
Consumer-Oriented Programming Application for
Statistical Processing

Zvonimir Pavlic* , Tomislav Lugaric** and Sinisa Srbljic *
* University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia

Consumer Computing Laboratory, Zagreb, Croatia

**Laboratory for Underwater Systems and Technologies

Abstract - Consumer-oriented programming allows
consumers that are not professional developers to create
personalized software artifacts. Consumer-oriented
applications are exposed to consumers through gadgets,
small applications displayed in a web browser. Consumers
choose a preferred set of gadgets and build personalized
workflows on top of the gadgets by interacting them
through a graphical user interface. Consumer’s application
is being built using Geppeto (Gadget Parallel Programming
Tool), consumer-oriented framework for programming
workflows of consumer’s applications. Consumer-oriented
applications have to satisfy two main requirements: ease of
use and adequate set of functionalities. Furthermore, all
functionalities of the given application have to be exposed as
graphical user-interface elements of the gadgets, to provide
simple way of gadget composition for consumers. Demands
on consumer-oriented applications are explained through
consumer-oriented application for statistical processing.
Each gadget implements one statistical function. Consumers
can generate their own gadgets as compositions of existing
gadgets using Geppeto. The system implements
functionalities of data fetching, statistical data processing,
displaying the results of data processing as well as defining
events and actions triggered by those events.

I. INTRODUCTION

Consumer-oriented programming researches
technologies, methods and developing tools suitable for
consumer’s autonomous creation of personalized applied
software [1]. Computer consumers are the largest group of
computer users, which have no formal education in
computer programming. The most common form of
software artifacts suitable for consumer’s usage is applied
World Wide Web application. At present, consumer
network applications are composed as complex sets of
interconnected software components [2].

Gadgets, often called widgets, are small standalone
applications displayed in a Web browser. The concept of
gadgets was first introduced by the Commodore Company
in 1985. Inside their environment called Intuition, gadgets
were elements of the interface responsible for handling
events generated by users and forwarding them to the
processes running in background. Today the term gadget
represents standalone platform independent application
running inside gadget container, such as iGoogle. Gadgets
are equipped with graphical user interface for the
interaction with the background process, which is usually
a Web based source.

Consumers select a set of gadgets relevant to their
field of interest and build personalized data flows between
gadgets by interconnecting their graphical user interfaces.
In order to develop large personalized applications,
consumers have to manually interact with multiple
gadgets, which is impractical. Consumers can use Geppeto
(Gadget Parallel Programming Tool), for automating
gadget interconnection [2,3,4]. Geppeto is a consumer-
oriented framework for programming workflows of
consumer’s applications, developed at the University of
Zagreb, Faculty of Electrical Engineering and Computing
(FER). Application is being built by using gadgets as
building blocks. Geppeto is implemented as an extension
of the Apache Shindig project, open-source gadget
container and rendering server [5].

II. CONSUMER-ORIENTED PROGRAMMING

APPLICATIONS

Using Geppeto as a programming tool allows
consumers to build personalized applications out of
gadgets. Consumer-oriented programming applications are
exposed to consumers as sets of specified gadgets. A
model of a consumer-oriented programming application is
shown in Figure. 1 [2].

Container page

Consumer's application

Consumer-oriented
programming application

Web Services

Web Service 1

Web Service 2

Web Service 3

Web Service 4

Fig. 1. A model of consumer-programming oriented application

Consumers build their applications by interconnecting
gadgets into personalized workflows through gadget’s
graphical user interface. Gadgets are used as interfaces to
lower level applications. Applications are developed using
service-oriented architecture (SOA), and run on the
hardware platforms [6].

