
Frameworks for embedded system development

Tomislav Novosel* and Leonardo Jelenković**
*Zagrebačka banka/Sektor informatike, Zagreb, Republika Hrvatska
**Fakultet elektrotehnike i računarstva, Zagreb, Republika Hrvatska

tomislav.novosel@kr.t-com.hr, leonardo.jelenkovic@fer.hr

Abstract – Embedded systems with moderate or high
complexity are increasingly emerging in our
environment. Developing software for such systems
could be done from scratch or by using existing system
or framework. Building from scratch is very time and
cost demanding. Using existing operating system for
embedded systems as base may not be always good
choice due to cost, licensing, complexity or inflexibility.
In this paper we propose using various frameworks
which consists of only particular operating system kernel
components for embedded system development of
various complexities.

I. INTRODUCTION

In this paper we describe designing of a template or
framework for software development for embedded
computer systems. Embedded systems controlled by
computer are emerging and even today they can be found
in large number of devices or are part of bigger systems.
For example, they are present in most home devices from
TV to washing machines, they control traffic
signalizations and they control factory process. Software
component of such system have various complexity, from
systems controlled by a simple microcontroller, to very
complex systems with more than one component,
sometimes even distributed.

Operating system for embedded computer should be
designed very carefully. It should be as simple and
efficient as possible. Embedded systems should be reliable
and very often execute their tasks in real time (real time
systems).

The number of trivial and non-trivial embedded
computer systems is rapidly increasing. Their software
can be designed in two ways: by designing from scratch or
by using some existing operating system as a template.
Designing from scratch is time and cost demanding and it
is not always possible. The disadvantage of using existing
operating system for embedded computers (e.g. Windows
CE, Embedded Linux, VxWorks, Symbian OS etc.) can be
their price (e.g. license per product) and complexity since
most of their features may not be required. Because of a
complexity, customizing such system can be extremely
hard or not even possible.

As one possible solution for embedded systems
development, templates (far simpler than operating
systems) can be used. Templates can be various, from
simple to complex, including highly reliable real time
operating systems. In this article, templates with only
basic operating systems kernel elements are described.

These templates can be used in embedded systems
development. Since the templates contain only basic
kernel elements, they are not complex and can be easily
customized during system development. Kernel elements,
described in this article, can be sufficient for development
of simple to medium complex embedded systems. More
complex systems that require more functionality like
communication mechanisms and file system support,
might be built using those templates, but those subsystems
must be built in development process. Mostly, such
complex systems could be easier be developed using
existing operating system that already has required
functionality.

Basic kernel elements proposed as framework
templates are:

1. input-output subsystem,
2. timer subsystem and
3. multitasking.

Templates are incrementally organized: the second one
contains functionalities of the first, and the third one
contains functionalities of both previous frameworks.

Depending of complexity and features of a target
system, appropriate template with various subsystems can
be used. Embedded system designer should choose one
and customize it during system development. In the rest of
the paper each template is described and various usage
examples of one or more templates are described.

II. LAYERED STRUCTURE

Templates are designed to be adjusted to the layered
architecture of target system. Therefore they are also
organized as a layered system.

Template layers are:
• program layer – user programs, which are designed

separately for each target system,
• kernel layer – operating system kernel and
• hardware abstraction layer.

Layers are independent and with each other they
communicate using interfaces. Each layer communicates
only with its neighbors layers, using its interface. The
advantage of layered organization is in portability of
program and kernel layers which are independent of
hardware architecture. Within hardware abstraction layer
(HAL), hardware architecture and its complexity are
hidden (masked) with common interface for higher layers,
allowing their portability. To port system to various

platforms (e.g. Intel x86, ARM, MIPS etc.) only HAL has
to be rewritten or modified.

Program layer is highest layer in this layered structure
and within are implemented required operations for target
system. Depending of the target system's complexity and
similarity with others, this layer can be included in
templates and reused. If it is included, its functionality is
appropriately customized for each target system. If
program layer is not part of template it must be developed
for each new target system.

Kernel layer is the base element in all templates. Basic
operations, which are described later in detail, are
implemented here. Programs use kernel services through
kernel's programming interface while kernel uses HAL
interface when handling interrupts and hardware related
operations (e.g. thread context switch).

