
Android/OSGi-based Machine-to-Machine
Context-Aware System

Matko Kuna, Hrvoje Kolaric, Iva Bojic, Mario Kusek and Gordan Jezic
University of Zagreb

Faculty of Electrical Engineering and Computing
Department of Telecommunications
Unska 3, HR-10000 Zagreb, Croatia

{matko.kuna, hrvoje.kolaric, iva.bojic, mario.kusek, gordan.jezic}@fer.hr

Abstract— This paper presents a context-aware system
that uses Machine-to-Machine communication to retrieve
sensor data collected by an Android operating system
smartphone. It uses the eXtensible Messaging and Presence
Protocol for communication with a remote server where data
are stored, while both ends are implemented in the Open
Service Gateway initiative framework providing system
modularity and portability. Although our system is designed
as a generic system that can be easily applicable for various
monitoring purposes or on-event reactions, its functional-
ity has been evaluated by implementing an environment-
variables monitoring application used in industrial sectors.
The case study presented in this paper elaborates a context-
aware application in terms of monitoring and alarming
functions. In our case study Android devices are used
for communication purposes and monitoring environment
parameters in order to track context data and react to it.

I. INTRODUCTION

Nowadays devices (e.g. PCs, smartphones, positioning
devices, health monitors) in our environment are expected
to work on high levels of independence, performing pro-
grammed actions that benefit their users in everyday life.
In order to meet the set of requirements, these different
devices are connected together performing certain tasks.
This concept is known as Machine-to-Machine (M2M)
communication [1]. M2M is a concept that defines the
rules and relations between devices while cooperating.
It implies a highly automated usage of a set of devices
simultaneously, without much need for human interaction.

Although with the increase of computational power,
now it is even possible to run different M2M tasks on
various consumer electronics (e.g. television sets, set-top
boxes), smartphones are still more frequent used in M2M
domain. In 2007 smartphone sales number exceeded
laptop sales [2]. Development of those devices and the
technology behind them enabled PC-like performance on
pocket-size gadgets. Just a few years back the main part of
a cell phone was the communication processor, while the
application processor was just a low-end microcontroller.
Today, with the falling cost of smartphones, application
processors have the main role.

Even more, with further development those devices
will become capable of running software agents which
will further broaden their usage domain. Additionally,
smartphones are equipped with various sensors (e.g. tem-
perature, accelerometer, lights) making it easy to collect
different information and build context-aware systems

(e.g. like in [3]). For instance, by keeping track of infor-
mation that describes current location of a mobile user,
it is possible to develop real-time monitoring or aiding
systems. Obviously, there are many possibilities for new
services and systems and that is the motivation behind
our work. Namely, our main idea is to develop easy-
to-use, fast and cost-efficient systems with significant
possibilities for appliance.

Therefore, in this paper the focus is on describing
a generic context-aware M2M framework that traces
changes of a set of environment variables that are moni-
tored using M2M devices. Since there is a high percentage
of fragmentation in terms of different hardware and soft-
ware components on the market, we use Open Service
Gateway initiative (OSGi) framework to overcome the
existence of different devices. For the security reasons we
have chosen to use eXtensible Messaging and Presence
Protocol (XMPP) for communication between devices in
the M2M environment.

The problem we are addressing is how to collect sensor
data from different devices in a heterogeneous M2M
environment, send them through different M2M networks
and act upon them on a dedicated server. However, for the
purpose of the case study, we implemented our system
using a smartphone running on the Android operating
system as an end device. A framework like our could be
easily applied to monitor environmental changes in dif-
ferent areas like various geographic locations or industrial
facilities. Additionally, it could be used to track position-
ing data and changes of other variables (e.g. magnetic
field, noise level). And since today’s smartphones come
with multiple built-in sensors and operating systems such
as Android, it becomes easy to use them and connect them
with other computing devices.

The rest of this paper is organized as follows. Section
II introduces M2M and context-aware concepts, Section
III refers to the papers where similar combination of
technology is used and gives insight to diversity of appli-
ance. Section IV describes key technologies used in our
work, while Section V introduces our system architecture
and describes relations between system entities. Section
VI elaborates design and implementation of a proof-of-
concept described as a case study in Section VII. Section
VIII gives evaluation results, while Section IX concludes
the paper and proposes directions for future work.