III. REQUIREMETS ON CONSUMER-ORIENTED

PROGRAMMING APPLICATIONS

Consumer-oriented programming applications are
developed for a wide range of computer consumers.
Lacking sufficient education, average consumers, unlike
the professional programmers, do not understand the main
concepts of programming crucial for developing new
applications, such as objects, procedure calls and program
loops. Consumers understand the level of abstraction of
graphical user interfaces and data flows, which they
constantly use in everyday interaction with the computer.
Therefore, all functionalities of the given application have
to be exposed as graphical user-interface elements of the
gadgets, to provide simple way of gadget composition for
consumers.

In order to develop personalized applications by
interconnecting gadgets, a consumer has to learn how to
use each gadget. Application components are required to
have simple and concise graphical user interfaces that are
easy to learn, understand and use.

Applications are built by combining multiple gadgets.
Consumers must be given the opportunity to use only
functionalities they consider necessary to build their
applications. Gadgets should be functionally decomposed,
so that each gadget implements single functionality.
Granularity of the system must be well-balanced to match
the consumer’s level of abstraction.

In the consumer application, interconnected gadgets
exchange data among themselves. Gadgets can be
developed by professional programmers, as well as other
consumers. All gadgets in a consumer-oriented
programming application have to implement standardized
data format for exchanging data between gadgets.
Additionally, data format used in gadgets must be
understandable to consumers, in order to support data-
flow programming and usage of gadgets developed by
other consumers as building blocks.

Data-flow programming in consumer-oriented
programming applications is achieved by providing
consumers with three groups of gadgets that support data
flow: gadgets for providing data, gadgets for personalized
data processing and gadgets for presentation of given
results.

Consumers expect their applications to have
functionalities similar to applications developed by
professional programmers. Consumer-oriented
programming applications should provide similar
expressive capabilities as modern programming languages
used to build professional applications. Moreover,

consumers which are experts in their field of interest
require domain-specific sets of gadgets in order to develop
domain-specific applications.

Furthermore, consumer-oriented programming
applications should have high extending possibilities and
components reusability. Programmer of application can
easily add new gadgets implementing new functionalities
demanded by the consumers of that application.

In addition, consumers can add their personalized
gadgets, developed as composition of gadgets, to
consumer-oriented programming application. Other users
can use these gadgets as building blocks for their own
personalized gadgets. This feature reveals a great
application development potential with consumers as
authors of new applications [2].

IV. CONSUMER-ORIENTED PROGRAMMING

APPLICATION FOR STATISTICAL PROCESSING

A consumer-oriented programming application for
statistical processing is developed at University of Zagreb,
Faculty of Electrical Engineering and Computing. This
application is the result of collaboration with NOAA
(National Oceanic and Atmospheric Administration, US
Department of Commerce). Application provides
statistical processing of oceanographic, climate and
atmospheric data. The application is intended for
consumers who are experts in fields of statistical analysis
and meteorology, but have no programming skills.

 Functionality of the consumer-oriented programming
application for statistical processing is similar to
functionality of programming language R [7]. R is a
programming language and software environment for
statistical computing and graphics. The R language has
become a de facto standard among statisticians for the
development of statistical software, and is widely used for
statistical processing and data analysis. Consumers using
this application can develop their own personalized
applications with similar functionalities as the ones
developed by professional programmers using the R
programming language.

Each gadget within the application implements one
statistical function. Graphical user interface of the gadget
contains elements for data input, processed data output
and buttons for initiating consumer’s action. Graphical
user interface of the gadget is shown in Figure. 2.

Figure 3 shows the classification of gadgets within the
application by their functionality. Gadgets are divided into
three basic groups: gadgets for fetching data, gadgets for
processing data and gadgets for displaying results.

Fig. 2. Gadget's user interface

There are two sets of data fetching gadgets. First set of
gadgets provides data from remote database ERDDAP
(the Environmental Research Division's Data Access
Program) [8]. ERDDAP is a collection of data servers that
provides a simple, consistent way to download subsets of
scientific datasets in common file formats and generates
graphs or maps. There are gadgets for fetching data like
sea surface temperature, concentration of chlorophyll in
sea water, wind, COADS surface marine observations and
sea currents. The second subset of data-fetching gadgets
provides input from web-based spreadsheet editors, such
as Google Spreadsheet. Data fetching gadgets also
translate data into standardized data exchange format,
which is implemented in all gadgets contained in this
application. Data is displayed to consumers as tables,
which are common-used data format in statistical
processing. Data format is based on XML, and is suitable
for transporting tables between the gadgets, which
consumers use in their everyday interaction.

