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 Abstract – A new measurement method for infrared (IR) 
surface temperature measurement of excitation winding in 
rotation is presented. Method is experimentally verified on 
400 kVA salient pole synchronous generator. This method uses 
an industrial infrared thermometer which represents an 
alternative to expensive fast infrared thermometers or cameras. 
Target application of this method is determination of the 
dynamic limit in the P-Q diagram of a synchronous generator 
due to excitation winding overheating. Measurement error 
model which shows the way how to minimize measurement 
error has also been derived. The effect of the interpolar surface 
can be cancelled if the IR thermometer is positioned at a 
certain angle with respect to machine’s main axis. Digital 
temperature sensors have been mounted on the rotor to 
measure the excitation winding surface temperature for 
comparison. 
 
 Index Terms – Infrared image sensors, Infrared 
measurements, Monitoring, Rotating machines, Temperature 
measurement 

NOMENCLATURE 

p
T  - Absolute temperature of salient pole surface 

ip
T  - Absolute temperature of interpolar surface 

d
T  - Absolute temperature measured by IR  

   thermometer (compensated) 

p
  - Emissivity of salient pole surface 

ip
  - Emissivity of interpolar surface 

d
  - Emissivity set on IR thermometer 

p
I  - Irradiance of salient pole surface 

ip
I  - Irradiance of interpolar surface 

d
I  - Irradiance read by IR thermometer sensor 

S  - IR target spot size diameter (Fig.5) 
D  - Distance between IR thermometer and object 
R  - Radius of IR thermometer position (Fig.5) 

,
p ip

S S  - Salient pole surface and interpolar surface on 

    annulus defined by radius R-S/2 and R+S/2 

o  - Ratio of 
p

S and
ip

S  

T  - Temperature measurement error 
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
p

T - Difference between interpolar surface temperature 

and pole temperature 

1 2
,G G  - Goal functions for minimization of      

     measurement error 

I.   INTRODUCTION 

During the past several years, infrared (IR) thermography 
[1], [2], [3] has become a powerful method for investigating 
thermal flow paths across complex geometries, for studying 
heat transfer or simply as a diagnostic tool for diverse 
applications [4], [5]. The use of an IR camera as a 
temperature sensor in convective heat transfer measurements 
appears advantageous, when compared to standard sensors, 
from several points of view. In standard techniques, where 
temperature is measured by thermocouples, resistance 
temperature detectors or pyrometers, the sensor yields the 
local heat flux at a single point (or a spatial averaged one). 
On the contrary, IR thermography is a completely non-
intrusive method that provides two-dimensional temperature 
images [6]. 

Non-contact excitation winding temperature estimation 
based on resistance measurement has been widely used on 
synchronous generators for protection. It is an indirect 
method which gives only average temperature and is quite 
inaccurate due to slip ring nonlinear contact resistance. 
Nevertheless, methods for the temperature estimation of the 
induction machine stator and rotor winding were also 
developed [7], [8], [9]. They often use an injection of small 
low frequency or DC currents [10], and the analysis of the 
current and voltage frequency spectrum. Current injection 
may cause a certain unwanted magnetic phenomena in the 
induction machine [11]; which is not a case with the IR 
thermography.  

Rotating collector (slip-ring) could also be used to bring 
the temperature signals (obtained by thermocouples) from 
rotating to static environment [13], [14]. When dealing with 
thermocouples and slip-rings special care must be taken to 
eliminate thermal voltage [14]. Nevertheless, in most cases it 
is not possible to add additional slip-rings on shaft of large 
machines in power plants. Since IR thermography enables 
noncontact temperature measurements it could be considered 
as advantage compared to contact slip-ring approach. 

By using an IR optical fiber it is possible to measure 
temperature at hard to reach places without optical access 
inside of the machine, which makes the IR thermography 
very appropriate for diagnostics, protection and control [12]. 
However, researches in rotating environments are rarely 
reported, compared to stationary environments, mostly due 
to limited optical access and other problems associated with 
measuring techniques, data acquisition and data processing. 
Most reported studies in rotating environments have been 



 

focused on local convective heat transfer and temperature 
mapping on the rotating disk in still air [4], [15], [16], the 
impinging jet on the rotating disk [4] or 180° turn rotating 
channel [4], [16]. 

