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Abstract - Terrain models typically contain huge amount of 

data so they are very time consuming for visualization 

purposes. This especially comes to the forefront when urban 

environments are included. The main compromise in 

representation of the complex environments is between 

achieved quality and time consumption. With the simple 

texture representation of complex environments we will 

accomplish fast application, and with the large polygonal 

meshes, high quality of the rendered scene. 

In this paper we propose rendering of urban and natural 

environments using parallax and relief mapping. This 

approach combines benefits of the rendering of polygonal 

meshes and texture approach. Thereby, in the proposed 

approach improved quality on the one side and increased 

speed on the other side is combined. The applicability of the 

method is demonstrated trough parallax and relief mapping 

within the Irrilicht open source graphics engine. The 

shaders programs were made with the GLSL shader 

language. As the result, the tests were made to determine the 

possible usage of parallax and relief mapping in the display 

of natural and urban environments. 
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mapping, parallax mapping 

I. INTRODUCTION 

There are several ways of terrain visualization, the first 
and oldest is the so called top down view, used for 
centuries on cartographic maps, while the second being 
perspective rendering used in modern computer graphics. 
Terrain has always been an important factor in military 
simulations being used to accustom pilots to hostile 
territory as well as to help commanders make important 
decisions.  

For a typical terrain rendering application, in some 
simulation scenario, it is important to accomplish an 
acceptable frame rate, and at the same time insure high 
quality of scene representation. If the terrain is observed 
from closer distances, only a small part of it should be 
considered but with a high level of detail. For the far point 
of view details are not visible anyway, therefore texture 
representation could be used instead of some distant 

complex object. The main problem is between those two 
extreme cases, when larger part of terrain is observed but 
details are not so distant to be neglected. For flight 
simulation purposes representation of large or even huge 
terrains, various techniques are used to reduce graphic 
overload [7], [8]. Usually these techniques are based on 
managing LOD of polygonal mashes depending on view 
position. 

There are several main components that could cause 
decrease of application performances: bandwidth, central 
processing unit CPU, and graphics processing unit GPU. 
The CPU loads and identifies the terrain data, does the 
necessary transformations for creating a mesh of points 
which is then sent to the GPU for additional processing 
and rendering. In modern 3D graphics applications it is 
necessary to display large, photorealistic terrains with a 
large amount of detail.  

The problem is always the computing power available 
to process all the required data. More specifically, the 
terrain in flight simulators extends for hundreds if not 
thousands of kilometers, with satellite images added to it 
as textures for enhanced realism. This is fine if the user 
stays at a relatively large distance from the terrain, when 
getting closer the fact that the terrain is flat becomes more 
obvious. The first and most common solution to this is 
adding textured 3D polygon mesh as buildings on top of 
the texture. The problem with this approach is the 
additional geometry for the system to process, especially 
for dense urban areas.  

The main idea in this paper is to reduce amount of 
geometric data but to maintain perception of objects’ 
height. Therefore, in this paper we propose the techniques 
of parallax and relief mapping in an attempt to determine 
their potential in decreasing the resource cost for terrain 
rendering. 

II. PARALLAX MAPPING 

Parallax mapping is also known as offset mapping or 
virtual displacement mapping and is an enhancement of 
the well known bump and normal mapping techniques. 
The term parallax refers to the difference in the apparent 
position of an object viewed along two different lines of 
sight, and is measured by the angle or semi-angle of 
inclination between those two lines as presented in Zinc 
[2]. 
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The final result of the parallax mapping technique is 
enhanced depth and irregularity, there are deformations of 
the terrain similar to bumps giving the illusion of a jagged 
terrain (Figure 1), and thus greater realism of the observed 
texture is achieved. 

The parallax mapping technique works by offsetting 
the texture coordinates at a point on the rendered polygon 
by a function of the view angle in tangent space (the angle 
relative to the surface normal) and the value of the height 
map at that point. At steeper view-angles, the texture 
coordinates are displaced more, giving the illusion of 
depth due to parallax effects as the view changes. The 
texture offset calculation is relatively simple: 
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Where Tn represents the new texture coordinates, T0 
the original texture coordinates, hsb is the scaled and 
biased height, and V{x, y, z} is the normalized eye vector. 
An improvement of this technique is Parallax mapping 
with offset limiting which limits the maximal texture offset 
resulting in fewer errors caused by texture overlapping, 
[5]. The modified equation is:  
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It does have flaws as it cannot account for occlusion 
and self-shadowing. For that reason the relief mapping 
technique is further investigated in this paper. 