II. MACHINE-TO-MACHINE AND CONTEXT-AWARE
ENVIRONMENT

The number of devices connected through a network
where they can mutually communicate is rapidly growing,
and thus the M2M concept is gaining significance. M2M
network is a network of devices with diverse functionali-
ties and capabilities that interact with only limited human
intervention. A plethora of different devices communicat-
ing by using different technologies (e.g. wire lines, WiFi,
2G/3G, Bluetooth) creates a heterogeneous environment
where data can be collected, analyzed and acted upon,
depending on system design. Data collection and data
assessment are also related to context-awareness. In order
to have a context-aware service, data have to be collected
and used to enable provision of context-dependant actions.
For instance, data that describes a certain environment,
can be used for a location-based service.

A. Machine-to-Machine concept

Appliance of M2M can be found in many industry
branches, such as transportation, manufacturing, security
and e-Health [4]. Such a strong presence in different areas
creates new large scale business opportunities and makes
M2M a key concept, especially in telecommunications.

A typical M2M based application contains four basic
stages: data collection, data transmission (through a com-
munication network), data assessment and response to
the available information [5]. Data are collected through
sensors – different kinds of them are built-in part of
smartphones (e.g. microphone, camera, gyro sensor, GPS
transceiver), and they can be collected periodically or on
request. Sensors can also be stand-alone modules that
are controlled by a M2M device (i.e. in this case a
smartphone). After collecting data, data are sent through

a network to another M2M device that can store that data,
analyse them or act upon them (see Figure 1). Those
actions belong to data assessment and response phases
that come after the receiving data phase.

In a M2M system, communication network presents
the infrastructure that enables communication between
M2M entities. It can be carried out over a cellular net-
work, Public Switched Telephone Network (PSTN) or via
communication satellites. The trend in today’s technology
is focusing on cellular networks since they have good
land coverage and have become affordable to transmit
large amounts of data. The advantage of cellular network
over PSTN is the provided mobility and advantage over
satellite communication is cost-efficiency.

As for the software side, operating systems are of
help in M2M application development since they enable
running the same software on devices that are different
hardware-wise. The downside is that there are a lot of
operating systems on the market which makes software
development a demanding task. This is the problem
we are addressing in this paper. Our contribution is a
specific solution for sensor data collection that runs on
the Android operating system. We are overcoming the
problem of various existing mobile operating systems
(e.g. Android, iOS, Symbian, Windows Phone 7, webOS,
Bada) by using the OSGi framework. With solutions
like the Prosyst mBS [6] it is possible to run the same
software on operating systems like Android and Symbian,
even on embedded low power hardware hosting Java
Virtual Machine (JVM) [7]. By using Android operating
system and ProSyst mBS OSGi solution we managed to
overcome the hardware and software issues mentioned
above.

Internet/(W)LAN

Data transmission and assessment

Data collection

Medical
monitoring

Vehicle monitoringMachine
monitoring

Data presentation
Data storing

GPRS/3G/WLAN

GPRS/3G/WLAN

Ethernet GPRS/3G/WLAN

Smart home

Presence

Figure 1. M2M architecture for different domains

B. Context-aware systems

An important part of ubiquitous or pervasive computing
principle, meaning integration of devices and general
technology into everyday activities of people, are context-
aware systems. The term context refers to elements of
user’s environment that are relevant for the application.
Such information can have its external dimension (e.g.
location, most commonly used [8]) and internal or log-
ical dimension specified or gathered from the user [9].
Therefore, context-aware systems react to the current
context and make actions without the need of explicit user
intervention. Implementation of such systems can have
three basic approaches:

• direct sensor access without processing such infor-
mation,

• middleware infrastructure that encapsulates sensor
retrieval details, enabling reuse of the previous prin-
ciple and

• context server, used as a distributed approach, where
gathering and processing sensor data are moved to a
remote unit.

The context server approach can have three models for
managing multiple processes:

• process-centric view using widgets, that enables
reusability, often controlled by a widget manager and
are not robust to component failure,

• service-oriented model that has more complex net-
work based components for discovering services, but
provides robustness and

• data-centric view (i.e. blackboard model) where pro-
cesses post messages to a shared media and process
of adding new context sources and configuration are
simplified.

