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Abstract— The Tensor Product (TP) model transformation is a
recently proposed technique for transformation of a given Linear
Parameter Varying (LPV) state-space model into polytopic model
form, namely, to parameter varying convex combination of
Linear Time Invariant (LTI) systems. The main advantage of the
TP model transformation is that it is executable in a relatively
short time and the Linear Matrix Inequality (LMI)-based control
design frameworks can immediately be applied to the resulting
polytopic models. In this paper, such control approach of nonlin-
ear systems is applied to the control of rotary pendulum gantry.
Pendulum in hanging position represents simplified model of the
real industry crane application. On the other hand, inverted
pendulum is a classic problem in dynamics and control theory
and widely used as a benchmark for testing control algorithms.
In order to reach upright position, self erecting technique is
employed. LMI control algorithm obtained for both positions is
merged using self erecting control algorithm and tested in real
experimental setup.

Index Terms— Parallel Distributed Compensation, Linear ma-
trix inequalities, TP model transformation, Rotary Pendulum
Gantry (RPG), position control, sway control, inverted pendulum

I. INTRODUCTION

In modern industrial system, gantry cranes as well as rotary
cranes are widely used for the heavy loads transfer. For
the anti-sway control of travelling cranes, there are several
solutions, i.e., by fuzzy control, optimal control, etc. and each
of them is reported to be effective [1]–[5].

Inverted pendulum is a classic problem in dynamics and
control theory that is widely used as a benchmark for testing
control algorithms [6]. In [7] the swing-up problem for the
Furuta pendulum is solved applying Fradkov’s speed-gradient
(SG) method and in [8] energy based swing up control
algorithm is proposed. In [9] fuzzy swing up controller is
proposed and is used in this paper.

The TP model representation belongs to the class of poly-
topic models. The TP model represents the Linear Parameter
Varying state-space models by the parameter varying combi-
nation of Linear Time Invariant (LTI) models. The TP model
transformation was proposed as a uniform and automatic way
to transform LPV model. The TP model transformation was
introduced as the Higher Order Singular Value Decomposition
(HOSVD) of Linear Parameter Varying (LPV) state-space
models, and the result of the TP model transformation was
defined as the HOSVD-based canonical form of LPV models
[10], [11].

In [12] trade-off techniques between accuracy and complex-
ity of TP form are proposed.

Furthermore, the TP model transformation offers options to
satisfy various convexity constrains on the type of the resulting

parameter varying combination, which is suitable, for instance
for the Linear Matrix Inequality-based control designs [10],
[13].

TP based control of gantry crane is given in [14]. In [15]
and [16] LMI control methodology is presented.

The main contributions of this paper are verification of
TP model of the rotary pendulum gantry in both upright
and hanging position, and investigation the performance of
the TP model transformation-based control design in a real
experimental setup.

II. TENSOR PRODUCT MODEL TRANSFORMATION-BASED
CONTROL DESIGN METHODOLOGY

Consider the linear parameter-varying state-space model(
ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
(1)

with input u(t) ∈ Rk, output y(t) ∈ Rl and state vector
x(t) ∈ Rm. The system matrix

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ R(m+k)×(m+l) (2)

is a parameter-varying object, where p(t) ∈ Ω is time
varying parameter vector, where Ω is a closed hypercube in
RN , Ω = [a1, b1] × [a2, b2] × . . . × [aN , bN ]. Parameter p(t)
can also include the elements of the state vector x(t), therefore
LPV system given in Eq. (1) is considered in the class of non-
linear dynamic state space models.

The main idea of TP model transformation is to discretize
the given LPV model given in Eq. (1) over hyper rectangular
grid M in Ω, then via executing Higher Order Singular Value
Decomposition, the tensor product structure of given model is
obtained. By ignoring singular values, TP model of reduced
complexity and accuracy can be obtained. For more details se
[10] and [12].

