
Extending the JADE Agent Behaviour Model
with JBehaviourTrees Framework

Iva Bojic1, Tomislav Lipic2, Mario Kusek1, and Gordan Jezic1

1 University of Zagreb, Faculty of Electrical Engineering and Computing
Unska 3, HR-10000, Zagreb, Croatia

{iva.bojic, mario.kusek, gordan.jezic}@fer.hr
2 Rudjer Boskovic Institute, Centre for Informatics and Computing

Bijenicka 54, HR-10000, Zagreb, Croatia
tlipic@irb.hr

Abstract. Creating modular behaviours in JADE using a traditional
method such as the FSM (Finite State Machine) can be a difficult task
to achieve. The first issue with FSMs is that they do not allow reusability
of logic in different contexts. Secondly, the FSMs do not lend themselves
well to concurrency within the execution thread and thus eliminating
the possibility for parallel behaviours. Lastly, as the number of states in
FSMs becomes increasing large, it becomes difficult to manage them. In
this paper we introduce our JBehaviourTrees Framework that extends
JADE Behaviours with BTs (Behaviour Trees) model. BTs are built via
the composition of basic tasks increasing the possibility for modularity
and code reuse. The proposed approach is verified through a case study
concerning a FIPA-Request Interaction Protocol.
Keywords: Behaviour trees, JADE, Finite State Machines, FIPA-Requ-
est Interaction Protocol

1 Introduction

In general, each software agent must be autonomous, proactive, reactive and
posses some social skills [14]. Specifically, in this paper we are dealing with soft-
ware agents implemented in JADE (Java Agent DEvelopment Framework), since
JADE implements all basic FIPA (Foundation for Intelligent Physical Agents)
specifications. In JADE, agents have full control over their internal states and
behaviours and the only way for them to communicate with other agents is by
sending ACL (Agent Communication Language) messages. Therefore, they have
their autonomy, but also by communicating with others, are able to be social.
Moreover, agents’ proactiveness can be achieved implementing their behaviours
as goal-driven [2]. Although, the design choice of JADE was to keep the agent
abstraction simple, without requiring explicit representation of goals and men-
tal attitudes, JADE user community provided different solutions [12, 8]. Finally,
reactive agents typically are more action oriented as they map their perceptions
into actions.

There are numerous methods for building simple, reactive agents based on
FSMs (Finite State Machines) [7], HFSMs (Hierarchical Finite State Machines)

2 I. Bojic et al.

[5, 4] and BTs [10, 1] (Behaviour Trees). FSMs are widely used as the main
technology when creating the Artificial Intelligence (e.g. in games for nonplayers
characters) because of their efficiency, simplicity and expressibly. However, FSMs
do not allow reusability of logic in different contexts. Therefore, in order to reuse
them, states must be duplicated (causing redundancy) or a great number of
complex transitions must be added. Moreover, FSMs suffer from the problem of
becoming unmanageable past a certain size, as maintaining the O(n2) transitions
between states becomes an increasingly difficult problem [6].

HFSMs reduce this issue by allowing grouping together a set of states (i.e.
super-states) that have common transitions. Different super-states can be then
grouped together creating a hierarchy. However, they do not allow reusing of
states in different situations because transitions are hard-coded in them. The
solution is to use the BTs, which have the same power as HFSMs, but move
transitions to external states, so states become self-contained. Every state there-
fore encapsulates some piece of logic transparently and independently of the
context [13].

The main contributions of this paper are summarized below:

• introduction and implementation of BT model into JADE within JBehaviour-
Trees Framework, and;

• its functional evaluation on FIPA-Request IP (Interaction Protocol).

The rest of the paper is organized as follows. Section 2 introduces BTs, while
Section 3 presents different types of agents behaviours in JADE and the way
how they are used to implement BTs explaining our JBehaviourTrees Frame-
work (letter J is abbreviation for JADE). Section 4 illustrates FIPA-Request
Interaction Protocol case study comparing protocol’s standard implementation
as FSMs with our implementation of this protocol using JBehaviourTrees. Fi-
nally, Section 5 concludes the paper and gives an outline for future work.

