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Abstract - Different strategies for implementation of 

computationally intensive applications in hardware are 

available today. The spectrum of implementations ranges 

from usage of standardized microprocessors to specially 

tailored hardware solutions. Available processor architectures 

range from general purpose type through processors with 

instruction set extensions to application-specific processors. 

On the other side, recent advances in design automation 

resulted in development of C-to-hardware compilers as a new 

strategy for application implementation in hardware. 

In this paper, we present and elaborate characteristics of 

hardware implementations of Binary Decision Diagrams 

(BDDs) application, used in many research and development 

areas, and especially in formal verification and Computer-

Aided Design (CAD) tools. For this application, processor 

architecture using C-to-hardware NISC toolset is manually 

tailored and compared with implementation approaches based 

on standard soft and hard processors. All these approaches 

are implemented and verified using FPGA Virtex-5 

development board. Our results show that, besides code and 

compiler side optimizations, more significant improvements in 

total execution cycles count can be achieved when processor 

architecture side optimizations are included. 

 

 

I. INTRODUCTION 
 

Binary Decision Diagram [1] is a tree structured notation 
used for representation of Boolean functions [2]. The 
ability of storing Boolean expressions in data structure 
utilized in software production expands the spectrum of its 
application. Research and development of formal 
verification tools benefit from it in representation and 
manipulation of different functional behavior notations. 
The importance of BDDs also grows with software 
products growth since it is used in sequential systems and 
program analysis [3]. In CAD research area they are used 
in logic optimization and synthesis [4] and VLSI design 
[5]. 

Manipulation of a large BDD tree is a computationally 
intensive task. The size of the tree depends on variable 
ordering applied. There are numerous software and 
hardware BDD implementations that explore the problem 
and search for the method of BDD task acceleration. 
Because of the imposed algorithm complexity we have 
focused on evaluation of its potential hardware 
implementation in FPGA devices. 

Development of specialized hardware solutions, with 
imposed functional, environmental and performance 
requirements, is always hosted by some kind of embedded 
environment. In such environments, different 
methodologies to real world application acceleration are at 
the disposal of the designers. The common choice is 

custom and semi-custom design relying on available 
custom developed functional cores. While having in mind 
the shortening of overall design time, the semi-custom 
design using customizable microprocessor cores seems as a 
suitable approach. 

In this paper, we present our findings on different 
implementation approaches for a highly recursive 
application such as is BDD building application when 
using standard embedded processors and C-to-hardware 
tool with a possibility of processor architecture 
customization. The features of soft and hard processor 
cores and their final FPGA implementations’ results are 
compared with FPGA implementation based on No-
Instruction-Set Computer (NISC) toolset, developed at the 
UCI Center for Embedded Computer Systems [6]. The 
comparison is presented in terms of a cycle count required 
to complete the BDD building task. 

In Section II, the related work on the BDD structure 
implementations and specific features of BDD 
manipulation algorithm are reviewed. Section III discusses 
details of the approaches implemented, the NISC based and 
the implementations relying on available embedded 
processor cores. Section IV evaluates and compares the 
results of each implementation with a more detailed 
analysis of the NISC based implementation features. 
Section V sets out the conclusions arising from the 
implementations’ comparison. 

 

 

II. BINARY DECISION DIAGRAMS 

IMPLEMENTATION 
 

The theory of Binary Decision Diagram structure 
building complexity developed as VLSI designs and formal 
verification inputs experienced high-rate growth. Along 
with development of different implementations aiming to 
achieve the desired performance, the techniques for BDDs’ 
optimizations in practice have been sought. The focus 
primarily stayed on the problem of variable ordering during 
the process of tree building. The order of entered variables 
influences the size of the tree as one logic function can be 
represented with different resulting BDDs. Since it was 
identified as the central problem of BDD complexity, 
significant efforts aimed at the BDD size reduction focused 
on the problem of variable ordering [7]. 