Data structures used in representing and exchanging
context information define several context models:

• key-value model where key-value pairs are used to
describe the capabilities of a service,

• markup scheme models which typical example are
profiles (e.g. Composite Capabilities/Preference Pro-
file),

• graphical models like Unified Modelling Language,
• object-oriented models that use various objects to

represent different context types such as temperature
or location and

• logic and ontology based models.
Ontologies represent a description of the concepts and

relationships, and ontology models are most expressive
ones. System described in this work uses a variation
of object-oriented model for exchanging physical sen-
sor information – the context (external dimension) uses
context-server approach and data centric view (a version
of blackboard model).

III. RELATED WORK

Our work is marked with several technologies such
as OSGi, XMPP and context-awareness. To the best of
our knowledge, these three technologies have not been
previously combined within one M2M environment in

order to provide portable and scalable (because of OSGi),
secure and highly available (because of XMPP) system of
greater quality (because of context-awareness).

OSGi is gaining momentum and is being implemented
as a feature technology in many new systems and services.
The usage of OSGi framework has advantages over stan-
dard operating-system-specific applications since it brings
the benefits of high modularity, portability and resource-
effectiveness [10]. There is a variety of papers where the
OSGi framework is used to achieve the aforementioned
software features in different areas of appliance.

One example of appliance is in telematics [11], conver-
gence of telecommunications and information technology
in automotive industry. Paper [12] introduces a service
oriented infrastructure that aims to provide a flexible
and extensible platform for provisioning, managing and
developing telematics services. Moreover, this system,
which consists of the OSGi backend system and the
OSGi service gateway platform, provides architecture for
development of context-aware automotive services.

In [13] authors present the use case of Android op-
erated smartphones running on OSGi framework, used
for monitoring road-side assistance and driver aids. They
describe how to combine OSGi Vehicle Expert Group
into an Android platform in order to enable third-party
application manufacturing. This is of vital importance
since the problem with OSGi in the telematics domain
is that existing technologies are in most cases Original
Equipment Manufacturer platforms and are only open for
in-house development.

Ambient systems [14] make another area of appliance.
The focus in [15] is to manage applications that are
running on devices with scarce resources. This is achieved
by defining a minimal bootstrap environment in order for
the application to run. All other application resources are
never stored on the device but downloaded directly into
the JVM memory when needed. Constant connectivity is
required in order for this to work, and thus the whole
concept is similar to cloud computing [16].

Papers [12], [13] and [15] demonstrate the strength of
OSGi as a technology that provides modularity and effi-
cient software component management. However, OSGi
framework does not provide sufficient security mecha-
nisms [17] needed in M2M environments proposed in
aforementioned papers. On the other hand, XMPP, used
for communication in our work, provides additional secu-
rity features such as secure communication and authenti-
cation of end users. Additionally, XMPP can be used for
communication as an all-in-one solution – for messaging,
presence information and file transferring. It also benefits
from continuously open connection which is an advantage
when M2M devices are behind a gateway and cannot be
directly reached.

A slight disadvantage is relatively higher battery con-
sumption and network traffic. Possible issues like infor-
mation overhead of Extensible Markup Language (XML)
on which the XMPP is based [18], and which could
be of greater importance in low-bandwidth networks,
can be solved using existing standards and techniques

[19]. Our work is designed as a generic framework for
M2M environments, and thus we choose XMPP over
some other alternatives (e.g. publish-subscribe systems)
designed only for specific solutions. Moreover, XMPP
provides better options for interoperability with other
systems that will be used in future expansions of our
work.

The paper [20] combines OSGi and XMPP designing
system architecture for the detection function for digital
refrigerators. OSGi benefits by providing a communica-
tion platform for different digital appliances, while XMPP
is applied to build a mechanism of message notification.
However, they do not use the process of data collection
and assessment needed for context-awareness required for
a generic M2M system such as ours.

In some other cases, server applications running on
remote computers are used for calculations or storing
collected data. Such M2M communication between a
user’s device and a remote computer often serves for
publishing information or notifications that trigger certain
actions. For instance, [21] describes a system that relates
users, context and content providers creating a context-
aware augmented reality system that provides real-time
train station navigation and information processing. This
context-aware system utilizes information that describes
current location in order to provide location-dependent
services to the user. It enables real-time interaction by
requiring certain sensors or specific hardware that can
locate users [22]. Although, this study showed that to-
day’s smartphones (e.g. Android) are already capable of
performing highly complex tasks and combining multiple
technologies simultaneously, without using OSGi as a
front end framework, it is hard to achieve portability (i.e.
usage on different pieces of hardware).