2 Behaviour Trees

The main building block of BT is a task, instead of state in FSMs and HFSMs.
Table 1 shows types of tasks in BTs: Composite tasks (i.e. Selectors, Sequences
and Parallels), Decorator task and Leaf tasks (i.e. Actions and Conditions) [11].
Leaf task performs an action or determines if a condition has been met. Com-
posite tasks and Decorator are composed of children tasks that can be either
composite tasks (i.e. Composites and Decorator) or Leaves.

Execution process in BTs can be described through handling the return sta-
tus of tasks and their (un)blocking policies (see Table 1). Each task returns a
status code indicating success or failure (possibly with error statuses). Leaf tasks
return status codes indicating whether they succeeded or failed (e.g. Condition
task returns success if condition C is met, and failure otherwise), while status
code from Composite tasks depends on their children. Moreover, in order to
avoid waiting on some tasks (e.g. while they wait on messages), every single task
can be blocked. The block() method puts the task in a queue of blocked tasks,
while unblock() method restarts a blocked task.

JBehaviourTrees Framework 3

Table 1. Types of BTs’ tasks

Task Symbol Execution process

Selector succeeds if one child succeeds
(un)blocks when its currently

Sequence fails if one child fails
active child (un)blocks

Parallel

fails if F children fail (Failure
policy); succeeds if S children

succeed (Success policy)

blocks when all its children
block; unblocks as soon as
any of its children unblocks

Decorator
manipulates with the return

status of its child
(un)blocks itself and its

children

Action
fails if it cannot complete the

action
(un)blocks itself

Condition succeeds if condition C is met

2.1 Composite tasks

The root of BT is basically top-level task that can be then decomposed recur-
sively into sub-tasks accomplished with simpler tasks called Composite tasks.
Composite tasks are tasks with one or more children, which act as decision
nodes within the tree determining which child task to execute. Their execution
depends on the execution of their children. When child task is completed and
has returned its status code, the Composite decides whether to continue through
its other children or whether to stop and return a value.

Selector. Selectors are used to choose the first child that is successful. A Selector
will return immediately with a success status code when one of its children ends
successfully. Each Selector can have its own criteria for selecting the child task:

• Probability selector - chooses a child task based on a probability (random or
specified by user), and;

• Priority selector - chooses a child task based on the order of children (first
child is most important).

Sequence. Sequence sequentially executes all its children in order. It will return
immediately with a failure status code when one of its children fails. As long as
its children are succeeding, it will keep going. If it runs out of children, it will
return success.

4 I. Bojic et al.

Parallel. Parallel task supports execution of concurrent tasks, running all of its
children at the same time. A Parallel task has a parallel policy: Failure policy
or Success policy (see Table 1). Symbol for Parallel task has letter F indicating
how many children have to fail, so Parallel task would fail. Analogously, letter S
detonates the number of children that have to succeed in order for Parallel task
to be successful.

2.2 Decorator task

The name decorator is taken from object-oriented software engineering. The dec-
orator pattern refers to a class that wraps another class, modifying its behaviour.
Decorator in BTs is a type of task that has one single child task and modifies
its behaviour. It takes the original task and adds decorations, i.e. new features.
For instance, Decorator can be used to: limit the number of times a task can be
run, prevent task from firing too often with a timer or restrict the number of
tasks running simultaneously.

2.3 Leaf tasks

Leaf tasks are tasks with no children: Actions and Conditions. An Action task
performs an action, while Condition task determines if a condition C has been
met. By separating Leaf tasks into Actions and Conditions, BTs become more
easily understood and adaptable, extending behaviour modularity and function-
ality. Therefore, Composite tasks can be used in a way that allows them to act
as pre-conditions or assumptions for other tasks.

3 JBehaviourTrees Framework: Implementing BTs into
JADE

In JADE, Behaviour class is an abstract class for modelling agent behaviours.
It is responsible for the basic behaviour scheduling and state transitions, such
as starting, running, blocking, restarting and terminating JADE’s behaviours.
Since Behaviour class, along with its subclasses (e.g. CompositeBehaviour, Sim-
pleBehaviour and WrapperBehaviour) provide whole functionality and control
of behaviours execution process, we explain how we used that mechanisms in
our JBehaviourTrees Framework.

3.1 Implementing BTs tasks functionality

Our JBehaviourTrees Framework consist of six classes: SelectorTask, Sequenc-
eTask, ParallelTask, DecoratorTask, ActionTask and ConditionTask classes. We
used CompositeBehaviour class to implement set of Composite tasks, Wrapper-
Behaviour class is extended in classes that implement functionality of Decora-
torTask, and finally, Leaf tasks are implemented as SimpleBehaviours.

