
PRIDE � an Environment for Component-based
Development of Distributed Real-time Embedded Systems∗

Etienne Borde, Jan Carlson, Juraj Feljan, Luka Lednicki, Thomas Lévêque,
Josip Maras, Ana Petri�cić and Séverine Sentilles

Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden
�rstname.lastname@mdh.se

ABSTRACT
Embedded system development is currently hampered by
the lack of tools capable of conjointly catering for the com-
plete design-verification-deployment cycle, extra-functional
properties and reuse. To address these concerns, we have
developed Pride, an integrated development environment
for component-based development of embedded systems.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environ-
ments — Integrated environments

Keywords
Component-based development, extra-functional properties,
integrated development environment, embedded systems.

1. INTRODUCTION
Embedded systems have changed radically. Nowadays,

they integrate more and more software functionality while
still having to comply with severe resource constraints (e.g.,
memory, energy or computation speed) and dependability
and real-time concerns. As a result, their development should
simultaneously handle and ensure various aspects such as
extra-functional properties (EFPs), distribution, reuse, and
hardware and software dependencies. This makes embedded
system development a very complex and time-consuming
task. Especially since there is currently no tool that sup-
ports the complete set of needs for embedded system devel-
opment, catering for the complete functional development
cycle with consideration for EFPs and reuse. In particular,
EFPs are often disregarded in industrial tools [1, 2].

Taking this into account, we have built the ProCom In-
tegrated Development Environment (Pride) that addresses

∗This work was supported by the Swedish Foundation for
Strategic Research via the Progress research centre, and by
the Unity Through Knowledge Fund via the DICES project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee.
ICSE '11 Hawaii, Waikiki, Honolulu, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

the particularities of embedded system development. Pride
has been developed to support a new component-based ap-
proach together with its underlying component model called
ProCom [7].

Contrasting many existing approaches for embedded sys-
tem development [3, 4, 5, 6], reusability is a key concern
in Pride, covering not only code reuse but also reuse of
models, EFPs and analysis artifacts. Other key benefits of
Pride include its ability to i) bring design decisions related
to EFPs and system constraints such as resources usage or
timing characteristics, allowing developers to investigate dif-
ferent design choices in an early phase of development by
estimating component properties; ii) enable the design of
distributed embedded systems; iii) enable reuse of not only
the code from the components, but also their EFPs and
other development artifacts such as models; and iv) enable
mixing already existing components with components that
are still not implemented.

Section 2 describes the basic underlying approach guiding
the development of Pride, followed by a presentation of
the tool and some of its key parts in Section 3. Section 4
concludes the paper by presenting some ongoing and future
work.

2. OVERALL APPROACH
This section describes how the tool suite addresses the

particularities of embedded systems development, focusing
on three important development aspects: design, analysis
and synthesis.

Design.
The trend in embedded system development is to imple-

ment more and more functionality in software, resulting in a
continuously increasing complexity. To address the increas-
ing complexity and to accommodate demands of shorter
time-to-market, we base our approach on the component-
based software engineering (CBSE) paradigm. CBSE pro-
motes building systems not from scratch, but from pre-
developed reusable software components, which should sig-
nificantly shorten development time. Furthermore, manage-
ment of complex systems should be facilitated by dividing
them into smaller components that can be developed inde-
pendently.

Our component-based approach is built around a two-
layered component model called ProCom [7]. The upper
layer models a system as a collection of active, concurrent
and typically distributed subsystems that communicate by
asynchronous message passing. The lower layer models the

detailed structure of individual subsystems as a collection of
interconnected passive components.

To benefit from the component-based approach through-
out the whole development process, ProCom adopts a partic-
ular component notion. Components are rich design entities
encapsulating a collection of many development artifacts,
including requirements, models, extra-functional properties,
documentation, tests and source code).

The tool suite supports this view of a component as a col-
lection of development artifacts, and allows components of
different maturity, from early specifications to fully imple-
mented components with more detailed information, to be
manipulated in a uniform way.

Analysis.
Many embedded systems are found in applications with

high dependability requirements, and they are often sub-
ject to real-time constraints. Consequently, the develop-
ment activities should be complemented by different analysis
techniques to derive extra-functional properties of individ-
ual components and the system as a whole, to ensure the
correctness of the system. These analyses are traditionally
performed in late stages of the development, when detailed
information is available, but analysis should also be used in
early stages to guide the development process and to avoid
costly late changes.

As a result of the rich design-time component concept
of ProCom, component reuse also implies reuse of compo-
nent properties and previous analysis results. In those cases
where analysis of a component depends also on factors out-
side the component, special care must be taken to identify
to what extent the reused information is still applicable in
the new environment.

Synthesis.
Embedded systems typically have resource limitations, for

example in terms of memory and processing power. This can
be due to the fact that they are made in large quantities, and
thus have to be cheap to produce. In other cases, resource
limitations are a result of limits in physical size or battery
lifetime.

Contrasting component models for desktop applications,
these limitations imply that a component model targeting
the embedded systems domain should not come with a high
run-time overhead. To satisfy this requirement, our ap-
proach does not provide full-scale component support at
run-time. Instead, the development process includes a syn-
thesis phase, where the component-based design is trans-
formed into a system realization based on tasks executed by
standard real-time operating system. During the synthesis,
various optimizations can be applied to adjust the code of a
component to its context in this particular system.

