
Relief mapping for urban and natural
environments rendering

D. Janković* and Ž. Mihajlović **
* AVL/AST -- Advanced Simulation Technologies, Zagreb, Croatia

** University of Zagreb, Faculty of Electrical Engineering and Computing/

Department of Electronics Microelectronics, Computer Science and Intelligent Systems,Zagreb, Croatia

danijel.jankovic@avl.com, zeljka.mihajlovic@fer.hr

Abstract - Terrain models typically contain huge amount of

data so they are very time consuming for visualization

purposes. This especially comes to the forefront when urban

environments are included. The main compromise in

representation of the complex environments is between

achieved quality and time consumption. With the simple

texture representation of complex environments we will

accomplish fast application, and with the large polygonal

meshes, high quality of the rendered scene.

In this paper we propose rendering of urban and natural

environments using parallax and relief mapping. This

approach combines benefits of the rendering of polygonal

meshes and texture approach. Thereby, in the proposed

approach improved quality on the one side and increased

speed on the other side is combined. The applicability of the

method is demonstrated trough parallax and relief mapping

within the Irrilicht open source graphics engine. The

shaders programs were made with the GLSL shader

language. As the result, the tests were made to determine the

possible usage of parallax and relief mapping in the display

of natural and urban environments.

Keywords: terrain rendering, urban environments, relief

mapping, parallax mapping

I. INTRODUCTION

There are several ways of terrain visualization, the first
and oldest is the so called top down view, used for
centuries on cartographic maps, while the second being
perspective rendering used in modern computer graphics.
Terrain has always been an important factor in military
simulations being used to accustom pilots to hostile
territory as well as to help commanders make important
decisions.

For a typical terrain rendering application, in some
simulation scenario, it is important to accomplish an
acceptable frame rate, and at the same time insure high
quality of scene representation. If the terrain is observed
from closer distances, only a small part of it should be
considered but with a high level of detail. For the far point
of view details are not visible anyway, therefore texture
representation could be used instead of some distant

complex object. The main problem is between those two
extreme cases, when larger part of terrain is observed but
details are not so distant to be neglected. For flight
simulation purposes representation of large or even huge
terrains, various techniques are used to reduce graphic
overload [7], [8]. Usually these techniques are based on
managing LOD of polygonal mashes depending on view
position.

There are several main components that could cause
decrease of application performances: bandwidth, central
processing unit CPU, and graphics processing unit GPU.
The CPU loads and identifies the terrain data, does the
necessary transformations for creating a mesh of points
which is then sent to the GPU for additional processing
and rendering. In modern 3D graphics applications it is
necessary to display large, photorealistic terrains with a
large amount of detail.

The problem is always the computing power available
to process all the required data. More specifically, the
terrain in flight simulators extends for hundreds if not
thousands of kilometers, with satellite images added to it
as textures for enhanced realism. This is fine if the user
stays at a relatively large distance from the terrain, when
getting closer the fact that the terrain is flat becomes more
obvious. The first and most common solution to this is
adding textured 3D polygon mesh as buildings on top of
the texture. The problem with this approach is the
additional geometry for the system to process, especially
for dense urban areas.

The main idea in this paper is to reduce amount of
geometric data but to maintain perception of objects’
height. Therefore, in this paper we propose the techniques
of parallax and relief mapping in an attempt to determine
their potential in decreasing the resource cost for terrain
rendering.

II. PARALLAX MAPPING

Parallax mapping is also known as offset mapping or
virtual displacement mapping and is an enhancement of
the well known bump and normal mapping techniques.
The term parallax refers to the difference in the apparent
position of an object viewed along two different lines of
sight, and is measured by the angle or semi-angle of
inclination between those two lines as presented in Zinc
[2].

This work has been carried out within the project 036-0362980-

1921 Computing Environments for Ubiquitous Distributed Systems

funded by the Ministry of Science, Education and Sport of the Republic

of Croatia.

The final result of the parallax mapping technique is
enhanced depth and irregularity, there are deformations of
the terrain similar to bumps giving the illusion of a jagged
terrain (Figure 1), and thus greater realism of the observed
texture is achieved.

