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Abstract

We give a method for exhaustive generation of a huge number of Kochen-Specker
contextual sets, based on the 600-cell, for possible experiments and quantum
gates. The method is complementary tox our previous parity proof generation
of these sets, and it gives all sets while the parity proof method gives only
sets with an odd number of edges in their hypergraph representation. Thus we
obtain 35 new kinds of critical KS sets with an even number of edges. Using
a random sample of the sets generated with our method, we give a statistical
estimate of the number of sets that might be obtained in an eventual exhaustive
enumeration.
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1. Introduction

Quantum contextuality is the property of a quantum system that a result
of any of its measurements might depend on other compatible measurements
that might be carried out on the system. The so-called Kochen-Specker (KS)
sets provide constructive proofs of quantum contextuality and therefore provide
straightforward blueprints for their experimental setups. KS sets are likely to
find applications in the field of quantum information, similar to ones recently
found for the Bell setups in implementing entanglements. [1, 2] The most recent
result of A. Cabello [3], according to which local contextuality can be used
to reveal quantum nonlocality, supports this conjecture. Also our most recent
results [4, 5, 6] show that KS sets play an important role in Hilbert space
description of complex setups.

∗Corresponding author
Email address: pavicic@grad.hr (Mladen Pavičić)
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A series of KS experiments have been carried out in the last ten years. The
most recent ones made use of quantum gates and employed recently developed
quantum information techniques of handling, manipulating, and measuring of
qubits by means of quantum circuits of such gates.

The experiments were proposed, designed, and carried out for spin− 1
2 ⊗ 1

2
particles (correlated photons or spatial and spin neutron degrees of freedom).
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] The KS sets that were used in these
experiments were from 2 × 2 = 4-dim Hilbert space. In particular they were
either from the 24-24 class of KS sets (set with 18 through 24 vectors and 9
through 24 orthogonal vector tetrads) or the Mermin set. [18]

They used specified vectors (e.g., [19]) and relied on particular orientation
of measurement devices along those vectors. That limited possible implementa-
tions of a given KS set. Therefore in [20, 18] we exhaustively generated all KS
sets from the 24-24 class without ascribing coordinates to Hilbert vector (states,
wave function) components. That was done by means of McKay-Megill-Pavicic
(MMP) hypergraph representation (MMP diagrams). For these hypergraphs
it is only important that the equations that determine vector components of a
setup have solutions. Solutions themselves can be determined by an algorithm,
and observables need not be grouped or particularly chosen. E.g., in both 3-dim
(spin-1, qutrits) and 4-dim (spin- 32 ) KS setups we can make use of generalized
Stern-Gerlach devices [21] with outputs corresponding to vector components.

Most recently [22, 23] we generated millions of KS sets from a 4-dim 60-75
KS set we obtained from the so-called 600-cell (the 4-dimensional analog of the
icosahedron)[24]. Since they all stem from this single 60-75 set and since no set
from the 24-24 class belongs to it, we call it the 60-75 KS class. The experi-
mental implementations of the sets belonging to this class are straightforward
although demanding. For instance, we let a spin- 32 systems through a series
generalized Stern-Gerlach devices, enabling control over outcoming directions
of particles. [21] The approach can also be used to make quantum gates that
must be purely quantum for whatever state it applies to.

For any experimental application it is not viable to consider all possible
millions of sets but only those that can be experimentally distinguished. Hence,
we extract critical non-redundant non-isomorphic KS sets with 26 to 60 vectors
from all possible 60-75 KS sets. “Critical” means that they are minimal in
the sense that no orthogonal tetrads can be removed without causing the KS
contradiction to disappear. We found several thousand critical KS setups that
have no experimental redundancies.

In [23] we developed a method of exhaustive generation of all those KS sets
that allow the so-called parity proofs (see below). However, the parity proofs
are applicable only to the sets with an odd number of tetrads of orthogonal
vectors, and the aforementioned generation gives only such sets.

In this paper, we describe a method for generating all KS sets from the 60-75
KS class, in particular those sets that we cannot obtain by our parity-proof-
generation method. While in principle the method is exhaustive, full generation
is at present too demanding for even a large supercomputing cluster. Instead,
we used random samples of the search space and applied Bernoulli trial proba-
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bility analysis to obtain expected means and confidence intervals. We obtained
these samples using techniques of graph theory and quantum mechanical lattice
theory. Also, since the parity proof method is faster for obtaining critical KS
sets with odd number of vector tetrads (edges in hypergraphs), we concentrate
on even numbers of tetrads (see Table 1). In this sense our probabilistic genera-
tion method and our parity-proof-generation method are complementary. Also
our present probabilistic generation method is better at finding a large number
of critical sets of both kinds since it does not depend on the values ascribed to
vectors (vertices in hypergraphs) from the sets.

This study extends our preliminary results reported in Ref. [22]. We will
describe the improved algorithms that have allowed us to go beyond the results
of that study and survey a huge number of possible tetrads from 1 through
75. In the random sample used for our survey, they ranged from 26-13 (and
suspected to be the smallest) to a very large one, 60-41. In addition, based
on statistical extrapolation from our sample, we give an estimation method
according to which there might be a practically unlimited number (≈ 4.3 · 1012,
Fig. 7) of non-isomorphic critical KS sets that are subsets of the 60-75 set.
The method is however esentially classical, so it might happen that a future
exahustive generation will give far less numbers of critical sets. If it does, that
will show to which extent quantum data differ from classical estimations. If it
confirms our estimation then we will have a powerful tool for estimating the
reliability of random generation of critical KS sets. For non-critical KS sets
the exahustive generation of sets with 63 to 75 tetrads already confirmed our
estimation; we give comparative numerical values in Sec. 5.

Finally, we will summarize the overall picture of the critical KS sets we found,
describe patterns we have observed in their relative distribution versus number
of vectors and tetrads, and list some open questions about whether others that
we haven’t found yet exist and whether, for some sizes, we have exhausted all
possible isomorphism classes.

We make use of theory and algorithms from several disciplines: quantum
mechanics, lattice theory, graph theory, and geometry. Thus in the context of
our study, the term “vertex” is synonymous with the terms “ray,” “atom,” “1-
dim subspace,” and “vector” that appear in the literature; “edge” with the terms
“base,” “block,” and “tetrad (of mutually orthogonal vectors);” and “MMP
hypergraph” with the terms “MMP diagram” and “KS sets.”

2. Results

The Kochen-Specker (KS) theorem states that a quantum system cannot in
general possess a definite value of a measurable property prior to measurement,
and quantum measurements (essentially detector clicks) carried out on quan-
tum systems cannot always be ascribed predetermined values (say 0 and 1).
This means that two measurements of the same observable of the same system
sometimes must yield different outcomes in different contexts. This is called the
quantum contextuality. One way of proving the theorem is to prove the exis-
tence of KS sets, i.e., to provide algorithms for their constructive generation.
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The more abundant they are, the more important the contextuality of quantum
mechanics appears to be.

