
Evaluation of Embedded Processor Based BDD Implementation

Danko Ivošević and Vlado Sruk
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of Electrical Engineering and Computing, University of Zagreb
Complete Address: Unska 3, Zagreb, 10000, Croatia

Phone: (+385) 1 6129 926 Fax: (+385) 1 6129 653 E-mail: danko.ivosevic@fer.hr

Abstract - Different strategies for implementation of

computationally intensive applications in hardware are

available today. The spectrum of implementations ranges

from usage of standardized microprocessors to specially

tailored hardware solutions. Available processor architectures

range from general purpose type through processors with

instruction set extensions to application-specific processors.

On the other side, recent advances in design automation

resulted in development of C-to-hardware compilers as a new

strategy for application implementation in hardware.

In this paper, we present and elaborate characteristics of

hardware implementations of Binary Decision Diagrams

(BDDs) application, used in many research and development

areas, and especially in formal verification and Computer-

Aided Design (CAD) tools. For this application, processor

architecture using C-to-hardware NISC toolset is manually

tailored and compared with implementation approaches based

on standard soft and hard processors. All these approaches

are implemented and verified using FPGA Virtex-5

development board. Our results show that, besides code and

compiler side optimizations, more significant improvements in

total execution cycles count can be achieved when processor

architecture side optimizations are included.

I. INTRODUCTION

Binary Decision Diagram [1] is a tree structured notation
used for representation of Boolean functions [2]. The
ability of storing Boolean expressions in data structure
utilized in software production expands the spectrum of its
application. Research and development of formal
verification tools benefit from it in representation and
manipulation of different functional behavior notations.
The importance of BDDs also grows with software
products growth since it is used in sequential systems and
program analysis [3]. In CAD research area they are used
in logic optimization and synthesis [4] and VLSI design
[5].

Manipulation of a large BDD tree is a computationally
intensive task. The size of the tree depends on variable
ordering applied. There are numerous software and
hardware BDD implementations that explore the problem
and search for the method of BDD task acceleration.
Because of the imposed algorithm complexity we have
focused on evaluation of its potential hardware
implementation in FPGA devices.

Development of specialized hardware solutions, with
imposed functional, environmental and performance
requirements, is always hosted by some kind of embedded
environment. In such environments, different
methodologies to real world application acceleration are at
the disposal of the designers. The common choice is

custom and semi-custom design relying on available
custom developed functional cores. While having in mind
the shortening of overall design time, the semi-custom
design using customizable microprocessor cores seems as a
suitable approach.

In this paper, we present our findings on different
implementation approaches for a highly recursive
application such as is BDD building application when
using standard embedded processors and C-to-hardware
tool with a possibility of processor architecture
customization. The features of soft and hard processor
cores and their final FPGA implementations’ results are
compared with FPGA implementation based on No-
Instruction-Set Computer (NISC) toolset, developed at the
UCI Center for Embedded Computer Systems [6]. The
comparison is presented in terms of a cycle count required
to complete the BDD building task.

In Section II, the related work on the BDD structure
implementations and specific features of BDD
manipulation algorithm are reviewed. Section III discusses
details of the approaches implemented, the NISC based and
the implementations relying on available embedded
processor cores. Section IV evaluates and compares the
results of each implementation with a more detailed
analysis of the NISC based implementation features.
Section V sets out the conclusions arising from the
implementations’ comparison.

II. BINARY DECISION DIAGRAMS

IMPLEMENTATION

The theory of Binary Decision Diagram structure
building complexity developed as VLSI designs and formal
verification inputs experienced high-rate growth. Along
with development of different implementations aiming to
achieve the desired performance, the techniques for BDDs’
optimizations in practice have been sought. The focus
primarily stayed on the problem of variable ordering during
the process of tree building. The order of entered variables
influences the size of the tree as one logic function can be
represented with different resulting BDDs. Since it was
identified as the central problem of BDD complexity,
significant efforts aimed at the BDD size reduction focused
on the problem of variable ordering [7].