The parallax mapping technique works by offsetting
the texture coordinates at a point on the rendered polygon
by a function of the view angle in tangent space (the angle
relative to the surface normal) and the value of the height
map at that point. At steeper view-angles, the texture
coordinates are displaced more, giving the illusion of
depth due to parallax effects as the view changes. The
texture offset calculation is relatively simple:

 { }

{ }z

yx

sbn
V

V
hTT

,

0 ⋅+= . (1)

Where Tn represents the new texture coordinates, T0
the original texture coordinates, hsb is the scaled and
biased height, and V{x, y, z} is the normalized eye vector.
An improvement of this technique is Parallax mapping
with offset limiting which limits the maximal texture offset
resulting in fewer errors caused by texture overlapping,
[5]. The modified equation is:

 { }yxsbn VhTT ,0 ⋅+= . (2)

It does have flaws as it cannot account for occlusion
and self-shadowing. For that reason the relief mapping
technique is further investigated in this paper.

GlSL vertex shader code for parallax mapping is
following:
uniform vec3 LightPos, EyePos;

varying vec3 LightDir, EyeDir;

varying vec2 TexCoord;

attribute vec3 rm_Tang, rm_Binor;

void main() {

vec3 pos = normalize(vec3(gl_ModelViewMatrix * gl_Vertex));

vec3 Light = LightPos - pos;

vec3 Eye = EyePos - pos;

vec3 Tangent = normalize(vec3(gl_NormalMatrix * rm_Tang));

vec3 Normal = normalize(vec3(gl_NormalMatrix * gl_Normal));

vec3 Binormal =normalize(vec3(gl_NormalMatrix * rm_Binor));

LightDir.x = dot(Light, Tangent);

LightDir.y = dot(Light, Binormal);

LightDir.z = dot(Light, Normal);

EyeDir.x = dot(Eye, Tangent);

EyeDir.y = dot(Eye, Binormal);

EyeDir.z = dot(Eye, Normal);

TexCoord = gl_MultiTexCoord0.xy;
gl_Position = ftransform();}

For each vertex light vector Light and eye vector Eye
are transformed in TBN space. Fragment shader for each
pixel calculate appropriate texture element according to
the equation (2) where variable tHeight denotes hsb:

uniform vec4 ambientC, diffuseC, specularC;

uniform sampler2D ColorTex, NormTex;

uniform float s, b, a;

varying vec3 LightDir, EyeDir;

varying vec2 TexCoord;

void main(void) {

float d = length(LightDir);

vec3 tLightDir = normalize(LightDir);

vec3 tEyeDir = normalize(EyeDir);

float attenu = 1.0/(a * d);

float tHeight = texture2D(NormTex, TexCoord).w * s + b;

vec2 tTexCoord = TexCoord + (tHeight * tEyeDir.xy);

vec3 tNormal = normalize(vec3(texture2D(NormTex,
tTexCoord)) * 2.0 -1.0);

float fNDotL = dot(tNormal, tLightDir);

vec3 fvReflection=normalize(((2.0*tNormal)*fNDotL)-tLightDir);

float fRDotV = max(0.0, dot(fvReflection, tEyeDir));

vec4 fvBaseColor = texture2D(ColorTex, tTexCoord);

vec4 fvTotalAmbient = ambientC * fvBaseColor * attenu;

vec4 fvTotalDiffuse = diffuseC * fNDotL* fvBaseColor* attenu;

vec4 fvTotalSpecular = specularC * (pow(fRDotV, 25.0))*attenu;

gl_FragColor= fvTotalAmbient+fvTotalDiffuse+fvTotalSpecular;

}

Figure 1. Parallax mapping on the natural terrain, a bumpy effect on the surface is observable.

III. RELIEF MAPPING

Relief mapping uses the programmability of modern
GPUs to implement a pixel-driven solution to relief
texture mapping. For the relief mapping beside ordinary
texture an additional 32 bit texture with normal vectors
stored in the RGB channels and the height map stored in
the

�
 channel of the image should be prepared [6].

This technique produces the parallax effect along with
self-occlusion, self-shadowing, and view-motion parallax.
It is, in essence, a short distance ray trace computed in the
pixel shader. The input to the algorithm is the depth
characteristic of the texture and the view vector. The pre-
deformation solves the problems of visibility and filling in
any potential blanks. The output picture of the algorithm is
simply used as an input to the standard texture mapping
technique.