Kochen-Specker (KS) set is a set of vectors |ψi〉, ψ′
i
〉, . . . in Hn, n ≥ 3 to

which it is impossible to assign 1’s and 0’s in such a way that:

1. No two orthogonal vectors are both assigned the value 1;

2. In any subset of n mutually orthogonal vectors, not all them are assigned
the value 0.

KS subsets of mutually orthogonal vectors in a 3-dim space we call triads,
in a 4-dim space tetrads, etc. KS set is a union of such triads, tetrads, etc. of
vectors. They can be represented by means of MMP hypergraph defined below.
In a KS set, the vectors correspond to vertices and the tetrads to edges of MMP
hypergraphs.

We define MMP hypergraphs as follows [20]

(i) Every vertex belongs to at least one edge;

(ii) Every edge contains at least 3 vertices;

(iii) Edges that intersect each other in n−2 vertices contain at least n vertices.

This definition enables us to formulate algorithms for exhaustive generation
of MMP hypergraphs. We work with subsets of the starting hypergraph, the
60-75 one, so the job of generating the hypergraphs amounts to a creation of
all possible subsets of the 60-75 set with a specified number of edges deleted.
The “only” difficulty we face is the shear size of these generated subsets—we
are dealing with a haystack of 275 or 38 sextillion subsets, in which we wish to
find certain “needles” i.e. critical KS sets. Our primary purpose is to survey
the 275 subsets to gain an overview of what critical sets are inside.

The hypergraphs we obtain reflect only the orthogonal structure of KS sets
and do not in any way refer to the vector components of the original 60-75
KS set. This is yet another aspect in which the present method differs from
the parity-proof method we used in [23], which relies on the vector components
of the vector in each KS sets that were inherited from the original 60-75 set.
For each hypergraph we can however find appropriate vector components by
our program vectorfind or by interval analysis we developed in [20]. These
components need not have the values the vector components have in the 60-75
set.

We encode MMP hypergraphs by means of alphanumeric and other printable
ASCII characters. Each vertex is represented by one of the following characters:
1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l

m n o p q r s t u v w x y z ! ” # $ % & ’ ( ) * - / : ; < = > ? @ [ \ ] ˆ `{ | } ˜ , and then
again all these characters prefixed by ‘+’, then prefixed by ‘++’, etc. There is
no upper limit on the number of characters.

Each edge is represented by a string of characters that represent vertices
(without spaces). Edges are separated by commas (without spaces). All edges
in a line form a representation of a hypergraph. The order of the edges is
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irrelevant—however, we shall often present them starting with edges forming
the biggest loop to facilitate their possible drawing. The line must end with a
full stop. Skipping of characters is allowed.

In Figs. 1 and 2 we show a graphical representation of 3 critical KS hyper-
graphs from [22, 23] which are drawn by hand and a new one that is drawn by
our programs for automated drawing of MMP hypergraphs. The MMP notation
for hypergraphs in Figs. 1 and 2 (a) is given in [22] and for 38-19 in Fig. 2 it reads
A9BC,CE8D,DNMO,OQJP,PV1R,RLGS,SZ5a,ac4Y,YKIX,XW2T,TU6A,1234,5678,FGHE,IJH7,

KLMB,VWN9,bcQF,bZU3.
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Figure 1: Critical KS sets 26-13 and 30-15. They, as well as other figures with odd number of
edges below, vividly illustrate the parity proof: all vertices share two edges.
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Figure 2: Critical KS sets 34-17 and 38-19. The latter one is drawn by Asymptote (vector
graphic language). By changing parameters one can interactively control and change the
shape of each edge line and unambiguously discern vertices that share an edge.
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Parity Proof. By looking at the KS hypergraphs shown in Figs. 1 and 2, we
see that we cannot ascribe values 0 and 1 to all vertices so that in each edge
we ascribe 1 to one of the vertices and 0 to the others. Namely, in all these
hypergraphs, each vertex shares exactly two edges, so there should be an even
number of 1s. At the same time, each edge must contain one 1 by definition,
and since there are an odd number of edges, there should be an odd number
of 1s—a contradiction. This is the simplest form of the parity proofs of the
Kochen-Specker theorem on KS sets.

In these parity proofs, as well as in more involved ones we give in [23], the
essential part of the proof is that we have an odd number of edges. We found
90 kinds of such critical KS sets starting with a 26-13 and ending with a 60-41
one and presented them qualitatively in Table 3 of Ref. [23]. These KS set we
found by means of the parity proofs in Ref. [23], but not by the algorithms we
used for this paper, we indicated by “⊗” in Table 1 below.

In Table 1 and Fig. 7, we show the distribution and numbers for each kind
that were found by the random sampling of our present survey.

We prove the impossibility of assigning 0 and 1 to vertices by means our
program states01, which exhaustively tests each hypergraph. For KS sets
with an odd number of edges, we can also quickly verify their KS property with
the help of the parity proof.

In the sample used for our survey, on average 3 · 108 for each of 13–63 edges
(1–12 and 64–75 were exhaustively scanned), we obtained 35 kinds of critical
KS sets with an even number of edges, which cannot be obtained by the parity-
proof method. We also obtained 62 kinds of critical KS sets with an odd number
of edges. They are all among 90 kinds of KS critical sets we obtained by the
parity-proof method in [23]. Those that we did not obtain in our samples are
indicated by “⊗” in Table 1. Our scanning in [23] was designed to obtain as
many different kinds of critical sets as possible. So, we always stopped scanning
as soon as we found a new kind and therefore we cannot estimate numbers of
critical sets of each kind that would correspond to to numbers obtained in this
paper and shown in Table 1.

In Figs. 3, 4, 5, and 6, we show some further examples of hypergraphs
automatically drawn by our program written in Asymptote.

In the MMP notation for these (shown below), the numbers in parentheses
[(n)] are the size of the maximal loops (n-gons) that the edges can form. The
first n edges (tetrads) form n-gons. We obtain them by our program loopbig.
Additional examples of hypergraphs of each kind not given here are listed in
Appendix A.

There are three types of edges in an MMP hypergraph

Polygon edges those that form the n-gon.
Free edges those that contain vertices that do not belong to the

n-gon. We call that latter vertices free vertices .
Span edges all others.

To better discern the vertices in an MMP hypergraph with over 24 vertices
and over 40 edges, we usually represent them by two figures—one showing the
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riti
al KS sets with odd number of edges . . . with even number of edgesver 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 24 26 28 30 32 34 36 38 40

26 1

30 3
32 1
33 2
34 5

36 11
37 9
38 6 10
39 30
40 38 10
41 22 5
42 6 16 3 1
43 22 38
44 14 16 ⊗
45 3 5 32 2
46 1 3 130 ⊗ 3
47 1 74 ⊗ 6
48 2 19 9 ⊗ 11
49 ⊗ ⊗ 11 1 3 9
50 1 ⊗ 7 13 39
51 ⊗ 1 33 ⊗ 19 18
52 ⊗ ⊗ 37 33 4 69
53 ⊗ ⊗ 11 114 ⊗ 1 73 45
54 ⊗ ⊗ ⊗ 153 16 26 275
55 ⊗ 1 56 158 ⊗ 5 339 25
56 ⊗ ⊗ 21 241 28 136 262
57 ⊗ 1 133 378 54 448 45
58 ⊗ ⊗ 30 678 27 2 256 493
59 ⊗ 2 308 381 1 55 864 16
60 ⊗ ⊗ 48 562 1 5 316 145

Table 1: List of KS critical sets we obtained in this paper. By ⊗ we indicate the existence of
KS critical sets (at least one set) we obtained in [23] by the parity proof method. The average
sample sizes of 3·108 sets used here were too small to obtain them by our algorithms/programs.

n-gon with free edges and the other showing the n-gon with span edges.
42-24 (13) 3124,4VIU,UX97,7586,6WOd,dHBT,TRSM,MKJL,LcCb,bPGf,fgAe,eYQa,aZE3,

9ABC,DEF8,GHIJ,NOPQ,WXYF,ecVD,gUSO,ZTN7,bWR2,fK63,eJ72. Shown in Figs. 3..
50-30 (15) 3124,4DEF,Fm6i,ihbP,POQJ,JHIG,GoCj,jkKS,SRTU,UeLd,dl7W,WVNX,Xg8f,fnAZ,

ZYa3,5678,9ABC,KLMN,bcaM,TQFC,ecEB,lkPA,mdZO,mgRI,iYKH,njcW,jhg4,VHA4,oaR7, oife.