IV. BACKGROUND

The following section provides information about used
technologies and describes their key advantages which
made them suitable for the purposes of this work.

A. Open Service Gateway initiative (OSGi)

OSGi [10] is a framework that enables creation of
modular Java applications. Classes of object-oriented soft-
ware are divided into bundles – dynamic components that
can be installed, started or updated without having to
restart the application or service. It also enables remote
management of bundles. All mentioned features facilitate
work on web servers where OSGi is largely applied. It
provides higher modularity than standard Java program-
ming since applications can be combined from various
existing bundles, which can be found in web repositories.
On smartphones, OSGi provides better resource manage-
ment since it allows multiple Java applications to run
using a single JVM. Moreover, OSGi can be used in
different areas of appliance such as industrial automation,
automobiles [13] and for grid computing [23].

B. Android

Android is an operating system and Application Pro-
gramming Interface (API) for smartphones released by

Google in 2007 [24]. Essentially, it represents a Linux
distribution that includes a version of JVM (i.e. Dalvik
VM), and thus applications development is mainly done
using Java programming language with the Android Soft-
ware Development Kit in combination with development
environments such as Eclipse [25]. The main advantages
of this platform is its open-source type, simple access to
core hardware functions of the smartphone (e.g. cameras
and accelerometers) and accessible use of built-in services
and applications. In our system we use Android devices
since they have these aforementioned advantages and
support is available for needed OSGi framework (e.g.
Prosyst mBS [6]) and XMPP protocol API (e.g. Smack
API for Android [26]).

C. eXtensible Messaging and Presence Protocol (XMPP)

XMPP [27] was developed by the Jabber open-source
community and later standardized by Internet Engineering
Task Force. This protocol uses an XML format permitting
two entities to exchange XML elements over a network.
XMPP is basically a client-server model, where clients
communicate to each other using public servers or servers
for local communication. Communication is realized us-
ing three core XML stanzas:

• presence stanza used for information about an en-
tity’s network availability,

• message stanza for sending asynchronous informa-
tion from one entity to another and

• iq stanza for general request-response mechanism.
These stanzas enabled a number of applications, from

classical instant messaging [27] and presence services
[28], to network monitoring [29] and remote controlling
[11]. Monitoring and controlling through sensors [30],
especially in the M2M environment, tend to show per-
spective [31] while using XMPP, and therefore this type
of communication is built in the designed architecture.

V. SYSTEM ARCHITECTURE

Architecture designed for our system consists of three
basic components – smartphones, XMPP server and Con-
text Data Processor (CDP). Components (i.e. nodes) com-
municate using XMPP protocol, and therefore a dedicated
XMPP server is required to enable such communication.
The central part of the system is the CDP, that has several
roles as a main logic unit (e.g. storing and filtering context
data), but essentially it serves as a data collection and
processing server. Smartphones represent the client part
of the system gathering required data in terms of current
sensor readings and forwarding it to the CDP. Both client
devices (i.e. smartphones) and the CDP are implemented
using OSGi framework.

A detailed view on the communication between net-
work components is presented in Figure 2. Classical
client-server model is used here, in such a manner where
smartphones represent the client, and CDT the server
part of the system. Since XMPP protocol is used for
communication, this model additionally needs to have a
XMPP server which represents central connection point
between the XMPP elements (i.e. smartphones and CDP).

Data assesment/
response

Data transmissionData collection

XMPP server

Sensors

Authorization/login
process

Authorization/login
process

Create publish node
Subscribe to

smartphone nodes

Publish sensor data

WLAN/3G
Smartphone

Context Data Processor

LAN

Application/Service

XMPP

Android/OSGi OSGi

Figure 2. Communication principle between the components

Communication between smartphones and XMPP server
is realized either through a 3G network or Wireless Local
Area Network for local usage, while XMPP server and
CDT communicate on a Local Area Network based net-
work for a more reliable communication. XMPP protocol
is in the core of the system, and therefore all of the stan-
dardized XMPP messages (i.e. presence, iq and message
XML stanzas) are used here, with addition of explicit
use of publish-subscribe mechanism [32]. Using these
mechanisms, CDT tracks the status of every available
smartphone and receives required context data in terms of
group sensor readings. Moreover, all of these endpoints
connected through XMPP server are built on appropriate
versions of OSGi framework (i.e. mBS Mobile for An-
droid application and Equinox OSGi framework for the
CDP).