GlSL vertex shader code for parallax mapping is 
following: 
uniform vec3 LightPos, EyePos; 

varying vec3 LightDir, EyeDir; 

varying vec2 TexCoord; 

attribute vec3 rm_Tang, rm_Binor; 

void main()  { 

vec3 pos =  normalize(vec3(gl_ModelViewMatrix * gl_Vertex)); 

vec3 Light = LightPos - pos; 

vec3 Eye   = EyePos - pos; 

vec3 Tangent = normalize(vec3(gl_NormalMatrix * rm_Tang)); 

vec3 Normal = normalize(vec3(gl_NormalMatrix * gl_Normal)); 

vec3 Binormal =normalize(vec3(gl_NormalMatrix * rm_Binor)); 

LightDir.x = dot(Light, Tangent); 

LightDir.y = dot(Light, Binormal); 

LightDir.z = dot(Light, Normal); 

EyeDir.x = dot(Eye, Tangent); 

EyeDir.y = dot(Eye, Binormal); 

EyeDir.z = dot(Eye, Normal); 

TexCoord = gl_MultiTexCoord0.xy; 
gl_Position = ftransform();} 

For each vertex light vector Light and eye vector Eye 
are transformed in TBN space. Fragment shader for each 
pixel calculate appropriate texture element according to 
the equation (2) where variable tHeight denotes hsb: 

uniform vec4 ambientC, diffuseC, specularC; 

uniform sampler2D ColorTex, NormTex; 

uniform float s, b, a; 

varying vec3 LightDir, EyeDir; 

varying vec2 TexCoord; 

void main(void) { 

float d = length(LightDir); 

vec3 tLightDir = normalize(LightDir); 

vec3 tEyeDir = normalize(EyeDir); 

float attenu = 1.0/(a * d); 

float tHeight = texture2D(NormTex, TexCoord).w * s + b; 

vec2 tTexCoord = TexCoord + (tHeight * tEyeDir.xy);  

vec3 tNormal = normalize(vec3(texture2D(NormTex, 
tTexCoord)) * 2.0 -1.0); 

float fNDotL = dot(tNormal, tLightDir); 

vec3 fvReflection=normalize(((2.0*tNormal)*fNDotL)-tLightDir); 

float fRDotV  = max(0.0, dot(fvReflection, tEyeDir)); 

vec4 fvBaseColor = texture2D(ColorTex, tTexCoord); 

vec4  fvTotalAmbient = ambientC * fvBaseColor * attenu;  

vec4  fvTotalDiffuse = diffuseC * fNDotL* fvBaseColor* attenu; 

vec4  fvTotalSpecular = specularC * (pow(fRDotV, 25.0))*attenu; 

gl_FragColor= fvTotalAmbient+fvTotalDiffuse+fvTotalSpecular; 

} 

 

Figure 1. Parallax mapping on the natural terrain, a bumpy effect on the surface is observable. 



 

III. RELIEF MAPPING 

Relief mapping uses the programmability of modern 
GPUs to implement a pixel-driven solution to relief 
texture mapping. For the relief mapping beside ordinary 
texture an additional 32 bit texture with normal vectors  
stored in the RGB channels and the height map stored in 
the 

�
 channel of the image should be prepared [6]. 

This technique produces the parallax effect along with 
self-occlusion, self-shadowing, and view-motion parallax. 
It is, in essence, a short distance ray trace computed in the 
pixel shader. The input to the algorithm is the depth 
characteristic of the texture and the view vector. The pre-
deformation solves the problems of visibility and filling in 
any potential blanks. The output picture of the algorithm is 
simply used as an input to the standard texture mapping 
technique. 

The two parameters important to note here are linear 
search depth and binary search depth. Binary search is 
used in determining the intersection between the view ray 
and the depth characteristic while the linear search is used 
to determine the first point of intersection with the depth 
characteristic [1]. 

There are also some other approaches in determining 
the ray intersection with surface [3]. The flaws of the 
technique come into being when viewing the texture from 
small angles, resulting in a fish eye effect on the surface 
because of intersection miscalculations, presented in 
Figure 2. The solution to this is using cone step mapping. 

In vertex shader for relief mapping tangent, normal 
and binormal are transformed in eye space, and in the 
fragment shader short distance ray tracer is programmed. 
The main part of fragment shader is: 

float ray_intersect(in vec2 dp, in vec2 ds) { 
   //const int linear_search_steps=20; 
   //const int binary_search_steps=5; 
float depth_step=1.0/float(linear_search_steps); 
 
float size=depth_step;  // size of search window 
float depth=0.0;  // current depth position 
float best_depth=1.0; // best match for depth 

 

// intersection of ray with object 
for( int i=0;i<linear_search_steps-1;i++ ) { 
      depth+=size; 
      vec4 t=texture2D(reliefMap,dp+ds*depth); 
      if (best_depth>0.999)   // if no depth found 
      if (depth>=t.w) 
         best_depth=depth;   // best depth 
} 
return best_depth; 

} 

IV. RESULTS 

The techniques mentioned above were implemented 
inside the Irrilicht open source engine [4], with the ability 
to modify the offset value for parallax mapping, and the 
linear search steps value for relief mapping. The shaders 
themselves are simple implementations of parallax and 
relief mapping written in the OpenGL shading language 
(GLSL) as presented in II and III. 

The main problem with reproducing urban 
environments is the lack of city height maps. It would 
certainly be better to use real height maps if they are 
available. But, if the real height map is unavailable, the 
idea is to use specular lighting approximation to simulate 
height maps of urban environments. For parallax mapping 
specular lighting was used to simulate the height maps 
(Figure 3) and results are shown to demonstrate the 
usefulness of this approximation. Approximation of a 
height map according to the given texture map of an urban 
environment is presented in Figure 4. 