The two parameters important to note here are linear
search depth and binary search depth. Binary search is
used in determining the intersection between the view ray
and the depth characteristic while the linear search is used
to determine the first point of intersection with the depth
characteristic [1].

There are also some other approaches in determining
the ray intersection with surface [3]. The flaws of the
technique come into being when viewing the texture from
small angles, resulting in a fish eye effect on the surface
because of intersection miscalculations, presented in
Figure 2. The solution to this is using cone step mapping.

In vertex shader for relief mapping tangent, normal
and binormal are transformed in eye space, and in the
fragment shader short distance ray tracer is programmed.
The main part of fragment shader is:

float ray_intersect(in vec2 dp, in vec2 ds) {
 //const int linear_search_steps=20;
 //const int binary_search_steps=5;
float depth_step=1.0/float(linear_search_steps);

float size=depth_step; // size of search window
float depth=0.0; // current depth position
float best_depth=1.0; // best match for depth

// intersection of ray with object
for(int i=0;i<linear_search_steps-1;i++) {
 depth+=size;
 vec4 t=texture2D(reliefMap,dp+ds*depth);
 if (best_depth>0.999) // if no depth found
 if (depth>=t.w)
 best_depth=depth; // best depth
}
return best_depth;

}

IV. RESULTS

The techniques mentioned above were implemented
inside the Irrilicht open source engine [4], with the ability
to modify the offset value for parallax mapping, and the
linear search steps value for relief mapping. The shaders
themselves are simple implementations of parallax and
relief mapping written in the OpenGL shading language
(GLSL) as presented in II and III.

The main problem with reproducing urban
environments is the lack of city height maps. It would
certainly be better to use real height maps if they are
available. But, if the real height map is unavailable, the
idea is to use specular lighting approximation to simulate
height maps of urban environments. For parallax mapping
specular lighting was used to simulate the height maps
(Figure 3) and results are shown to demonstrate the
usefulness of this approximation. Approximation of a
height map according to the given texture map of an urban
environment is presented in Figure 4.

Figure 3. Texture height map and specular

lighting approximation.

Figure 2. Relief mapping at small angles.

Figure 4. Texture and heightmap approximation

of urban environment.

Using the mentioned approximation of a height map
the following results were produced with the usage of
parallax mapping. For evaluation purposes the testing
configuration was: CPU: AMD Athlon X2 5000 Mhz,
RAM: 2GB DDR2 800 MHz, GPU: ATI 4670 512 MB
DDR3 OS: Windows XP SP2.

Firstly, we compare the rendering speed of urban and
natural environments rendering using ordinary texture
mapping and parallax mapping. If parallax mapping is
applied the mountain range appears higher than the rest of
the terrain and deeper areas are shown correctly. The
performance cost was only 14% since parallax mapping
performs very fast on modern GPU-s.

Relief mapping, when compared to standard texture
mapping is more time demanding. As seen from Table 1.
relief mapping reduces performances but significantly
improves 3D perception (Figure 5). When relief mapping
is applied, the terrain is realistically bumpy with correct
shadows and surface irregularities. We should also be
aware that static pictures do not reveal fine details as
interactive movement around the shown terrain.

TABLE 1. COMPARISON BETWEEN THE TEXTURE MAPPING
AND RELIEF MAPPING.

Test Texture mapping Relief mapping

Urban environment

texture resolution 512 x 512

repeated over the terrain

176 fps 44 fps

Urban environment,

texture resolution

1024 x 1024

196 fps 56 fps

Natural environment,

texture resolution

1280 x 1280

170 fps 60 fps

Finally, we present performance comparison between
texture mapping, polygonal mesh rendering with different
LODs, parallax mapping and relief mapping (Table 2).
Parallax mapping is a common technique in modern video
games and its usage is well documented making it easy to
implement in any API. It can be used for high altitude
simulations, applied to the terrain previously generated by

polygons for enhanced realism and present a desirable
effect in any 3D environment (Figure 1).