JBehaviourTrees Framework 5

Composite tasks. SelectorTask and SequenceTask extend SerialBehaviour,
a composite behaviour with serial children scheduling. They both implement
checkTermination() method that checks whether to terminate. SelectorTask ter-
minates when one child successes (returning success) or ends when all children
are executed and none of them succeed (returning failure), while SequenceTask
terminates when one child fails (returning failure) or ends when all children
are executed and none of them failed (returning success). ParallelTask is imple-
mented extending ParallelBehaviour class, a composite behaviour with concur-
rent children scheduling. ParallelTask terminates (and returns success) when a
particular condition on its sub-behaviours is met (i.e. when all children are done,
N children are done or one child is done). Otherwise it ends returning failure.

Decorator task. DecoratorTask is implemented extending WrapperBehaviour
class. This class allows modifying on the fly the way an existing behaviour object
works, and therefore provides a good decorator design pattern for BTs Decorator
task implementation.

Leaf tasks. Both, ActionTask and ConditionTask are implemented as OneShot-
Behaviours, that completes immediately after its action() method is executed
exactly one time. When some condition must be checked repeatability, or some
action executed more than once, DecoratorTask can be used to determinate the
number of times leaf task must be run.

3.2 Controlling BTs tasks execution process

In BTs, the route from the top level to each leaf represents one course of action,
and the execution of BT evaluates those courses of action in a left-to-right man-
ner performing a depth-first search. The control of this execution process can be
achieved using JADE’s behaviours scheduling, control handling and (un)blocking
mechanisms.

Scheduling. If an agent in JADE, has more independent behaviours (added
using addBehaviour() method in base Agent class), their execution is controlled
by JADE’s scheduler. Scheduler, implemented by the base Agent class, main-
tains a set of active behaviours that are then executed in a round-robin manner.
Behaviours, that are not independent behaviours, but sub-behaviours of Compos-
iteBehaviour (e.g. like tasks in BTs), have their own scheduling policies realized
through ”control handling mechanisms”.

Control handling mechanisms. Composite and Decorator tasks in BTs are
used to control the flow within the tree, while Leaf tasks execute code returning
success or failure. In all cases, except when the task is currently running, control
is passed back to the parent task. The parent task then handles the given return
status of its child passing it up to its parent.

6 I. Bojic et al.

In JADE, the CompositeBehaviour class provides only a common interface
for children scheduling, but does not define any scheduling policy. This means
that the actual operations performed by executing this behaviour are not de-
fined in the behaviour itself, but inside its children. Scheduling policies, defined
by its subclasses (SerialBehaviour and ParallelBehaviour classes) are already
explained in Section 3.1.

As for the returning codes, the Behaviour class provides a place-holder method
named onEnd(). This method must be overridden returning an int value that
represents a termination value for that behaviour. This int value denotes either
that behaviour has completed its task successfully, or that it was terminated
after some error had happened.

(Un)blocking mechanisms. In order to maintain the list of active tasks ready
for execution, each task must be classified as running, blocked or terminated. Task
is in runnable phase until it is blocked or terminated. When blocked, it enters
in inactive mode and is not in list of active tasks.

In JADE, a behaviour is active when executing its action() method. By us-
ing block() method, behaviour can be put in a queue of blocked behaviours, and
can be unblocked when restart() method is called, while handle() method han-
dles block/restart events in behaviours through RunnableChangedEvent class.
RunnableChangedEvent class is used to notify interested behaviours when cer-
tain behaviour changes its runnable state sending this information to behaviour’s
parent (upward notification) or to behaviour’s children (downward notification).
Finally, behaviour is terminated when its done() method returns true.

3.3 Achieving BTs task collaboration

Agents in JADE can communicate transparently sending ACL messages. Their
communication is based on an asynchronous message passing paradigm. But, for
inner-agent communication (i.e. collaboration), between behaviours within one
composite behaviour (i.e. CompositeBehaviour class), JADE provides private
data store for each behaviour through DataStore class. In this way a blackboard
architecture for CompositeBehaviours and their children is realized and it is
ground for data sharing among our JADE BTs tasks.

