
Automated modeling of custom processors for

DCT algorithm

D. Ivošević and V. Sruk

Faculty of Electrical Engineering and Computing / Department of Electronics, Microelectronics, Computer and

Intelligent Systems, University of Zagreb, Croatia

danko.ivosevic@fer.hr

Abstract - The needs for automated digital system design

rise with constant technology improvements and time-to-

market shortening. High-level synthesis tools cope with this

problem by raising the design specification to a higher level.

We have implemented the methodology of custom processor

automated modeling for DCT algorithm. This algorithm is

often used in signal and image processing applications. At

front end, the methodology assumes C code input

specification as it is the case of many high-level synthesis

tools. C programming language popularity offers the

applicability for a broader spectrum of users. At back end,

logic synthesis tools produce the FPGA implementation of

the algorithm. The results are evaluated in terms of

execution cycles required for completing the algorithm and

processor’s datapath components allocations, and compared

to previous work.

I. INTRODUCTION

Moore's Law [1] has accurately predicted the growth
in IC complexity in the last 40 years and it has remained a
reliable method of calculating future trends and the pace
of innovation. It states that the capability of technology
rises twice every 18 months, while the hardware design
productivity grows by 1.6 times in the same period. In the
same time there is a software productivity gap as the
needs for software support became higher with the
potentials of hardware. The actual software productivity
grows twice every 5 years, and the requirements are much
higher as they rise twice every 10 months [2].

The opinions are that the key to bridging the software
gap lies in increased development of EDA (Electronic
Design Automation) tools for IP (Intellectual Property)
cores production that will help to close the hardware gap.
This concept of hardware-software co-design is closely
and thoroughly investigated in embedded system design
especially in the last two decades. As stated in [3], the
embedded design primarily consists of hardware and
software synthesis, and the synthesis of their interface and
communication channels.

The synthesis of hardware in a more traditional design
view starts by writing the Hardware Description
Languages (HDLs) code, i.e. VHDL or Verilog. This code
has to be written by logic synthesis standards, timing
constraints, functional and interface requirements. It is a
feasible task when there is plenty of time available, but
time-to-market pressures cause that only some
requirements (functional at first) are fulfilled. In High-

Level Synthesis (HLS) approach the design specification
is raised to the style of higher level programming
languages, i.e. C and C++ or SystemC. It is also referred
to in the literature as C synthesis, or algorithmic synthesis
as it is an automated process of hardware design from
algorithmic specification. This process analyzes the input
code and produces RTL schedule led by the architectural
constraints. The logic synthesis process translates the RTL
description into an integrated circuit. Lifting the
specification level means better control over design,
optimizations and verification at RTL level by means of
specialized tools. In the mid 90s when it emerged, the C
synthesis appeared to be successful industrial solution.
The key was in the popularity, abstraction level and
flexibility of C programming language and its integration
of design flows and modeling of the time. The ratings of
programming languages’ popularity [4,5] show that C and
C++ with usage rate of approximately 25% range among
the top 3 languages. On the other hand, hardware
description languages have a usage rate below 2%.

The high-level synthesis is targeted for ASIC and
FPGA based designs. There are several tools that take C
input specification and produce RTL code, and use logic
synthesis tools to produce target implementation [6]. They
are all conceptually similar but can differ in the scope of
optimizations they perform on input code and the allowed
level of user interventions. One of them, No-Instruction-
Set Computer (NISC) is developed at the UCI Center for
Embedded Computer Systems [7]. It is a C-to-Verilog
compiler that assumes user customizable processor
architecture as input, besides the input C code. In a
previous work [8], we showed the principle of applying
the code and architectural optimizations using the NISC
toolset on a case of Binary Decision Diagram (BDD)
structure manipulation.

The code optimizations techniques were extensively
investigated in compiler design topic research and some of
the high-level synthesis tools [9]. The architectural
customizations were investigated to a lesser extent. High-
level synthesis tools usually produce low-level design
implementation without its microprocessor level
interpretation, but there are processor implementations
with configurable instruction sets, i.e. Application-
Specific Instruction-Set Processors (ASIPs) [10].

The FPGA device as implementation platform usually
has a low operational frequency, but the design can be
customized to fully extract parallelism. The actual

comparisons of FPGA, Graphic Processor Unit (GPU) and
general purpose CPU show a high performance of FPGA
based implementations in image processing tasks [11].

