
Computer Cluster Scheduling Algorithm Based
on Time Bounded Dynamic Programming

I.Grudenic and N. Bogunovic
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of electrical engineering and computing, Zagreb, Croatia
{igor.grudenic, nikola.bogunovic}@fer.hr

Abstract - Computer clusters are currently the most used
distributed computer architecture. Efficient utilization of
computer cluster depends on a scheduling policy that is
applied. Scheduling of jobs in computer cluster is a
complicated task due to frequent changes in the workload.
In this paper we present scheduling algorithm that is based
on EASY backfilling scheduling strategy. Dynamic
programming with time restriction is used to calculate as
good schedule as possible within given time constraints.
Algorithm is evaluated on several computer cluster
workloads and is shown to outperform original backfilling
strategy.

I. INTRODUCTION

Computer clusters are among most used general
purpose distributed computer architecture [1]. They also
constitute up to 82% of top 500 supercomputers [2]. Other
18% of supercomputers are massively parallel processors
and constellations.

Efficient usage of the computer cluster can be
achieved by enforcement of appropriate usage policies and
by the choice of the scheduling algorithm. Scheduling in
parallel systems is at least NP hard [3]. Reason for
additional complexity is uncertainty of future events such
as arrival of new jobs, job failures, system failures and
early or late job completion. Additionally, cluster
scheduler decision rate must match event arrival rate in
order to utilize resources as fast as possible.

Since optimal solutions for scheduling problem cannot
be found in a feasible on time manner, different
scheduling heuristics are used. These heuristics target
several optimization goals like fairness, system utilization
and average system response. Achieving optimization
goals must be made avoiding user and job starvation while
keeping decision rates as high as possible.

In this paper we propose scheduling strategy for
management of non-preemptive rigid parallel jobs [4] in a
homogenous computer cluster. Proposed strategy is based
on the EASY backfilling algorithm [5]. It relies on EASY
mechanism for avoidance of job starvation and optimizes
on current resource utilization at every decision making
time. Optimization is done by employing exhaustive
search of the scheduling possibilities using dynamic
programming technique [6]. Since exhaustive search on a
large solution space is time consuming, algorithm search
space can be constrained with configurable time limit.

This paper is organized as follows. Section II contains
survey short survey of cluster scheduling algorithms.
Section III introduces the proposed scheduling algorithm.
Performance of the proposed algorithm is analyzed in
section IV.

II. RELATED WORK

Performance of scheduling in a computer cluster can
be measured in a variety of manners. Users typically
prefer system that is fair and offers as high average
response as possible. Organizations prefer highly utilized
systems for economic reasons with lesser desire for
fairness.

Due to somewhat conflicting goals, uncertain
environment and time constraints cluster schedulers are
designed to work on a slightly reduced version of target
goals. Input for the cluster scheduler is consisted of a
prioritized waiting job queue, set of jobs currently running
and a set of resources. Priorities in the waiting job queue
are used to abstract away fairness and other policies in the
system. Schedulers are not obliged to strictly follow
defined priorities because this would result in inefficient
schedules, but some method of starvation control must be
employed.

Response of the system is usually expressed as
average job wait time and average job slowdown [7] that
are defined as:

݁݃ܽݎ݁ݒܣ ݊ݓ݋݀ݓ݋݈ݏ = ∑)ݔܽܯ ܹ(݆) + ,(݆)ܴ)ݔܽܯ(݆)ܴ ߬) , 1)݆ ݏܾ݋ܬ∋ |ݏܾ݋ܬ|

݁݃ܽݎ݁ݒܣ ݐ݅ܽݓ ݁݉݅ݐ = ∑ ݆(݌)ܹ |ݏܾ݋ܬ|ݏܾ݋ܬ∋

where W(j) and R(j) denote job wait time and runtime for
the job j. Average job slowdown is usually calculated by
replacing runtime of very short jobs by predefined
constant τ. This is done in to avoid schedulers prioritizing
short jobs in order to improve slowdown metric.

Simple heuristics based on reordering of the waiting
job queue priorities according to job runtime and
parallelization level [8] are sometimes used as a
theoretical base for comparison of algorithms. Shortest job
first algorithm (SJF) is proven to produce schedule with

minimal average job slowdown but is completely
disregarding custom priorities and has no starvation
control.