Kral et. al. [17] used the IR sensor to measure the 
temperature of the rotor of 210 kW induction machine in 
rotation, but the results of measurement were given with 
caution, and served only for a rough comparison. Mori et. al. 
[6], [18] measured the temperature on a rotor blade with a 
fast IR camera. Budzer et. al. [19] measured the surface 
temperature of a rotating tire with a high-speed IR line 
camera. Pellé and Harmand [20] studied the heat transfer in 
a rotor stator system with an air gap by measuring the 
temperature of a rotating aluminum disk with IR camera. All 
methods proposed in those papers use expensive high speed 
IR cameras (for example: camera with maximum frame rate 
150 Hz at integration time of 10 μs [6], [18]) to obtain 2D 
temperature field image. This paper deals with the methods 
for the IR temperature measurement on a synchronous 
generator excitation winding in rotation using the low cost 
IR industrial thermometer. Thermometer output is not the 
2D temperature field but spatially averaged temperature. 
Nevertheless it is possible to obtain the surface temperature 
with satisfying accuracy using the proposed methods [43]. 

 
1. Static limit caused by excitation winding overheating 
1'. Dynamic limit due to excitation winding overheating 
2. Static limit caused by maximal turbine active power 
3. Static limit caused by armature winding overheating 
4. Practical stability static limit 
5. Minimal excitation current static limit 
6. Static limit caused by minimal turbine active power 

Fig.1 – P-Q (capability) diagram 

Synchronous generators have an operational limit due to 
excitation winding overheating. All operational limits are 
shown in the P-Q (capability) diagram (Fig.1). Synchronous 
generator manufacturers usually define static P-Q diagrams 
with static limits. The manufacturers guarantee safe and 
permanent operation without failure in the static operational 
area defined by the static limits. The operational area of a P-
Q diagram has a certain amount of built-in redundancy. On 
the other hand, if a machine starts from a cold state, it can 
operate under an overload during a short period of time 
until, for example, it reaches its operational temperature. 
Thus an excitation winding can be overloaded until it 
reaches its nominal temperature. In that case, a synchronous 
generator can operate outside of the operational area defined 
by the static P-Q diagram [21], [22]. Of course, a 
synchronous generator cannot be overloaded at will, but 
with respect to temperature, stability etc. It means that short-
time overload limits change in time. They are called 
dynamic limits and a P-Q diagram with dynamic limits is 
called a dynamic P-Q diagram. In order to determine the 
dynamic limit caused by the heating of an excitation winding 

in a certain moment, it is necessary to have reliable 
information on the winding temperature (i.e. maximum 
temperature of copper and insulation of the excitation 
winding). An IR thermometer measures only surface 
temperature but FEA ([24]-[29]) or lumped ([30]-[14]) 
thermal model of a generator (particularly salient pole with 
an excitation winding) can be used to determine the critical 
insulation temperature which appears at the copper-
insulation contact. This paper presents a method for 
acquiring surface temperature which can be used as one of 
the input signals in order to enhance accuracy of those 
models. 

II.   INFRARED MEASUREMENT 

A.   Physical Background 

The Stefan–Boltzmann law states that the total energy 
radiated per unit surface area of a black body in unit time, I, 
is directly proportional to the fourth power of the black 
body's absolute temperature T. In various literatures, I is 
named the black-body irradiance, energy flux-density, 
radiant flux, thermal-flux, or emissive power. 

 4I T   (1) 
The constant of proportionality is σ, called the Stefan–

Boltzmann constant, has a value of 

 8 25.6704 10 W/m K    (2) 

A more general case is of a grey body, the one that 
doesn't absorb or emit the full amount of irradiance. Instead, 
it radiates a portion of it, characterized by its emissivity, ε: 

 4I T     (3) 
Emissivity of a given body surface is a function of angle 

of observation α, wavelength λ, body temperature T and time 
t.  