In this work, we have implemented the methodology
of processor architecture design automation according to
C code input requirements, as introduced in [3]. We have
analyzed it on DCT algorithm case and presented the
results in execution cycle count metric. The strength of the
approach is in a rapid design development and the style of
specification familiar to the huge population of users. The
methodology assumes the input code as it is and does not
apply any compiler-style optimizations, but fully
customizes the architecture. Thus, the emphasis is on
optimizations that are closer to the implementation
platform while still preserving the processor style of
execution. The hard-to-solve problem of HLS flow
optimizations is broken into two stages: one that presents
the execution engine, i.e. the processor, and the other that
maps it on the implementation platform. The FPGA
implementation platform is flexible enough to be
considered as a natural target of such rapid design
development style. The available NISC toolset is the
prototype of the tool that implements the design flow.

In the following Section II there is a short outline of
the related work on DCT implementations and the NISC
concept. Section III describes the methodology of custom
processor design, while Section IV shows its application
to DCT algorithm. Section V discusses the results, and
Section VI provides the final observations on the applied
methodology and the presented results.

II. RELATED WORK

A. No-Instruction-Set Computer

The related work on processor architecture
customization is based on NISC toolset. The concept of
this toolset allows full customization of datapath and
program words that make up the control unit. The
customization of datapath assumes that a particular
functional unit is responsible only for a single operation or
combination of operations. Thus the minimization of
datapath resources is supported. The program words are
constructed according to the contents of datapath. The
architecture is translated into synthesizable Verilog code
targeted for FPGA implementation.

B. Manual Design

Previous work [14] uses NISC toolset to explore the
design space for discrete cosine transform. The transform
was calculated using two consecutive 8×8 matrix
multiplications, Listing 1.

The code and architectural exploration have been
performed synchronously, and respective designs have
been synthesized for Virtex-II FPGA device. The
evaluation metrics included the execution time by means
of the number of execution cycles and clock frequency,
power and energy consumption and area occupation.

The architecture exploration started with NISC
predefined architecture constructed as general-purpose
MIPS style datapath and it underwent through multiple
transformations. For the MIPS style datapath the DCT

code required over 10,000 execution cycles. The C code
was then transformed to increase the parallelism in the
code. The inner-most loop was unrolled, two outer loops
merged and the functional units simplified, i.e. addition
and multiplication were converted into OR and AND
operations, Listing 2.

Parallel with that, architectural transformations were
conceived to be mapped to the code transformations, Fig.
1. The OR-ALU units’ chain is instanced to accomplish
the A and B array addressing (odd lines starting with
Line05 to Line19 in Listing 2) in one cycle. The read
values (aL, bL) have been propagated to Mul-Adder units
cascade to sum the products of arrays’ values (even lines
starting with Line06 to Line20 in Listing 2).

Line01: for(i=0; i<8; i++)

Line02: {

Line03: for(j=0; j<8; j++)

Line04: {

Line05: sum = 0;

Line06: for(k=0; k<8; k++)

Line07: {

Line08: sum = sum + A[i][k]*B[k][j];

Line09: }

Line10: C[i][j] = sum;

Line11: }

Line12: }

Listing 1. DCT code

Line01: ij=0;

Line02: do {

Line03: i8 = ij & 0xF8;

Line04: j = ij & 0x7;

Line05: aL = *(A+(i8|0)); bL = *(B + (0|j));

Line06: sum = aL * bL;

Line07: aL = *(A+(i8|1)); bL = *(B + (8|j));

Line08: sum += aL * bL;

Line09: aL = *(A+(i8|2)); bL = *(B + (16|j));

Line10: sum += aL * bL;

Line11: aL = *(A+(i8|3)); bL = *(B + (24|j));

Line12: sum += aL * bL;

Line13: aL = *(A+(i8|4)); bL = *(B + (32|j));

Line14: sum += aL * bL;

Line15: aL = *(A+(i8|5)); bL = *(B + (40|j));

Line16: sum += aL * bL;

Line17: aL = *(A+(i8|6)); bL = *(B + (48|j));

Line18: sum += aL * bL;

Line19: aL = *(A+(i8|7)); bL = *(B + (56|j));

Line20: *(C + ij) = sum + (aL * bL);

Line21: } while(++ij!=64);

Listing 2. Unrolled DCT code

Such synchronized set of transformations shortened

the schedules to approximately 2900-3500 cycles while
increasing the clock frequency and shortening the overall
execution time. The occupation of Virtex-II FPGA device
implementation area was also minimized. The occupation
of the area was achieved owing to dedicating the
functionality of functional units to the required minimum
of operations. For instance, the OR unit is dedicated only
to logical OR operation while ALU unit is dedicated only
to adding and logical AND operations. In addition, the
data memory (DMem) is instanced with minimum size

required by A, B and C arrays, and the control memory
(CMem) is made up only of control words that implement
the provided C code.