Hardware abstraction layer (HAL) provides interface
for operations with hardware, enabling communication
between kernel and hardware. For example, in this layer
data is read or written to input-output devices and device
drivers are implemented, specific processor registers are
used. This layer depends of target system hardware, which
means that it must be designed separately for each target
architecture.

III. FRAMEWORK TEMPLATES

In this paper we propose three templates. First, with
only input-output subsystem, second, upgraded with timer
subsystem and third further upgraded with multitasking
support.

A. Input-output subsystem
Subsystem for controlling of input-output devices is a

basic subsystem in all computer systems. Communication
with input and output devices can be achieved in two
ways: using direct communication (reading or writing)
and using interrupts. In both cases appropriate device
driver is required, once called directly and once called
within interrupt handler.

Interrupts are basic mechanism for handling
asynchronous events from environment. Interrupt signal
cause processor to temporary stop with current thread and
handle interrupt request. Input-output subsystem is kernel
part which provides interrupt handler registration
operation by connecting interrupt with appropriate device
drivers. Input-output subsystem may be standalone
structure, e.g. subsystem for controlling of input and
output devices, which can be sufficient for some
embedded systems.

Interrupts are not exclusively used by input-output
subsystems. Processor also produces interrupt for special
events. First template supports following types of
interrupts:

• hardware interrupts, generated by input-output
devices and

• software interrupts, generated by processor.

Hardware interrupts are generated outside processor,
by attached devices and controllers, such as a keyboard

controller, a timer (counter), a serial port etc. Interrupt
signal are generated when device complete given
operation or when new event occurs. Signal is sent
directly to processor or indirectly through an interrupt
controller interface (e.g. Programmable interrupt
controller or PIC in x86 architecture).

Interrupts generated inside processor carry information
about an error in program execution, such as trying to
divide with zero, illegal instruction code, nonexistent
address etc.

Special types of interrupts are interrupts intentionally
generated by program instructions – software interrupts.
They are used in systems in which user programs are
executed in user mode, in less privileged mode than the
kernel functions. Using this type of interrupt, user
programs invoke kernel functions. In this article, primarily
related to embedded systems, it is assumed that user
programs and kernel functions are executing in the same
high privilege mode, so this type of interrupt is not
required in described templates.

Each interrupt source has assigned an identifier
(interrupt number) and an interrupt handler function. The
starting addresses of interrupt handlers are stored in input-
output subsystem's data structure.

Template for interrupt control contains functionalities
for:

• interrupt data and controller initialization, and
• interrupts handling (when interrupt signal is

received).

Template defines only a part of initialization related to
data structure initialization and hardware initialization
(used for device interrupt handling). The other
initialization part not present in templates, should define
the functionality of interrupt handlers, and should be
implemented for target system at the time of its
development. Therefore, this template can be adjusted for
various kinds of interrupts accepted by the system, and it
can be connected with appropriate device drivers used for
their handling. With each new device an companion
device driver should be provided and registered in input-
output subsystem.

The part of initialization contained in this template is
mostly implemented in HAL and only partly in kernel
layer. Some data structures are defined in HAL (e.g.
interrupt table), and the other are defined in kernel layer
(e.g. interrupt registrations, interrupt stack). If additional
hardware initialization is required (e.g. reprogramming
interrupt controller) it should be implemented in HAL.

HAL implements functionalities related to processor's
context switching executed at the interrupt arrival, before
and after device driver function (interrupt handler) is
executed. Interrupt control interface is implemented in
HAL and can be used by both kernel, during system
initialization, and programs for directly accessing input
and output devices.

B. Timer subsystem
Using timer subsystem the system can control its

environment according to defined time schedule. Timer

subsystem provides interfaces for delaying programs and
for scheduling activities for future moments, which can
also be periodic.

Primary device used in timer subsystem is an counter
with internal signal generator. Counter decrements given
value until zero is reached. When it reaches zero, an
interrupt is generated and counting starts again from
defined value. Base activities in timer subsystem therefore
include counter initializing and it’s interrupt handling, for
which input-output subsystem is used.