TABLE 2. PERFORMANCE COMPARISON BETWEEN VARIOUS
RENDERING CONCEPTS

Test 1024 x 1024 natural texture Performance

Texture mapping 824 fps

Polygon rendering

(1 LOD, 3195724 polygons)

5 fps

Polygon rendering

(3 LOD, 199724 polygons)

62 fps

Polygon rendering

(5 LOD, 49940 polygons)

170 fps

Parallax mapping 716 fps

Relief mapping 55 fps

The performance cost for parallax mapping is low,
averaging in a 14.06% decrease compared to texture
mapping. Taking into account the high frame rates
produced by modern computer systems this is a barely
noticeable slowdown. However parallax mapping cannot
replace 3D polygons even at medium distance because of
its shortcomings, lack of self occlusion, noticeable
artifacts at smaller distances, and from small viewing
angles due to the approximation of the texture offset.

Relief mapping is a technique which has great
potential, creating a convincing 3D surface from a
previously flat image. It elevates the higher parts of the
terrain and produces correct shadowing (Figure 5). Its
drawbacks however are a high processing cost and errors
which occur when the surface is viewed from a small
angle (Figure 2).

Relief mapping can be used on natural and urban
terrain at medium view distances with great effect,
producing a realistic elevation effect (Figure 5), especially
if height maps of the desired terrain are available. Usage
of relief mapping from a large distance is not
recommended because of the large processing cost. In
case of natural terrain without many buildings it is
recommended to use the standard polygon rendering with
LOD algorithms because relief mapping cannot be used
for extreme close-ups such as flybys through canyons.

However it is important to note that relief mapping has
demonstrated to be more efficient than standard polygon
rendering without LOD algorithms when used on natural
terrains. The usage of relief mapping results in a 69.75%
performance drop, making it unusable in many modern
complex applications and on older systems. The technique
is still being optimized and it is likely to be used in
modern graphic applications in the near future.

V. CONCLUSION

As is observable from the results, the approximation of
the terrain using parallax mapping is an efficient and cost
effective technique to simulate the depth of a surface
which can be easily implemented using pixel and vertex
shaders. It produces bumps and indentations in the terrain
elevating the realism factor by a significant margin.
Specular images used for height map approximation can
be created very easily, and the parameters of the image
can be modified to suit specific visual needs. Relief
mapping is appropriate at medium view distances on
terrain.

From the overall analysis we can conclude that
parallax and relief mapping has potential in natural and
urban terrain rendering at the appropriate viewing
distances for the representation of urban and natural
environments.

REFERENCES

[1] F. Policarpo, M.M. Oliveira, and J.L. Comba “Real-time relief
mapping on arbitrary polygonal surfaces“, In Proceedings of the

2005 Symposium on interactive 3D Graphics and Games. I3D '05.
ACM, 2005, pp. 155-162. doi: 10.1145/1053427.1053453

[2] J. Zinc “A Closer Look at Parallax Occlusion Mapping“,
http://www.gamedev.net/columns/hardcore/pom/ Accessed
January 2010.

[3] E. Risser, S. Musawir, and P. Sumanta P, “Interval Mapping.
University of Central Florida“ Technical Report. Available online
http://graphics.cs.ucf.edu/IntervalMapping/images/IntervalMappin
g.pdf.

[4] Irrilicht open source engine 2010, http://irrlicht.sourceforge.net,
Accessed 2010.

[5] T. Welsh, “Parallax mapping with offset limiting: a per pixel
approximation of uneven surfaces“. http://pds1.egloos.com/pds
/1/200603/10/62/parallax_mapping.pdf, Accessed Jan 2010.

[6] F. Policarpo and M.M. Oliveira, Relief mapping of non-height-
field surface details. In Proceedings of the 2006 Symposium on
interactive 3D Graphics and Games, March 14 - 17, 2006. I3D '06.
2006, pp. 55-62. DOI= http://doi.acm.org/10.1145/
1111411.1111422

[7] J. Schneider and R. Westermann, “GPU-friendly high-quality
terrain rendering“. Journal of WSCG, 14 (1-3): 2006, pp. 49–56.

[8] F. Losasso, H. Hoppe, Geometry clipmaps: Terrain rendering
using nested regular grids ACM Trans. on Graphics (Proc.
SIGGRAPH 2004), Vol. 23, No.3, 2004, pp. 769-776.

Figure 5. Texture mapping (left) and relief mapping (right).