Shown in Fig. 4.
54-34 (16) 1234,4567,789A,ABCD,DEFG,GHIJ,JKLM,MNOP,PQRS,STUV,VWXY,YZab,bcde,

efgh,hijk,klm1,3EQb,5DWl,7JYk,8Ubl,CHXe,DKTa,EMfm,OTck,2nLZ,3To9,6FLq,7Nen,Bonm,

IQWn,Ipdi,LRlp,Srsj,Ugrq. Shown in Fig. 5.
60-40 (18) 3124,4576,6yau,uvVt,trqs,soTP,Pxh9,98AB,BpWM,MJLK,KicU,UwOl,lmnk,kjSH,

HGIF,FCED,DYRf,feg3,,NOPM,QRSB,TUVW,XYZW,abcd,hiI2,odZS,pjc7,qLA6,wtbH,xvpg,yxnR,

rhSJ,vOEA,mYP6,ieCB,oneG,ncXA,ulhf,reaO,wpoD,slB4 Shown in Fig. 6.
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To obtain these hypergraphs, we used a procedure that strips one edge at
a time. For n input hypergraphs each with b edges, n · b output hypergraphs,
each with n− 1 edges, were generated. After passing these output hypergraphs
through several filters to eliminate unconnected hypergraphs, duplicates, non-
KS (colorable) sets, and isomorphic sets, a smaller number of hypergraphs usu-
ally resulted. In order to keep the run time feasible, we took a semi-random2

sample of the generated hypergraphs so that in the end we would have approx-
imately the same number n of hypergraphs to send to the next edge-stripping
step.

4 1 2 33
Z

E
aa
Y
Q
ee
g

A
ff

P
G
bb

c
C

LLKJMMRSTT
H

B
dd

W
O
66
5
8
77
X
9
UU

V
I
4

8

D F

E

O

N

Q

P

Y

F

X

W

V

D

c

e

Z

N

T

7

4 1 2 33
Z

E
aa
Y
Q
ee
g

A
ff

P
G
bb

c
C

LLKJMMRSTT
H

B
dd

W
O
66
5
8
77
X
9
UU

V
I
4

9

A

B
C

G

H

I

J

g

U

S

O

b
W

R

2 3

K

6 f

e

J

7

2

D F N

Figure 3: Critical KS sets with even number of edges. (a,b) presentations of 42-24 using the
biggest loop (13-gon): (a) 13-gon with only free edges; (b) with only span edges; tension of
the lines in (b) is higher for better discerning of the edges.

The programs we used and their algorithms are described in Sec. 3. We used
the program mmpstrip to strip edges from starting hypergraphs. We adjusted
the increment parameter of mmpstrip so that, after each edge removal and
post-processing step, we ended up with a sample of a desired size, say 50,000
hypergraphs. We ended up with 64 sample sets of up to 50,000 hypergraph
each, with one sample set for each hypergraph size from 12 through 75 edges.
For 12 edges and less, no KS sets have ever remained, probably because they
don’t exist.

The complete processing of the samples sets of this size, including finding all
of the critical KS hypergraphs among them, took about 4 days on a single CPU.
We ran 200 such jobs on a cluster, then combined the results. The random
selection and the large sample space ensured that we would have, with high
probability, completely different samples on successive program runs. Except
near the extreme edge sizes of 75 and 12 where the sample space is essentially
exhausted, we never found a duplicated hypergraph in our spot checking.

2We say “semi-random” because while we chose random edges from each input hypergraph,
we did not choose random input hypergraphs. This may have a small effect on some of the
inferred statistics; see the first paragraph of Appendix B.
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Figure 4: (a,b) 50-30 (15-gon): (c) free edges only; (d) span edges only. We can add or
delete vertices and edges [as in of Fig. 3 and Fig. 6] according to an algorithm so as to obtain
sub-hypergraphs for various applications, e.g, finding Hilbert space equations for quantum
systems. [4, 5]

The overall iterative procedure we used is as follows. We started with the
MMP hypergraph for the 60-75 KS set.

1. We started with the 60-75 KS set and with mmpstrip obtained 75 new
60-74 sets—each with one less edge than the original 60-75. Then we
repeated the procedure to obtain 2775 new 60-73 sets, etc. but not more
than 50,000 hypergraphs (or a million for some studies) to keep the run
time reasonable. We used mmpstrip’s increment parameter i, which selects
every ith edge on average, to achieve this limit. The increment parameter
can be a non-integer to better control the output size. When it is greater
than 1, the edges can be selected either with uniform spacing or randomly;
the latter option was usually chosen.

2. A hypergraph is connected if there is a chain of zero or more edges con-
necting every pair of edges. Unconnected hypergraphs were removed with
mmpstrip.

3. Duplicate hypergraphs result when one edge is removed at a time (rather
than multiple edges combinatorially). These duplicates were removed.

4. Isomorphic hypergraphs were removed with shortd.

5. Colorable hypergraphs were filtered out with states01, leaving only non-
colorable ones (i.e. KS sets).

Typically, we first ran these steps on a small sample of the hypergraphs (a
hundred or so) so that the increment parameter for each mmpstrip call could
be estimated, in order to end up with the same number of output hypergraphs
as input hypergraphs after each edge removal step.

We examined the final set of MMP hypergraphs obtained after each iteration
of the above process in order to determine which hypergraphs were critical, using
an option of the states01 program. Any critical sets found were collected for
analysis.
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Figure 5: A critical 54-34 KS set shown in two figures. (a) A maximal 16-gon + span edges;
(b) 16-gon + free edges.

The advantage of stripping one edge at a time then filtering at each stage
is that many fewer MMP hypergraphs had to be examined, because at each
step we consider only the non-isomorphic KS sets from the previous step. For
example, from Fig. 7 (below), there are 3.1 · 1020 hypergraphs with 28 edges,
of which only 1.6 · 1013 are KS sets. The 23 critical sets were were found by
examining a sample of only 6 · 107 KS sets rather than 1.2 · 1015 starting MMP
hypergraphs that would have been required, representing a speedup factor of
about 20 million.