Timer subsystem (same as input-output subsystem)
initializes appropriate data structure and implements
activities for interrupt handling.

Timer subsystem data structure includes:
• current time,
• initial counter value and
• list of alarms.

Alarm is data structure which defines delayed task and
time of its activation, when it must be executed. Each
alarm is defined with:

• time of next activation,
• period, for periodic alarm,
• activation function,
• optional parameters and flags.

System designer should define alarms for tasks which
should be executed at defined future times. Alarm can be
single-shot, executed only once, or it can be periodic,
activated periodically with given interval. When timer
interrupt occurs, list of alarms is checked and expired
alarms are activated. Also, interrupt handler must update
system time and counter value with respect to first alarm
to be activated.

When using multitasking template, a alarm data
structure is extended with thread queue and timer interface
is extended with delay operation. Threads can use delay
interface to delayed their progress: they are removed from
ready queue and placed into delay queue of companion
alarm. When delay time expires, within timer interrupt
handler threads are removed from alarm queue and put
back into ready queue. Though not implemented in
templates, task scheduling can be implemented using
timer subsystem invoking scheduler periodically.

C. Multitasking
Multitasking template enable creation of independent

threads. A complex task can then be divided into several
subtasks executed by different threads. If threads are not
independent they must be synchronized, e.g. with
semaphores. Multitasking template support thread creation
and synchronization through semaphore and monitor
mechanisms.

Multitasking support is implemented in kernel layer.
Basic elements in multitasking data structure are threads
descriptors and lists (queues) where they are placed.

Thread descriptor defines:
• thread identifier,
• thread priority,
• thread starting function and

• thread stack.

Each thread has its own descriptor and stack which is
also used for saving thread context when interrupt occurs
and context switching is performed. Thread's context can
be generally saved to various locations. The easiest
implementation use thread's own stack. Other often used
location for thread context is in its descriptor. In a
proposed template, interrupt subroutine saves interrupted
thread's context to its stack. When interrupt processing
ends context is restored and thread resumes.

Thread can be in one of the following state:
• active state,
• ready state,
• blocked state or
• inactive state.

Thread descriptors are placed into list that correspond
to thread state. Active list always has only one thread (on
single-processor systems). In proposed template, ready
threads are arranged according to their priorities: for each
priority, there is a list for thread descriptors with equal
priority. When task scheduler is activated, it searches
ready threads, first by priority, starting from highest
priority list. When an non-empty list is found, first thread
from it is removed from it and placed into active thread
list. If no ready thread is found, a special thread with
lowest possible priority, called idle thread, is activated.

Described scheduling algorithm is priority scheduler
with FIFO as second criteria, when there are more threads
with same currently highest priority. It’s one of the
simplest scheduling methods, but also it’s mostly used in
real time systems since its priority based.

In proposed template thread can be blocked on alarm
(delayed thread), on semaphore, on monitor and on other
thread, waiting for its end.

IV. USAGE EXAMPLES

Described templates can be used in various systems.
For a large number of embedded computer systems, first,
the simplest template is sufficient. Other systems may
require additional functionalities, therefore they can use
second or third template. After choosing appropriate
template, they should be customized and extended with
required operations in program layer.

A. Included examples for input-output devices
Input-output subsystem template provides interface for

connecting drivers with controlling devices. Within
template three example drivers are already implemented:
for printing to the console, for using keyboard and for
communication through a serial port. Keyboard and serial
communication devices and its drivers use interrupt
subsystem while for printing to the console interrupts are
not required. Drivers are build as modules that can be
included in build if required, or not included if not
required, or other devices are used instead.

Every key press or key release on a keyboard
generates an interrupt signal. Interrupt handling activates a
keyboard driver, which reads key’s scan code and saves it
to a software buffer. If the template for multitasking is

used, thread can be blocked when it request input and
buffer is empty. Same functionality can be provided for
other similar input-output devices.

Console output support in template is very primitive.
Characters are print on console by writing its code and
attribute to specific memory locations. Display devices
with similar output control are mostly used in embedded
systems.

