
Python Implementation of Source Code
Generator Based on Dynamic Frames

D. Radoševi�, I. Magdaleni�
Universitiy of Zagreb, Faculty of organization and informatics, Varaždin, Croatia

danijel.radosevic@foi.hr; ivan.magdalenic@foi.hr

Abstract - This paper presents the implementation in
Python of the source code generator that is based on the
SCT dynamic frames model. The SCT model consists of
three basic components: Specification (S), which describes
the application characteristics, Configuration (C), which
describes the rules for building applications, and Templates
(T), which refer to application building blocks. Python is
chosen as implementation language because of its flexibility
as a scripting language with object-oriented features. The
main advantages of the presented implementation are fully
configurable generator, reduced overhead of the generated
source code and portability. The presented implementation
is shown on development of web application example in
order to justify our design choices.

I. INTRODUCTION

Software Product Lines (SPL) provides a means for
composing software products that match the requirements
of different application scenarios from a single code base
and can be developed using a variety of implementation
techniques [1]. The well-known concepts in this area are
Generative Programming [2], pre-processor definitions,
components, Aspect Oriented Programming, Feature-
Oriented Programming (FOP) [3], [1], Aspectual Feature
C Modules (AFMs) [4] and frames like XVCL [5]. Using
SPL helps to increase the software making productivity,
by producing it in a way comparable to industrial
production.

This paper presents the implementation in Python of
the source code generator that is based on the SCT
dynamic frames model. The SCT model consists of three
basic components: Specification (S), which describes the
application characteristics, Configuration (C), which
describes the rules for building applications, and
Templates (T), which refers to application building
blocks. The SCT model is described in detail in paper
“Source Code Generator Based on Dynamic Frames”,
which is currently under reviewing procedure for journal.
The third section of this paper describes basics of SCT
model. The SCT model is primarily designed for web
application development, but there are no constraints to
using the SCT model in development of any kind of a
source-code, regardless to problem domain and
programming language. At first, Web applications have
some characteristics which make SCT-based generators
suitable for their generation. Web applications usually
consist of a larger number of small program units, called
scripts (cgi scripts, php scripts, Java classes, etc.) that are

suitable for generation from the same program
Specification. The SCT based generators consist of a
number of small generators that share the same
Specification and generate different types of outputs.
Furthermore, in most cases web applications already
represent some kinds of generators (e.g. those of the
HTML, XML or JavaScript code) that could lower the
number of generation levels in the generator itself.

The paper is organized as follows: Related work is
presented in section 2. The basics of the SCT model are
presented in section 3. Section 4 describes implementation
of the SCT model in Python, which is followed by one
example in section 5. The conclusion is given in section 6.

II. RELATED WORK

Our approach is comparable to Xml-based Variant
Configuration Language (XVCL) [6]. Jarzabek's XVCL is
a frame mechanism based on Bassett’s frames. XVCL
uses x-frames as building blocks of program code to be
generated. These x-frames are organised in a tree
structure, where specification x-frames (or SPC for short)
contain program specification [7]. Other x-frames
combine program code with break sections that define
insertion of variable program parts (defined by other x-
frames). Configuration elements are specified implicitly,
in break sections, defining different kinds of insertion and
adaptation. All used x-frames form a tree structure where
SPC-s are on the top. Generally, XVCL uses static frames
that are all defined by developer.

In SCT model, frames are instantiated dynamically,
during the process of generation. The SCT frames form a
tree structure, where each frame contains clearly separated
parts regarding to Specification, Configuration and code
template (particular template from Templates). Templates
contain typeless connections instead of break sections in
XVCL. This approach enables SCT to be more flexible in
generative application development, because building of
generation tree and usage of particular code templates
depends on Specification, enabling additional possibilities,
including polymorphic features (which is similar to
dynamic polymorphism based on virtual methods and
mechanism of late binding).

We used Python object features and flexibility as a
scripting language in generator implementation. Unlike
some other scripting languages such as Perl and PHP,
Python is well founded for manipulating complex classes

and is therefore not only suitable for character strings
processing. For example, Python lists can contain
elements of different types, where any element can easily
be replaced by another, regardless of their (possibly
incompatible) types.