When the application of IR thermography on this specific 
problem is being considered, some of these effects can be 
neglected while measuring surface temperature of a 
synchronous generator excitation winding [1], [2]. The 
effect of time on emissivity is important only for ultrafast 
thermal processes, and the change of excitation winding 
surface temperature is a rather slow. Maximum allowed 
copper-insulation contact temperature for the insulation class 
F is 155 °C but almost all the large machines built for class 
F have allowed maximum temperature for class B (130 °C). 
Surface temperature is definitely lower than temperature on 
copper-insulation contact. The expected surface 
temperatures are within the range from the ambient 
temperature when a generator is in a cold state (20 °C) to the 
maximum 120 °C.  

Literature states that the excitation winding surface 
emissivity (non-metal oil paint or varnish-paint) is constant 
in the temperature range from 0 °C to 100 °C and the 
spectrum range from 8 to 14 μm (Long-wave, LW spectrum) 
[1], [2]. Typical emissivity values are 0.92 - 0.96 for this 
common type of paint. There are no data for emissivity at 
temperatures above 100 °C. A slight decrease in emissivity 
values can be expected but due to the fact that temperature 
depends on fourth root of emissivity, the effect can be 
neglected from accuracy point of view. 

For opaque bodies transmissivity equals zero. As the pole 
of synchronous generator is opaque, very high emissivity ε 



 

means that the reflectivity r is very small. In that case 
following equation can be written: 

 1r    (4) 
Very small reflectivity means that radiation radiated by 

other bodies and reflected from the observed surface for this 
application can be neglected. 

According to Wien's displacement law, the wavelength 
range of the maximum radiation intensity for the 
temperature range between 0 and 150°C is within 8 to 14 
μm. Instead of integration in the whole spectra, sensor is 
able to collect only radiation in its spectral response interval 
(8 to 14 μm). Limited wavelength response decreases 
thermal flux in non-linear way and the Stefan-Boltzmann 
law for black body becomes: 

 nI T     (5) 
where  ranges from 0 to 1, and n ranges between 3 and 4 
[41]. Power n is chosen to fit correlation between irradiance 
and measuring temperature in particular spectral interval. 

Taking into account the equipment used for this purpose 
(commercial infrared sensor) the radiation outside the sensor 
spectral response interval in desired temperature range can 
be neglected. 

Due to the previous discussion, it can be stated that the 
emissivity for this application is only a function of angle of 
observation. 

B.   IR thermometer 

The IR thermometer used for the measurement (Fig.2) is 
an industrial sensor with a thermopile detector. The 
specifications are listed in table I. 

 

Fig.2 – IR thermometer 

Thermopile detectors are built as a system of 
thermocouples connected in a series. A measurement 
junction (hot junction) is connected to a photosensitive 
element exposed to infrared radiation, while a reference 
junction (cold junction) is placed on a heat sink, which is 
near the ambient temperature. Thermopiles do not measure 
the absolute temperature, but generate an output voltage 
proportional to a local temperature difference. The output of 
a thermopile is usually in the range of tens or hundreds of 
millivolts. The infrared device may be used to provide 
spatial temperature averaging. 

The principle of operation of the IR thermometer is 
described as follows. Irradiated energy heats the absorption 
material thermally coupled to the thermocouples, the 
temperature difference between the hot and cold junction 
generates a voltage which is proportional to the difference 
between the sensor ambient temperature and the absorber 
temperature. In order to measure absolute temperature of an 

object IR thermopile detectors have a conventional 
temperature sensor which measures the cold junction 
temperature. It is converted to the temperature using Stefan-
Boltzmann law and the known emissivity of the object. The 
temperature is afterwards averaged if needed (averaging 
time can be modified in the sensor's software). 

TABLE I 
TECHNICAL SPECIFICATIONS OF IR THERMOMETER 

Temperature range -18 to 500 °C 
Optical resolution (90 %), D/S 15:1 

Spectral response 8 to 14 μm 

Accuracy 
± 1 % of reading or ± 1.4 °C, 

whichever is greater 

Repeatability 
± 0.5 % of reading or ± 0.7 °C, 

whichever is greater 
Detector Micromachined thermopile 

Response time (95 %) 165 ms 
Temperature resolution 0.1 K 

The industrial thermopile detector used in experiments 
has the time constant of 55 ms which is 1/3 of the response 
time based on 95% received energy (165 ms). The sampling 
time of the detector output signal is 25 ms.  