Tensor product structure can be written as follows

S(p(t)) = S
N

�
n=1

wn(pn)

=

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
in=1

N∏
n=1

wn,in(pn)Si1,i2··· ,iN ,
(3)

where S ∈ RI1×I2×···IN×(m+k)×(m+l) denotes obtained
tensor, In denotes number of LTI systems in n-th dimension
of Ω, � denotes multiple n-mode product of a tensor by a
matrix, wn is row vector containing wn,in(pn) ∈ [0, 1] which
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is corresponding one variable weighting function defined on
the n-th dimension of Ω and Si1,i2···iN is LTI system matrix
obtained by TP model transformation. By using i as linear
index, equivalent to the multilinear array index with the size
of I1× I2×· · · IN , TP model (3) can be rewritten in standard
polytopic form

S(p) =

N∑
i=1

wi(p)Si, (4)

where Si denotes

Si =

(
Ai Bi
Ci Di

)
, (5)

and wi is corresponding weighting function.
Controller is determined in same polytopic form as TP

model. Control signal is given by

u = −
N∑
i=1

wi(p)Fix, (6)

where the Fi are corresponding LTI feedback gains.

III. CONTROLLER DESIGN

A. Linear Matrix Inequalities

A class of numerical optimization problems called linear
matrix inequality LMI problems has received significant atten-
tion. These optimization problems can be solved in polynomial
time and hence are tractable, at least in a theoretical sense.
Interior-point methods developed for these problems have been
found to be extremely efficient in practice. For systems and
control, the importance of LMI optimization stems from the
fact that a wide variety of system and control problems can
be recast as LMI problems. Except for a few special cases,
these problems do not have analytical solutions. However, the
main point is that through the LMI framework they can be
efficiently solved numerically.

A linear matrix inequality (LMI) has the form

F (x) = F0 +

m∑
i=1

xiFi > 0, (7)

where x ∈ Rm is the variable and the symmetric matrices
Fi = FTi are given. The inequality symbol in (7) means that
F (x) is positive definite i.e.

zTF (x)z > 0,∀z 6= 0. (8)

B. Control objective

The control objective is to find stabilizing controller, with
prescribed decay rate with minimal overshoot and constrained
control signal.

In order to obtain stabilizing controller, Lyapunov stability
condition is considered.

If there exist candidate quadratic Lyapunov function V(x)
defined on some open set D ∈ RN , containing the origin, such
that

V (x) = xTPx > 0, (9)

and there exist derivation

V̇ (x) = ẋTPx+ xTPẋ < 0, (10)

then origin of system ẋ = f(x) is stable equilibrium point.
The speed of response is related to decay rate, that is, the

largest Lyapunov exponent α [16] (Stability corresponds to
positive decay rate) such that

lim
t→∞

e−αt‖x(t)‖ = 0 (11)

A sufficient condition for desired decay rate can be written
as

V̇ (x) ≤ −2αV (x), (12)

for any initial point. [16].
From (12) it follows that the equilibrium of the continuous

system in polytopic form (4) is globally asymptotically stable
if there exists a common positive definite matrix P such that

ATi P + PAi + 2αP < 0; ∀i ∈ (1, r). (13)

Next, let us consider the stability of the closed-loop system
(4) with control algorithm given in (6), which is globally
asymptotically stable, with decay rate less than α, if there
exists a common positive definite matrix P such that

GTiiP + PGii + 2αP < 0,(
Gij +Gji

2

)T
P + P

(
Gij +Gji

2

)
+ 2αP ≤ 0, i < j.

(14)

where
Gij = Ai +BiFj , (15)

denotes closed loop state matrix.
The largest possible decay rate can be found by solving

generalized eigenvalue minimization problem (GEVP).

maximize α
subject to

X > 0

−XATi −AiX +MT
i B

T
i +BiMi + 2αX > 0

−XATi −AiX −XATj −AjX +MT
j B

T
i

+BiMj +MT
i B

T
j +BjMi − 4αX ≥ 0,

(16)

where X = P−1 and Mi = FiX .
In sequel we use predescribed value of α.
In order to satisfy the constraints on control value and output

constraints, the following LMIs are added to the Eq (16) [15]:
Constraint on the control value:
Assume that initial condition x(0) is unknown, but its upper

bound ‖x(0)‖ ≤ φ is known, which can be recast as following
LMI
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Fig. 1. Rotary pendulum gantry (RPG) model, variables notation

