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Abstract - Computer clusters are currently the most used 
distributed computer architecture. Efficient utilization of 
computer cluster depends on a scheduling policy that is 
applied. Scheduling of jobs in computer cluster is a 
complicated task due to frequent changes in the workload. 
In this paper we present scheduling algorithm that is based 
on EASY backfilling scheduling strategy. Dynamic 
programming with time restriction is used to calculate as 
good schedule as possible within given time constraints. 
Algorithm is evaluated on several computer cluster 
workloads and is shown to outperform original backfilling 
strategy. 

I. INTRODUCTION 

Computer clusters are among most used general 
purpose distributed computer architecture [1]. They also 
constitute up to 82% of top 500 supercomputers [2]. Other 
18% of supercomputers are massively parallel processors 
and constellations. 

Efficient usage of the computer cluster can be 
achieved by enforcement of appropriate usage policies and 
by the choice of the scheduling algorithm. Scheduling in 
parallel systems is at least NP hard [3]. Reason for 
additional complexity is uncertainty of future events such 
as arrival of new jobs, job failures, system failures and 
early or late job completion. Additionally, cluster 
scheduler decision rate must match event arrival rate in 
order to utilize resources as fast as possible. 

Since optimal solutions for scheduling problem cannot 
be found in a feasible on time manner, different 
scheduling heuristics are used. These heuristics target 
several optimization goals like fairness, system utilization 
and average system response. Achieving optimization 
goals must be made avoiding user and job starvation while 
keeping decision rates as high as possible. 

In this paper we propose scheduling strategy for 
management of non-preemptive rigid parallel jobs [4] in a 
homogenous computer cluster. Proposed strategy is based 
on the EASY backfilling algorithm [5]. It relies on EASY 
mechanism for avoidance of job starvation and optimizes 
on current resource utilization at every decision making 
time. Optimization is done by employing exhaustive 
search of the scheduling possibilities using dynamic 
programming technique [6]. Since exhaustive search on a 
large solution space is time consuming, algorithm search 
space can be constrained with configurable time limit. 

This paper is organized as follows. Section II contains 
survey short survey of cluster scheduling algorithms. 
Section III introduces the proposed scheduling algorithm. 
Performance of the proposed algorithm is analyzed in 
section IV. 

II. RELATED WORK 

Performance of scheduling in a computer cluster can 
be measured in a variety of manners. Users typically 
prefer system that is fair and offers as high average 
response as possible. Organizations prefer highly utilized 
systems for economic reasons with lesser desire for 
fairness. 

Due to somewhat conflicting goals, uncertain 
environment and time constraints cluster schedulers are 
designed to work on a slightly reduced version of target 
goals. Input for the cluster scheduler is consisted of a 
prioritized waiting job queue, set of jobs currently running 
and a set of resources. Priorities in the waiting job queue 
are used to abstract away fairness and other policies in the 
system. Schedulers are not obliged to strictly follow 
defined priorities because this would result in inefficient 
schedules, but some method of starvation control must be 
employed. 

Response of the system is usually expressed as 
average job wait time and average job slowdown [7] that 
are defined as: 
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where W(j) and R(j) denote job wait time and runtime for 
the job j.  Average job slowdown is usually calculated by 
replacing runtime of very short jobs by predefined 
constant  τ. This is done in to avoid schedulers prioritizing 
short jobs in order to improve slowdown metric. 

Simple heuristics based on reordering of the waiting 
job queue priorities according to job runtime and 
parallelization level [8] are sometimes used as a 
theoretical base for comparison of algorithms. Shortest job 
first algorithm (SJF) is proven to produce schedule with 



minimal average job slowdown but is completely 
disregarding custom priorities and has no starvation 
control. 

Major cluster management systems employ different 
types and modifications of backfilling based algorithms. 
Backfilling algorithms create reservations for subset or all 
the jobs in the system and allow jobs to run earlier as long 
as reservations in the system are not prolonged. EASY 
backfilling [9] that creates reservation only for the top 
priority job and conservative backfilling that create 
reservation for all the jobs in the system are two varieties 
that are most widely used. 

Variant of selective reservation backfilling [10], where 
reservation is made only for jobs that have been waiting 
longer then predefined time constraint, is shown to reduce 
average slowdown by up to 70%. This reduction is 
obtained by implicit reversal of given job priorities. 
Method for dynamic partitioning of computer cluster [11] 
and scheduling partitions using backfilling algorithm is 
shown to reduce average slowdown by up to 70%. Jobs 
are assigned to partitions according to their expected 
runtime. Algorithm that creates reservations depending on 
the order obtained by analyzing subset of the waiting jobs 
[12] is shown to decrease average job slowdown for up to 
30%. 

