the registering context and the name of the procedure.

Figure 1. Architecture of the Pmrpc cross-context communication system

The cb callback function will be invoked with the list of
discovered procedures, specifying for each procedure the
name of the procedure, the access control list defining
authorization for the procedure, the context object of the
registering context, and the origin of the context.

B. Pmrpc architecture
The main goal when designing the Pmrpc system was

to achieve a single and uniform interface for different
context types and different communication models. The
main challenge was wrapping differences of using the
native HTML5 and WebWorker primitives for different
combinations of sender and receiver context types; both
the sender and receiver context may be either a window,
dedicated worker or shared worker context.

Fig 1. shows the architecture of the Pmrpc system in a
Web application environment consisting of two contexts:
a context sending data and a context receiving data. Both
contexts contain three levels of code: application-level
code, the Pmrpc system and browser code exposed
through browser APIs. The Pmrpc system is logically
divided into the receiver part and sender part. Modules
shown on the right hand side are responsible for sending
a RPC request to a remote context and receiving the
response and comprise the receiver part. Modules shown
on the left hand side are responsible for registering
procedures and responding to incoming remote calls and
comprise the sender part. Because both parts of the
system are always present, each context may be used to
both send and receive Pmrpc calls.

Receiving logic – when loaded into a browser
execution context, the Pmrpc library needs to ensure that
all incoming Pmrpc messages will be delivered to the
Receiver Controller module. First, for cases in which the
context hosting the system is a window context receiving
messages from another window context, or a worker
context receiving messages from the parent context,
Pmrpc attaches event handlers for incoming Pmrpc
messages to the browser onMessage event dispatching
APIs (1). Second, for cases in which the context hosting
the system is a parent window or parent worker context
receiving messages from nested workers, the library
wraps the dedicated and shared worker constructors (2) to
automatically attach Pmrpc event handlers for the
onMessage event of created workers. The system then
registers a special internal Ping method (3) for
responding to requests which are sent by the sending
context to test if a procedure is exposed remotely and
available. Using the register method of the Pmrpc system,
application-level logic registers a procedure (4) and the
procedure name, a reference to its implementation
function and access control rights are stored in the
Registered procedures storage object (5). When a remote
procedure call request is received by the Incoming
message handlers (6), the message is deserialized by the
JSON-RPC serializer (7) and passed to the Receiver
Controller (8). The Receiver Controller fetches the
information for the requested procedure from the
Registered Procedures storage (9). If the Access Control

checker permits the invocation of the procedure based on
the authorization rules of the procedure and the origin of
the sending context (10), the Receiver Controller invokes
the procedure (11), receives the result and serializes it
into a JSON-RPC response message. The response is then
sent back to the sending context by internally invoking
the Pmrpc call message. Lastly, if the unregister method
is called by application-level logic (4), the name and the
reference to the procedure are removed from the
Registered procedures storage object (5).

Sending logic - when loaded into a browser execution
context, the Pmrpc system creates function wrappers
around postMessage APIs for different types of possible
destination contexts (12). The system then waits for
invocations of the call method from application-level
logic. For each invocation of the call method (13), the
Request Controller generates an identifier for the request
using the UUID generator (14) and creates an entry in the
Active Requests storage (15). If the invocation of the call
method didn’t specify the array of destination contexts,
the Pmrpc sending logic invokes the Discovery controller
(16) to dynamically discover which contexts implement
the named remote procedure. Furthermore, before
sending the request to each destination context, the
sending context checks if the procedure to be called is
available. This check is performed by starting a timer (17)
which periodically generates a remote procedure call
request for the Ping procedure (18) by internally invoking
the call method. The ping request is serialized into a
JSON-RPC request message (19) and sent to the
destination using postMessage wrappers (20). If a
response isn’t received in the timeout period specified in
the call method invocation, the ping request is repeated. If
the ping request fails more than the number of times
specified in the retries parameter of the call method, the
request is considered failed and the error callback is
invoked (21). If a ping request succeeds, the pinging
process is stopped and the real request is sent to the
destination. Upon reception of the response, the success
callback is invoked (22).

Discovery logic - Pmrpc implements discovery logic
as a special case of receiving and sending logic. Upon
loading, the Pmrpc system registers a Discover
Registered Procedures procedure which may be called
from remote contexts. When called remotely, the
procedure returns the current state of the Registered
Procedures storage object and the origin of the context
that contains it. Upon invoking the Pmrpc discover
method, the discovery logic calls the Discover Registered
Procedures procedure on each specified context to obtain
all registered procedures. The obtained lists of procedures
are then filtered by regular expression filters passed in the
invocation of the discover method. If no contexts were
specified in the call of the discover method, the method
first discovers all reachable contexts. Window contexts
are discovered by traversing the window context tree
starting from the top window of the application [8]. This
process is implemented by recursively visiting elements
of the window.frames array. The window.frames array is

exposed in every window context, may be accessed from
remote contexts on different domains and contains a
reference to every directly nested window context.
Worker contexts are discovered by requesting a list of
created workers from the pmrpc receiving logic. Since the
receiving logic wraps both shared and dedicated worker
constructors for receiving message, it additionally keeps
an internal list of all instantiated workers.