At the same time, general efforts aimed at improving
performance led to miscellaneous approaches and
implementations. There were parallelizing approach
attempts [8], specially designed hardware [9], and other
proposals that attempt to minimize time and memory
resources consumption [10,11]. Since the topic has
remained interesting until today and new reprogrammable
implementation technology has appeared, the work on

a

c

b

d

a

c

b

d

a

c

b

d

Hash Table Node Table

Fig. 1. Binary Decision Diagram nodes records organization

a

b0

0 1

X = a b

c

d 1

0 1

Y = c + d

0 1

0 1

0 1

0 1

c

d 1

0 1

Z = X Y

0 1

0 1

a

b0

0

0 1

0 1

aa

bb00

00 11

X = a b

cc

dd 11

00 11

Y = c + d

0 1

0 1

0 1

0 1

cc

dd 11

00 11

Z = X Y

0 1

0 1

aa

bb00

00

0 1

0 1

Fig. 2. Binary Decision Diagram composition

Data

Outpu

ts

DataData

MemoryMemory

RFRF

ALUALU MulMulCompComp DivDiv

for(i=0; i<8; i++)

for(j=0; j<8; j++)
{

sum = 0;

for(k=0; k<8; k++)
sum = sum + A[i][k]*B[k][j];

C[i][j] = sum;
}

NISC CompileNISC CompileNISC CompileNISC Compile

ApplicationApplication DatapathDatapath

wire[ADDR_WIDTH:0] pcPlusOne;

assign pcPlusOne = pc+1'b1;
reg signed [ADDR_WIDTH-1:0] target;

always @(interrupt, isJump,
isConditional, isCall, status,

jumpTarget, pcPlusOne) begin

if (isJump)
if (isConditional)

if (status[0])

RTL CodeRTL Code

wire[ADDR_WIDTH:0] pcPlusOne;

assign pcPlusOne = pc+1'b1;
reg signed [ADDR_WIDTH-1:0] target;

always @(interrupt, isJump,
isConditional, isCall, status,

jumpTarget, pcPlusOne) begin

if (isJump)
if (isConditional)

if (status[0])

wire[ADDR_WIDTH:0] pcPlusOne;

assign pcPlusOne = pc+1'b1;
reg signed [ADDR_WIDTH-1:0] target;

always @(interrupt, isJump,
isConditional, isCall, status,

jumpTarget, pcPlusOne) begin

if (isJump)
if (isConditional)

if (status[0])

RTL CodeRTL Code

FPGA FPGA

ImplementationImplementation

Logic SynthesisLogic SynthesisLogic SynthesisLogic Synthesis

Fig. 3. NISC Toolset Flow

hardware acceleration exploiting FPGA devices in formal
verification area has become a new potential direction [12].
Accordingly, the FPGA device is employed in this paper as
the implementation platform for all the applied approaches.

The general BDD manipulation algorithm scheme is
usually organized as a node table where each node is
accessed by its hash value to improve the node search [13],
Fig. 1. The algorithm builds the tree of nodes upon
receiving new variables. With every new node upgrade on
existing sub-trees of previously entered variables is
performed, Fig. 2. When traversing the tree to evaluate
logic expressions for a vector of values, or just searching
for a node, the algorithm is moving down the tree with
recursive routine calls. As the tree grows, the number of
recursive calls increases. This emphasizes the dominant
recursive nature of the algorithm.

Further important characteristic of this approach is an
extensive usage of modulo operations to implement the
required hash function. Having complex design, the divider
operations can be expensive in terms of the required
processing clock cycles and degradation of the overall
performance.

Therefore, apart from the source code application
characteristics, the performance is dependable on target
architecture where the application is executed. As
processor based implementations are applied, certain
architecture details are closely related to performance. The
conventional processors have fixed architecture with
predefined instruction set. The performance improvement
responsibility is on the compiler side which schedules the
instructions from processor’s instruction set with
application of code optimizations. Opposite to that, the
NISC architecture is customized by user and issued to the
compiler which defines the instruction format and
schedules appropriate execution cycles. There is no
predefined instruction set so that the instruction format is
dynamically created adaptively to a given architectural

structure. This NISC capability gives it advantage over
other processors in achieving shorter execution cycle
sequences when implementing the same input code.