Genetic algorithms are usually used for static 
scheduling problems where computation speed is not an 
issue. Input bounded genetic algorithm [13] is proposed to 
cope with scheduler volatile environment. This method is 
shown to decrease makespan of the system up to 50% 
when compared to round robin and lightest load first 
heuristics. 

There are other algorithms for computer cluster 
scheduling but they either require additional information 
from the user or work with job types that are not rigid or 
non-preemptive. 

III. TIME BOUNDED SCHEDULING ALGORITHM BASED 

ON DYNAMIC PROGRAMMING (DPSA) 

Time bounded scheduling algorithm (DPSA) that is 
described in this section is based on EASY backfilling 
strategy with further optimization in ‘hole’ filling. 

Optimization is performed by exhaustive search that is 
interrupted when time limit expires. Most efficient 
solution found within given time constraint is used. 
Several varieties of the algorithm are proposed that differ 
in order in which exhaustive search is performed and 
which favor different types of optimization solutions. 
Subsection A describes motivation behind this type of 
optimization approach, while subsection B introduces the 
algorithm. Different variations of DPSA algorithm 
obtained by applying different job prioritization schemes 
are given in subsection C. 

A. Motivation 

EASY backfiling algorithm schedules jobs by creating 
reservation for the top priority job and allows other jobs to 
run sooner only if such decision doesn’t prolong defined 
reservation. Other jobs are scanned in descending priority 
order and job is executed if there are enough available 
resources at the moment of the decision. This strict 
priority search can result in underutilization of resources 
and less efficient schedules. Left side of the Fig. 1 shows 
an example of EASY backfilling. At time=0 there are two 
jobs running in the system and four jobs waiting for 
execution. Jobs are sorted according to priorities with J1 
having the highest priority. At time=2 one of the running 
jobs is completed and EASY decision process is invoked. 

EASY starts by creating reservation for the top priority 
job J1 at time=7. This is followed by inspecting J2 and 
starting it immediately (at time=2) since there are enough 
available resources. Scanning of the waiting queue 
continues, but there are is a lack of resources for either J3 
or J4. Next decision point occurs at time=7 when J1 is 
started and reservation for J3 is made. Jobs J3 and J4 are 
started at time=9 which and this is the last scheduling 
decision made by EASY at that exact moment. 

It can be observed that more efficient schedule such as 
one in the right side of the Fig. 1 is possible. The schedule 
on the right side improves on makespan, system utilization 
and average job slowdown. At time=2 EASY created 
reservation for J1 and decided to run job J2 just because it 
has the highest priority and can be executed immediately. 
In our approach we do keep the reservation for the highest 
priority job because this ensures algorithm to be starvation 
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Fig. 1. Motivation for schedule optimization 



free. When reservation for J1 is made optimization space 
(Fig. 1) becomes available for scheduling. Jobs can be 
combined in the optimization space in different ways and 
complexity of the problem can grow exponentially with 
size of this space. 

In order to reduce the complexity it is decided to 
optimize only for current utilization and to focus on jobs 
that can be started immediately. Problem of optimization 
that corresponds to two dimensional packing of jobs is 
simplified to finding a subset of jobs that can be executed 
momentarily and which employ as much resources as 
possible. Construction of more complex schedules that 
include plans for starting jobs in the future is possible, but 
it is both time consuming and can be imprecise. 
Inaccuracy of complex schedules is usually caused by 
poor user runtime estimations [14]. 

Application of exhaustive search for example in Fig. 1 
results in running J3 and J4 in parallel instead of J2 since 
combination (J3,J4) maximizes utilization at time=2. This 
results in greater overall utilization, shorter makespan and 
reduction in average system slowdown. 

B. DPSA Algorithm 

DPSA Algorithm is designed to create reservation for 
the top job and perform an exhaustive search on available 
jobs to find the subset that maximizes utilization of free 
resources. Algorithm is invoked when either new job 
enters the system or one of the running jobs completes its 
execution. This is easily extended to scenarios in which 

users are allowed to cancel jobs and where resources may 
malfunction. 

Outline of the algorithm that is consisted of the main 
DPSA procedure and procedure for resource utilization 
optimization is presented in Fig 2. Main DPSA procedure 
begins with clearing old reservations and starting high 
priority jobs that can be executed immediately (line 3-7). 
This is followed by creating reservation for the top 
priority waiting job that cannot be started due to lack of 
available resources (line 8). Call to the 
OptimizeUtilization procedure is preceded by initialization 
of free resource list lr and eligible job list lp. Eligible jobs 
are the ones that require less then or all the free resources. 