Serial communication is controlled by several control
and status register. Controlling device driver checks
circuit registers and sends or receives characters using
software buffers. Device driver is invoked on interrupt
from device, like when new character is received or last
given is transmitted. Device driver is also invoked when
new message has to be send through device.
Communication with upper layers, kernel and program,
are realized using software buffers.

B. Examples of templates usage
As an example of template usage is system which

responds to asynchronous events from its environment.
First template with input-output subsystem can
appropriate for this scenario. For example, embedded
system which is part of control in a thermal power plant,
through sensors receives information about water vapor’s
pressure, temperature and speed, and turbine's speed. If
any of these values are not within defined boundaries, an
interrupt signal is sent to the system. Interrupt subroutine
performs appropriate calculations and executes necessary
activities (e.g. adjust cooling). Using first template,
system designer must implement device drivers for each
interrupt source (e.g. attached device or sensor).

A system which executes its tasks periodically can use
time subsystem template. For example, standalone
meteorological station can be an embedded system which
measures and saves values of temperature, pressure, air
humidity and wind speed. Beside device drivers, this
system requires periodical readouts from all sensors which
is provided by timer subsystem.

A more complex system must handle asynchronous
events from its environment, but also execute some tasks
periodically. For example, an motor engine controller
might need to measure rotation speed, torque, oil
temperature, fuel consumption etc. This measurements
should occur periodically, requiring timer subsystem.
Other engine components might trigger interrupt on
controller only when they are out of bounds, e.g. when
water pressure drops beneath threshold. Input-output
subsystem (included within timer subsystem) is required
for handling such asynchronous events.

Simple elevator controller is another embedded system
example where timer subsystem (including input-output)

might be sufficient. Every request for elevator can be
connected to device which will generate interrupt and
processed within interrupt handler. Displaying elevator
status requires controlling output devices, while
controlling elevator movements and its door require
timely generated commands.

Embedded system which controls more than one
elevator might use multitasking template. Designing
control program for complex system can be significantly
simpler if using threads to control parts of system. Single
threaded solution for control of complex multipart systems
is generally very complex and error prune. Using
multitasking template control program could for each
elevator create a thread to control it. Asynchronous events,
as lift requests, may still be handled within interrupt
handler, but only as information retrieval operations.
Decisions will be calculated within threads that operate
elevators.

V. CONCLUSION

In this paper we propose simple templates for
embedded system development. Templates consists of
kernel parts: input-output subsystems, timer subsystems
and multitasking subsystem. From our experience those
templates are easy to build and can still greatly simplify
embedded system development, as we suggest in
examples. Main advantages of this templates in
comparison to commercial operating systems are in its
simplicity and flexibility. Commercial solutions, however,
had gone much extensive testing (even in live systems),
and offer more functionality, more kernel subsystems and
interfaces. It’s an engineering task to decide what is best
solution for given problem. Engineer has to know all of its
options, and we think that proposed templates should be
one of them.

LITERATURE

[1] A. S. Tanenbaum and A. S. Woodhull, “Operating Systems

Design and Implementation, 3/E,” Prentice Hall, 2006.
[2] Leo Budin, Marin Golub, Domagoj Jakobović, Leonardo

Jelenković, “Operacijski sustavi,” Element (in croatian), 2010.
[3] A. Silberschatz, G. Gagne, P. B. Galvin, “Operating System

Concepts, 6th edition,” Wiley, 2002.
[4] J.J. Labrosse, “MicroC/OS-II: The Real Time Kernel, 2nd

edition,” CMP Books, San Francisco, 2002.
[5] M. Barr, “Programming Embedded Systems in C and C++”,

O'Reilly & Associates, 1999.
[6] G. Nutt, “Operating Systems: A Modern Perspective,” Addison-

Wesley, Reading, 2000.
[7] L. Jelenković, “Višedretveni ugrađeni sustavi zasnovani na

monitorima,” doktorska disertacija (in croatian), 2005.

	I. Introduction
	II. Layered structure
	III. Framework templates
	A. Input-output subsystem
	B. Timer subsystem
	C. Multitasking

	IV. Usage examples
	A. Included examples for input-output devices
	B. Examples of templates usage

	V. conclusion
	Literature