3. Algorithms

For the purpose of the KS theorem, the vertices of an MMP hypergraph are
interpreted as rays, i.e. 1-dim subspaces of a Hilbert space, each specified by a
representative (non-zero) vector in the subspace. The vertices on a single edge
are assumed to be mutually orthogonal rays or vectors. In order for an MMP
hypergraph to correspond to a KS set, first there must exist an assignment of
vectors to the vertices such that the orthogonality conditions specified by the
edges are satisfied. Second, there must not exist an assignment (sometimes
called a “coloring”) of 0/1 (non-dispersive or classical) probability states to the
vertices such that each edge has exactly one vertex assigned to 1 and others
assigned to 0.

For a given MMP hypergraph, we use two programs to confirm these two
conditions. The first one, vectorfind, attempts to find an assignment of vectors
to the vertices that meets the above requirement. This program is described
in Ref. [18]. The second program, states01, determines whether or not a 0/1
coloring is possible that meets the above requirement. The algorithm used by
states01 is described in Ref. [25]. An additional option was added to states01
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Figure 6: A critical 60-40 set; (a) A maximal 18-gon + free edges; (b) 18-gon + span edges.
Letters and edges might appear overcrowded, but the MMP hypergraph offers a clear alternate
representation for each of them. Also, by means of our programs, they can be easily discerned
textually and visually. Actually, when an MMP figure of a KS set is shown as a figure, we
need not give ASCII characters at all—we can always ascribe them to vertices in an arbitrarily
chosen way later on.

to determine if a hypergraph is critical i.e. whether the hypergraph is non-
colorable but becomes colorable if any single edge is removed.

The 60-vertex, 75-edge MMP hypergraph based on the 600-cell described
above (which we refer to as 60-75) has been shown to be a KS set. [26] However,
it has redundancies (is not a critical set) because we can remove edges from it
and it will continue to be a KS set. The purpose of this study was to try to
find subsets of the 60-75 hypergraph that are critical i.e. that are minimal in
the sense that if any one edge is removed, the subset is no longer a KS set.

While the program vectorfind independently confirmed that 60-75 admits
the necessary vector assignment, such an assignment remains valid when a edge
is removed. Thus it is not necessary to run vectorfind on subsets of 60-75.
However, a non-colorable (KS) set will eventually admit a coloring when enough
edges are removed, and the program states01 is used to test for this condition.

A basic method in our study was to start with the 60-75 hypergraph and
generate successive subsets, each with one or more edges stripped off of the
previous subset, then keep the ones that continued to admit no coloring and
discard the rest. Of these, ones isomorphic to others were also discarded.

The program mmpstrip was used to generate subsets with edges stripped
off. The user provides the number of edges k to strip from an input MMP
hypergraph with n edges, and the program will produce all

(

n

k

)

subsets with a
simple combinatorial algorithm that generates a sequence of subsets known as
the “banker’s sequence.” [27] Partial output sets can be generated with start
and end parameters. By default, mmpstrip will scan linearly through the edges
to pick every ith one when the increment parameter is i. The program will
optionally randomise this edge selection, so that while a fraction 1/i of edges
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is picked from each input hypergraph, which edges are picked are random. The
goal of this feature is to lessen the chance of a biased selection due to a pattern
that is repeated for every hypergraph (such as removing only the first edge
from each hypergraph). It is hoped that the samples would thus provide a more
uniform representation of the search space.

Optionally, mmpstrip can take truly random samples with replacement (for
a given number of edges) from the starting 60-75 MMP hypergraph (in contrast
to the semi-random method of the previous paragraph). This mode was used
to verify or improve some of the statistical estimates in Fig. 7. A cryptographic
hash of the time of day, process ID, and CPU time is used as the seed for the
pseudo-random number generator. The seed may also be provided by the user
in order to repeat a result.

The mmpstrip program will optionally suppress MMP hypergraphs that are
not connected, such as those with isolated edges or two unconnected sections,
since these are of no interest. The output lines are by default renormalized
(assigned a canonical vertex naming), so that there are no gaps in the vertex
naming as is required by some other MMP processing programs.

In order to detect isomorphic hypergraphs, one of two programs was used.
For testing small sets of hypergraphs, we used the program subgraph described
in Ref. [18], which has the advantage of displaying the isomorphism mapping
for manual verification. For a large number of hypergraphs, we used Brendan
McKay’s program shortd, which has a much faster run time.

Program longest singles out longest loops from the list of all possible loops
(which is the output of the program loopbig). Programs parse or parse_all
then “write” a program or programs in the vector graphics language Asymptote
for drawing a chosen hypergraph or all hypergraphs, respectively.

The longest loop of each hypergraph is drawn as n–sided regular (equilateral
and equiangular) polygon, where n is the number of edges in the loop. By
default, free vertices, i. e. vertices that are not on the loop, are placed inside
the polygon, off–centre, on vertical lines, with not more than 4 vertices on one
line, but the user can change options for their placement. Edges contained in
the longest loop are drawn as straight lines, while other edges are drawn as
Bézier curves (specifically, Asymptote is based on Donald Knuth’s METAFONT).
The user can interactively change the “tension” of the curve and the amount of
“curl” at its endpoints, in order to interactively control and change the shape
of each edge line and unambiguously discern vertices that share an edge.

4. Sample Space Statistics

There are 3.8 · 1022 possible subsets of the 60-75 set (disregarding any sym-
metry) and, among them, approximately 7.5·1017 KS sets. An exhaustive search
for critical KS sets was not feasible for the present survey, but it may become
feasible in the future, possibly requiring a year or more on a large computer
cluster.

For our survey, we searched a total of around 1010 KS sets, randomly chosen
for a given edge size, to find the critical KS sets among them. We then performed
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a statistical analysis to estimate the total number of critical KS sets that would
be found by an exhaustive search. The final result is that we can expect a total
of 4.3 ·1012 non-isomorphic critical sets, with a 95% confidence interval between
4.0 · 1012 and 4.6 · 1012 based on the statistical model we used.

If an exhaustive search is performed, it is possible to store the complete set
of non-isomorphic critical sets with current technology. Without compression,
each critical set (in MMP hypergraph notation) requires an average of about
260 bytes, thus requiring 260 · 4.3 · 1012 = 1.1 · 1015 bytes (1.1 petabytes) of
storage. This could probably be reduced considerably with data compression
techniques.

The plots of Fig. 7 provide an overview of the subsets of 60-75, broken
down by the number of edges. These plots are intended to provide a guideline
for estimating the work that would be required for an exhaustive search for a
particular number of edges or range of them.

observed even criticals

estimated
min crit.

estimated
max crit.

estimated non-isomorphic MMPs

estimated KSs

exactly calculated
total number of
MMP hypergraphs

observed odd criticals

10 20 30 40 50 60 70

104

108

1012

1016

1020

Figure 7: Overall statistics calculated for subsets of 60-75 given on a logarithmic scale. The
samples (for 13-63 edges; 64-75 search was exhaustive) contained on average 3 · 108 MMP
hypergraphs. “Observed odd (even) criticals” refer to odd (even) numbers of critical KS sets.
The sudden jump in the “estimated max crit.” plot at 53 edges is caused by a change in the
sample size, as explained in the text. The “estimated min crit.” points are not plotted when
they are zero. The “estimated max crit.” for more than 63 edges are not shown since the
exhaustive search found no criticals there.

The details of the statistical methods we used, as well as a more detailed
description of Fig. 7, are given in Appendix B.