The optical diagram (Fig.3) of the infrared thermometer 
indicates the target spot diameter (S) at any given distance 
(D) between the target object and the sensing head. All 
target spot sizes indicated in the optical diagrams are based 
on 90% energy. It means that the thermometer measures the 
average temperature of a circle (spot). When placing and 
pointing the thermometer, attention must be paid on the ratio 
between the spot size on a given distance and the size of the 
observed object. 

 

Fig.3 – Optical diagram 

C.   IR Measurement in Rotation 

Several facts have to be considered when measuring the 
surface temperature of an excitation winding in rotation 
(Fig.6). Due to high emissivity of the observed surfaces, low 
ambient temperature and clear atmosphere, the reflected 
radiation and atmospheric absorption are neglected in order 
to simplify the mathematical model of a thermometer. 
Further analysis is carried out with the assumption that the 
IR thermometer is pointed perpendicularly on the surface of 
a pole (parallel to the machine's axis). 

The observer (IR thermometer) distinguishes two 
different surfaces in terms of infrared radiation: an excitation 
winding placed on a salient pole and an interpolar surface 
(Fig.4, Fig.5). The space between the salient poles can 
include mechanical elements for the fixation of the salient 
poles and winding. Due to rotation, the IR thermometer 



 

absorbs thermal radiation from the excitation winding on the 
salient pole and from the interpolar surface as well (Fig.5). 

 

Fig.4 – View on the rotor of the observed generator 

Temperature measured by the IR thermometer depends 
on rotation speed and response time of a thermopile detector 
because temperature and emissivity of an excitation winding 
surface and interpolar surface are not equal in general. If 
detector is rather fast with respect to rotation speed, the 
thermopile detector can distinguish irradiation from the pole 
and interpolar surface and one can see a periodic change in 
output temperature. On the contrary, if the detector is slow 
with respect to rotational speed, it reads the average 
irradiance of a rotor. 

A more sophisticated (faster) infrared sensor could be 
used with the synchronous detector in order to determine the 
alternation of surfaces. The aim of this paper is to present 
the methodology of measuring alternating rotating surface 
temperature with rather slow infrared sensor. 

The observed generator has the nominal speed of 1000 
rpm (50 Hz, 6 poles). One pair of the pole and interpolar 
surface takes 10 ms to pass in front of the thermometer, and 
during the response time of 165 ms the rotor makes 2.75 
turns. 

 

Fig.5 – Definition of radius R and spot size S. Hatched area is observed by 
IR thermometer in rotation 

The following equations can be set for a simplified model 
of the IR thermometer (slow response time compared to 

speed of rotating object) which measures temperature of the 
rotor of synchronous generator in rotation: 

 
1

p p ip ip p ip

d

p ip

I S I S I o I
I

S S o

    
 

 
 (6) 

Ratio o can be determined from the geometry of the rotor 
knowing distance D and radius R. It depends on machine’s 
rotor design and the position of the IR thermometer. By 
assuming that IR thermometer has the temperature 
compensation, and by applying Stefan-Boltzmann's law on 
(4) we get: 

 

4 4
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p p ip ip
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The temperature measured by the IR thermometer is 
given by (8)  

 

4 4

4

ε ε

ε ( 1)

p p ip ip

d

d

T o T
T

o

 



 (8) 

It is a function of the emissivity and temperature of the 
pole surface, interpolar surface and ratio o. 

For more detailed model one can substitute (5) into (6) 
instead Stefan-Boltzman equation. In that case device 
temperature can be derived as follows: 

 

1

ε ε

ε ( 1)d

n n n
p p ip ip

d

T
T o T

o

  
   

 (9) 

For further discussion parameter n will be set to 4, i.e. (8) 
will be used. 