III. THE EVALUATED IMPLEMENTATIONS

In this section, we provide further information on NISC
and other embedded processors along with the note on their
execution environment.

No-Instruction-Set Computer has proved itself as the
appropriate concept for a wide range of applications [14].
It directly exploits the nature of application written in C
code on the architectural basis. The code and structural
description of processor architecture are taken as inputs to
NISC toolset compiler. The compiler produces the control
words tailored for the architecture and scheduled according
to functionality defined by the code. The appropriate
implementation is formed as FPGA synthesizable RTL
code, Fig. 3. The concept of control words formed
according to the architecture has shown to be efficient in
terms of execution time and power in examples of data and
computationally intensive code [15]. As no instruction set
was prepared in advance for some fixed processor
architectures, the control words are longer than typical
RISC or CISC instructions.

The generic NISC processor architecture consists of split
control and data path, Fig. 4. The control unit consists of
memory filled with control words and logic that picks the
appropriate words during execution. These words applied
to data path components, like busses, units, registers or
data memory, realize the application’s functionality.

The data path used in generic NISC implementation
consists of Data Memory, Register File, and Comparator,
ALU, Multiplier and Divider units connected with busses,
wires and registers. The ALU unit performs additions,
subtractions, shifts and all logical bitwise operations. Data
and controller memories are instantiated by proprietary
Xilinx cores, as well as a divider unit [16]. Other
components are directly implemented inside FPGA logic
resources during compilation.

For every application the block of control words
produced by the compiler is stored in controller memory

StatusStatus

AddressAddress

Control

Outputs

Data

Outputs

DataData

MemoryMemory

Register Register

FileFile

CompComp ALUALU

ProgramProgram

MemoryMemory

OffsetOffset

ControlControl
PP

CC

Controller Datapath

MulMul DivDiv

Fig. 4. Generic NISC architecture scheme: controller and data

path

y0 x2 y0 x1 y0 x0

y1 x2 y1 x1 y1 x0

y2 x2 y2 x1 y2 x0

x2 x1 x0

y0

y1

y2

s02 s01

s12 s11

s22 s21 s20

s10

s00

c12

c22

c11 c10

c21 c20

z2 z1 z0 z5 z4 z3

Fig. 5. Multiplier combinatorial circuit scheme (3x3 bits)

and scheduled in exact cycle order. The toolset in every
cycle explicitly reports on all issued control signals and
active data path parts. Such application execution profiling
is presented in Section IV with comparative results of
different implementations.

In this work, we benchmark three processor cores
against NISC in cycle count metric before and after
applying code and architectural optimizations: the Altium’s
TSK3000A soft processor [17], and Xilinx’s MicroBlaze
soft processor [18] and PowerPC 440 hard processor [19].
TSK3000A soft processor is 32-bit MIPS-like by its
architecture and instruction set provided inside Altium’s
integrated development environment. MicroBlaze is a soft
32-bit RISC Harvard processor widely utilized in
embedded processing solutions, and PowerPC 440 is a 32-
bit hard processor core embedded within Virtex-5 FX
devices. Designs based on either of the processor are easily
built with Xilinx’s Base System Builder which configures
all processor, memory, bus and peripherals settings. The
BDD functionality we implement by NISC and three other
processor cores is extracted from BuDDy package written
in C code [20].

IV. CASE STUDY: MULTIPLIER COMBINATORIAL

CIRCUIT

As a case study, the structure used to evaluate and

compare the results of the described implementations is
n×n bits integer multiplier combinatorial circuit. The

operands are of n bits and the product is of 2n bits wide.
For the input operands’ width n the application builds the

appropriate circuit as an input to BDD building procedures.