Fig. 2. Rotary pendulum gantry (RPG) laboratory model

φ2I ≤ X, (17)

the constraint ‖u‖2 ≤ µ is enforced ∀t ≥ 0 if the following
LMI holds (

X MT
i

Mi µ2I

)
≥ 0. (18)

Constraint on the output:
Assume that condition (17) is satisfied, the constraint

‖y(t)‖2 ≤ λ is enforced, ∀t ≥ 0, if the following LMI holds(
X XCTi
CiX λ2I

)
≥ 0. (19)

Furthermore, controller is obtained as follows:

Fr = MrX
−1. (20)

IV. TP MODEL-BASED CONTROLLER DESIGN TO THE
ROTARY PENDULUM

A. Modelling the rotary pendulum plant
Non-linear model of rotary pendulum gantry (RPG) system

can be described by following equations:

θ̈ =
1

Ax(α)
(bc sinαα̇2 +

1

2
bd sin 2α− ceθ̇ + cfVm),

α̈ =
1

Ax(α)
(−ad sinα− 1

2
b2 sin 2αα̇2 + b cosα(eθ̇ − fVm)),

(21)

where

a = Jeq +m · r2 + ng ·K2
g · Jm,

b = m · L · r,
c = 4/3 ·m · L2,

d = m · g · L,
e = Beq + nm · ng ·Kt ·K2

g ·Km/Rm,

f = nm · ng ·Kt ·Kg/Rm,

(22)

and

Ax(α) = ac− b2 cos2 α. (23)

Its derivation using Lagrangian formulation is omitted for
the sake of brevity and can be found in [17]. In Fig. 1 model
of rotary pendulum is shown. In Fig. 2 laboratory model of
rotary pendulum is shown.

B. LPV model of rotary pendulum

Letting x =
[
x1 x2 x3 x4

]T
=
[
θ θ̇ α α̇

]T
, the

equations of motion in linear parameter varying state space
form is

S =


0 1 0 0 0
0 A1/Ax A2/Ax A3/Ax B1/Ax
0 0 0 1 0
0 A4/Ax A5/Ax A6/Ax B2/Ax

 , (24)

where:

Ax = ac− b2 cos2 α,

A1 = −ce,
A2 = bd cosxsincα,

A3 = bc sinαα̇,

A4 = be cosα,

A5 = −adsincα,

A6 = −b2 cosα sinαα̇,

B1 = cf,

B2 = −bf cosα,

E = ac− b2.

(25)

List of paramaters is given in Table I.

V. RESULTS

A. TP model representation of rotary pendulum in hanging
position

Operating area for hanging position is selected as Ω =
[αmin, αmax]×[α̇min, α̇max] = [−27180 π,

27
180π]×[−0.8, 0.8]. The

exact TP model (TP model obtained by keeping all singular
values) representation in hanging position is given by 12 LTI
systems. Weighting functions of the TP model in hanging
position are given in Fig. 3

The LTI system matrices of the TP model are given in Eq.
(26).
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Fig. 3. Weighting functions of the TP model in hanging position