Major cluster management systems employ different
types and modifications of backfilling based algorithms.
Backfilling algorithms create reservations for subset or all
the jobs in the system and allow jobs to run earlier as long
as reservations in the system are not prolonged. EASY
backfilling [9] that creates reservation only for the top
priority job and conservative backfilling that create
reservation for all the jobs in the system are two varieties
that are most widely used.

Variant of selective reservation backfilling [10], where
reservation is made only for jobs that have been waiting
longer then predefined time constraint, is shown to reduce
average slowdown by up to 70%. This reduction is
obtained by implicit reversal of given job priorities.
Method for dynamic partitioning of computer cluster [11]
and scheduling partitions using backfilling algorithm is
shown to reduce average slowdown by up to 70%. Jobs
are assigned to partitions according to their expected
runtime. Algorithm that creates reservations depending on
the order obtained by analyzing subset of the waiting jobs
[12] is shown to decrease average job slowdown for up to
30%.

Genetic algorithms are usually used for static
scheduling problems where computation speed is not an
issue. Input bounded genetic algorithm [13] is proposed to
cope with scheduler volatile environment. This method is
shown to decrease makespan of the system up to 50%
when compared to round robin and lightest load first
heuristics.

There are other algorithms for computer cluster
scheduling but they either require additional information
from the user or work with job types that are not rigid or
non-preemptive.

III. TIME BOUNDED SCHEDULING ALGORITHM BASED

ON DYNAMIC PROGRAMMING (DPSA)

Time bounded scheduling algorithm (DPSA) that is
described in this section is based on EASY backfilling
strategy with further optimization in ‘hole’ filling.

Optimization is performed by exhaustive search that is
interrupted when time limit expires. Most efficient
solution found within given time constraint is used.
Several varieties of the algorithm are proposed that differ
in order in which exhaustive search is performed and
which favor different types of optimization solutions.
Subsection A describes motivation behind this type of
optimization approach, while subsection B introduces the
algorithm. Different variations of DPSA algorithm
obtained by applying different job prioritization schemes
are given in subsection C.

A. Motivation

EASY backfiling algorithm schedules jobs by creating
reservation for the top priority job and allows other jobs to
run sooner only if such decision doesn’t prolong defined
reservation. Other jobs are scanned in descending priority
order and job is executed if there are enough available
resources at the moment of the decision. This strict
priority search can result in underutilization of resources
and less efficient schedules. Left side of the Fig. 1 shows
an example of EASY backfilling. At time=0 there are two
jobs running in the system and four jobs waiting for
execution. Jobs are sorted according to priorities with J1
having the highest priority. At time=2 one of the running
jobs is completed and EASY decision process is invoked.

EASY starts by creating reservation for the top priority
job J1 at time=7. This is followed by inspecting J2 and
starting it immediately (at time=2) since there are enough
available resources. Scanning of the waiting queue
continues, but there are is a lack of resources for either J3
or J4. Next decision point occurs at time=7 when J1 is
started and reservation for J3 is made. Jobs J3 and J4 are
started at time=9 which and this is the last scheduling
decision made by EASY at that exact moment.

It can be observed that more efficient schedule such as
one in the right side of the Fig. 1 is possible. The schedule
on the right side improves on makespan, system utilization
and average job slowdown. At time=2 EASY created
reservation for J1 and decided to run job J2 just because it
has the highest priority and can be executed immediately.
In our approach we do keep the reservation for the highest
priority job because this ensures algorithm to be starvation

1 2 3 4 5 6 7 8 time

C
PU

s

Queued
jobs

J1

9

J4

J2 J3

10 11 12 13

J1

J4J3
J2

Priority

1 2 3 4 5 6 7 8 time

C
PU

s

Queued
jobs

J1

9

J4

J2

J3

10 11 12 13

J1

J4J3
J2

Priority

Optimization space

a) EASY backfilling b) Optimization example

Fig. 1. Motivation for schedule optimization

free. When reservation for J1 is made optimization space
(Fig. 1) becomes available for scheduling. Jobs can be
combined in the optimization space in different ways and
complexity of the problem can grow exponentially with
size of this space.

In order to reduce the complexity it is decided to
optimize only for current utilization and to focus on jobs
that can be started immediately. Problem of optimization
that corresponds to two dimensional packing of jobs is
simplified to finding a subset of jobs that can be executed
momentarily and which employ as much resources as
possible. Construction of more complex schedules that
include plans for starting jobs in the future is possible, but
it is both time consuming and can be imprecise.
Inaccuracy of complex schedules is usually caused by
poor user runtime estimations [14].