In our survey, no critical sets were observed in KS sets with 42 or more edges.
In these cases, the “estimated max crit.” in Fig. 7 has little to do with the
number of critical sets (if any) that actually exist in that edge range. Instead, it
could be interpreted as “zero with statistical noise” and is primarily a function of
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the number of samples we took and the search space size for the particular edge
size. It simply indicates that, based on a Bernoulli trial probability model, it is
unlikely (with 95% confidence) that there are more critical sets than “estimated
max crit.” The sudden jump between 52 and 53 edges is due to the fact that
we changed the number of samples from 5.3 · 107 per edge size to 8.6 · 106. If an
exhaustive search shows that there are no critical sets at all above 41 edges, that
will be completely consistent with the “estimated max crit.” bound. In fact,
we would conjecture that the actual number of critical sets will be identically
zero very soon after 41 edges (see the last paragraph of Appendix B).

5. Conclusions

Kochen-Specker (KS) sets and setups proposed, designed, and experimen-
tally carried out so far were either 3-, 4-, 8-, . . . dimensional KS sets (Peres’,
Cabello’s, etc.) or the Mermin set. They aim at finding particular valuation
of the KS observables that prove the quantum contextuality and disprove any
noncontextual classical valuations of those observables. Our aim is to make KS
sets independent of a particular choice of either vectors or observables so as
to make them suitable for building quantum gates within a would-be quantum
circuit.

For this application, we should have a choice of gates of different sizes, that
is, consisting of sufficiently many vectors and sufficiently many gates for a cho-
sen number of vectors, and this is what we achieved in the previous sections.
We generated a large number of 4-dim critical non-redundant non-isomorphic
KS sets with 26 to 60 vectors based on the 600-cell (the 4-dimensional analog
of the icosahedron). “Critical” means that no orthogonal tetrads can be re-
moved without causing the KS contradiction to disappear. In other words, they
represent a KS setup that has no experimental redundancy.

The generation was achieved by algorithms and computer programs de-
scribed in Sec. 3, with which we found the critical sets summarized in Fig. 7.
Previously, only two 30-15 critical KS sets were found by Waegell and Aravind
[28] as well as a new third class. In this work, we have extended our previous
study of up to 19 edges [22] to sample the entire range of all 60-75 subsets. The
number of critical sets with the lowest number of edges, 13 through 19, appears
comparatively small, and it is feasible to find all of them with an exhaustive
search. Beyond that, the number of non-isomorphic classes becomes very large
and attempting their generation now would take too many CPU months on the
grid. In Sec. 4 and Appendix B, we give the detailed statistical estimates of the
total critical sets that exist based on our samples. The statistical techniques we
used are general-purpose and can be useful for any similar experiment in which
an exhaustive enumeration of outcomes is not feasible.

We stress here that critical sets obtained by a future exhaustive generation
might well be far less numerous then their statistical estimates given above.
That would be yet another proof of how different quantum sets are from clas-
sical ones and how cautious we should be when interpreting classical statistical
methods applied to quantum data. This is also the reason why we have not and
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could not have made any realistic predictions on numerosity and existence of
critical sets that might be observed in the future but have not been observed
so far. All we can say right now is that the predicability of the total number
of KS sets is in good agreement with the data we so far obtained by exhaustive
generation. For example, by exhaustive generation of KS sets with 63, 64, 65,
and 66 edges we obtain 1.8 · 109, 4.1 · 108, 1.0 · 108, and 1.1 · 107 sets versus
estimated 1.8 · 109, 3.4 · 108, 5.7 · 107, and 8.8 · 106, respectively.

The main theoretical results of our generation are that

• the 24-24 and the 60-75 classes are disjoint (in the sense that the biggest
set of the 24-24 class is the single Peres’ 24-24 set and the smallest set
from the 60-75 class is the 26-13 one;

• the maximal loop of all sets from the 24-24 class is always a hexagon while
the maximal loops of the sets from the 60-75 class grow (form at least an
octagon) as the number of vectors and edges increase (see Figs. 1-6);

• there is an unexpectedly large and rich universe with an estimated 4.3 · 1012
non-isomorphic critical sets inside of the 60-75;

• in [4] we found that one of the known 3-dim KS sets passes a series of
equations that hold in any Hilbert space—the so-called orthoarguesian
equations. We have not found any such KS set in the 60-75 class so
far. Both results show that orthogonality of vectors does not suffice for
a complete Hilbert space description of KS sets—the relations between
nonorthogonal vectors play an essential in such a description. This will
prove essential for a proper description of quantum gates using KS sets;

• there is only one KS set with 24 vectors (vertices) and 24 tetrads (edges),
and it contains all KS sets from the 24-24 class with the chosen values of
vector components. [18] In contrast to this, there are many non-isomorphic
KS sets with 60 vectors and 60 tetrads which contain many non-isomorphic
KS subsets each.

Another open question is to find physical and geometrical reasons for hav-
ing only hexagon maximal loops in the 24-24 class and for having particular
octagons, nonagons, decagons, etc., in the 60-75 class.

Appendix A. Samples of KS hypergraphs with even number of edges

Here we give samples of KS hypergraphs of each kind that we listed in Table
1 and did not give in Figs. 1–6 and in Sec. 2.

Using our programs longest and loopbig, we can instantly determine the
following structural features. Let us take the 45-26 hypergraph below. The pro-
gram longest shows that its biggest loop is a 12-gon. The program loopbig

gives 26 instances of its 12-gon representation, the first one of which is 2134,4YZE,

EFGD,DfKN,NPQO,OeUd,dacb,bWL7,7586,6jMT,ThgV,ViR2. 9.A.B.C. H.I.G*8* J.K*L*M*

R*S.Q*C. T*U*S.F* V*W*X.P* c*X.M*3* f*Z*R*7* g*e*I.3* i*j*Y*N* h*a*Y*H. a*B.6*2*
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e*Y*L*A. d*V*K*9. (The edges are the same as in 45-26 below, only in a dif-
ferent order. Also the vertices within an edge are mostly in a different or-
der. Actually, all 26 instances are just different 12-gon arrangements of 45-
26 below.) The edges 1234–ViR2 are polygon edges (see Sec. 2); vertices fol-
lowed by “.” are free vertices; edges containing free vertices are free edges;
vertices followed by “*” are polygon vertices; edges containing only polygon ver-
tices followed by “*”s are span edges; (in other words span edges are edges
which are not polygon edges and which do not contain free vertices). Our
script based on Asymptote draws 26 figures of 45-26 with 12-gons. Once
the figures are drawn, the user can assign any ASCII symbol desired to any
vertex. Also, by utilizing our program vectorfind she/he can ascribe vec-
tors to vertices. 1,2,. . . ,i,j → {τ ,0,1,κ}, {0,1,0,0}, {κ,0,τ ,1}, {1,0,κ,τ}, {κ,τ ,1,0},
{1,0,κ,τ},{τ ,κ,0,1}, {0,1,τ ,κ},{0,τ ,κ,1}, {1,1,1,1},{κ,0,τ ,1}, {τ ,κ,0,1},{1,1,1,1},
{1,1,1,1},{1,1,1,1}, {1,1,1,1},{κ,1,0,τ}, {τ ,1,κ,0}, {κ,τ ,1,0}, {0,1,τ ,κ}, {1,0,κ,τ},
{τ ,κ,0,1}, {τ ,1,κ,0},{κ,0,τ,1}, {0,κ,1,τ}, {1,τ ,0,κ}, {0,0,1,0},{κ,1,0,τ},{0,1,τ ,κ},
{τ ,1,κ,0},{1,0,0,0},{0,1,τ ,κ}, {0,τ ,κ,1},{1,κ,τ ,0}, {1,τ ,0,κ},{τ ,0,1,κ}, {κ,τ ,1,0},
{1,1,1,1}, {0,κ,1,τ},{1,τ ,0,κ}, {κ,1,0,τ}, {0,κ,1,τ},{0,τ ,κ,1}, {0,0,0,1},{κ,τ ,1,0},
where τ = (

√
5 + 1)/2 and κ = 1/τ ; a bar over a number indicates its negative.