IV. EVALUATION
In order to evaluate the run-time properties of the

Pmrpc system, we measure and compare its performance
to that of the browser native postMessage mechanism, in
a predefined scenario. Fig. 2 shows the sequence diagram
describing the evaluation scenario. In the scenario, two
browser window contexts exchange messages, with
context A as the sender and context B as the receiver. The
actual message exchange is a sequential repetition of the
following interactions: context A sends a message to
context B, context B receives the message and finally
context B sends an acknowledgment back to context A.
Absolute times are noted upon sending the initial
message (1), context B receiving the message (3) and
context A receiving the acknowledgement from context B
(5). Finally, after all repetitions have finished, context A
collects the noted times from context B to perform
evaluation calculations (6). Two parameters are variable
in the scenario; the number of repetitions, denoted by X
in Fig. 2, and message size, denoted by Y.

The same scenario was used for evaluating both
Pmrpc and postMessage performance in two experiments
described below. The evaluation was performd on a
machine equipped with a Intel(R) Core(TM)2 Duo
2.26GHz processor with 4GB of RAM using the Linux
operating system. We used the latest stable build of the
Chromium Web browser (v8.0) and Firefox Web browser
(v3.6.12). However, we show measurements only for the
Chromium due to Firefox crashing for most test cases, for
both postMessage and Pmrpc systems alike.

In the first experiment we varied the number of
repetitions X with a constant message size Y of 1KB. Fig.
3 a) shows the results of the first experiment, with the
horizontal axis denoting the number of repetitions, from

1000 to 50000, and the vertical axis denoting time
duration in milliseconds. For Pmrpc and postMessage
each, the graph plots two measurements. First, plots
“Pmrpc one way” and “PostMessage one way” show the
average time spent on sending a message from context A
to context B, as the difference of times recorded at points
(1) and (3) in Figure 2. Second, plots “Pmrpc ack
included” and “PostMessage ack included” show the
average time spent on sending a message from context to
context B and receiving an acknowledgment, as the
difference of times recorded at points (1) and (5) in Fig. 2
The results shown in Fig. 3 show that the Pmrpc system
is 5 to 6 times slower than the postMessage mechanism.

Figure 2. Evaluation scenario sequence diagram

In the second experiment we varied the message size
Y with a constant number of repetitions X of 2000. Fig. 3
b) shows the results for the second experiment, with the
horizontal axis denoting the message size, from 1B to
100KB, and the vertical axis denoting time duration in
milliseconds. The meaning of graph plots are the same as
in the previous experiment. The results show that the
Chromium browser has no noticeable slowdown until 10
KB message sizes are reached. Furthermore, at 100KB
there is a noticeable reduction in performance for both
postMessage and Pmrpc. Lastly, it can be noticed that
Pmrpc can handle the same amount of data as
postMessage, again being between 5 and 6 times slower.

The reduced performance of Pmrpc when compared
to postMessage was expected due to the added features of
Pmrpc. First, the most significant reduction in
performance is a result of the pinging process for
ensuring reliability. Since every invocation of the Pmrpc
call method results in at least one ping request to the
destination procedure and at least one response to that
request, the number of postMessage messages exchanged
is increased by at least two messages, i.e. at least 100%.
Second, unlike the postMessage mechanism, Pmrpc
wraps messages in a JSON-RPC request and response
thus increasing the number of bytes to be transferred and
decreasing performance. Third, Pmrpc performs several
time consuming tasks for each remote call, such as
serializing JSON-RPC messages and checking access
control rights using regular expressions. However, the
reduced performance is of little significance since both
systems still operate within the 1ms order of magnitude.
Additionally, Pmrpc hides the complexity of
implementing the proposed features, including access
control features. In result, Pmrpc is more in line with the
principles of the Economy of liabilities [7] which states
that a system should minimize the liability that the user
undertakes to ensure application security.

V. CONCLUSION
Similar to multi-process desktop applications

executing on operating systems, modern Web
applications are built from many browser execution
contexts. Therefore, a fundamental requirement for Web
browsers is adequate support for cross-context
communication. However, existing cross-context
communication systems are trailing behind Web

application requirements. We believe that future cross-
context communication systems should hide the
complexity of cross-context communication by providing
high-level functionalities and unifying them under the
same interface.

[1] Fraternali, P., Rossi, G., and Sánchez-Figueroa, F. 2010. Rich
Internet Applications. In IEEE Internet Computing. 14, 3 (May-
June, 2010). 9-12.

Figure 3. a) (left) Results for Experiment 1: measurements of the evaluation scenario for varied number of repetitions and constant message size (1KB)

b) (right) Results for Experiment 2: measurements of the evaluation scenario for varied message sizes and constant number of repetitions (2000).