Application of exhaustive search for example in Fig. 1
results in running J3 and J4 in parallel instead of J2 since
combination (J3,J4) maximizes utilization at time=2. This
results in greater overall utilization, shorter makespan and
reduction in average system slowdown.

B. DPSA Algorithm

DPSA Algorithm is designed to create reservation for
the top job and perform an exhaustive search on available
jobs to find the subset that maximizes utilization of free
resources. Algorithm is invoked when either new job
enters the system or one of the running jobs completes its
execution. This is easily extended to scenarios in which

users are allowed to cancel jobs and where resources may
malfunction.

Outline of the algorithm that is consisted of the main
DPSA procedure and procedure for resource utilization
optimization is presented in Fig 2. Main DPSA procedure
begins with clearing old reservations and starting high
priority jobs that can be executed immediately (line 3-7).
This is followed by creating reservation for the top
priority waiting job that cannot be started due to lack of
available resources (line 8). Call to the
OptimizeUtilization procedure is preceded by initialization
of free resource list lr and eligible job list lp. Eligible jobs
are the ones that require less then or all the free resources.

Procedure OptimizeUtilization is a recursive method
with iterations dedicated to adding only one job to the
solution being constructed. The procedure has several
arguments including current job index, list of eligible jobs,
list of free resources and it dynamically produces solutions
that are stored in the parameter tempSubset during the
construction. Solution contains set of pairs (ji,rsi) which
denotes that job ji should be executed on set of resources
rsi. The best solution found during the execution of the
algorithm is stored into topJobSet parameter. Optimization
process starts with comparison of best solution that is
found yet with the solution currently being constructed. If
the solution in the construction tops best solution’s
utilization it becomes the new best solution (lines 16-18).

Since OptimizeUtilization should perform exhaustive
search on a solution space, every iteration of the procedure

Fig. 2. DPSA algorithm

1 DPSA(){

2 ClearReservations()

3 p0=top priority waiting job

4 while(AvailableResources(p0)){

5 StartJobs(p0)

6 p0=top priority waiting job

7 }

8 CreateReservation(p0)

9 lr=list of currently free resources

10 lp=list of jobs in waiting queue that need no more than |lr| resources (excluding p0)

11 OptimizeUtilization(1,lp,lr,{},topJobSubset)

12 StartJobs(topJobSubset)

13 }

14

15 OptimizeUtilization(jobIndex,lp,lr,tempSubset,topJobSubset)

16 if(Utilization(tempSubset)>Utilization(topJobSubset)){

17 topJobSubset=tempSubset

18 }

19 i=jobIndex

20 while(i<|lp|){

21 feasibleResources={r|(r∈lr)∧(Availability(r)>=Runtime(lp(i)))}
22 if(ResourceConsumption(lp(i))<=|feasibleResources|{

23 dedicatedResources= subset of feasibleResources that minimizes on resource availability

24 tempSubset.Add(lp(i),dedicatedResources)

25 OptimizeUtilization(i+1,lp,lr-dedicatedResources,tempSubset,topJobSubset)

26 tempSubset.Delete(lp(i),dedicatedResources)

27 }

28 i++

29 }

27 }

is designed to add every possible job to the solution than
is being created. In order to prevent duplicating solutions
every procedure iteration scans and works only with jobs
that haven’t been used by other iterations of the same
procedure that reside higher in the call tree. This is
controlled by the argument jobIndex that represents
cardinal number of the first job that hasn’t been used yet.

For every unused job set of feasible resources is
computed (line 21) . Feasible resources for any job j are
currently free resources that ether have no future
reservation or future reservation do not conflict with
immediate execution of job j. If quantity of feasible
resources is less or equal to the amount required by the
given job this job is added to the temporary solution.
Since there may be many mappings of a particular job to
feasible resources, algorithm chooses the one that contains
resources with minimal availability (line 23). Chosen
mapping is then added to the temporary solution (line 24)
and recursive call of OptimizeUtilization is performed
(25). This is followed by removing the job added to the
temporary solution and iterating over the next job.

Time boundness of this algorithm is easily achieved by
adding a time or iteration count constriction on the top of
the procedure OptimizeUtilization. This algorithm ensures
absence of job starvation by creating reservations for the
highest priority job that cannot run immediately. Since
there is finite number of jobs that have priority higher than
any job j in the system, and since reservations for higher
priority jobs are performed in finite time it can be deduced
that job j will also start in finite time. However there is no
possibility to determine the latest possible start of any but
highest priority job.