45-26 1234,5678,9ABC,DEFG,HIG8,JKLM,NOPQ,RSQC,TUSF,VWXP,YZE4,abcd,edUO,
cXM3,fZR7,bWL7,geI3,fNKD,hgVT,ijYN,haYH,jTM6,aB62,iVR2,eYLA,dVK9.
46-28 1234,5678,9AB8,CDEF,GHIJ,KLMN,OPQR,STR4,UVNF,WXYZ,abZT,YQME,cdYB,
efb7,gVSJ,hiPA,jfOI,idHD,aLIC,ieXN,jiS6,kgM5,khcG,kbU9,hL73,cON2,WSL9,gZOD.
47-28 1234,5674,89AB,CDEF,GHIJ,KLJ7,MNOB,PQR3,STUO,VWU6,XYI5,ZabL,cdYL,efbF,
gaHA,hWG9,iTGE,jkZ2,lkNE,kdUR,lfXK,hXD1,XVQ8,jfPA,jcMC,ecSQ,khge,iaXM.
48-28 1234,5678,9ABC,DEC8,FGHI,JKLM,NOME,PQRB,STIA,UVWX,YXRL,Zab4,cdW3,efgT,
hdbK,ijcJ,gVQH,kfJG,lhF7,jeb6,iUPD,faU9,YS72,mlZT,lQO3,kdYN,mUN6,iZYH.
49-28 1234,5678,9ABC,DEFG,HIJ8,KLG7,MNOP,QRSP,TUVJ,WLC4,XYZV,abS7,cdeb,fgUO,
heZN,ijdI,kgaF,lcYM,jYRE,iXQG,fHGB,mfdW,mkTN,nhR3,nigA,lhFC,cTG3,mYA7.
49-30 1234,5678,9ABC,DEFG,HIJK,LMN8,OPQR,STUK,VWRC,XYZW,abcQ,deJ4,fghe,ijU3,
kjQG,ZTNB,khA7,gYS8,lkV2,mcMF,mif6,lidE,nfXD,mPJB,gOI3,bX73,ndcC,lgaB,nkNI,lXMK.
51-30 1234,5678,9AB8,CDEF,GHIJ,KLMN,ONJ4,PQRS,TUB3,VWIA,XSOF,YZE7,aHD6,bcZX,
defW,ghiM,cWR2,jkL9,liR5,mbUC,nkfb,onha,pgeX,pojG,mhdQ,oYP3,pmVK,nlTK,kgYH,ljd4.
52-30 1234,5678,9ABC,DEF4,GHIJ,KLMN,OPQ8,RSQJ,TUVI,WXYZ,abcJ,NHC3,defg,hijc,
kgbB,lkZ7,mYMJ,njX4,fSNF,oWVA,piPA,qeVE,onml,qpna,ohdQ,pfYU,liLE,UQLB,qhN7,ngI8.
53-30 1234,5678,9ABC,DEFG,HIJK,LMNO,PQRS,TUVW,XYZW,abZS,cdVG,eRC4,fghY,ihK3,
gdbJ,jkeI,lQOF,mki8,nopJ,qpjE,qhP7,roX7,nmUQ,rjcN,rfUB,pliT,paMB,mYNC,MIG7,lbC7.
51-32 1234,5678,9AB4,CDEF,GHFB,IJKL,MNOP,QRPL,STUH,VWXR,YZUQ,abcO,dZXE,
eTK8,fgJA,hig3,jiN7,iSD9,khcY,lXMK,mnWA,opYI,ndc6,ljfC,mjZ2,lbS5,pV62,piaG,ogeb,keWG,
onPC,kSP2.
52-32 1234,5674,89AB,CDE7,FGHB,IJKL,MLA3,NOP2,QRST,UVWX,YZaX,bcWT,dePK,fgSJ,
hiaH,jkOG,lmW9,nmgN,oeVR,kife,pkZQ,pcE3,onHE,qjRM,qfbY,hbND,qp96,laR4,UJGD,qndU,
dZB7,RNIB.
53-32 1234,5678,9A84,BCDE,FGHI,JKLM,NOPQ,RST3,UVW7,XYIA,Zabc,defM,ghYL,ijcT,
kWQ2,ljfH,mhbV,nmiP,eSGE,oaUK,pgZR,qohO,plNK,ondI,ZXE2,rfUD,gdC6,qiD9,rpmk,qkJG,
cNG5,mHC3.
54-32 1234,5678,9ABC,DEFG,HIJC,KLMN,OPQR,STUC,VWXY,URN4,Zabc,def3,ghcQ,ihMJ,
jkB8,lifY,mkgT,nopA,qrlT,rpjP,ebX8,rhdG,qoeJ,maPF,naNI,sbLE,som7,oZYG,nWTE,rVN7,
fQEB,YPLC.
55-32 1234,5678,9ABC,DEFC,GHIJ,KLMF,NOPQ,RSTU,VWXY,ZabE,cde8,fghe,ijeQ,klmU,
mhbJ,nopB,qrpT,sjT4,todY,naMI,SHA3,tlP7,ngR7,rGF7,qZXO,tsZL,eWM3,fVLA,nmiV,dNF4,
qkdA,mOC8.