VI. SYSTEM DESIGN AND IMPLEMENTATION

This section contains description and specification in
which manner the implementation was done on both client
and server side of the system. Here, logic part of the
system is described as well as implementation in OSGi
framework.

A. Client implementation

Components, which provide context information
through sensor data, are implemented on Android based
smartphones (e.g. HTC Hero and HTC Legend). An
application based on OSGi framework is run on the
device (see Figure 2), primarily as a background ser-
vice with minimal graphical interfaces. The idea is to
limit user interaction with the application and enable
configuration of basic settings only – types of sensors to
track and frequency of sending those. Application then,
using XMPP functionalities, authenticates and logs as a
XMPP user on the remote (or local) server. A publish-
subscribe node is then created on the server and sensor
data is deployed to the server over a wireless interface
in formatted XMPP messages using a publish-subscribe
mechanism. Sensor readings, representing current context,
are published depending on the required configuration
which can contain frequency and types of sensors. Except

configuring initial settings through graphical interface,
all other described actions (e.g. registration with XMPP
server) are done automatically.

Our application is meant to run on the device as long
as it is needed for context data retrieval. Disabling the
running service could be done programmatically or man-
ually by the device user. Although this application could
easily be run as a classic Android application, realization
is done using OSGi framework – dividing application
into several bundles, each for a specific purpose (e.g.
XMPP libraries, sensor data class packages, services and
graphical interface) [33].

B. Server and CDP implementation

XMPP server is run on a dedicated computer, connected
to the CDP in a local network. No special requirements
are needed here, only standard XMPP support, but pos-
sibility to upgrade these functions (e.g. using Ad-Hoc
commands [34]) should be taken in concern.

CDP is implemented as an OSGi application divided
into several bundles. These bundles are divided in the
same manner as the mentioned Android application – each
bundle for specific groups of packages divided by func-
tionality (e.g. XMPP libraries, application logic, graphical
interface). For better control of these packages in the
OSGi command line, graphical interface with minimal
required functionalities is implemented (see Figure 5).

When CDT gets started, it goes through the authen-
tication and login process with the XMPP server and
then subscribes to all publish-subscribe nodes that devices
have created. The benefit of using XMPP is clear in
this process; using presence mechanisms, it is relatively
simple for CDP to be aware of all devices currently
logged into the system, and whose sensor data are being
monitored. While being subscribed to these nodes, CDP
receives any published sensor data and handles them for
the specific purposes; storing them as formatted data and
examining current context based on previous data and data
received by other nearby devices. Such information in
terms of context data can be used for a wide spectrum of
objectives such as gathering statistical research, tracking
and alarming in specific situations and other.

VII. CASE STUDY

In order to provide general perspective on applying our
system for specific purposes, use case is described in this
section. The case study gives an industrial-like application
of the system in terms of monitoring and alarming func-
tions. It includes smartphones being used by employees in
a kind of industrial compound with potentially dangerous
environment. The devices are used for general communi-
cation purposes and monitoring environment parameters.
System includes standard components (i.e. smartphones,
XMPP server and CDP) and additionally some sort of
control center used in the company. Messages and actions
taken in the scenario are shown in the sequence diagram
(see Figure 3). CDP examines context data of the devices,
and if a potentially dangerous set of readings is detected
(e.g. increased temperature in a period of time), CDP
alarms the control center, and then actions of prevention
or control can be taken regarding security policy of the
company.

Smartphone CDP Control Center

Configuring
CDP parameters

Login/Authorization

Registering subscription
node Login/Authorization

Subscribing to node
created by a device

Publish context
(sensor) data

Sending data to
subscribed CDP

Examining and
storing data

Periodically �– defined in mobile application

Notifying the
control center

Configuration
contains allowed
range of readings
and/or specified
alarms otherwise

Preventive or
other actions
accorrding to the
security policy

XMPP Server

CASE: Increased number of high temperature readings

Figure 3. Sequence diagram of described case study scenario

The process of establishing our system includes config-
uring and starting the service on a smartphone, running
the XMPP server and CDP with a interface needed to
provide context data handling configuration. Through the
mobile application, users set the sensor listening service
choosing sensors and frequency of sending the data.
Figure 4 shows an example of graphical interface for
configuring such Android application.