There are some other projects that use scripting
languages in code generation. Some of them are oriented
to building new scripting languages, dedicated to making
generators, such as Open Promol [8] and CodeWorker [9].
Other projects use existing scripting languages, including
Python. For example, Cog transforms program files so
that it finds chunks of the Python code embedded in them,
executes the Python code, and inserts its output back into
the original file [10].

For implementation of our previous generators, based
on the Scripting Generator Model [11] that SCT is based
on, we used Perl, C++ and Java as implementation
languages. Perl, as a scripting language, has flexible data
structures (e.g. fields with unlimited number of elements)
and possibilities in strings processing. C++ has a full
object mechanism that enables defining a generator as a
series of generative objects [11]. We used Java as the
implementation programming language for building the
source code generator, the purpose of which was the
dynamic generation of Web services using ontology [12].
Python offers both object-oriented and scripting
possibilities, both of which were used for the SCT based
generator implementation.

III. SCT MODEL BASICS

The SCT generator model defines the source code

generator from three kinds of elements: Specification (S),
Configuration (C) and Templates (T). All three model
elements together make the SCT frame (Fig. 1):

Fig. 1: SCT frame

• Specification contains features of generated
application in form of attribute-value pairs.

• Template contains source code in target
programming language together with connections
(replacing marks for insertion of variable code
parts)

• Configuration defines the connection rules
between Specification and template.

Starting SCT frame1 contains the whole Specification,
the whole Configuration, but only the base template from

1 XML schema of SCT frame is available at
http://generators.foi.hr/xml_schema.jpg

the set of all Templates. Other SCT frames are produced
dynamically, for each connection in template, forming
generation tree (Fig. 2):

��
��
��
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Fig. 2: The generation tree

The each frame produces one fragment of source code
in process of program generation. The final program code
is built from all fragments of source code by source code
generator.

IV. IMPLEMENTATION OF SCT MODEL IN PYTHON

The structure of the Python based SCT generator is
defined by these two parts (Fig. 3): Handler and SCT
class (defining the generator). SCT class enables the
generation process, including forming of SCT generation
tree, while Handler connects generator with the
environment and makes generator scalable.

4.1. Handler

The role of Handler is to prepare inputs for the

generator (SCT object) and to collect and save generator
outputs. Handler defines a new SCT object and initializes
it. It also finds each particular output file name and the
appropriate part of Specification as well as the appropriate
base template from Configuration. After this, Handler
invokes the generator and saves the generated code to the
target output file (Fig. 3). In Fig 3 are shown part of
Configuration and part of Specification by using XML
notation as defined in SCT model1. The content of
Configuration and Specification in Fig 3 is described in
more details in next section.

As shown in Fig. 3, Handler prepares inputs for the
SCT object by extracting the required parts of
Specification and Configuration.

Fig. 3: Functions of Handler

4.2. SCT class

The SCT class implements the generator as a recursive
structure that starts by initial Specification, Configuration
and base template, defined as Python lists:

class SCT:
 specification=[]
 configuration=[]
 template=[]

Specification list contains attribute-value pairs, loaded

from Specification (Fig. 4). Each element of such list is a
pair that contains two elements:

• attribute name and

• attribute value

Some attribute names include '+' sign, or even more '+'
signs. That means that this attribute is subordinated to
previous hierarchical level (with one'+' less, or without '+'
sign).

Attribute names are further used in Configuration,
which is also in a form of Python list.

Fig. 4: Specification and Python list

Output types are processed by the function of Handler,

and are therefore not included in the Python list.

Configuration list consists of three elements lists

(connection, Specification attribute and template), as
shown in Fig. 5:

Fig. 5: Configuration and Python list

The order of list elements is unimportant.

Template contains the base template of the generator,

also in form of a list, where the program code is separated
from connections. An example of template is shown in
Fig 6 (connections are in bold).