D.   Emissivity Setting And Error Analysis 

Particular attention had to be paid to setting device 
emissivity εd. It is relatively easy to determine the emissivity 
for the pole surface and interpolar surface when the rotor is 
in standstill with the conventional temperature measurement. 
One can use a sticker or paint of known emissivity on the 
observed surface or place a temperature sensor to measure 
surface temperature. When determining correct emissivity, 
the IR device and conventional temperature sensor 
(thermocouple, RTD probe, digital IC probe, etc.) have to 
give equal temperature output. One of possible choices is to 
adjust the device emissivity while a machine is in thermal 
equilibrium (i.e. in a cold state). In that case the temperature 
of the pole surface is equal to the temperature of the 
interpolar surface. If pole and interpolar surface are in 
thermal equilibrium also in rotation, device emissivity εd can 
be set to the value according to (7): 

 
ε ε

ε
( 1)

p ip

d

o

o

 



 (10) 

Due to the same temperature of the pole and the 
interpolar surface (Tp = Tip), IR thermometer will measure 
the same temperature in rotation and in standstill.  
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 
 (11) 

As the excitation winding heats, its temperature in 
general differs from the temperature of the elements in 
interpolar space. The IR thermometer will measure 
temperature according to (8), but the aim is to measure the 
pole temperature correctly. 



 

To ensure the correct pole temperature measurement with 
the IR thermometer, the effect of the term εipTip

4 in (8) 
should be cancelled or substantially reduced. Some terms in 
(11) can be neglected for large ratio o. In that case, by 
setting device emissivity equal as pole emissivity, we get: 
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Fig.6 – Thermal image of excitation winding in rotation (IR camera) with 
long exposition compared to rotor speed 

By introducing difference between interpolar surface 
temperature and pole surface temperature ΔTp, 

   
p ip p

T T T  (13) 

measurement error ΔT (difference between pole surface 
temperature and measured temperature) can be expressed as: 
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d
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T o T T
T T T T

o

  
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


   (14) 

For most hydro-generators (slower than 500 rpm), 
parameter o is significant (30 or higher), therefore the effect 
of irradiation radiated from the interpolar surface can be 
neglected as shown on Fig. 7. (satisfactory small 
measurement error ΔT can be achieved). Excitation winding 
of such generator is shown on Fig. 8 
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Fig. 7  Measurement error for various o and ΔTp 

(εip = 0.9, εp =0.93, εd according to formula (10), Td = 333 K (60 °C)) 

 

Fig. 8 - View on the rotor of the generator in Hydro Power Plant HE 
“Vinodol” (o = 40) 

Emissivity could be set to obtain measurement error ΔT 
equal to zero for particular pole temperature and particular 
temperature difference ΔTp (i.e. for nominal operating 
point.) 
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Also, for a certain pole temperature, or for a certain range 
of pole and interpolar surface temperatures, the device 
emissivity can be set to minimize the deviation between the 
pole temperature and temperature measured by the IR 
thermometer. 

For a given pole temperature Tp and for certain range of 
temperature differences ΔTp min and ΔTp max, emissivity can be 
set to minimize goal function: 
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Similarly, for a given range of pole temperatures Tp min 
and Tp max and for certain range of temperature differences 
ΔTp min and ΔTp max, emissivity can be set to minimize goal 
function: 

max max
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Fig. 9  Measurement error ΔT dependence on ΔTp for various εd for 
εp = 0.94, εip = 0.96 and o = 5.8 



 

Fig. 9 shows measurement error dependence on ΔTp for 
the observed generator with various emissivity setups. The 
value of parameter o for tested generator is 5.8, polar and 
interpolar emissivities were 0.94 and 0.96, respectively. 

E.   Interpolar surface Effect Cancelling 

Lambert's law states that irradiance of a flat surface is the 
same in all directions. The effect of irradiation radiated from 
the interpolar surface can therefore be disregarded if the IR 
thermometer is directed to the excitation winding by a 
certain angle with respect to the machine main axis. In that 
case the IR thermometer reads only the irradiance of the 
excitation winding pole surface because due to geometry and 
rotation, the interpolar surface cannot radiate towards the 
thermometer, it produces the same effect as increasing of the 
ratio o towards the infinity.  