The general scheme nomenclature for such multiplier

circuit is expressed in equations (1)-(4), where the operands
are denoted as x and y and the product as z.

The particular sums are []1,...,1,0,,, −∈ nkis ik with

carries []1,...,1,0,,, −∈ nkic ik , as in 3×3 bits multiplier

scheme, Fig. 5.

The previous works [21,22] elaborated multiplier circuit
structure as one with exponential growth of representing

BDD nodes when raising bit width n. The scale of growth is
dependable on the variable ordering applied. According to

[21] for n bits size multiplier the lower bound of produced
BDD nodes representing Boolean function at j - 1 or 2n – j

– 1 product output position is 1.09
j
.

yxz ⋅=

(1)

�−

=

⋅=
1

0

2
n

i

i

ixx (2)

�−

=

⋅=
1

0

2
n

k

k

kyy (3)

�−

=

⋅=
12

0

2
n

j

j

jzz (4)

However, the growth of the BDD tree size for the

algorithm implemented in this work appears to be with
factor of 3, as our experiments have shown. The 3×3 bits

multiplier circuit structure finally produces 106 BDD nodes
with 990 division operations and 550 recursive procedure

calls during circuit processing phase. It has been chosen as
a case study for simplicity reasons, while scaling the

problem on a larger multiplier structure would only
emphasize the notions of the work.

In the following chapter, the results for the NISC based
implementation are presented and discussed. After that,
other implementations’ results are shortly reviewed.

A. No-Instruction-Set Computer Based Implementation

The NISC toolset accepts the code and architecture
description and, besides synthesizable RTL code, it
produces the precise reports on control words construction
and full translation of C code into constructed control
words. By capturing controller memory address dump
during execution and control words interpretation
information, the execution is accurately profiled up to the
level of the register-to-register transfer.

The analysis of the NISC based implementation using
generic architecture reports little over 100,000 clock cycles
where 96% of them are spent in recursive routines. As
division operation is an “expensive” operation executed by
outer 32-bit divider core instantiated in the design, its cycle
consummation is high, i.e. 32% of total cycle count.
Another point where the significant cycle number is spent
is in entrance and exit parts of the routines. Every time the
routine is called there is some processing on passing
arguments and setting the routine’s local context, i.e. the
return address and caller’s local context and local
variables. Every time the routine is exited, the caller’s local
context is retrieved. When summing all cycles belonging to

Data

Outputs

DataData

MemoryMemory

RFRF

ALUALU MulMulCompComp Div 16Div 16--bitbitALUALU22

Fig. 6. NISC architectural changes proposed

0

20000

40000

60000

80000

100000

120000

All divs, 32-bit

Divider

2/3 shifts, 1/3 divs,

32-bit Divider (a.)

2/3 shifts, 1/3 divs,

16-bit Divider (b.)

2/3 shifts, 1/3 divs,

16-bit Divider, 2

ALUs (c.)

2/3 shifts, 1/3 divs,

16-bit Divider, 2

ALUs, Comp fwd

paths (d.)

#
 c

y
c
le

s

Total cycle count Recursive routines cycles Entrance and Exit cycles Division cycles

Fig. 7. Comparison of NISC based implementations

TABLE I

CYCLE COUNTS COMPARISON

Implementation Non-

optimized

Optimized Improvement

TSK3000A 135,209 88,553 34.5%

PowerPC440 744,673 329,754 55.7%

MicroBlaze 7.20b 190,507 121,390 36.3%

NISC 108,338 67,591 37.6%

those specific parts of the routine processing, it appears
that they consume 16% of all cycles. This is the
consequence of numerous recursive calls as is the nature
of the BDD manipulation algorithm.