Procedure OptimizeUtilization is a recursive method 
with iterations dedicated to adding only one job to the 
solution being constructed. The procedure has several 
arguments including current job index, list of eligible jobs, 
list of free resources and it dynamically produces solutions 
that are stored in the parameter tempSubset during the 
construction. Solution contains set of pairs (ji,rsi) which 
denotes that job ji should be executed on set of resources 
rsi. The best solution found during the execution of the 
algorithm is stored into topJobSet parameter. Optimization 
process starts with comparison of best solution that is 
found yet with the solution currently being constructed. If 
the solution in the construction tops best solution’s 
utilization it becomes the new best solution (lines 16-18). 

Since OptimizeUtilization should perform exhaustive 
search on a solution space, every iteration of the procedure 

Fig. 2. DPSA algorithm 

1  DPSA(){ 

2    ClearReservations() 

3    p0=top priority waiting job 

4    while(AvailableResources(p0)){ 

5      StartJobs(p0) 

6      p0=top priority waiting job 

7    } 

8    CreateReservation(p0) 

9    lr=list of currently free resources 

10   lp=list of jobs in waiting queue that need no more than |lr| resources (excluding p0) 

11   OptimizeUtilization(1,lp,lr,{},topJobSubset) 

12   StartJobs(topJobSubset) 

13 } 

14 

15 OptimizeUtilization(jobIndex,lp,lr,tempSubset,topJobSubset) 

16   if(Utilization(tempSubset)>Utilization(topJobSubset)){ 

17     topJobSubset=tempSubset 

18   } 

19   i=jobIndex 

20   while(i<|lp|){ 

21     feasibleResources={r|(r∈lr)∧(Availability(r)>=Runtime(lp(i)))} 
22     if(ResourceConsumption(lp(i))<=|feasibleResources|{ 

23       dedicatedResources= subset of feasibleResources that minimizes on resource availability 

24       tempSubset.Add(lp(i),dedicatedResources) 

25       OptimizeUtilization(i+1,lp,lr-dedicatedResources,tempSubset,topJobSubset) 

26       tempSubset.Delete(lp(i),dedicatedResources) 

27     } 

28     i++ 

29  } 

27 } 



is designed to add every possible job to the solution than 
is being created. In order to prevent duplicating solutions 
every procedure iteration scans and works only with jobs 
that haven’t been used by other iterations of the same 
procedure that reside higher in the call tree. This is 
controlled by the argument jobIndex that represents 
cardinal number of the first job that hasn’t been used yet. 

For every unused job set of feasible resources is 
computed (line 21) . Feasible resources for any job j are 
currently free resources that ether have no future 
reservation or future reservation do not conflict with 
immediate execution of job j. If quantity of feasible 
resources is less or equal to the amount required by the 
given job this job is added to the temporary solution. 
Since there may be many mappings of a particular job to 
feasible resources, algorithm chooses the one that contains 
resources with minimal availability (line 23). Chosen 
mapping is then added to the temporary solution (line 24) 
and recursive call of OptimizeUtilization is performed 
(25). This is followed by removing the job added to the 
temporary solution and iterating over the next job. 

Time boundness of this algorithm is easily achieved by 
adding a time or iteration count constriction on the top of 
the procedure OptimizeUtilization. This algorithm ensures 
absence of job starvation by creating reservations for the 
highest priority job that cannot run immediately. Since 
there is finite number of jobs that have priority higher than 
any job j in the system, and since reservations for higher 
priority jobs are performed in finite time it can be deduced 
that job j will also start in finite time. However there is no 
possibility to determine the latest possible start of any but 
highest priority job. 

C. Variants of the DPSA algorithm 

It is fairly easy to determine which schedule solution 
to take in cases when solutions differ in current utilization 
of resources. Sometimes it may happen that two solutions 
have same utilization while competing to be enforced in 
the system. This can be resolved by numerous heuristics 
and we propose three of them that rank solutions with 
equal utilization according to job priorities (DPSAp) and 
resource usage (DPSAn and DPSAw). 

DPSAp variant differentiates two solutions by 
comparing their highest priority jobs. The solution that is 
preferable is the one in which top job has a higher priority. 
If highest priority jobs are the same, second highest 
priorities are compared and process is repeated 
recursively. This variant is beneficial since it implicitly 
supports enforcement of system policies. DPSAn variant 
favors scheduling solutions containing jobs that use lesser 
amount of resources. This allows more jobs to execute on 
the same fixed amount of available resources which can 
result in decrease in average slowdown and average wait 
time. DPSAw variant is a direct opposite of DPSAn 
algorithm and it therefore favors solutions with jobs that 
consume greater amount of resources. The reasoning 
behind DPSAw procedure is to start resource intensive 
jobs immediately if possible in order to prevent future 
schedule fragmentation.  