3. AN OVERVIEW OF PRIDE
Based around ProCom and the described overall approach,

we have developed several tools, tightly integrated into Pride.
Pride is built as an Eclipse RCP application that can be
easily extended with addition of new plugins. As shown in
Figure 1, the core part currently consists of a component
explorer, component editors, attribute- and analysis frame-
works, and a synthesis tool. Figure 2 shows a screenshot
from Pride, with some of these parts highlighted.

PRIDE

Component
Explorer

Component
Editors

Synthesis
Analysis Tools

Attribute Definitions

Fault-
Propagation

Parametric
WCET

REMESMem.Usage WCET

EFP
Assurance

REMES
Simulator

REMES
Editor

creates
and
adds

Analysis
Expert

uses

Analyst

Component
Repository

Core Concepts
CBSE

ProCom
Rich Components

System
Developer

import/
export

synthetise

Binary
Files

Support
for EFPs

Runtime
Efficiency

...

...

Figure 1: Architecture of PRIDE.

Component Explorer.
The component explorer enables browsing the list of com-

ponents available in the current development project. In it,
a component owns a predefined information structure that
corresponds to the aforementioned rich component concept.
This structure is extendable. The component representa-
tion also supports component versioning. Components can
be exported from a project to a repository, making them
available for reuse in other projects.

Component Editors.
The component editors are built around ProCom. Com-

ponents from both layers are treated in a uniform way. Each
component editor partitions the components in two views.
The external view handles the component specification, in-
cluding information such as the component name, its inter-
faces and EFPs. The internal view depends on the com-
ponent realization. For composite components, the internal
view corresponds to a collection of interconnected subcom-
ponent instances, and a graphical editor is available allowing
modifications to this inner structure (e.g., addition/deletion
of component instances, connectors and connections). For
primitive components, the internal view is linked to the
component implementation in form of source code. Edit-
ing the component code is facilitated by features such as
syntax highlighting and auto-completion, provided through
the integration of the Eclipse C/C++ Development Tooling
(CDT) plugins.

EFP Assurance.
Extra-functional properties are created, managed and en-

sured through two frameworks. The Attribute Framework
provides a uniform and user-friendly structure to seamlessly
define and manage EFPs in a systematic way, and to sup-
port the packaging of the development artifacts in the com-
ponents. The attribute framework enables attachment of
EFPs to any architectural element of the component model.
Attributes are defined by an attribute type, and include at-
tribute values with metadata and the specification of the
conditions under which the attribute value is valid. One key
feature is that the attribute framework allows an attribute to
be given additional values during the development without
replacing old values.

The Analysis Framework provides a common platform for
integrating in a consistent way various analysis techniques,
ranging from simple constraint checking and attribute deriva-

Figure 2: A screenshot of PRIDE showing a) the component explorer; b) a component editor; c) a code editor;
d) the repository browser; and e) the attribute framework.

tion (e.g., propagating port type information over connec-
tions) to complex external analysis tools. Analysis results
can either be presented to the user directly, or stored as
component attributes. They are also added to a common
analysis result log, allowing the user easy access to earlier
analysis results.

Through the use of extension points in the analysis and
attribute frameworks, Pride provides support to easily in-
tegrate new analysis techniques together with their associ-
ated extra-functional properties. The analysis techniques
already integrated in Pride include parametric component-
level worst-case execution time analysis, model checking of
behavioural models, and fault-propagation.

Synthesis.
The synthesis part of Pride automates the generation of

interfaces for primitive components in the lower layer, and
generation of code for composite components in both layers.
It also produces build configurations (in debug and release
mode) for each level of composition.

Based on models of the physical platform and the alloca-
tion of components to physical nodes, the synthesis also pro-
duces the binary executable files of each node in the system.
The synthesised code relies on a middleware that has been
ported to different platforms, including POSIX-compliant
operating systems, FreeRTOS and JSP.

4. CONCLUSIONS
We have presented Pride, a tool suite for developing

embedded systems providing support for design, analysis
and synthesis. A demonstration video is available from the
Pride website (www.idt.mdh.se/pride), from where the tool

suite can also be downloaded. A collection of publications
presenting the research behind various parts of Pride is
provided at the site as well.

Our ongoing work on Pride includes improving the sup-
port for deployment- and allocation modeling. We also plan
to provide additional analysis techniques, including refactor-
ing impact analysis, value domain propagation and response
time analysis.

5. REFERENCES
[1] ArcCore. Arctic Studio. http://arccore.com.

[2] Arcticus Systems. Rubus Software Components.
http://www.arcticus-systems.com.

[3] ESTEREL Technologies. SCADE Suite.
http://www.esterel-technologies.com/

products/scade-suite/.

[4] MathWorks. Simulink, MatLab and Real-Time
Workshop. http://www.mathworks.com.

[5] Mentor Graphics. BridgePoint.
http://www.mentor.com/products/sm/model_development/

bridgepoint/.

[6] Object Management Group. A UML Profile for
MARTE, Beta 2, June 2008. Document number:
ptc/2008-06-09.

[7] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and
I. Crnković. A Component Model for Control-Intensive
Distributed Embedded Systems. In Proceedings of the
11th International Symposium on Component Based
Software Engineering (CBSE’08). Springer Berlin,
October 2008.