According to profiling and performance analysis, we
examined several code transformations and architectural
refinements to decrease the total cycle count:

a. The hash functions for accessing nodes incorporate
simple divisions by 2 which allowed replacement
of 2/3 of all divisions with right shift operation.

b. For all multiplier sizes up to 7x7 bits the number of
produced nodes is small enough so that
replacement of the 32-bit divider core with 16-bit
appeared to be allowed. The maximum divisor
value is limited to the number of resulting BDD
nodes as appropriate division operation is applied in
nodes caching. In reality, the cache size is expected
to be much lower than total number of nodes so that
the divider core replacement done here is thus fully
justified. As the divider latency is almost linear to
input operands bit widths, the gain expected from
this change is almost 50% in divider cycles.

c. The architecture was updated with another ALU,
and, additionally, with forwarding paths from all
computational units to the comparator. The
additional ALU is intended for parallelization of
routines’ context handling during recursive calls
where multiple additions to stack and frame pointers
addresses in data memory are issued.

d. Forwarding paths to comparators were added since
many branches dependable on temporary
calculations had been noticed.

The summary of architectural changes is presented in
Fig. 6 where the final data path is shown, while the
comparison of cycle counts got from logic analyzer outputs
for all implementations is shown in Fig. 7.

The first two refinements succeeded in the reduction of
divider’s cycles by almost 6 times while putting its total
cycles’ consummation below 10% of all execution cycles.
At the same time, with decreasing the total number of
cycles the impact of routines’ entrance and exit cycles grew
to over 20% of all cycles.

Further refinement of adding another ALU unit helped in
a speedup of handling of routines’ local contexts. When
calculating the context frame, setting the new stack pointer
and reserving the space for local variables in memory, the
second ALU significantly contributed to execution
parallelization.

All the considered optimizations contributed to an
execution cycle count decrease by almost 40% while
keeping division cycles below 10% and recursive influence
on all routines’ calls handling below 20%. For all

implementations the dominantly recursive execution is
confirmed as those routines account for 94-97% of all
cycles.

B. Implementations Comparison

The No-Instruction-Set Computer based implementation
is compared to embedded processor based
implementations. The optimizations applied for soft
(TSK3000A, Microblaze) and hard (PowerPC) processor
cores based implementations include code changes
described in the previous chapter and different levels of
compiler level optimizations. The difference between non-
optimized and fully optimized implementations for all
embedded processors and NISC are presented in Table I.
There is a 35-55% range of improvements for
implementations after applying optimizations. When
compared to NISC, other implementations need 30-400%
more cycles.

V. CONCLUSION

In this paper, strategies for FPGA based implementation
of building Binary Decision Diagrams (BDDs) are
explored. Three standard embedded microprocessor based
implementations are compared against No-Instruction-Set
Computer (NISC) processor customized implementation.
We explore NISC concept applicability on recursive
dominant type of application, as the BDD manipulation
algorithm recursively traverses its own tree structure.

The different FPGA implementations are compared in
clock cycle count metrics. For processor cores, we varied
different optimization levels applied to the corresponding
compiler. On the other hand for NISC, we introduced

several optimizations in source code and processor
architecture changes. Since NISC compiler dynamically
creates instruction format and its contents tailored for the
provided processor architecture, its final implementation
outperforms the others in the cycle count metric at least by
23%.

NISC advantage in customization of architecture and
specifically the data path where particular computation
units are refined or some new added enables
straightforward architecture changes’ implementation.
Another important NISC toolset advantage is the
possibility of definition of especially dedicated
computational units that perform only ones specific
operation, or a subset of operations.

Furthermore, we have noticed that after applying several
code and architecture optimizations to NISC based
implementation, the recursive nature of the algorithm
becomes more dominant. In this manner, it limits
performance improvements for all implementations.
Therefore, efforts aimed at acceleration of such application
in specialized hardware architectures, or in parallelizing
approach through multiprocessing or distributed
environments, have potential to provide an additional
improvement.

The future research will focus on the target FPGA
platform dependable metrics, such as are the achieved work
frequencies, logic resource allocations and, consequently,
the actual execution time and power dissipation for all
proposed implementations.

ACKNOWLEDGMENTS

This work is supported by research grant No. 036-
0362980-1929 from the Ministry of Science, Education
and Sports of the Republic of Croatia and Unity through
Knowledge Fund (UKF).