16



53-34 1234,5674,89AB,CDEF,GHIJ,KLMN,OPQR,STUV,WVRB,XYUF,Zabc,decN,fgYJ,hijA,
kjbE,lmQF,ePI3,aWMI,niXL,oZRH,phcT,pmH7,qkLB,pgKE,qhI6,rnmf,ncO2,mdSA,OJDA,roke,
ogS6,lLJ4,raU4,nIE9.
55-34 1234,5674,89AB,CDEF,GHIJ,KLJ7,MNOP,QRST,UVWT,XYZa,bcaW,dec6,fghI,ihPB,
jkgS,kZVL,lmRO,noi3,pqYI,rNF3,qoeE,mbDA,sljc,rplU,sfXQ,kbH2,tsqN,ndYO,tU97,nfLA,
reSJ,XUPH,siJD,kOE9.
56-34 1234,5674,89AB,CDEF,GHIJ,KLMN,OPQR,STUJ,VWXB,YURN,Zabc,defT,ghMF,ijQE,
klmA,nLI9,opnc,pmhY,qjbH,oKD8,olX7,rsfa,iWS3,tsWM,utZP,urmJ,neO6,uqog,dHF3,skH6,
qYV4,laIE,ieZY,fPD4.
57-34 1234,5674,89AB,CDEF,GHIJ,KLMN,OPQB,RSTU,VWXY,Zabc,defc,ghb7,ijkY,lmnU,
ofT3,pqSA,rstR,qnXQ,uvmN,pkhN,ljgP,ieMA,tolJ,vdWI,aQJF,ueVP,ZPLE,sPI4,RNHD,voiZ,
rnL3,bYDB,rpVF,dRQ7.
58-34 1234,5678,9ABC,DEF8,GHIJ,KLMN,OPQN,RSTU,VWXY,ZaMJ,bYU4,cdef,ghia,jkiQ,
lmnT,onP8,phfL,qoeS,rROI,hbHC,srp3,qpmX,tuvo,wvdJ,wqb7,rkdK,jcWB,uscb,trlB,ukVT,
lbZF,gVIF,vpjF,qgNB.
59-34 1234,5678,9ABC,DEFG,HIJK,LMNO,PQR8,STUV,WXYZ,abcZ,defg,higO,jklm,nopm,
qric,slbR,tukQ,uV74,vuYN,srf3,paN3,wthC,jeKB,xwvj,qodX,xqUQ,jVMG,UJF3,nIC8,wWTH,
cTE8,snWM,wdRF,oTOB.
55-36 1234,5678,9AB4,CDEF,GHIJ,KLMF,NOP3,QRPM,STUJ,VWOB,XYZa,bcdA,efgh,ijkd,
lmkU,haNJ,nocW,pREB,qrpj,mbZ2,ojJD,srM8,qgb7,tlaW,WTF7,qnQI,kYHE,sZIB,fXOD,iL62,
tfI6,qSOL,leLA,neE8,rWH2,kfM4.

56-36 1234,5674,89AB,CDEF,GHIJ,KLMF,NOPQ,RST3,UVWX,YZaX,bcdW,efgB,hVE7,ijgQ,
kTPM,lmnd,oQJD,pqrs,faC2,tsnI,kjcA,tZOA,uib6,mYS9,uonf,rliR,sUQL,qXPH,poZ4,rG97,
mkeU,hRIB,qmh2,mOK6,ocRK,bPC9.
57-36 1234,5674,89A3,BCDE,FGHI,JKLM,NOPQ,RSTU,VWXY,ZaYQ,bcdI,efE2,ghM3,ijkf,
lhda,mecP,nOL7,oXU6,pqbA,kNHD,rsqZ,pnfT,cWSK,ZJGE,tunl,vsVO,ljUG,vgTD,umiR,oiOI,
rmh6,iWCA,vtA6,usH4,mYD9,qlKD.
58-36 1234,5674,89AB,CDEF,GHI3,JKLM,NOPQ,RSTM,UVB7,WXYI,ZaYT,bcaQ,dcSF,efgh,
ijkR,lmhP,ngXL,nmZH,opWV,qplK,rpaA,sJE4,trkG,tnD9,usoZ,vfbI,qjf6,wXO6,wtse,vtld,
kbVC,uhUM,wpiF,ujdN,kh84,pnN4.
59-36 1234,5674,89AB,CDEF,GHB7,IJKL,MNOP,QRPF,STUV,WXYA,ZabL,cdef,ghij,kfbY,
kVR6,lKH3,mjO9,nopX,qrlU,siXT,tule,vwpS,odRK,xusJ,xwc6,thYG,daOE,wrm2,iND4,uZSA,
xqF9,rnfN,vtNL,rgEA,phPJ,XLF2.
60-36 1234,5678,9AB8,CDEF,GHIJ,KLMN,OPQJ,RSTU,VWXN,YZab,cdeB,fgX7,hgeM,ijQF,
kljd,mnoN,phbI,qrif,saEB,tolH,uvn4,srUL,wMD3,xmkf,wroZ,vcbT,ywjS,hWSP,ukYL,kVTJ,
yvHE,uqP8,xUH8,tfbD,poQB,fSB4.
57-38 1234,5674,89AB,CDE7,FGHI,JKLM,NOPB,QRS3,TUVW,XYZa,bcde,fgPM,heWE,ijVS,
klRI,mnol,podH,qrU6,sraP,toOL,ukaK,tgZG,cKD3,vspQ,vueO,vTJ7,vqgA,pkjh,nibP,jfcY,
rmjG,nY94,viXI,tiE2,tkT9,qYHE,mQEB,cUIB.
58-38 1234,5674,89AB,CDEB,FGHI,JKL7,MNOP,QRST,UVWX,YZaA,bcLE,defg,hia3,jkXP,
lmZK,ngWT,opnI,qrkH,rpSB,sfRO,tjRK,sYVL,umUG,vcPF,wm96,qeUD,okid,udbQ,wdYN,vpf2,
wnhc,qnMK,utra,viW9,sliD,wtD2,QPD7,usn4.
59-38 1234,5674,89A3,BCD7,EFGH,IJKL,MNOL,PQRS,TUVW,XYZW,abZ2,cdeb,fgK6,hijA,
aVSH,klJ9,mnoG,pID8,qrYC,stO1,oeRO,ujgF,vuol,wutU,xkid,wnZJ,mjcX,rfdQ,rhaN,xwPC,
vcNE,qpkR,wpfM,vpV5,rmT8,tmkB,sWPF,vsiK.
60-38 1234,5674,89A7,BCDE,FGHI,JKLM,NOPE,QRST,UVWT,XYZa,bcde,fghA,eWMI,ijkl,
mnlV,opha,qrgU,spnD,tdL3,trSP,cZRK,uveO,qkYI,jRHD,wrZ9,xiQ4,vtXV,mJC7,ywN6,yxtf,
pibN,ysKG,wjhd,romG,upT2,xumY,yqC2,viGA.
59-40 1234,5678,9ABC,DEF8,GHI4,JKLM,NOPI,QRSC,TUVW,XYZH,abMB,cWPC,debZ,fgh7,
ijkF,lmnk,opje,qnaV,rsmU,tjU3,lhYS,uSE2,sqdA,kgXR,upfO,vTQN,qfL3,wnNK,vuJG,wfbF,
xicK,tgcE,vqoX,xura,xlTA,vcb6,spcY,rgeN,leG8,XUK8.
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Appendix B. Details for Sample Space Statistics

The plots of Fig. 7 provide an overview of the subsets of 60-75. Because they
were determined by statistical inference from small samples of this space, most
of the numbers are approximate. As a practical matter, some of the sample sets,
or portions of them, were obtained with the more efficient semi-random method
mentioned in the first footnote in Section 2, which has an effect.3 Overall, the
numbers should be trusted only to within an order of magnitude or so. The
plots are intended to provide a rough guideline for planning future work, such
as an exhaustive search of certain ranges, and for that purpose it should be
adequate.

Several techniques, which we describe below, were used to obtain the values
for the plots. The total number of MMP hypergraphs is simply

(

75
b

)

= 75!
b!(75−b)! ,

where b is the number of edges given at the abscissa.
The mmpstrip program was used to identify and remove unconnected hy-

pergraphs. We do not include the resulting numbers of MMP hypergraphs
in Fig. fig:stat but briefly describe them as follows. For 1 through 4 edges,
the number of unconnected MMP hypergraphs are exactly 0, 2175, 59725, and
1101450. For 67–75 edges there are exactly 0. For the rest, we used samples of
106 MMP hypergraphs for each number of edges. For 47–66 edges, no uncon-
nected hypergraphs were observed. For 5–46 edges, the number of unconnected
hypergraphs (estimated from the ones observed in the sample) decreases to zero
as a percentage the total number of MMP hypergraphs, from 1.56 · 107 (out of
1.73 · 107 total) for 5 edges to 1 · 1015 (out of 5.1 · 1020 total) for 46 edges.