[
'$sql="select $field from ',
'#table#',
' order by ',
'#primary_key#',
'";\n',
'#question_type#',
'\n'
]

Fig. 6: An example of template in form of Python list

Connections are to be replaced by attribute values, or by
an SCT object (with Python flexibility coming into play),
which depends on the appropriate Configuration list
element, e.g.:

 ['#primary_key#','primary_key',']

- replacement by attribute value

but

['#question_type#','question',
'question_type.template']

- requires that the connection #question_type# is going to
be replaced by an SCT object (initialized by the
appropriate part of Specification and Configuration),
which results in a new template list, e.g. (Fig. 7):

Fig. 7: Template list

The new list contains the SCT object as a whole

generator that should generate code for the appropriate
connection. Such a change of type (from a string to an
SCT object) is easily viable in Python and is one of the
main reasons for using that language in generator
implementation.

V. EXAMPLE

The example generator2 deals with web surveys in a

form of questionnaires. It produces html forms and cgi
scripts (in Perl) that do the job with a database: database
table creating, entering the answers from web form to
database table, showing the results of a survey in a form of
web pages and similar. The generator itself is made in
Python and works in a web environment. The basic model
elements, Specification, Configuration and Templates are

2 http://arka.foi.hr/~darados/SCT_questionnaire/

available in html form (contains textual representation of
XML frame), as shown in Fig 8.

Fig. 8: Basic model elements in html form

The generated web application includes index page
with links to different operation with questionnaires
(could be more than one questionnaires), web
questionnaire forms and review of results (graphic and
textual). The example application includes questionnaire
about pets (Fig. 9).

Fig 9: Parts of generated application

5.1. Specification

The Specification in its first part defines names for the
kinds of outputs to be generated. Each kind of output is
connected to appropriate top-level template in
Configuration. In the example generator, kinds of outputs
are, as follows (attribute-value pairs; textual
representation):

OUTPUT:index
OUTPUT:table
OUTPUT:output_form
OUTPUT:form

where index refers to the index page (html), table to Perl
scripts for database table creation, output_form to html
form of questionnaire, and form to Perl scripts for
maintaining questionnaires. The definition of particular
question looks as follows (attribute-value pairs; textual
representation):

field_number:type
+field_show:Pet type
+question:Which pet do you have?
++question_radio:
+++answer:dog
+++answer:cat
+++answer:parrot
+++answer:other

Attribute field_number defines that database table field

is numeric (particular type, like integer, depends on
appropriate code templete), field_show defines what will
be shown in results (instead of question), question_radio
defines the form of question (radio buttons) and attributes
answer defines possible answers to the question. Signs '+'
define hierarchic levels (e.g. field_show belongs to
field_number).

5.2. Configuration

Configuration defines connections between the

application Specification and Templates. In its first part,
kinds of outputs are attached to their highest-level
templates (Table 1):

Table 1: Kinds of outputs with their highest-level
templates

Configuration Specification
#1#,,index.template
#2#,,script.template
#3#,,form.template
#4#,,questionnaire.template

OUTPUT:index
OUTPUT:table
OUTPUT:output_form
OUTPUT:form

The number between the '#' signs defines the ordinal

number of the output kind. The rest of the Configuration
defines three element groups where:

• the first element is a connection (physically
present in Templates),

• the second element is an attribute name from
Specification and

• the third element is the attached template
(omitted if there is no need for a template)

For example, the line:

#table#,table

means that the connection #table# should be replaced by
the value of the attribute table from Specification in all
their occurrences in the appropriate template. At the same
time,

#links#,title,links.template

means that connection #links# should be replaced by the
whole template links.template for each occurrence of the
attribute title (e.g. it is used for generating links on the
index page). In case of group attributes from
Specification, it could be specified as:

#form_fields#,field_*,field_form_*.template

meaning that the connection #form_fields# should be
replaced by the whole template for each occurrence of
any attribute with a name starting with field_ (e.g.
field_integer or field_text). The template name is given
by replacing the asterisk by field type (e.g.
field_form_integer.template). In case of source pre-
processing, it is specified as:

#fields#,list(field_*)

meaning that the connection #fields# should be replaced
by the value created by function list. It uses all attributes
with a name starting with a field to create the output
value (e.g. it is usable for generating a field list in SQL
queries). The order of Configuration lines is unimportant.