C. Automated Design

As for NISC based design automation, previous work
[15] attempted to automatically derive the datapath from
C code. It extracted the initial datapath for maximum
performance in accordance with C code properties, and
then optimized it under imposed resource constraints.
These constraints were expressed in terms of the numbers
of allowed functional units and register files ports. The
key strengths of such approach are a rapid design
development with scalable input C code specifications and
a quality of designed cores comparable to manual designs.
The methodology of similar approach is shown in next
two sections on DCT case.

III. METHODOLOGY

A. Traditional High-Level Synthesis Flow

Traditional HLS flow has a number of common steps:
lexical processing, algorithm optimizations, control and
data dependencies analysis, technology library processing,
resource allocation, operation scheduling, functional units
and register bindings as well as output processing [16, 17].

The lexical processing translates the source code into
internal representation. The source-code optimizations
that follow have much in common with high-level and
parallelizing compiler optimizations. After that, the
control and data dependencies analysis identifies inputs
and outputs of the operations and their data dependencies
in the algorithm. The time component is not considered in
this task, but is introduced during the technology library
processing. The libraries representing specific hardware
design technology are processes focusing on functional,
timing and resource occupation features. The resource
allocation phase identifies the set of functional units
required for design implementation. The operation
scheduling converts the algorithm into Finite State
Machine (FSM). Based on the existing data dependencies
and library-defined functional unit latencies the algorithm

operations are scheduled by states, i.e. execution cycles
operated by clock signal. The principles of scheduling can
be diverse, depending on delays, resource limitations and
pipelining capabilities. Basically, there is time-constrained
(TC) scheduling and resource-constrained (RC)
scheduling. The following phases bind the operations to
functional unit items from the library and the variables to
registers. The final step outputs the RTL code that
implements the finite state machine, and is structured
according to the logic synthesis optimization levels or the
readability of the code.

B. Automated Processor Modeling Flow

The design flow applied in this work has some
common HLS phases, but the main difference is that it
outputs the processor architecture datapath, Fig. 2. The
datapath is optimized according to the input application
characteristics. Such architecture is purposed as input for
NISC toolset which will be used as the compiler to RTL
level.

The C code is converted into Control and Data Flow
Graph (CDFG) [18]. Such representation exposes control
and data dependencies present in the code. The CDFG
representation relies on three-address code notation. Each
line of the code is converted into one or more three-
address code statements. During this process new,
temporary, variables are introduced to preserve the data
flow consistency. We use SPARK parallelizing compiler
[19] to get CDFG from C code. The structure of the code
is represented by basic blocks constructs of the CDFG.
Basic blocks are units of code consisting of three-address
code statements without control dependencies involved.
The general structure of the input code is therefore
represented as a set of basic blocks divided by control
dependencies. For instance, the branch and loop constructs
are transformed as shown in Fig. 3. The boxes represent
the basic blocks with an appropriate set of three-address
statements. The bodies (if_body, else_body, loop_body) of
those constructs are separated from initialization
(loop_initialization), increment (loop_increment) and test
conditions (branch_condition, loop_condition). The basic
blocks that conclude these constructs (branch_end,
loop_end) are kept only to preserve the structure of the
CDFG.

Figure 1. Manually designed architecture for unrolled DCT code

([14])

ANSI C

CDFG FSMD

Datapath

Parallelizing

Compiler

Scheduling

Allocation

&

Binding

C Code Level

Intermediate Level

Architecture Level

Figure 2. Path of transformations from C code to processor

architecture

The data dependencies are localized inside the basic
blocks. Thus, the scheduling of the three-address code is
performed separately for each basic block. The applied
principle of scheduling is As-Late-As-Possible (ALAP)
list scheduling algorithm with a constraint on the number
of data memory ports. This ALAP principle appears to
expose more parallelism than As-Soon-As-Possible
(ASAP) principle. The constraint on the data memory
ports number is assumed by the fact that this number is
usually limited for FPGA implementations. In NISC based
implementations, the proprietary Xilinx IP cores with such
limitations are used for memory blocks instantiation. The
product of scheduling is Finite State Machine with Data
(FSMD) representation where three-address statements are
scheduled by states holding both information of operation
performed and variables involved in the operation. The
analysis of lifetimes of variables and usages of operations
by states optimizes the allocations of registers and
functional units and, consequently, accomplishes their
bindings to variables and operations. The final architecture
is composed by incorporation of particular basic blocks
architectures.