Modification to base algorithm (Fig. 2) is needed in 
order to perform DPSAn and DPSAw variants of the 

algorithm. DPSAp variant is inherently implemented. 
Simple modification might just add on comparison of 
utilizations obtained by the best found solution and 
solution than is most recently constructed (line 16). This is 
not a best practice since algorithm may be time 
constrained so more efficient implementation would 
create solutions in order proposed by DPSAn or DPSAw. 
Realization of time constrained efficient DPSAn and 
DPSAw variants is done by presorting jobs in the waiting 
queue by size instead of priority (line 10). Ascending 
order is used in DPSAn and descending in DPSAw 
algorithm. 

IV. RESULTS 

Three variants of the DPSA algorithm are tested 
against eight computer cluster workloads. Multiple 
simulations are performed using discrete time simulator 
[15]. Computer cluster workloads originate from Parallel 
workloads archive [16]. Targeted workloads differ in the 
number of available resources and system utilization. 

Simulations are performed in order to compare 
efficiency of DPSA variants and original EASY 
backfilling algorithm. In the experiment there was no time 
bound imposed on the algorithm since every scheduling 
decision was made within few seconds. This is due to 
specifics of the given workloads and elimination nature of 
the algorithm that disregards ineligible jobs during the 
optimization. Time bound should be used on systems in 
which many options for optimization exist. 

Results that show change in average slowdown of 
DPSA variants over EASY are presented in Fig. 3. It can 
be observed that DPSAw algorithm always performs 
worse than EASY resulting in up to 145% average 
slowdown increase. This leads to conclusion that raising 
priority of resource intensive jobs results in poor 
slowdown rates. 

Standard DPSAp variation is shown to outperform 
EASY in half of the tested computers clusters where 
average slowdown decreased from 1% up to 8%. In other 
four computer clusters DPSAp resulted in slowdown 
increase of up to 17% at LLNL-Thunder-2007 computer 
cluster. Although it may be expected that optimization on 
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current utilization while respecting priorities will lead to 
better slowdown results it can be noted that job duration is 
an important factor for the targeted metric. Scheduling 
strategies that increase priority of short jobs are 
guaranteed to improve on overall slowdown, but this can 
hardly be achieved since exact runtimes are unknown 
before the job completion.  

DPSAn is the only DPSA variety that outperforms 
EASY for all the simulated cluster workloads. Decrease in 
average slowdown over EASY ranges from 0,3% for 
LLNL-Atlas2006 up to 40% for LLNL-Thunder-2007 
computer cluster. In order to determine the type of 
workload for which DPSAn will produce significant 
improvement performance results are correlated with 
utilization of the target workloads. Visual representation 
of the correlation is given in Fig. 4. 

It can be noted that benefits of using DPSAn are 
negligible for systems that have low utilization such as 
LLNL-Atlas-2006 and HPC2N-2002. In these systems 
there are usually small amounts or no jobs in the waiting 
queue so optimization options are greatly reduced. 
Performance gains (reductions in average slowdown) over 
EASY algorithm are shown to rise as the system 
utilization rises. The correlation between the gains and 
utilization seems to be linear except for the anomaly 
caused by SDSC-Par-1995, SDSC-Par-1996 and SDSC-
SP2-1998. It must be emphasized that performance 
improvements greatly depend on the opportunity to 
rearrange waiting jobs. In some clusters systems job 
patterns and current system availability show modest 
space for improvement. 

V. CONCLUSION 

In this paper we presented a novel DPSA algorithm for 
scheduling of rigid non-preemptive jobs on a computer 
cluster. Algorithm is designed by dynamic programming 
technique and it performs exhaustive search on possible 
mappings of waiting jobs to unutilized resources. In order 
to ensure high decision rates needed by the cluster’s 
dynamic environment DPSA is time bounded.  

The DPSA algorithm improves over EASY’s strict 
priority backfilling scheme by allowing for higher 
utilization of resources at the time of decision making. 
Reservation system of EASY is preserved to ensure 
freedom of job starvation. Three variations of the DPSA 
algorithm are defined which favor jobs according to 
priorities and resource consumption. 

DPSA variants performance is compared to plain 
EASY scheduling for eight different workloads. Results 
show that DPSAn variant which favors less resource 
intensive jobs is a winning strategy with up to 40% 
decrease in average slowdown. It is concluded that 
DPSAn variant shows greatest performance improvement 
for highly utilized computer clusters. 

Since any optimization goal other then maximizing 
utilization of currently available resources strongly 
depends on precise job runtimes we plan to investigate on 
possibilities of their prediction. Finding correlation 
between scheduler decision time and performance of the 
different scheduling algorithms is also one of the possible 
topics in computer cluster scheduling research. 
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