A1 =

 0 1.0 0 0
0 −10.18 25.85 1.224
0 0 0 1.0
0 9.329 −66.85 −1.134

 B1 =

 0
17.92

0
−16.42


A2 =

 0 1.0 0 0
0 −10.18 25.85 −1.224
0 0 0 1.0
0 9.329 −66.85 1.134

 B2 =

 0
17.92

0
−16.42


A3 =

 0 1.0 0 0
0 −9.93 24.45 0.1167
0 0 0 1.0
0 8.893 −64.73 −0.1078

 B3 =

 0
17.48

0
−15.65


A4 =

 0 1.0 0 0
0 −9.93 24.45 −0.1167
0 0 0 1.0
0 8.893 −64.73 0.1078

 B4 =

 0
17.48

0
−15.65


A5 =

 0 1.0 0 0
0 −11.0 30.38 −0.7193
0 0 0 1.0
0 10.73 −73.74 0.6675

 B5 =

 0
19.36

0
−18.89


A6 =

 0 1.0 0 0
0 −11.0 30.38 0.7193
0 0 0 1.0
0 10.73 −73.74 −0.6675

 B6 =

 0
19.36

0
−18.89


A7 =

 0 1.0 0 0
0 −9.47 21.79 −0.3934
0 0 0 1.0
0 8.047 −60.71 0.3475

 B7 =

 0
16.67

0
−14.16


A8 =

 0 1.0 0 0
0 −9.47 21.79 0.3934
0 0 0 1.0
0 8.047 −60.71 −0.3475

 B8 =

 0
16.67

0
−14.16


A9 =

 0 1.0 0 0
0 −11.14 31.18 0.1008
0 0 0 1.0
0 10.98 −74.96 −0.09343

 B9 =

 0
19.61

0
−19.33


A10 =

 0 1.0 0 0
0 −11.14 31.18 −0.1008
0 0 0 1.0
0 10.98 −74.96 0.09343

 B10 =

 0
19.61

0
−19.33


A11 =

 0 1.0 0 0
0 −9.543 22.21 0.2187
0 0 0 1.0
0 8.18 −61.35 −0.1878

 B11 =

 0
16.8
0

−14.4


A12 =

 0 1.0 0 0
0 −9.543 22.21 −0.2187
0 0 0 1.0
0 8.18 −61.35 0.1878

 B12 =

 0
16.8
0

−14.4


(26)

B. TP model representation of rotary pendulum in upright
position

Operating area for upright position is selected as Ω =
[αmin, αmax] × [α̇min, α̇max] = [−135180 π,

135
180π] × [−0.8, 0.8].

Exact TP model representation is given by 14 LTI models,
however using exact model resulted in infeasible controller.

Obtained singular values are:

σ =


1.2955
0.0386
0.0051
0.0018
0.0000
0.0000

 · 103. (27)

By keeping only first four singular values, only 10 LTI
models are obtained. LTI models are given in Eq. (28).
Obtained weighting functions in upright position is given in
Fig. 4.

Fig. 4. Weighting functions of the TP model in upright position

The LTI system matrices of the TP model are given in Eq.
(28):
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A1 =

 0 1.0 0 0
0 −14.02 47.61 −0.08115
0 0 0 1.0
0 −16.16 99.84 −0.08906

 B1 =

 0
24.69

0
28.45


A2 =

 0 1.0 0 0
0 −14.02 47.61 0.08115
0 0 0 1.0
0 −16.16 99.84 0.08906

 B2 =

 0
24.69

0
28.45


A3 =

 0 1.0 0 0
0 −8.163 14.02 0.5705
0 0 0 1.0
0 −5.534 49.0 0.3885

 B3 =

 0
14.37

0
9.742


A4 =

 0 1.0 0 0
0 −8.163 14.02 −0.5705
0 0 0 1.0
0 −5.534 49.0 −0.3885

 B4 =

 0
14.37

0
9.742


A5 =

 0 1.0 0 0
0 −9.555 22.42 0.8248
0 0 0 1.0
0 −8.27 61.63 0.7079

 B5 =

 0
16.82

0
14.56


A6 =

 0 1.0 0 0
0 −9.555 22.42 −0.8248
0 0 0 1.0
0 −8.27 61.63 −0.7079

 B6 =

 0
16.82

0
14.56


A7 =

 0 1.0 0 0
0 −8.183 14.14 −0.5617
0 0 0 1.0
0 −5.571 49.17 −0.3823

 B7 =

 0
14.4
0

9.806


A8 =

 0 1.0 0 0
0 −8.183 14.14 0.5617
0 0 0 1.0
0 −5.571 49.17 0.3823

 B8 =

 0
14.4
0

9.806


A9 =

 0 1.0 0 0
0 −8.038 13.81 −0.8126
0 0 0 1.0
0 −5.564 48.59 −0.6816

 B9 =

 0
14.15

0
9.794


A10 =

 0 1.0 0 0
0 −8.038 13.81 0.8126
0 0 0 1.0
0 −5.564 48.59 0.6816

 B10 =

 0
14.15

0
9.794


(28)

C. Control objective

The control objective is to find stabilizing controller, with
prescribed decay rate α < 3 with minimal overshoot and
constrained control signal Vm ≤ 10V .