The temperature of the excitation winding surface on the 
salient pole sides differs from the temperature on the frontal 
surface because of different ventilation conditions, but the 
difference is negligible, especially in case of forced air 
cooling. The emissivity of the surface varies according to the 
angle of observation, but does not change significantly for 
the angles between 0° and 45° [1], [6]. Emissivity for a 
certain angle of view can be determined when a rotor is in 
standstill. 

III.   RESULTS 

A.   Reference Temperature Measurement 

 
The wireless acquisition system was also developed and it 

can be used for “on-line” data acquisition of the excitation 
winding surface temperature even during rotation Fig. 10 
[42].  

 

 
Fig. 10 - Block diagram of wireless measurement system 

It uses modified, high precision digital temperature 
probes DS18S20, connected by the 1-Wire® interface to the 
Bluetooth® module. The total of 26 probes were mounted on 
the excitation winding surface with thermal conductive 
epoxy metal glue which assures accuracy, mechanical 
fixation and a small time constant of the probes themselves 
Fig.11. The system was thoroughly tested and the 

methodology for preparation, wiring and mounting of DS 
probes has been determined. The obtained results were 
compared to the readings from class A Pt1000 probes 
(generally used in electrical machinery design). Excellent 
matching was found, both in a steady-state and dynamics. 
This wireless system was used to verify the IR temperature 
measurements. The accuracy of the digital probes is 
± 0.5 °C. 
 

 
Fig.11 – DS probes mounted on excitation winding 

The application for probe data acquisition was made in 
National Instruments LabVIEW. Temperatures of each 
sensor together with time base are logged in a textual file 
which is used for further analysis. Application has an option 
of rendering 3D surface temperature distribution based on 
temperatures collected from the probes and their position on 
the imported salient pole 3D model Fig. 12. 

 
Fig. 12 - Surface temperature distribution over observed salient pole 

B.   Experiments 

The experimental model included a synchronous hydro-
generator (400 kVA, 400 V, 1000 rpm) with 24 DS probes 
mounted on one salient pole, one probe mounted on 
interpolar surface and one DS probe mounted on the 
adjacent control pole. Wireless measurement system is 
mounted on the rotor. It routes data from temperature 
sensors and wirelessly send them to computer. Temperature 
is also measured with IR thermometer (Fig. 13). 

 

Fig. 13 – The experimental setup 



 

The experiments included heating and cooling of the 
excitation winding in standstill and in rotation with various 
positions and a setup of the IR thermometer (angle, distance 
and emissivity). The emissivity for a certain angle has been 
calibrated when the rotor was in standstill by using standard 
thermography procedures. Readings from the IR 
thermometer are compared to the readings of DS probes 
mounted on the frontal surface and nearest to the 
thermometer spot place.  

The following experiments have been conducted 
(Parameters are shown in table II, ground plan of experiment 
setup on Fig.14. and the results are presented on Fig.15 to 
Fig.21): 

1. Heating of the excitation winding with a constant 
current (40 A), first in standstill, afterwards in 
rotation, which was followed by cooling in rotation. 
IR thermometer is positioned 45° with the respect of 
the machine’s main axis. 

2. Heating of the excitation winding with a constant 
current (45 A) during rotation. IR thermometer is 
positioned 45° with the respect of the machine’s 
main axis. 

3. Heating of the excitation winding with a constant 
current (40 A), first in standstill, afterwards in 
rotation. IR thermometer is positioned parallel with 
the machine’s main axis. 

4. Heating of the excitation winding with a constant 
current (40 A) during rotation. IR thermometer is 
positioned parallel with the machine’s main axis. 

If the experiment involves measurement in standstill, the 
infrared thermometer reading is compared with the reading 
of the DS5 probe (the central probe, nearest to the 
thermometer spot position). In the case of the measurement 
in rotation, the infrared thermometer reading is compared 
with the average reading of the 6 frontal probes (DS4 to 
DS9 or DS1 to DS6) placed on the spot trace. The 
temperature difference at the start of rotation must not be 
considered due to the time constant of the DS probes. 
Namely, the surface temperature of the excitation winding 
decreases immediately with the start of rotation because of 
increased convective heat transfer. The temperature of the 
sensor in the DS probes lags a certain amount of time due to 
the nature and encapsulation of the sensor.  