IV. CASE STUDY: DCT ALGORITHM

A discrete cosine transform (DCT) is a mathematical
form used in coding signals and images [12,13]. It is used
in JPEG image compression and MPEG video
compression standards. The most common variant is the
2-dimensional transform, or type-II DCT that takes the
image digitized to pixels as input.

As in typical designs the image is sub-divided to 8x8
blocks of pixels, we also use DCT source introduced in
Section II. Fig. 4 shows the CDFG representation of
Listing 1 DCT code. There are three nested loops. The
outer loop (i indexed in Listing 1) is closed within set of
basic blocks denoted as BB1 to BB13 and is iterated 8
times. The first inner loop (j indexed in Listing 1) is
closed within basic blocks BB3 to BB11 and is iterated 64
times, while the innermost loop (k indexed in Listing 1) is
closed within basic blocks BB6 to BB8 and is iterated 512
times. The methodology described in Section III can be
applied on all basic blocks to create the custom processor
datapath. However, the basic blocks with a higher impact
on the customization of the architecture are those with
more computation enclosed and those that are iterated
more times. The quantity of computation can be expressed
in terms of the number of FSMD scheduled states.

The basic block with the most computation is BB7 as
it is scheduled in 7 or 8 FSMD states. It represents the
body of the innermost loop (Line08):

sum = sum + A[i][k]*B[k][j]

Basic block BB10 is scheduled in 4 FSMD states and
represents the middle loop body other than the innermost
loop (Line10):

C[i][j] = sum

Their contents in CDFG view are presented in Fig. 5.
All other basic blocks are too simple to analyze. They
consist only of one assignment, increment or comparison
operation, and they are therefore scheduled in 1 FSMD
state. Their demand on the datapath is one comparator and
one adder.

As presented in Fig. 5, the temporary variables Tx are
used to break the complex expressions and complete the
form of three-address statement. The schedules of basic
block BB7’s CDFG (in Fig. 5(a)) are listed in Fig. 6 under
data memory ports constraints. On assumption of 1-port
data memory the code is scheduled in 8 states (a), and on
assumption of 2-port data memory the code is scheduled
in 7 states (b).

The allocation and binding phase picks appropriate
functional units and bind them to three-address
statements. For schedule in Fig. 6(a) there are maximums
of 2 additions and 1 multiplication operation per state
which is reflected in the demand for two adders and one
multiplier instance in the datapath. In Fig. 6(b), the
schedule is shorter, but 2 adders and 2 multipliers are
required to encompass it. All variables are bound to
registers taking care that variables that are used in the
same states do not share a register. For instance, variables
T3, j, A and T7 are used only as inputs for additions in
state S3 in Fig. 6(a), and are not supposed to share the
register. On the contrary, variable B is used only in state
S4 and is allowed to share a register with any variable
used in state S3.

branch_condition

if_body else_body

branch_end

loop_condition

loop_body

loop_increment

TRUE

TRUE FALSE

loop_end

FALSE

loop_initialization

(a) (b)

Figure 3. Control flow representation of (a) branch and (b) loop

constructs

BB0

BB1

BB2 BB14

BB15

BB4

BB5

BB7

BB8

BB9

BB10

BB11

BB12

BB13

BB3

BB6

T

T

T F

F

F

Figure 4. Control flow of DCT code

The schedule of BB10’s CDFG (in Fig. 5(b)) is not
dependent on data memory ports constraint. It is always
scheduled in 4 states and demands 1 adder and 1
multiplier instances. These demands are the subset of
basic block BB7’s demands and thus are satisfied if the
datapath is fully customized to BB7. The demands of
other basic blocks are also encompassed within those of
BB7 with the exception of a comparator functional unit
demanded by branch_condition basic blocks BB1, BB3
and BB6.

V. RESULTS AND DISCUSSION

The datapath for Listing 1 DCT code with the
assumption of 1-port data memory is formed as shown in
Fig. 7. There are 2 adder instances, 1 multiplier and 1
comparator functional unit instances. All adder and

multiplier instances are not used simultaneously so there
is one combined adder/multiplier unit. The optimizations
during allocation and binding phase derived such a
datapath to save implementation platform resources.
There are 4 registers with contents listed in Table I. For
instance, the multiplication scheduled in state S1 is
executed by the functional unit FU1. Variable i is read
from register Reg2, constant 8 is read from register Reg1,
and the result is stored as variable T6 in register Reg2. By
taking into consideration the schedules and iteration
counts of basic blocks there is a total of 6314 execution
cycles of DCT code with this datapath which is almost
40% less than for MIPS style datapath used in [14].