C. Variants of the DPSA algorithm

It is fairly easy to determine which schedule solution
to take in cases when solutions differ in current utilization
of resources. Sometimes it may happen that two solutions
have same utilization while competing to be enforced in
the system. This can be resolved by numerous heuristics
and we propose three of them that rank solutions with
equal utilization according to job priorities (DPSAp) and
resource usage (DPSAn and DPSAw).

DPSAp variant differentiates two solutions by
comparing their highest priority jobs. The solution that is
preferable is the one in which top job has a higher priority.
If highest priority jobs are the same, second highest
priorities are compared and process is repeated
recursively. This variant is beneficial since it implicitly
supports enforcement of system policies. DPSAn variant
favors scheduling solutions containing jobs that use lesser
amount of resources. This allows more jobs to execute on
the same fixed amount of available resources which can
result in decrease in average slowdown and average wait
time. DPSAw variant is a direct opposite of DPSAn
algorithm and it therefore favors solutions with jobs that
consume greater amount of resources. The reasoning
behind DPSAw procedure is to start resource intensive
jobs immediately if possible in order to prevent future
schedule fragmentation.

Modification to base algorithm (Fig. 2) is needed in
order to perform DPSAn and DPSAw variants of the

algorithm. DPSAp variant is inherently implemented.
Simple modification might just add on comparison of
utilizations obtained by the best found solution and
solution than is most recently constructed (line 16). This is
not a best practice since algorithm may be time
constrained so more efficient implementation would
create solutions in order proposed by DPSAn or DPSAw.
Realization of time constrained efficient DPSAn and
DPSAw variants is done by presorting jobs in the waiting
queue by size instead of priority (line 10). Ascending
order is used in DPSAn and descending in DPSAw
algorithm.

IV. RESULTS

Three variants of the DPSA algorithm are tested
against eight computer cluster workloads. Multiple
simulations are performed using discrete time simulator
[15]. Computer cluster workloads originate from Parallel
workloads archive [16]. Targeted workloads differ in the
number of available resources and system utilization.

Simulations are performed in order to compare
efficiency of DPSA variants and original EASY
backfilling algorithm. In the experiment there was no time
bound imposed on the algorithm since every scheduling
decision was made within few seconds. This is due to
specifics of the given workloads and elimination nature of
the algorithm that disregards ineligible jobs during the
optimization. Time bound should be used on systems in
which many options for optimization exist.

Results that show change in average slowdown of
DPSA variants over EASY are presented in Fig. 3. It can
be observed that DPSAw algorithm always performs
worse than EASY resulting in up to 145% average
slowdown increase. This leads to conclusion that raising
priority of resource intensive jobs results in poor
slowdown rates.

Standard DPSAp variation is shown to outperform
EASY in half of the tested computers clusters where
average slowdown decreased from 1% up to 8%. In other
four computer clusters DPSAp resulted in slowdown
increase of up to 17% at LLNL-Thunder-2007 computer
cluster. Although it may be expected that optimization on

-50% -30% -10% 10% 30% 50% 70% 90% 110%130%150%

CTC-SP2-1996

HPC2N-2002

LLNL-Atlas-2006

LLNL-Thunder-2007

SDSC-BLUE-2000

SDSC-Par-1995

SDSC-Par-1996

SDSC-SP2-1998

Change in average slowdown compared to EASY

DPSAw DPSAn DPSAp

Fig. 3. DPSA performance results

current utilization while respecting priorities will lead to
better slowdown results it can be noted that job duration is
an important factor for the targeted metric. Scheduling
strategies that increase priority of short jobs are
guaranteed to improve on overall slowdown, but this can
hardly be achieved since exact runtimes are unknown
before the job completion.

DPSAn is the only DPSA variety that outperforms
EASY for all the simulated cluster workloads. Decrease in
average slowdown over EASY ranges from 0,3% for
LLNL-Atlas2006 up to 40% for LLNL-Thunder-2007
computer cluster. In order to determine the type of
workload for which DPSAn will produce significant
improvement performance results are correlated with
utilization of the target workloads. Visual representation
of the correlation is given in Fig. 4.

It can be noted that benefits of using DPSAn are
negligible for systems that have low utilization such as
LLNL-Atlas-2006 and HPC2N-2002. In these systems
there are usually small amounts or no jobs in the waiting
queue so optimization options are greatly reduced.
Performance gains (reductions in average slowdown) over
EASY algorithm are shown to rise as the system
utilization rises. The correlation between the gains and
utilization seems to be linear except for the anomaly
caused by SDSC-Par-1995, SDSC-Par-1996 and SDSC-
SP2-1998. It must be emphasized that performance
improvements greatly depend on the opportunity to
rearrange waiting jobs. In some clusters systems job
patterns and current system availability show modest
space for improvement.