The started service then logs in the XMPP server and
registers its publish-subscribe node for sensor data. After

Figure 4. Screenshot of the Android application - sensor listening
service settings

configuring and starting, CDP goes through the same au-
thorization process with an XMPP server and subscribes
to nodes created by devices (Figure 5). Afterwards, for
the defined period, sensor data are being published on
the registered node, so the data are instantly redirected
to the CDP. Scenario shown in Figure 3 includes a case
where a number of readings include increased values of
temperature. Supposing that these kinds of readings are
defined in the CDP configuration as potentially dangerous,
the CDP then alarms the control center.

Although the primary concept of implementation is
designed for user devices meant for tracking, additionally
some other features, such as chart displaying history of
sensor values varying, are implemented (see Figure 6).
These kinds of features can be of use for quick filed-
type analysis of the sensor changing history for the people
in charge of such actions, since the primary focus is on
tracking context data and reacting to it.

Figure 5. Screenshot of CDP - simple example of the implementation

Figure 6. Screenshot of the Android application - simplified represen-
tation of sensor variation history

VIII. EVALUATION

Technologies used in realization of the described sys-
tem represent key points in recognition of the added value
that the system makes. First of all, it is important to
emphasize features of XMPP such as extendibility for
supporting additional capabilities and existing support
for security and reliability as described in [35]. Even
though this work does not go into details about security
and reliability issues, these requests could be of great
importance in some cases (e.g. life-saving information).
Knowing these facts, more demanding implementations
of this system should also be considered.

Optimizing system resources like memory usage, ap-
plication size and energy consumption should be taken in
consideration while deploying solutions for smartphones
such as Android/OSGi bundles. Regarding this matter,
evaluation of these parameters was done, comparing An-
droid/OSGi and native Android realization of the mobile
application. Evaluation was done using command-line
tools for inspecting process memory usage, the OSGi
framework application for Android (its memory infor-
mation utilities) [6] and Android applications for system
monitoring [36]. Generally, an assumption is made that
the OSGi framework is started on the device and is
running for the needs of different application bundles, so
the considered application parameters (e.g. starting time,
memory usage and application size) are observed without
the influence of the OSGi framework itself.

Test results for our developed mobile application, ex-
cept energy consumption which is discussed separately,
are shown in Table I. Tests were performed on three actual
Android devices: HTC Hero (processor: 528 MHz, system
memory: 288 MB, Android version 2.1), HTC Legend
(processor: 600 MHz, system memory: 384 MB, Android
version 2.2) and HTC Desire HD (processor: 1 GHz,
system memory: 768 MB, Android version 2.2). Average
values of considered parameters were taken for each
device together with the OSGi framework parameters.
Results show that the start-up time of the bundle is several
times faster (9 ms for the slowest device) compared to the
native Android application (15 ms for the fastest device).
Also, memory consumption is much less (depends on
the device, but always less than 1 MB) than for the
native Android application, which takes up to 3.2 MB.
Despite of OSGi framework as an additional element
considering application size and memory consumption,
the Android/OSGi bundle shows improved results when
compared to the classic Android application. In [13]
testing and evaluation of these parameters in the An-
droid/OSGi environment were done, and also showed
similar results regarding memory and application start-up
time of Android/OSGi based applications, not including
the OSGi framework itself.

Regarding battery usage, using the OSGi framework
does not show to be energy-consuming through a shorter
period of active usage when publishing sensor data every
couple of seconds. Although this kind of parameter cannot
be measured as precise as memory or application size,
testing on mentioned Android devices showed that OSGI
framework itself uses roughly around 0.5% of battery
power on Android system (after starting and installing
bundles) with addition of running bundles that spend
around 0.05%, depending on intensity of communication.
Compared to native Android application, which uses also
around 0.05% of battery power through a similar short
period of active use, using Android/OSGi bundles does
not affect the devices energy autonomy significantly.
Therefore, together with portability and ease of use, using
Android/OSGi version is definitely an advantage even
from the optimization point of view and points out a
contribution of OSGi platform in terms of scalability and
more effective use of system resources.