[2] Yu, J., Benatallah, B., Casati, F., and Daniel, F., 2008.
Understanding Mashup Development. In IEEE Internet
computing. 12, 5 (Sept.-Oct. 2008), 44-52

In this paper we present Pmrpc, a cross-context
communication systems which unifies three different
communication models for communication with all types
of browser execution contexts under the same interface.
Furthermore, Pmrpc implements cross-context
communication reliability and authorization, context
discovery and provides these features through the unified
interface. Although Pmrpc request-response calls are
several times slower than a request-response cycle using
native browser primitives, this result is expected due to
the features that Pmrpc provides. More importantly, the
execution time of a single Pmrpc request-response call is
in the millisecond range of native primitives which
supports the usage of the library in real world
applications. Lastly, Pmrpc reduces the complexity of
achieving application goals in multi-context Web
applications when compared to implementing the same
goals using native browser primitives.

[3] Srbljic, S., Skvorc, D., and Skrobo, D., 2009. Widget-Oriented
Consumer Programming. In AUTOMATIKA: Journal for Control,
Measurement, Electronics, Computing and Communications. 50,
3-4 (Dec. 2009). 252-264

[4] Hickson, I. Ed., Web Workers. W3C draft (accessed on Sept. 8,
2010). http://dev.w3.org/html5/workers/

[5] Reynolds, F. 2009. Web 2.0–In Your Hand. In IEEE Pervasive
Computing. 8, 1 (Jan.-Mar. 2009), 86-88

[6] Silberschatz, A., Galvin, P. B., and Gagne G. 2008. Operating
System Concepts; 8th Edition. Wiley, 2008.

[7] Hanna, S., Shin, R., Akhawe, D., Saxena, P., Boehm, A., and
Song, D. 2010. The Emperor’s New API: On the (In)Secure Usage
of New Client Side Primitives. IEEE Web 2.0 Security and
Privacy Workshop (May, 2010).

[8] Hickson, I. Ed., HTML5:A vocabulary and associated APIs for
HTML and XHTML. W3C draft (accessed on Sept. 8, 2010).
http://www.w3.org/TR/html5/

[9] Reis, C., Gribble, S. D., and Levy, H. M. 2007. Architectural
principles for safe web programs. Sixth Workshop on Hot Topics
in Networks (Atlanta, Georgia, November, 2007).

[10] Jackson, C., and Wang, H. J. 2007. Subspace: Secure
CrossDomain Communication for Web Mashups. 16th
international conference on World Wide Web (Banff, Alberta,
Canada, 2007), 611-620. Pmrpc is a free and open-source Apache 2.0 licensed

project, and has been so for more than a year. In that
period, the project has inspired the development of
several other systems, including easyXDM [15] and
jsChannel [16]. Our work on Pmrpc has given us many
insights and opened many possible areas for future work.
For example, the jsChannel system improves the
performance of reliable communication by checking the
availability of a specific remote procedure only on the
first call, while Pmrpc performs this check on every call.
Furthermore, we have started working on extending
Pmrpc for cross-browser cross-context communication
which will enable calling procedures across Web
application and browser boundaries.

[11] Zyp K. 2008. window.name transport (accessed on Sept. 8, 2010).
http://www.sitepen.com/blog/2008/07/22/windowname-transport/

[12] Zawelski, M. Browser security handbook. (accessed on Sept. 8,
2010). http://code.google.com/p/browsersec/wiki/Main

[13] Barth, A., Jackson, C., and Hickson, I. The Web Origin Concept.
IETF Internet-Draft (accessed on Sept. 8, 2010).
http://tools.ietf.org/id/draft-abarth-origin

[14] Google Closure Library (accessed on Sept. 8, 2010).
http://code.google.com/p/closure-library/

[15] Kinsey, Ø. S. easyXDM framework (accessed on Sept. 8, 2010).
http://easyxdm.net/

[16] jsChannel (accessed on Dec. 29, 2010).
https://github.com/mozilla/jschannel

[17] JSON-RPC 2.0 Specification. (accessed on Dec. 29, 2010).
http://groups.google.com/group/json-rpc/web/json-rpc-2-0

[18] Zuzak, I., and Ivankovic, M. Pmrpc library. (accessed on Dec. 29,
2010). http://code.google.com/p/pmrpc/

REFERENCES

http://dev.w3.org/html5/workers/
http://www.w3.org/TR/html5/
http://www.sitepen.com/blog/2008/07/22/windowname-transport/
http://code.google.com/p/browsersec/wiki/Main
http://tools.ietf.org/id/draft-abarth-origin
http://code.google.com/p/closure-library/
http://easyxdm.net/
https://github.com/mozilla/jschannel
http://groups.google.com/group/json-rpc/web/json-rpc-2-0
http://code.google.com/p/pmrpc/

	I. INTRODUCTION
	II. BACKGROUND
	III. PMRPC CROSS-CONTEXT COMMUNICATION SYSTEM
	A. Pmrpc programming interface
	B. Pmrpc architecture
	IV. EVALUATION
	V. CONCLUSION
	REFERENCES