To calculate the the number of non-isomorphic MMP hypergraphs, uncon-
nected hypergraphs were discarded and the rest passed through the shortd

program, which filters isomorphic hypergraphs, keeping only one canonical rep-
resentative from each isomorphism class. For small and large numbers of edges,
exhaustive generation of all MMPs yielded exact values. For 1–4 edges there
are 1, 1, 2, and 5 (connected) isomorphism classes; for 67–75 edges, there are
1183189, 141314, 15014, 1463, 154, 19, 4, 1, and 1. For the other edge sizes,
the number of isomorphism classes was estimated from a sample. Finding this
estimate is called the “coupon collector’s problem,” [29] and the maximum like-
lihood estimator is the smallest integer j ≥ c such that

j + 1

j + 1− c

(

j

j + 1

)n

< 1, (B.1)

where n is the number of samples (with replacement) and c is the observed
number of isomorphism classes in the sample. For example, we observed c =

3To test this effect, we used non-isomorphic MMPs with 67 edges, where the actual count
is known. Using semi-random sampling, a value of 1.4 · 106 was estimated, compared to the
actual count of 1.2 · 106. This is apparently due to the more uniform sample provided by the
semi-random method, leading to the overcount. Using true random sampling, the estimate
was very close to the actual 1.2 · 106, as we describe below.
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516604 isomorphism classes in a random sample of n = 545961 13-edge hy-
pergraphs. The criteria of Eq. (B.1) yields j = 4893025 ≈ 4.9 · 106, which
is the point shown for 13 edges in the non-isomorphic MMP hypergraphs plot
of Fig. 7. We mention that in our implementation, we expressed Eq. (B.1) as
log(j + 1) − log(j + 1 − c) + n(log j − log(j + 1)) < 0 and determined j with
a binary search method. Because the computation involves the subtraction of
almost-equal terms, high-precision floating-point operations are necessary. For
the calculations of Fig. 7, Eq. (B.1) gave incorrect answers with less than 35
significant digits, and we used 100 significant digits for robustness.

As a rough check of the statistical model used by the coupon collector’s
problem, 10 random samples of 50000 67-edge MMP hypergraphs yielded from
48900 to 48975 isomorphism classes, corresponding to predictions of 1119613
to 1202764 total classes by Eq. (B.1). This compares to the actual number of
1183189 classes obtained by exhaustive generation of MMP hypergraphs.

To estimate the KSs in Fig. 7, KS sets were identified using the states01

program. For small numbers of edges (≤ 12), we never observed a KS set. For
large numbers of edges (≥ 63), we never observed a non-KS set, so for them
the two plots coincide. For those in between, we took a random sample of non-
isomorphic hypergraphs for each edge size and plotted the fraction of observed
KS sets times the estimated non-isomorphic MMP hypergraphs.

We show the number of isomorphically unique critical hypergraphs we ob-
served, as identified by the -c (“critical”) option of the states01 program, in
the “observed odd criticals” and “observed even critical” plots of Fig. 7. We
include these to show the actual currently known (not estimated) number of
critical sets. It is not, however, intended to convey the distribution of critical
hypergraphs vs. edge size; for that purpose, the estimated maximum number of
critical sets in Fig. 7 should be used.4

In the range of 12 through 62 edges, the “estimated max crit.” plot shows
the upper 95% confidence limit derived from Bernoulli trial probabilities, based
on the model of sampling with replacement from a search space where the a
priori probability is unknown. [30] If K is the total number of KSs (from the
“estimated KSs” plot), n is the sample size (with replacement) of random KS
sets, andm is the observed number of critical sets, then the lower 95% confidence
level is [30, Eq. (1)]

K · I−1
1

2
(1−0.95)

(m+ 1, n−m+ 1) (B.2)

4The “observed odd [even] criticals” in Fig. 7 are not directly related to the distribution of
critical sets vs. edge size because we used varying sample sizes. For example, the 879 critical
sets with 34 edges were observed in 1.1 · 108 KS samples whereas the 580 critical sets with
35 edges were observed in only 5.28 · 107 KS samples. Since the number of observed critical
sets grows with the number of samples, it is likely that the actual number of critical sets with
35 edges—that would be obtained with an exhaustive search—is larger, not smaller, than the
number with 34 edges.
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and the upper 95% confidence level is [30, Eq. (3)]

K · I−1
1

2
(1+0.95)

(m+ 1, n−m+ 1) (B.3)

where I−1 is the inverse regularized incomplete beta function. For example,
for the 35-edge case, K = 9.0 · 1015, n = 52800000, and m = 580. Thus
for upper 95% confidence level we have K · I−1

1

2
(1+0.95)

(m + 1, n − m + 1) =

K · I−1
0.975(581, 52799421) ≈ K · 0.0000119163 ≈ 1.1 · 1011. This is the value in

the “estimated max crit.” plot for 35 edges.
The “estimated min crit.” plot shows either the the lower 95% confidence

limit from Eq. (B.2) or zero (in which case we omit the “estimated min crit.”
point from the plot since it is outside the logarithmic scale). A value of zero
is used whenever no critical sets were observed. Of course this is the most
conservative value possible, but there are two other motivations. First, the
trend of the “estimated max crit.” curve starts to fall rapidly at 41 edges, and
a smooth extrapolation would suggest that it plummets, perhaps to zero, very
soon after that point. Second, when no critical sets were observed for a given
edge size, the probability distribution of the Bernoulli trial estimation is not
“Gaussian-like” but is highly skewed, with a mode (maximum likelihood) of
zero critical sets, even though Eq. (B.2) may predict a small positive number.

We emphasize that in the cases where no critical sets were observed, “es-
timated max crit.” merely represents a statistical upper bound based on the
number of random samples we took, meaning it is improbable that the actual
number of critical sets would exceed that number. For sizes greater than 41
edges where no critical sets have been observed, there may be an overriding
theoretical reason (that is currently unknown) that would lead to the actual
number of critical sets being zero. In that case, “estimated max crit.” would
get smaller and smaller, approaching zero, as we increased the number of sam-
ples. But for any given number of samples, the statistical upper bound is the
best we can do without either a proof that the number of critical sets is zero
or an exhaustive set of samples (which would amount to that proof). Thus the
estimated range on Fig. 7 is as objectively conservative as possible, even though
there is subjective evidence, based on extrapolation at 41 edges, that the actual
number of critical sets becomes identically zero very soon after that point.
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[4] M. Pavičić, B. D. McKay, N. D. Megill, K. Fresl, Graph approach to quan-
tum systems, J. Math. Phys. 51 (2010) 102103–1–31.
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[6] M. Pavičić, Exhaustive generation of orthomodular lattices with exactly
one non-quantum state, Rep. Math. Phys. 64 (2009) 417–428.

[7] C. Simon, H. Weinfurter, M. Żukowski, A. Zeilinger, Feasible Kochen–
Specker experiment with single particles, Phys. Rev. Lett. 85 (2000) 1783–
1786.
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