At the same time, general efforts aimed at improving 
performance led to miscellaneous approaches and 
implementations. There were parallelizing approach 
attempts [8], specially designed hardware [9], and other 
proposals that attempt to minimize time and memory 
resources consumption [10,11]. Since the topic has 
remained interesting until today and new reprogrammable 
implementation technology has appeared, the work on 
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Fig. 1. Binary Decision Diagram nodes records organization 
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Fig. 2. Binary Decision Diagram composition 
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Fig. 3. NISC Toolset Flow 

hardware acceleration exploiting FPGA devices in formal 
verification area has become a new potential direction [12]. 
Accordingly, the FPGA device is employed in this paper as 
the implementation platform for all the applied approaches. 

The general BDD manipulation algorithm scheme is 
usually organized as a node table where each node is 
accessed by its hash value to improve the node search [13], 
Fig. 1. The algorithm builds the tree of nodes upon 
receiving new variables. With every new node upgrade on 
existing sub-trees of previously entered variables is 
performed, Fig. 2. When traversing the tree to evaluate 
logic expressions for a vector of values, or just searching 
for a node, the algorithm is moving down the tree with 
recursive routine calls. As the tree grows, the number of 
recursive calls increases. This emphasizes the dominant 
recursive nature of the algorithm. 

Further important characteristic of this approach is an 
extensive usage of modulo operations to implement the 
required hash function. Having complex design, the divider 
operations can be expensive in terms of the required 
processing clock cycles and degradation of the overall 
performance. 

Therefore, apart from the source code application 
characteristics, the performance is dependable on target 
architecture where the application is executed. As 
processor based implementations are applied, certain 
architecture details are closely related to performance. The 
conventional processors have fixed architecture with 
predefined instruction set. The performance improvement 
responsibility is on the compiler side which schedules the 
instructions from processor’s instruction set with 
application of code optimizations. Opposite to that, the 
NISC architecture is customized by user and issued to the 
compiler which defines the instruction format and 
schedules appropriate execution cycles. There is no 
predefined instruction set so that the instruction format is 
dynamically created adaptively to a given architectural 

structure. This NISC capability gives it advantage over 
other processors in achieving shorter execution cycle 
sequences when implementing the same input code. 

 

 

III. THE EVALUATED IMPLEMENTATIONS 
 

In this section, we provide further information on NISC 
and other embedded processors along with the note on their 
execution environment. 

No-Instruction-Set Computer has proved itself as the 
appropriate concept for a wide range of applications [14]. 
It directly exploits the nature of application written in C 
code on the architectural basis. The code and structural 
description of processor architecture are taken as inputs to 
NISC toolset compiler. The compiler produces the control 
words tailored for the architecture and scheduled according 
to functionality defined by the code. The appropriate 
implementation is formed as FPGA synthesizable RTL 
code, Fig. 3. The concept of control words formed 
according to the architecture has shown to be efficient in 
terms of execution time and power in examples of data and 
computationally intensive code [15]. As no instruction set 
was prepared in advance for some fixed processor 
architectures, the control words are longer than typical 
RISC or CISC instructions.  

The generic NISC processor architecture consists of split 
control and data path, Fig. 4. The control unit consists of 
memory filled with control words and logic that picks the 
appropriate words during execution. These words applied 
to data path components, like busses, units, registers or 
data memory, realize the application’s functionality. 

The data path used in generic NISC implementation 
consists of Data Memory, Register File, and Comparator, 
ALU, Multiplier and Divider units connected with busses, 
wires and registers. The ALU unit performs additions, 
subtractions, shifts and all logical bitwise operations. Data 
and controller memories are instantiated by proprietary 
Xilinx cores, as well as a divider unit [16]. Other 
components are directly implemented inside FPGA logic 
resources during compilation. 

For every application the block of control words 
produced by the compiler is stored in controller memory 
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Fig. 4. Generic NISC architecture scheme: controller and data 

path 
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Fig. 5. Multiplier combinatorial circuit scheme (3x3 bits) 

and scheduled in exact cycle order. The toolset in every 
cycle explicitly reports on all issued control signals and 
active data path parts. Such application execution profiling 
is presented in Section IV with comparative results of 
different implementations. 