TABLE II 
PARAMETERS OF EXPERIMENTS 

Experiment Number 1 2 3 4 
Distance (D), m 0.37 0.60 0.92 0.32 
Spot size (S), cm 2.5 4.0 6.0 2.1 

Angle, ° 45 45 0 0 
Emissivity 0.94 0.93 0.94 0.94 

 
The accuracy of the measurement system (IR 

thermometer + wireless data acquisition system with DS 
probes) can be roughly estimated to ± 2 °C. 

The first experiment (Fig.15, Fig.16) shows a very good 
match in standstill as well as in rotation with a temperature 
difference smaller than the accuracy of the IR thermometer 
and the measurement system itself. As it has been said 
previously, a major difference in temperature reading at the 
start of rotation was caused by the different time constant 
between the thermopile device and the DS probe. 
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Fig.14 – Ground plan of experiment setup 
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Fig.15 – Heating in standstill, experiment 1 

The second experiment (Fig.17) shows an excellent 
match in rotation. The IR thermometer was placed on a 
larger distance than in the previous experiment, which leads 
to an increased spot size. Both the distance and spot size 
define an amount surface area viewed at a certain angle, so 
the calibration of emissivity for this experiment resulted in a 
slightly different emissivity factor, 0.93. Ambient 
temperature (reference temperature of the IR thermometer) 
is also shown on the graph. The temperature difference is 
again smaller than the accuracy of the IR thermometer. 
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Fig.16 – Heating and cooling in rotation, experiment 1 
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Fig.17 – Heating and cooling in rotation, experiment 2 

The third experiment (Fig.18, Fig.19) shows how even 
frontal placement of the IR thermometer can result in 
satisfactory accuracy. The spot was larger, due to a larger 
distance, and the radius of the IR thermometer position was 
carefully chosen to minimize the interpolar effect. The 
temperature difference also tends to be smaller due to slow 
equalization of the pole and interpolar temperature. 

In the forth experiment IR thermometer was placed 
frontally, parallel to the machine main axis. Experiment 
includes measurement of the interpolar surface temperature 
(Fig.20) which enables measurement of error ΔT and 
interpolar space temperature and pole temperature difference 
ΔTp. Fig.21 clearly shows increase of the measurement error 
ΔT with the increase of ΔTp, as it was predicted with (14). 
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Fig.18 – Heating in standstill, experiment 3 
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Fig.19 – Cooling in rotation, experiment 3 

IV.   CONCLUSION 

This paper presents the method and error analysis for 
surface temperature measurement of an object in rotation 
(excitation winding of a synchronous hydro-generator) with 
the use of the industrial IR thermometer. A simplified 
mathematical model of the thermopile sensor has been 
described which was used to derive measurement error, and 
experimental results are presented. As the mathematical 
model shows, the correct temperature reading will be 
obtained if the interpolar surface irradiation can be neglected 
or cancelled. 
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Fig.20 – Heating and cooling in rotation, experiment 4 
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Fig.21 – Comparison of measured and modeled measurement error, 
experiment 4. 

It is important to note that the previous works on the IR 
measurement in rotation include very fast IR cameras. This 
paper shows that industrial IR thermometer can be used and 
by setting the emissivity factor according to proposed 
methods or choosing a favorable point of view, satisfactory 
small measurement error can be achieved. 

The accuracy of presented measurement method is 
satisfactory for its targeted application (determination of the 

dynamic limit in the P-Q diagram of a synchronous 
generator). Further research may include measurement on 
another synchronous machine, use of fast IR camera, a more 
detailed mathematical model of a thermometer or camera, 
the analysis of influence of the ambient temperature and 
machine ventilation on the measurement and measurement 
error, as well as application of this method to other rotating 
object or other machines (eg. synchronous turbo-generators, 
induction machines, PM synchronous machines etc.) 
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