TABLE I
EVALUATION RESULTS

HTC Hero
(Android/OSGi)

HTC Legend
(Android/OSGi)

HTC Desire HD
(Android/OSGi) Native Android

Application size 1.61 MB (1.52 MB external libraries bundle and 8.86 MB OSGi framework) 2.03 MB (1.52 MB
external libraries)

Application start-up time 9 ms (12000 ms OSGi
framework)

6 ms (8035 ms OSGi
framework)

4.5 ms (3600 ms OSGi
framework)

38, 30 and 15 ms
respectively

Memory usage 600KB (9 MB OSGi
framework)

800 KB (9.5 MB OSGi
framework)

700 KB (10 MB OSGi
framework) 3.2 MB (all devices)

IX. CONCLUSION

Smartphones can already be used for different purposes,
and with the breakthrough of technologies like OSGi
combined with M2M communication, they are breaking
existing barriers for providing PC-like applications and
functionalities on such handheld devices. However, most
of the existing systems focus on narrow usage scenarios
that are of help only in highly specific domains. We
consider that with help of the right technologies and
system design it is better to develop multi-purpose generic
systems which can be adapted for different appliances
with minimal implementation changes.

Therefore, in this paper we presented the concept of
such a system that can be used for monitoring purposes
or on-event reactions. By keeping the system design
simple and by using technologies like OSGi and XMPP
we implemented a system that is easy to upgrade and
combines modularity, scalability, portability and resource-
effectiveness. The evaluation pointed out concrete advan-
tages of OSGi applications in managing resources – 80%
less memory usage and shorter start-up time (average
values besides OSGi framework itself and given values
for native Android, taken from Table I) and negligible
energy consumption.

Future work on this subject will be focused on imple-
menting XMPP commands for communication between
entities, improving scalability options in terms of better
user management in the CDP and porting the system
on other operating systems like Symbian and Windows
Phone 7. Also, additional functions of OSGi framework
regarding remote controlling and software updates [37]
will be considered for implementation in our system.

ACKNOWLEDGMENT

The authors acknowledge the support of research
project ”Content Delivery and Mobility of Users and
Services in New Generation Networks” (036-0362027-
1639), funded by the Ministry of Science, Education
and Sports of the Republic of Croatia. Additionally, the
authors would like to acknowledge the assistance of
Jurica Kupresak and Davor Jurisic who participated in
developing the initial version of the described system.

REFERENCES

[1] Machine-to-Machine web site, http://m2m.com/index.jspa.
[2] R. Want, “When Cell Phones Become Computers,” Pervasive

Computing, vol. 8, pp. 2–5, 2009.
[3] V. Podobnik, K. Trzec, and G. Jezic, “Context-Aware Service

Provisioning in Next-Generation Networks: An Agent Approach,”
International Journal of Information Technology and Web Engi-
neering, vol. 2, no. 4, pp. 41–62, 2007.

[4] V. Galetic, I. Bojic, M. Kusek, G. Jezic, S. Desic, and D. Huljenic,
“Basic principles of Machine-to-Machine communication and its
impact on telecommunications industry,” in press.

[5] M2M Communications website,
http://www.m2mcomm.com/about/what-is-m2m/index.html.

[6] ProSyst, http://dz.prosyst.com/devzone/Mobile.
[7] ProSyst, “The worlds smallest OSGi solution,” Technical White

Paper, p. 3, 2010.
[8] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing

Applications,” First Workshop on Mobile Computing Systems and
Applications, pp. 85–90, 1994.

[9] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-
aware systems,” International Journal of Ad Hoc and Ubiquitous
Computing, vol. 2, no. 4, pp. 263–277, 2007.

[10] OSGi Alliance, http://www.osgi.org/Main/HomePage.
[11] T. Kailey, “In-vehilce telematics - past, present future,” in Devel-

oping Commercial In-Vehicle Information Services and Systems,
2003, pp. 5–26.

[12] D. Zhang, X. H. Wang, and K. Hackbarth, “Osgi based service
infrastructure for context aware automotive telematics,” in Vehic-
ular Technology Conference, 2004. VTC 2004-Spring. 2004 IEEE
59th, vol. 5, 2004, pp. 2957–2961.