Data processing gadgets are divided to general purpose
processing and specific purpose processing gadgets.
General purpose processing gadgets are functionally
independent from statistic data analysis, and can be used
in other consumer-oriented programming applications,
such as personal financial application. There are gadgets
for basic arithmetic operations on data sets, as well as
number of gadgets for data manipulation, like selection of
rows and columns from table and table concatenation.

Specific-purpose gadgets contain gadgets for statistical
processing, calculating arithmetic mean and arbitrary
statistical regression on provided data set. Logical gadget
is used for defining logical conditions in the consumer’s
applications, and therefore enables decision-making.
Consumer can enter logical clauses defined by comparison
of data values and combine them in logical conjunction or
disjunction. Logical gadget can also be used in creating
user events, later to be trigger for Geppeto “TriggerMe”
gadget.

Presentation gadgets are used to display the results of
data processing. Data can be displayed in table and graph
form. There are gadgets for plotting different types of
graphs: scatterplot, line-chart, scatterplot matrix, 3d-
scatterplot, 3d-wireframe, time-series plot and plot of
seasonal temperature normals. In addition, a special
gadget is developed for communicating with consumer via
consumer’s e-mail address. Communication gadget allows
consumers to design applications that continuously

monitor the system and alert them if an event of interest
happens.

V. PROGRAMMING IN GEPPETO

Consumes create their own personalized gadgets by
combining previously developed gadgets into one
composite gadget [2]. Composition of gadgets is shown
in Figure. 4. Consumer chooses the set of gadgets from
consumer-oriented programming application website.
Chosen set of gadgets provides required set of
functionalities for consumer application. Gadgets are
loaded into Geppeto container by entering gadget’s URL
into container interface [3]. These gadgets are considered
source gadgets for the composite gadget. After loading
chosen gadgets, consumer adds programmable gadget to
container.

Programming in Geppeto consists of two steps:
defining user interface of consumer’s composite gadget
and defining the composite gadgets logic by building
personalized data flow through selected gadgets.

Designing the user interface of a composite gadget is
done by adding graphical user elements from one or more
other gadgets that consumer has chosen as source
gadgets. Adding elements is done via the right click menu
which can be brought up when the mouse pointer is over
a user interface element. To add an element to the
composite gadget, the user right-clicks the element,
selects “add” and the element is copied into the
composite gadget. The right click menu also has the
option of removing a user interface element.

When programming data flow and the logic behind
the composite gadget, actions are specified using the
right-click menu. Defining a sequence of actions is done
by selecting “When clicked” action on an element. The
sequence of actions defined by the “When clicked”
option will be reproduced each time when the selected
user-interface element is clicked. Right-click menu
provides options for interconnecting source gadgets.
Actions of source gadgets are defined by option “click”
done on action buttons of source gadget. On input
elements consumer can type in text. Communication
between source gadgets is done by copying output of one

Composite
gadget

Fig. 4. Programming by composition

Data-fetching gadgets

Data-processing gadgets

Presentation gadgets

General purpose processing Specific purpose processing

Arithmetic
operations

Data
manipulation

Statistical
processing

gadgets

Logical
operation
gadgets

Data
presentation

Graphical
data

presentation

Communicatio
n with

consumer

Remote
database

Spreadsheets
fetching

Fig. 3. Classification od gadgets

gadget and pasting it to input of another gadget. All
sequences the user generates can be viewed and
reorganized in a table which is stored together with the
generated composite gadget. Table of actions can be later
edited, and used to define concurrency of actions of the
composite gadget data flow. In addition to gadgets
programmable by gadget composition (TouchMe), the
system also offers time programmable (TickMe) and
event programmable (TriggerMe) gadgets.