 

Figure 3. Texture height map and specular  

lighting approximation. 

 

Figure 2. Relief mapping at small angles. 



 

Figure 4. Texture and heightmap approximation  

of urban environment. 

Using the mentioned approximation of a height map 
the following results were produced with the usage of 
parallax mapping. For evaluation purposes the testing 
configuration was: CPU: AMD Athlon X2 5000 Mhz, 
RAM: 2GB DDR2 800 MHz, GPU: ATI 4670 512 MB 
DDR3 OS: Windows XP SP2. 

Firstly, we compare the rendering speed of urban and 
natural environments rendering using ordinary texture 
mapping and parallax mapping. If parallax mapping is 
applied the mountain range appears higher than the rest of 
the terrain and deeper areas are shown correctly. The 
performance cost was only 14% since parallax mapping 
performs very fast on modern GPU-s. 

Relief mapping, when compared to standard texture 
mapping is more time demanding. As seen from Table 1. 
relief mapping reduces performances but significantly 
improves 3D perception (Figure 5). When relief mapping 
is applied, the terrain is realistically bumpy with correct 
shadows and surface irregularities. We should also be 
aware that static pictures do not reveal fine details as 
interactive movement around the shown terrain. 

TABLE 1. COMPARISON BETWEEN THE TEXTURE MAPPING 
AND RELIEF MAPPING. 

Test Texture mapping Relief mapping 

Urban environment  

texture resolution 512 x 512  

repeated over the terrain 

176 fps 44 fps 

Urban environment,  

texture resolution  

1024 x 1024  

196 fps 56 fps 

Natural environment,  

texture resolution  

1280 x 1280 

170 fps 60 fps 

 

Finally, we present performance comparison between 
texture mapping, polygonal mesh rendering with different 
LODs, parallax mapping and relief mapping (Table 2). 
Parallax mapping is a common technique in modern video 
games and its usage is well documented making it easy to 
implement in any API. It can be used for high altitude 
simulations, applied to the terrain previously generated by 

polygons for enhanced realism and present a desirable 
effect in any 3D environment (Figure 1). 

TABLE 2. PERFORMANCE COMPARISON BETWEEN VARIOUS  
RENDERING CONCEPTS 

Test 1024 x 1024 natural texture Performance 

Texture mapping  824 fps 

Polygon rendering  

(1 LOD, 3195724 polygons) 

5 fps 

Polygon rendering  

(3 LOD, 199724 polygons) 

62 fps 

Polygon rendering  

(5 LOD, 49940 polygons) 

170 fps 

Parallax mapping 716 fps 

Relief mapping 55 fps 

 

The performance cost for parallax mapping is low, 
averaging in a 14.06% decrease compared to texture 
mapping. Taking into account the high frame rates 
produced by modern computer systems this is a barely 
noticeable slowdown. However parallax mapping cannot 
replace 3D polygons even at medium distance because of 
its shortcomings, lack of self occlusion, noticeable 
artifacts at smaller distances, and from small viewing 
angles due to the approximation of the texture offset. 

Relief mapping is a technique which has great 
potential, creating a convincing 3D surface from a 
previously flat image. It elevates the higher parts of the 
terrain and produces correct shadowing (Figure 5). Its 
drawbacks however are a high processing cost and errors 
which occur when the surface is viewed from a small 
angle (Figure 2). 

Relief mapping can be used on natural and urban 
terrain at medium view distances with great effect, 
producing a realistic elevation effect (Figure 5), especially 
if height maps of the desired terrain are available. Usage 
of relief mapping from a large distance is not 
recommended because of the large processing cost. In 
case of natural terrain without many buildings it is 
recommended to use the standard polygon rendering with 
LOD algorithms because relief mapping cannot be used 
for extreme close-ups such as flybys through canyons. 

However it is important to note that relief mapping has 
demonstrated to be more efficient than standard polygon 
rendering without LOD algorithms when used on natural 
terrains. The usage of relief mapping results in a 69.75% 
performance drop, making it unusable in many modern 
complex applications and on older systems. The technique 
is still being optimized and it is likely to be used in 
modern graphic applications in the near future. 

 

 

 



 

V. CONCLUSION 

As is observable from the results, the approximation of 
the terrain using parallax mapping is an efficient and cost 
effective technique to simulate the depth of a surface 
which can be easily implemented using pixel and vertex 
shaders. It produces bumps and indentations in the terrain 
elevating the realism factor by a significant margin. 
Specular images used for height map approximation can 
be created very easily, and the parameters of the image 
can be modified to suit specific visual needs. Relief 
mapping is appropriate at medium view distances on 
terrain. 

From the overall analysis we can conclude that 
parallax and relief mapping has potential in natural and 
urban terrain rendering at the appropriate viewing 
distances for the representation of urban and natural 
environments. 
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Figure 5. Texture mapping (left) and relief mapping (right). 