In this work, we benchmark three processor cores 
against NISC in cycle count metric before and after 
applying code and architectural optimizations: the Altium’s 
TSK3000A soft processor [17], and Xilinx’s MicroBlaze 
soft processor [18] and PowerPC 440 hard processor [19]. 
TSK3000A soft processor is 32-bit MIPS-like by its 
architecture and instruction set provided inside Altium’s 
integrated development environment. MicroBlaze is a soft 
32-bit RISC Harvard processor widely utilized in 
embedded processing solutions, and PowerPC 440 is a 32-
bit hard processor core embedded within Virtex-5 FX 
devices. Designs based on either of the processor are easily 
built with Xilinx’s Base System Builder which configures 
all processor, memory, bus and peripherals settings. The 
BDD functionality we implement by NISC and three other 
processor cores is extracted from BuDDy package written 
in C code [20]. 

 

 

IV. CASE STUDY: MULTIPLIER COMBINATORIAL 

CIRCUIT 
 

As a case study, the structure used to evaluate and 

compare the results of the described implementations is 
n×n bits integer multiplier combinatorial circuit. The 

operands are of n bits and the product is of 2n bits wide. 
For the input operands’ width n the application builds the 

appropriate circuit as an input to BDD building procedures. 

The general scheme nomenclature for such multiplier 

circuit is expressed in equations (1)-(4), where the operands 
are denoted as x and y and the product as z.  

The particular sums are [ ]1,...,1,0,,, −∈ nkis ik  with 

carries [ ]1,...,1,0,,, −∈ nkic ik , as in 3×3 bits multiplier 

scheme, Fig. 5. 

The previous works [21,22] elaborated multiplier circuit 
structure as one with exponential growth of representing 

BDD nodes when raising bit width n. The scale of growth is 
dependable on the variable ordering applied. According to 

[21] for n bits size multiplier the lower bound of produced 
BDD nodes representing Boolean function at j - 1 or 2n – j 

– 1 product output position is 1.09
j
. 
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However, the growth of the BDD tree size for the 

algorithm implemented in this work appears to be with 
factor of 3, as our experiments have shown. The 3×3 bits 

multiplier circuit structure finally produces 106 BDD nodes 
with 990 division operations and 550 recursive procedure 

calls during circuit processing phase. It has been chosen as 
a case study for simplicity reasons, while scaling the 

problem on a larger multiplier structure would only 
emphasize the notions of the work. 

In the following chapter, the results for the NISC based 
implementation are presented and discussed. After that, 
other implementations’ results are shortly reviewed. 

 

A. No-Instruction-Set Computer Based Implementation 
 

The NISC toolset accepts the code and architecture 
description and, besides synthesizable RTL code, it 
produces the precise reports on control words construction 
and full translation of C code into constructed control 
words. By capturing controller memory address dump 
during execution and control words interpretation 
information, the execution is accurately profiled up to the 
level of the register-to-register transfer. 

The analysis of the NISC based implementation using 
generic architecture reports little over 100,000 clock cycles 
where 96% of them are spent in recursive routines. As 
division operation is an “expensive” operation executed by 
outer 32-bit divider core instantiated in the design, its cycle 
consummation is high, i.e. 32% of total cycle count. 
Another point where the significant cycle number is spent 
is in entrance and exit parts of the routines. Every time the 
routine is called there is some processing on passing 
arguments and setting the routine’s local context, i.e. the 
return address and caller’s local context and local 
variables. Every time the routine is exited, the caller’s local 
context is retrieved. When summing all cycles belonging to 



Data 

Outputs

DataData

MemoryMemory

RFRF

ALUALU MulMulCompComp Div 16Div 16--bitbitALUALU22

 
 

Fig. 6. NISC architectural changes proposed 
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Fig. 7. Comparison of NISC based implementations 

TABLE I 

CYCLE COUNTS COMPARISON 

 

Implementation Non-

optimized 

Optimized Improvement 

TSK3000A  135,209 88,553 34.5% 

PowerPC440 744,673 329,754 55.7% 

MicroBlaze 7.20b 190,507 121,390 36.3% 

NISC 108,338 67,591 37.6% 

 

those specific parts of the routine processing, it appears 
that they consume 16% of all cycles. This is the 
consequence of numerous recursive calls as is the nature 
of the BDD manipulation algorithm. 