VI. CONSUMER APPLICATION EXAMPLE

This section demonstrates the simple consumer-
programmed application for statistical processing. The
goal of this application is to plot a graph of seasonal
temperature normals, which indicates the climate of given
area. Figure 5 illustrates the workflow of this application.

Consumer wants to plot a graph based on data for
selected area through given period of time.

In order to plot a seasonal temperature normals graph,
“Seasonal temperature normals” gadget must be provided
with data consisting of three sets of values: maximal
temperatures, “t_max”, minimal temperatures, “t_min”,
and mean temperatures, “t_mean”. “Climate” gadget
provides data only for minimal and maximal temperatures.
Consumer has to compute the mean temperature for each
date.

“Climate” gadget provides various meteorological data
for selected area and specified period of time. Consumer
selects the area and specifies the starting and the ending
date of observation (1). Consumer clicks on the “Fetch
data” button of “Climate” gadget in order to fetch data (2).

After that, he copies provided data to “Data select” gadget
(3).

In “Data Select” gadget, consumer enters parameters
for selecting fourth and fifth column, where minimal and
maximal temperatures are stored. By clicking “Select”
button (4), consumer selects the temperatures columns and
copies them into the “Arithmetic mean” gadget (5).

“Arithmetic mean” gadget can calculate arithmetic
mean of rows or columns of provided data. In this case,
arithmetic mean of rows must be calculated. Consumer
also enters the label for calculated column of arithmetic
means, “t_mean”, in order to achieve data consistency
with the original data. By clicking on the “Calculate”
button, the arithmetic mean is calculated (6).

When the arithmetic mean of temperatures is
calculated, it has to be re-attached to the original data, to
provide all three sets of values for plotting. Combining
data tables can be done by using the “Insert/Owerwrite”
gadget. Consumer copies data from the “Climate” gadget
to the “Original data” field of “Insert/Overwrite” gadget
(7). Than, he copies data from “Arithmetic mean” to
“Data to insert” field “Insert/Overwrite” gadget (8).
Consumer enters position of insertion and by clicking the
“Process” button combines two tables (9). Data is now
ready to be sent to the “Seasonal temperature normals”
gadget (10).

Consumer clicks on the “Draw chart” button in the
“Seasonal temperature normals” to plot the graph (11).

To draw seasonal temperature normals graph for some
other area or different time period, consumer would have
to repeat previous actions and connect gadgets manually,

Fig. 5. Consumer application example

which is very impractical. To automate application
workflow, consumer creates programmable composite
“TouchMe” gadget called “Graph plotter” and defines
gadget’s GUI and behavior using Geppeto.

Graphical user interface (GUI) of the composite
gadget is defined. Consumer adds input GUI elements
from source gadget for data-fetching, called “Climate”
using Geppeto drop-down menu. Added GUI elements are
for selecting the observation area, starting date of
observation and final date of observation (a). He defines
the action element of composite gadget by adding “Fetch
Data” button from “Climate” gadget (b). The output GUI
element is defined by adding plotted graph from
“Seasonal temperature normals” gadget to composite
gadget (c).

To build workflow logic, consumer selects “Fetch
Data” button at the composite gadget and defines set of
actions after selecting “When Clicked” option in the
Geppeto drop-down menu (i). Data flow of the application
is started by copying input parameters of composite
gadget to “Climate” gadget (ii). The rest of data-flow
actions are defined as follows by copying outputs of one
gadget to input of another one, as previously done
manually. Control flow is programmed by clicking on the
consumer action buttons on source gadgets interfaces in
the same order as described before. Complete workflow of
the consumer’s application is defined by actions (2) –
(11). Finally, the output of “Seasonal temperature
normals” gadgets is copied to the composite gadget, so
that the graph in composite gadget will be refreshed.