[13] M.-C. Chen, J.-L. Chen, and T.-W. Chang, “Android/OSGi-based
vehicular network management system,” Computer Communica-
tions, vol. 34, pp. 169–183, 2010.

[14] Z. Pousman and J. Stasko, “A taxonomy of ambient information
systems: four patterns of design,” in Proceedings of the working
conference on advanced visual interfaces, 2006, pp. 67–74.

[15] S. Frenot, N. Ibrahim, F. Le Mouel, A. Ben Hamida, J. Ponge,
M. Chantrel, and D. Beras, “ROCS: a Remotely Provisioned
OSGi Framework for Ambient Systems,” Network Operations and
Management Symposium, pp. 503–510, 2010.

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” Communications of the ACM,
vol. 53, pp. 50–58, 2010.

[17] The OSGi Alliance, http://www.osgi.org/download/r4v42/.
[18] R. Lawrence, “The space efficiency of XML,” Information and

Software Technology, vol. 46, pp. 753–759, 2004.
[19] XML Binary Characterization, http://www.w3.org/TR/xbc-

characterization.
[20] M.-F. Horng, M.-H. Hung, Y.-T. Chen, J.-S. Pan, and W. Huang,

“A new approach based on xmpp and osgi technology to home
automation on web,” in International Conference on Computer
Information Systems and Industrial Management Applications,
2010, pp. 487–490.

[21] F. Uijtdewilligen, “A framework for context-aware applications
using augmented reality: A train station navigation proof-of-
concept on Google Android,” Master’s Thesis, p. 102, 2010.

[22] Building a context-aware service architecture,
http://www.ibm.com/developerworks/architecture/library/ar-
conawserv/index.html.

[23] J. Zhao, J. Xu, X. Dong, Z. Zhu, and Z. Wang, “A Scalable and
Low-Cost Grid Portal,” Seventh International Conference on Grid
and Cooperative Computing, pp. 570–576, 2008.

[24] Google Inc., http://code.google.com/android/what-is-android.html.
[25] Eclipse web site, http://xmpp.org/extensions/xep-0024.html.
[26] asmack, http://code.google.com/p/asmack/.
[27] R. Jennings, E. Nahum, D. Olshefski, D. Saha, Z.-Y. Shae, and

C. Waters, “A study of Internet instant messaging and chat
protocols,” IEEE Network, vol. 20, pp. 16–21, 2006.

[28] XEP-0163: Personal Eventing Protocol,
http://xmpp.org/extensions/xep-0163.html.

[29] Maa, Antonio and Rudolph, Carsten and Labidi, Wael and Susini,
Jean-Ferdy and Paradinas, Pierre and Setton, Michael, “XMPP
based Health Care Integrated Ambient Systems Middleware,” in
Developing Ambient Intelligence, 2008, pp. 92–102.

[30] A. Hornsby, P. Belimpasakis, and I. Defee, “XMPP-based wireless
sensor network and its integration into the extended home envi-
ronment,” in 13th IEEE International Symposium on Consumer
Electronics, 2009, pp. 794–797.

[31] J. Wagener, O. Spjuth, E. L. Willighagen, and J. E. Wikberg,
“XMPP for cloud computing in bioinformatics supporting discov-
ery and invocation of asynchronous web services,” BMC Bioinfor-
matics, vol. 10, no. 1, p. 279, 2009.

[32] XMPP publish-subscribe mechanism,
http://xmpp.org/extensions/xep-0024.html.

[33] K. N. Khan, “State-of-the-art Study and Design of a Small Foot-
print Version of the COOS Plugin Framework,” Master’s Thesis,
p. 89, 2010.

[34] XMPP Standards Foundation, http://www.eclipse.org.
[35] M. Almeida and A. Matos, “Bridging the Devices with the

Web Cloud: A Restful Management Architecture over XMPP,” in
6th International Mobile Multimedia Communications Conference,
vol. 10, 2010.

[36] Android Assistant, http://www.appbrain.com/app/android-
assistant2812-features29/com.advancedprocessmanager.

[37] OSGi Remote Management Tool, http://wiki.eclipse.org/OSGi-
Remote-Management-Tool.