According to profiling and performance analysis, we 
examined several code transformations and architectural 
refinements to decrease the total cycle count: 

a. The hash functions for accessing nodes incorporate 
simple divisions by 2 which allowed replacement 
of 2/3 of all divisions with right shift operation. 

b. For all multiplier sizes up to 7x7 bits the number of 
produced nodes is small enough so that 
replacement of the 32-bit divider core with 16-bit 
appeared to be allowed. The maximum divisor 
value is limited to the number of resulting BDD 
nodes as appropriate division operation is applied in 
nodes caching. In reality, the cache size is expected 
to be much lower than total number of nodes so that 
the divider core replacement done here is thus fully 
justified. As the divider latency is almost linear to 
input operands bit widths, the gain expected from 
this change is almost 50% in divider cycles. 

c. The architecture was updated with another ALU, 
and, additionally, with forwarding paths from all 
computational units to the comparator. The 
additional ALU is intended for parallelization of 
routines’ context handling during recursive calls 
where multiple additions to stack and frame pointers 
addresses in data memory are issued. 

d. Forwarding paths to comparators were added since 
many branches dependable on temporary 
calculations had been noticed. 

The summary of architectural changes is presented in 
Fig. 6 where the final data path is shown, while the 
comparison of cycle counts got from logic analyzer outputs 
for all implementations is shown in Fig. 7. 

The first two refinements succeeded in the reduction of 
divider’s cycles by almost 6 times while putting its total 
cycles’ consummation below 10% of all execution cycles. 
At the same time, with decreasing the total number of 
cycles the impact of routines’ entrance and exit cycles grew 
to over 20% of all cycles. 

Further refinement of adding another ALU unit helped in 
a speedup of handling of routines’ local contexts. When 
calculating the context frame, setting the new stack pointer 
and reserving the space for local variables in memory, the 
second ALU significantly contributed to execution 
parallelization. 

All the considered optimizations contributed to an 
execution cycle count decrease by almost 40% while 
keeping division cycles below 10% and recursive influence 
on all routines’ calls handling below 20%. For all 

implementations the dominantly recursive execution is 
confirmed as those routines account for 94-97% of all 
cycles. 

 

B. Implementations Comparison 
 

The No-Instruction-Set Computer based implementation 
is compared to embedded processor based 
implementations. The optimizations applied for soft 
(TSK3000A, Microblaze) and hard (PowerPC) processor 
cores based implementations include code changes 
described in the previous chapter and different levels of 
compiler level optimizations. The difference between non-
optimized and fully optimized implementations for all 
embedded processors and NISC are presented in Table I. 
There is a 35-55% range of improvements for 
implementations after applying optimizations. When 
compared to NISC, other implementations need 30-400% 
more cycles. 

 

 

V. CONCLUSION 
 

In this paper, strategies for FPGA based implementation 
of building Binary Decision Diagrams (BDDs) are 
explored. Three standard embedded microprocessor based 
implementations are compared against No-Instruction-Set 
Computer (NISC) processor customized implementation. 
We explore NISC concept applicability on recursive 
dominant type of application, as the BDD manipulation 
algorithm recursively traverses its own tree structure. 

The different FPGA implementations are compared in 
clock cycle count metrics. For processor cores, we varied 
different optimization levels applied to the corresponding 
compiler. On the other hand for NISC, we introduced 



several optimizations in source code and processor 
architecture changes. Since NISC compiler dynamically 
creates instruction format and its contents tailored for the 
provided processor architecture, its final implementation 
outperforms the others in the cycle count metric at least by 
23%. 

NISC advantage in customization of architecture and 
specifically the data path where particular computation 
units are refined or some new added enables 
straightforward architecture changes’ implementation. 
Another important NISC toolset advantage is the 
possibility of definition of especially dedicated 
computational units that perform only ones specific 
operation, or a subset of operations.  

Furthermore, we have noticed that after applying several 
code and architecture optimizations to NISC based 
implementation, the recursive nature of the algorithm 
becomes more dominant. In this manner, it limits 
performance improvements for all implementations. 
Therefore, efforts aimed at acceleration of such application 
in specialized hardware architectures, or in parallelizing 
approach through multiprocessing or distributed 
environments, have potential to provide an additional 
improvement. 

The future research will focus on the target FPGA 
platform dependable metrics, such as are the achieved work 
frequencies, logic resource allocations and, consequently, 
the actual execution time and power dissipation for all 
proposed implementations. 
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