5.3. Templates

Templates are program code fragments that contain

connections in '#' signs. For example, Fig. 10 shows the
template of a web application index page (HTML):

Fig. 10: Example of code template

Each connection has appropriate line in Configuration

that define how the connection should be replaced by
code, e.g. the Configuration line:

 #application#,application

defines that #application# should be replaced by the value
of application attribute (in Specification).

 #links#,title, links.metascript

defines that #links# should be replaced by the template
links.metascript, as many times as title occurs in
Specification. All connections in links.metascript should
be processed in the same way (according to their
Configuration lines).

VI. CONCLUSION

This paper presents the Python implementation of SCT
generator model for defining, building and documenting
of a source code generator. The model defines three
components: Specification, Configuration, and a set of
Templates. These three components together make SCT
frames. The model was compared to Jarzabek's XVCL[6].

It is shown that Python is a suitable language for
building SCT based generators, because of its flexibility
as a scripting language with object-oriented features,
including possibility of creating their own classes. In
generator implementation, basic model elements,
Specification, Configuration and Templates are
represented in a form of Python lists. These lists are very
flexible data structures that enable mixing elements of
different types, including replacing strings by objects,
which is usable in program code generation. The
presented implementation model is verified by building a
generator of web applications that deals with
questionnaires.

REFERENCES

[1] M. Rosenmüller, N. Siegmund, G. Saake, S. Apel, “Code

generation to support static and dynamic composition of software
product lines,” GPCE '08: Proceedings of the 7th international
conference on Generative programming and component
engineering, October 2008.

[2] K. Czarnecki, U.W. Eisenecker, “Generative Programming:
Methods, Techniques, and Applications,” Addison-Wesley, 2000.

[3] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at
Objects,” In Proceedings of the European Conference on Object-

Oriented Programming (ECOOP), volume 1241 of Lecture Notes
in Computer Science, pp. 419–443. Springer Verlag, 1997.

[4] S. Apel, T. Leich, G. Saake, “Aspectual Feature Modules,” IEEE
Transactions on Software Engineering (TSE), 34(2):162–180,
2008.

[5] H. Zhang, S. Jarzabek, “XVCL: a mechanism for handling
variants in software product lines,” Science of Computer
Programming, Volume 53, Issue 3 (December 2004) Pages: 381
– 407

[6] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang, “XVCL: XML-
based variant configuration language,” in Proc. Int’l Conf. on
Software Engineering. Los Alamitos, CA, USA: IEEE Computer
Society, 2003, pp. 810–811.

[7] J. Blair, D. Batory, “A Comparison of Generative Approaches:
XVCL and GenVoca,” Technical report, The University of Texas
at Austin, Department of Computer Sciences, December 2004.

[8] V. Štuikys, R. Damaševi�ius, G. Ziberkas, “Open PROMOL: An
Experimental Language for Target Program Modification,”
Software Engineering Department, Kaunas University of
Technology, Kaunas, Lithuania, 2001.,
http://soften.ktu.lt/~damarobe/ publications/Vytautas_Stuikys.pdf

[9] C. Lemaire, “CODEWORKER Parsing tool and Code generator -
User’s guide & Reference manual,”
http://codeworker.free.fr/CodeWorker.pdf, 2008.

[10] Cog web site. Available at: http://nedbatchelder.com/code/cog/,
last accessed 20-12-2010.

[11] D. Radoševi�, T. Orehova�ki, M. Konecki, “PHP Scripts
Generator for Remote Database Administration based on C++
Generative Objects,” Proceedings of the Mipro 2007, Opatija
2007.

[12] I. Magdaleni�, D. Radoševi�, Z. Sko�ir, “Dynamic Generation of
Web Services for Data Retrieval Using Ontology,” Informatika,
Volume 20 Issue 3, pp. 397-416, 2009. Available at:
http://www.mii.lt/informatica/htm/INFO755.htm