V. CONCLUSION

In this paper we presented a novel DPSA algorithm for
scheduling of rigid non-preemptive jobs on a computer
cluster. Algorithm is designed by dynamic programming
technique and it performs exhaustive search on possible
mappings of waiting jobs to unutilized resources. In order
to ensure high decision rates needed by the cluster’s
dynamic environment DPSA is time bounded.

The DPSA algorithm improves over EASY’s strict
priority backfilling scheme by allowing for higher
utilization of resources at the time of decision making.
Reservation system of EASY is preserved to ensure
freedom of job starvation. Three variations of the DPSA
algorithm are defined which favor jobs according to
priorities and resource consumption.

DPSA variants performance is compared to plain
EASY scheduling for eight different workloads. Results
show that DPSAn variant which favors less resource
intensive jobs is a winning strategy with up to 40%
decrease in average slowdown. It is concluded that
DPSAn variant shows greatest performance improvement
for highly utilized computer clusters.

Since any optimization goal other then maximizing
utilization of currently available resources strongly
depends on precise job runtimes we plan to investigate on
possibilities of their prediction. Finding correlation
between scheduler decision time and performance of the
different scheduling algorithms is also one of the possible
topics in computer cluster scheduling research.

VI. REFERENCES
[1] IDC HPC Market Update,

http://www.hpcadvisorycouncil.com/events/china_workshop/pdf/6
_IDC.pdf

[2] TOP500 Supercomputing Sites, http://www.top500.org/

[3] E.G. Coffman Jr, M.R. Garez, D.S. Johnson, R.E. Tarjan,
“Performance bounds for level-oriented two-dimensional packing
algorithms”, SIAM Journal on Computing,Vol. 9, p. 808, 1980.

[4] D.G. Feitelson, L. Rudolph, “Toward Convergence in Job
Schedulers for Parallel Supercomputers”, In Jobs Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer
Science, Vol. 1911, p. 1, 2000

[5] D.A. Lifka, “The ANL IBM SP Scheduling System”, Lecture
Notes in Computer Science, Vol. 949, p. 303, 1995.

[6] D.B. Wagner, “Dynamic Programming”,The Mathematica
Journal, Vol. 5, Issue 4, Fall 1995,

[7] D. G. Feitelson, “Metrics for parallel job scheduling and their
convergence”, Lecture Notes in Computer Science, 2001, Vol.
2221, p. 188, 2001.

[8] O. Arndt, B. Freisleben, T. Kielmann, F.Thilo, “A comparative
study of online scheduling algorithms for networks of
workstations”, Cluster Computing, Vol. 3, Issue 2, p. 95, 2000.

[9] D.A. Lifka, “The ANL IBM SP Scheduling System”, Lecture
Notes in Computer Science, Vol. 949, p. 295, 1995.

[10] S. Srinivasan, R. Kettimuthu, V. Subramani, P. Sadayappan,
“Selective Reservation Strategies for Backfill Job Scheduling”,
Lecture Notes in Computer Science, Vol. 2537, p. 55, 2002.

[11] B.G. Lawson, “Self-adapting backfilling scheduling for parallel
systems”, In Proceedings of the International Conference on
Parallel Processing, p. 583, 2002.

[12] E. Shmueli, D.G. Feitelson, “Backfilling with lookahead to
Optimize the Performance of Paralell Job Scheduling”, Lecture
Notes in Computer Science, Vol. 2862, p. 228, 2003.

[13] A.J. Page, T.J. Naughton, “Dynamic Task Scheduling using
Genetic Algorithms for Heterogeneous Distributed Computing”,
In the Proceedings of 19th IEEE International Symposium on
Parallel and Distributed Processing, 2005.

[14] C.B. Lee, Y. Schwartzman, J. Hardy, A. Snavely, “Are user
runtime estimates inherently inaccurate?”, Lecture Notes in
Computer Science, Vol. 3277, p. 253, 2005.

[15] I. Grudenić, N.Bogunović, Computer Cluster and Grid Simulator,
In the Proceedings of the Joint Conferences Computers in
Technical systems and Intelligent systems, p. 44, 2009.

[16] Parallel Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload/

Fig. 4. DPSAn performance and utilization correlation