The work builds upon many years of research and
experience of staff at the Center for Embedded Computer
Systems (CECS), University of California, Irvine.

The authors would like to thank Valentina Zadrija for
providing auxiliary measurements.

REFERENCES

[1] S. B. Akers, “Binary decision diagrams,” IEEE

Transactions on Computers, vol. 27, pp. 509–516, June

1978.

[2] R. E. Bryant, “Graph-based algorithms for Boolean function

manipulation,” IEEE Transactions on Computers, vol. 35,

pp. 677–691, August 1986.

[3] O. Lhoták, “Program analysis using binary decision

diagrams,” Ph. D. thesis, School of Computer Science,

McGill University, Montreal, Canada, January 2006.

[4] C. Yang and M. Ciesielski, “BDS: a BDD-based logic

optimization system,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 21,

pp. 866–876, July 2002.

[5] C. Meinel and T. Theobald, Algorithms and data structures

in VLSI design - OBDD foundations and applications, 1st

ed., Ed. Berlin, Germany: Springer-Verlag, 1998.

[6] “NISC Technology and Toolset home page,”

http://www.ics.uci.edu/ ~nisc/.

[7] B. Bollig and I. Wegener, “Improving the variable ordering

of OBDDs is NP-complete,” IEEE Transactions on

Computers, vol. 45, pp. 993–1002, September 1996.

[8] T. Stornetta and F. Brewer, “Implementation of an efficient

parallel BDD package,” DAC, pages 641-644, 1996.

[9] T. Yoneda and T. Ishigaki, “Hardware acceleration for BDD

manipulations,” Tokyo Institute of Technology, Tokyo, TIT

CS Tech. Rep. TR99-0015, 1999.

[10] S. Minato, “Streaming BDD manipulation,” IEEE

Transactions on Computers, vol. 51, pp. 474–485, May

2002.

[11] P.W. C. Prasad, A.Assi, M. Raseen and A. Harb, “Selective

min-terms based tabular method for BDD Manipulations,”

WASET, pages 122-125, 2005.

[12] M. Safar, M. W. El-Kharashi and A. Salem, “An FPGA

based accelerator for SAT based combinational equivalence

checking,” IWSOC, pages 419-424, 2005.

[13] K.S. Brace, R.L. Rudell and R.E. Bryant, “Efficient

implementation of a BDD package,” DAC, pages 40-45,

1990.

[14] M. Reshadi, B. Gorjiara and D. Gajski, “NISC technology

and preliminary results,” Center for Embedded Computer

Systems, Irvine, CA, Tech. Rep. TR05-11, 2005.

[15] B. Gorjiara, M. Reshadi and D. Gajski, “Designing a

Custom Architecture for DCT Using NISC Technology,”

ASP-DAC, pages 116-117, 2006.

[16] “Xilinx Divider Generator v3.0,”

http://www.xilinx.com/support/

documentation/ip_documentation/div_gen_ds530.pdf.

[17] “Altium TSK3000A 32-bit RISC Processor,”

http://www.altium.com/ files/learningguides/CR0121

TSK3000A 32 bit RISC Processor.pdf.

[18] “MicroBlaze – The Industry’s Most Flexible Processing

Solution,”

http://www.xilinx.com/publications/prod_mktg/MicroBlaze

_Sell_Sheet.pdf.

[19] “PowerPC 440 home page,” http://www.xilinx.com/support/

documentation/ipembedprocess_processorcore_ppc440.htm.

[20] “BuDDy - A Binary Decision Diagram Package home

page,”

http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/re

search/buddy/index.html.

[21] R. E. Bryant, “On the complexity of VLSI implementations

and graph representations of Boolean functions with

application to integer multiplication,” IEEE Transactions on

Computers, vol. 40, pp. 205–213, February 1991.

[22] I. Grudenić, N. Bogunović, “BDD complexity analysis of

multiplier circuits,” MIPRO, pages 31-34, 2005.