With every click on the button “Fetch data” in the
composite gadget, programmed sequence of actions will
be reproduced. Table of actions for consumer’s
applications is shown in the Table 1.

VII. CONCLUSION

Consumer-oriented programming applications are
exposed to consumers through gadgets, small applications
displayed in a web browser. Consumers build their own
applications using previously developed gadgets as
building blocks. Program logic and data flow is defined by
interconnecting gadgets graphical user interfaces, using
Geppeto, web automation framework based on consumer-
programmable gadgets.

Since consumers have no experience or formal
education in programming, applications suitable for
consumer-oriented programming must satisfy certain
criteria. Those criteria are: ease of use, graphical user
interface, standardized data format, functional
decomposition, well-balanced granularity which suits
consumer’s level of abstraction, defined data-flow (data
fetching, data processing, presentation of results),
adequate capabilities of expression, extendibility and
reusability.

Requirements on consumer-oriented programming
applications are explained through application for
statistical data processing, which satisfied those
requirements.

VIII. ACKNOWLEGMENT

The authors acknowledge the support of the Ministry
of Science, Education, and Sports of the Republic of
Croatia through research project „Computing
Environments for Ubiquitous Distributed Systems“ (036-
0362980-1921) as well as Google, Inc. for the Google
Research Award project “End-User Tool for Gadget
Composition”. The authors also whish to thank Roy
Mendelssohn from National Oceanic and Atmospheric
Administration (NOAA) for his valuable help with
consumer-oriented application for statistical processing.
Furthermore, many thanks to Goran Narancic from
University of Toronto, Miroslav Popovic and Dejan
Skvorc from Faculty of Electrical Engineering and
Computing at University of Zagreb for their help with
preparing this manuscript.

IX. REFFERENCES

[1] Škvorc, D., Programiranje prilagođeno potrošaču, PhD thesis,

University of Zagreb, Faculty of Electrical Engineering and
Computing

[2] Srbljić S., Škvorc, D. Skrobo, D., Widget-Oriented Consumer
Programming, Automatika 50(2009), 3-4, str 252-264

[3] Geppeto home page, http://www.ris.fer.hr/, 27.01.2011.

[4] Popović, M., Consumer Program Synchronisation. PhD thesis,
University of Zagreb, Faculty of Electrical Engineering and
Computing

[5] Apache Snindig, The Apache Software Foundation,
http://shindig.apache.org/index.html, 27.01.2011.

[6] Newcomer, E., Lomow, G., Understandnig SOA with Web
services, Addison Wesley Professional, 2004.

[7] The R Project for Statistical Computing, http://www.r-project.org/,
25.01.2011.

[8] ERDDAP home page, http://
coastwatch.pfeg.noaa.gov/erddap/index.html, 23.01.2011.

TABLE 1. TABLE OF ACTIONS

wait for click FetchData at GraphPlotter
select select at ClimateData

copy Startdate at GraphPlotter to Startdate at ClimateData
copy Enddate at GraphPlotter to Enddate at ClimateData

click FetchData ad ClimateData
copy result at ClimateData to Data at DataSelect

\“1-8\“ => Rows@ DataSelect
\“4,,5\“ => Cols@ DataSelect

click Select at DataSelect
copy Result at DataSelect to inputdata at ArithmeticMean

typein „t_mean“ to label at ArithmeticMean
click Calculate at ArithmeticMean

copy result at ClimateData to Originaldata at Insert/Overwrite
copy result at ArithmeticMean to Datatoinsert at Insert/Overwrite

\“1;1\“ => Atcolumnrow@Insert/Overwrite
click Process at Insert/Overwrite

result@Insert/Overwrite
=>inputdata@SeasonalTemperatureNormals

click Drawchart@SeasonalTemperatureNormals
graph@ SeasonalTemperatureNormals => graph@GraphPlotter