By using the Yalmip [18] and Sedumi 1.3 [19] the follow-
ing feasible solution of (16) - (19) and feedback gains are
obtained.

D. Feedback gains for hanging position

F1 =
(

11.28 6.775 −57.06 5.915
)T

F2 =
(

11.39 6.847 −57.67 5.837
)T

F3 =
(

11.63 7.012 −59.17 6.038
)T

F4 =
(

11.65 7.02 −59.25 6.031
)T

F5 =
(

10.55 6.264 −52.16 5.436
)T

F6 =
(

10.48 6.224 −51.99 5.474
)T

F7 =
(

12.14 7.371 −62.7 6.268
)T

F8 =
(

12.04 7.306 −62.18 6.259
)T

F9 =
(

10.37 6.147 −51.18 5.387
)T

F10 =
(

10.38 6.153 −51.2 5.383
)T

F11 =
(

11.99 7.264 −61.76 6.22
)T

F12 =
(

12.06 7.313 −62.1 6.238
)T

(29)

E. Feedback gains for upright position

F1 =
(

−0.1689 −0.7571 7.117 0.77
)T

F2 =
(

−0.1532 −0.742 6.801 0.7144
)T

F3 =
(

−0.4763 −1.066 14.14 1.954
)T

F4 =
(

−0.4909 −1.076 14.36 1.971
)T

F5 =
(

−0.2819 −0.8834 9.937 1.308
)T

F6 =
(

−0.2964 −0.8975 10.17 1.297
)T

F7 =
(

−0.4855 −1.07 14.19 1.962
)T

F8 =
(

−0.4554 −1.047 13.59 1.856
)T

F9 =
(

−0.4682 −1.056 13.82 1.909
)T

F10 =
(

−0.4384 −1.032 13.33 1.867
)T

(30)

In Fig. 5 and 6 simulation and experimental results are
shown. It can be seen that proposed methodology was suitable
for both control designs. However it can be seen that in
experimental results steady state error exists due to friction
effects that were neglected during the controller synthesis.

VI. CONCLUSION

Rotary pendulum is non-linear plant with two equilibrium
positions, hanging and upright. The main point of this paper
is that controller for both positions can be obtained, using
TP transformation and LMI framework, simply by changing
operating area of the plant. Trough LMI framework, stability
of obtained TP model is guaranteed and common physical
constraints are taken into account. Furthermore, self erecting
algorithm is guaranteed to stabilize obtained TP model since
swing up algorithm is taken into account trough initial state
constraints. Presented results for rotary pendulum in hanging
position are obtained by using exact TP transformation. By
ignoring smaller singular values non-linear model can be
approximated with less LTI models. Exact TP transform of
inverted pendulum results in too complex model for PDC
controller synthesis and results in infeasible solution of given
LMIs. However by reducing number of singular values, fea-
sible solution was obtained. By comparing simulation and
experimental results, for both positions , steady state error due
friction effects that were neglected in controller synthesis, can
be noticed. Obtained PDC controller through LMI framework
can guarantee only stability of polytopic model, obtained using
TP transformation, but not of non-linear model itself. In order
to guarantee stability of non-linear model, polytopic model
should be expanded with uncertainties. That will be considered
in the future work.
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TABLE I
PARAMETERS OF THE RPG SYSTEM

Symbol Description Value Unit

Vm Input voltage V
m Mass of pendulum 0.125 kg
r Rotating arm length 0.215 m
L Half length of the pendulum 0.1675 m

Kt Motor torque constant 0.00767 Nm
A

Rm Armature resistance 2.6 Ω

Km Back electro-motive force constant 0.00767 V s
rad

Jm Moment of inertia of the motor rotor 3.9001 · 10−7 kgm2

Kg System gear ratio (motor - load) 70(14 × 5)
ng Gearbox efficiency 0.9
nm Motor efficiency 0.69

Beq Equivalent viscous damping coeff. 0.004 Nms
rad

g Gravitational constant of earth 9.81 m
s2

α Pendulum position rad
θ Load shaft position rad
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Fig. 5. Results in upright position
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