The blackboard is a useful external data store for exchanging data between
behaviours (i.e. tasks). When agents communicate by writing and reading from
the blackboard, they are independent from each other, and that is a better way
than calling methods. Moreover, having all behaviours communicate in this way,
allows a usage of existing data in novel ways, making it quicker to extend the
functionality of implementation.

4 Case study: FIPA-Request Interaction Protocol

FIPA-ACL [3] specifies a collection of communicative acts where semantics of
each act is specified in terms of a set of feasibility preconditions and a set of

JBehaviourTrees Framework 7

REs (Rational Effects). Interaction protocols specify agent communication by
defining sequences of speech acts that can be used for specific type of interactions
between agents. In this section we explain the FIPA-Request IP.

The FIPA-Request IP [3] allows one agent (i.e. Initiator) to request another
(i.e. Participant) to perform some action. The Participant processes the request
and makes a decision whether to accept it or refuse it. Once the request has
been agreed upon, then the Participant must communicate either: a failure, an
inform-done or an inform-result.

4.1 FIPA-Request IP implemented as FSM

In JADE, FIPA-Request IP is implemented with two classes: AchieveREInitia-
tor and AchieveREResponder (see Figure 1). AchieveREInitiator class extends
Initiator class that is implemented as FSMBehaviour (implements FSM model
into JADE), while AchieveREResponder directly extends FSMBehaviour class.

AchieveREInitiator

AchieveREResponder

Initiator

SEND_RESULT_NOTIFICATIONPREPARE_RESULT_NOTIFICATIONSEND_RESPONSEHANDLE_REQUESTRECEIVE_REQUEST

HANDLE_ALL_RESULT_NOTIFICATIONS

CHECK_AGAINHANDLE_ALL_RESPONSES

HANDLE_REFUSEHANDLE_INFORMHANDLE_AGREE

DUMMY_FINAL

CHECK_SESSIONS

CHECK_IN_SEQ

HANDLE_OUT_OF_SEQ

HANDLE_FAILUREHANDLE_NOT_UNDERSTOOD

RECEIVE_REPLY

ACLMessage.AGREE, ReplySender.NO_REPLY_SENT

ACLMessage.AGREE

toBeReset

0
ALL_RESULT_NOTIFICATIONS_RECEIVED

ALL_RESPONSES_RECEIVED

MsgReceiver.TIMEOUT_EXPIRED, MsgReceiver.INTERRUPTED

ACLMessage.REFUSEACLMessage.INFORM

0

toBeReset

ACLMessage.FAILUREACLMessage.NOT_UNDERSTOOD

Fig. 1. FIPA-Request IP implemented as FSM

8 I. Bojic et al.

4.2 FIPA-Request IP implemented as BT

Figure 2 shows our implementation of FIPA-Request IP using JBehaviourTrees
Framework. AchieveREInitiatorBT class implements the same functionality as
Achi-eveREInitiator class. It is realized using one SequentialTask where an agent
forms one or more requests, sends them, and then waits on responses until all
are received, or a time-out occurs. Waiting on responses is implemented within
one ParallelTask, while DecoratorTask counts how many messages are received.
After one message is received, we use SelectorTask in order to determinate type
of the response (e.g. failure, not understood, agree). AchieveREResponderBT
can be used interchangeably with AchieveREResponder. It is implemented using
one DecoratorTask that never ends, and then through one SequentialTask is
achieved functionality of receiving request and sending response.

!"#$%"&'"!(

)*+,"-'(
. /#(+0120013"!'0(!1

3"4+"5"$

3"4+"5"6"!!27"

82#$0"92+0'3"82#$0":'(:;<"& 82#$0"%";'!" 82#$0"=#;-3,82#$0">73""

)

=#+(+2(-3

3"4"+5"%"&'"!(82#$0"%"&'"!(!"#$%"!?-#!" ?3"?23"%"!'0(@-(+;+42(+-# !"#$%"!'0(@-(+;+42(+-#

?3"?23"%"&'"!(

>48+"5"%A=#+(+2(-3

82#$0">00%"!'0(!%"4+"5"$

82#$0"@-(/#$"3!(--$

$-1;-3"5"3

>48+"5"%A%"!?-#$"3

!"(*+,"-'(9BC

<BC

Fig. 2. FIPA-Request IP implemented as BT

JBehaviourTrees Framework 9

Fig. 3. Message exchange in our version of JADE Sniffer [9]

4.3 Evaluation results

In order to make functional evaluation of BT implementation in case study, we
made three testing sequences: InitiatorAgentFSM interacting with ResponderA-
gentBT, InitiatorAgentFSM interacting with ResponderAgentBT and vice versa.
Figure 3 shows messages exchanged in all three scenarios. This verifies the func-
tionality of BT approach and compatibility with build–in FSM implementation.

5 Conclusion

In this paper, we made functional prototype of FIPA-Request Interaction Pro-
tocol using proposed JBehaviourTrees Framework that provides BTs model for
JADE behaviours. We showed that both the FSM implementation and imple-
mentation based on BTs can be used interchangeably.

Advantage of our approach is that BT model provides better code reusability.
By creating a few simple BTs almost any desired functionality can be achieved by
linking trees in different ways or extending the functionality through decorators.
This form of creating complex behaviours is more favourable to FSM or even
HFSMs due to the large amount of freedom BTs intrinsically support.

However, sometimes it is hard to build BTs that must implement state-
machine-like behaviours since that can be only done by creating unintuitive
trees. Therefore, for the future work we plan to build a hybrid system, where
agents will have multiple BTs and state machines will be used to determine
which BT they are currently running.

10 I. Bojic et al.

Acknowledgments. The authors acknowledge the support of research project
”Content Delivery and Mobility of Users and Services in New Generation Net-
works” (036-0362027-1639), funded by the Ministry of Science, Education and
Sports of the Republic of Croatia.

References

1. AiGameDev-site: http://aigamedev.com/insider/presentations/behavior-trees
2. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE: A software framework

for developing multi-agent applications. Lessons learned. Information and Software
Technology 50, 10–21 (2008)

3. FIPA: http://www.fipa.org
4. Fortino, G., Rango, F., Russo, W.: Statecharts-Based JADE Agents and Tools for

Engineering Multi-Agent Systems. In: Setchi, R., et al. (eds.) Knowledge-Based
and Intelligent Information and Engineering Systems, Lecture Notes in Computer
Science, vol. 6276, pp. 240–250. Springer, Berlin, Heidelberg (2010)

5. Griss, M.L., Fonseca, S., Cowan, D., Kessler, R.: Using UML state machine models
for more precise and flexible JADE agent behaviors. In: Proceedings of the Third
International Conference on Agent-oriented Software Engineering. pp. 113–125.
Springer, Berlin, Heidelberg (2003)

6. Heckel, F.W.P., Youngblood, G.M., Ketkar, N.S.: Representational Complexity
of Reactive Agents. In: Proceedings of the IEEE Conference on Computational
Intelligence and Games. pp. 257–264. IEEE (2010)

7. JADE-FSM-Builder: http://www.sicnet.it/jade-fsm-builder
8. Jurasovic, K., Jezic, G., Kusek, M.: Using BDI agents for automated software

deployment in next generation networks. In: Proceedings of the Eleventh Interna-
tional Conference on Software Engineering and Applications. pp. 423–428. ACTA
Press (2007)

9. Kusek, M., Jezic, G.: Extending UML sequence diagrams to model agent mobility.
In: Proceedings of the Seventh International Conference on Agent-oriented Soft-
ware Engineering. pp. 51–63. Springer, Berlin, Heidelberg (2007)

10. Lim, C.U., Baumgarten, R., Colton, S.: Evolving Behaviour Trees for the Com-
mercial Game DEFCON. In: Chio, D., et al. (eds.) Applications of Evolutionary
Computation, Lecture Notes in Computer Science, vol. 6024, pp. 100–110. Springer,
Berlin, Heidelberg (2010)

11. Millington, I.: Artificial Intelligence for Games. Morgan Kaufmann Publishers, San
Francisco, USA (2009)

12. Poggi, A.: Developing multi-user online games with agents. WSEAS Transactions
on Computers 7, 1240–1249 (2008)

13. Puga, G.F., Gómez-Mart́ın, M.A., Dı́az-Agudo, B., González-Calero, P.A.: Dy-
namic Expansion of Behaviour Trees. In: Proceedings of the Fourth Artificial In-
telligence and Interactive Digital Entertainment Conference. pp. 36–41. The AAAI
Press (2008)

14. Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. Knowl-
edge Engineering Review 10, 115–152 (1995)