The datapath that is produced for DCT with the
assumption of 2-port data memory has two combined
adder/multiplier functional units and a comparator. The
difference from the one with 1-port data memory
constraint is in another multiplier instance combined with
adder of FU2. With this enhancement the DCT is
executed in 5802 cycles which is close to 45%
improvement over MIPS style datapath used in [14].

The Unrolled DCT case in Listing 2 has much more
parallelizing opportunities than the original DCT code and
the resulting custom datapaths much differ under different
data memory ports constraints. There is only one loop so
CDFG has one complex basic block that represents the
loop body (lines from Line03 to Line20 in Listing2), while
the other basic blocks represent loop initialization,
condition test and increment.

The preliminary results show higher occupations of
datapath components than for manual design [14] as there
were no such constraints. Table II shows a rough
comparison of manual (Fig. 1) and both cases of
automated designs. It is expressed in allocations of
datapath components, while the estimation of
implementation resources occupation is currently beyond
the scope of this work. The 2-port memory allows more

TABLE I. CONTENTS OF REGISTERS FOR FIG. 7 DATAPATH

Register Variables and constants

Reg1 A, 8, Addr26, Addr27, T10, T11

Reg2 B, i, T3, T6, T8, T9

Reg3 sum, j, k, T5, T12

Reg4 C, Addr28, T2, T4, T7

T9 = T8 × T5

T5 = DMEM[Addr26]

T10 = sum + T9

sum = T10

T8 = DMEM[Addr27]

Addr26 = B + T4 Addr27 = A + T7

T4 = T3 + j T7 = T6 + k

T3 = k × 8 T6 = i × 8

(a)

DMEM[Addr28] = sum

Addr28 = C + T12

T12 = T11 + j

T11 = i × 8

(b)

Figure 5. Data flow of basic blocks: (a) BB7, (b) BB10

State Scheduled statements

S1 T6 = i × 8

S2
T3 = k × 8

T7 = T6 + k

S3
T4 = T3 + j

Addr27 = A + T7

S4
Addr26 = B + T4

T8 = DMEM[Addr27]

S5 T5 = DMEM[Addr26]

S6 T9 = T8 × T5

S7 T10 = sum + T9

S8 sum = T10

State Scheduled statements

S1
T3 = k × 8

T6 = i × 8

S2
T4 = T3 + j

T7 = T6 + k

S3
Addr26 = B + T4

Addr27 = A + T7

S4
T5 = DMEM[Addr26]

T8 = DMEM[Addr27]

S5 T9 = T8 × T5

S6 T10 = sum + T9

S7 sum = T10

(a) 1-port data memory (b) 2-port data memory

Figure 6. FSMDs for basic block BB7 of DCT code

ADD/MUL
FU1

ADD
FU2

COMP
FU3

Reg1 Reg2 Reg3 Reg4

ADD/MUL
FU1

ADD
FU2

COMP
FU3

Reg1 Reg2 Reg3 Reg4

Figure 7. The datapath for DCT code (with 1-port data memory)

parallelized execution which is reflected in a higher
number of functional units in datapath and in a lower
number of execution cycles. For 1-port data memory case
one pass of loop body is scheduled in 24 states, and for 2-
port data memory it is scheduled in 17 states. That is
reflected in the number of total execution cycles. The total
cycle count for 1-port memory is 1665, and for 2-port
memory it is 1217, which is 40-60% less than for manual
design [14]. The tool produced presented designs in a few
seconds, while for manual design we do not have the exact
information.

VI. CONCLUSION

In this paper, we have presented automated design of
custom processor architecture for Discrete Cosine
Transform - DCT algorithm. Such architecture is
purposed as input for the No-Instruction-Set computer
concept of high-level synthesis where the design is
synthesized according to processor architecture and input
C code application.

Previous work elaborated the design space exploration
by looking into the features of input C code and manual
customization of processor architecture. Here, we have
automated the construction of processor with a specific
tool. The tool analyzes the control and data dependencies
of the code, schedules the operations and allocates the
registers and functional units. After that, it binds
architectural components to three-address code
expressions representing the input algorithm code, and
applies optimizations to avoid redundancies in the design.
The methodology does not apply code optimizations, but
accepts the code as it is. The optimizations are applied at
the architectural level resulting that different codes
performing the same functionality have different custom
architectures.

The exploration of custom processor structure is
automated with respect to achieving a minimal number of
execution cycles. The results show that the achieved
execution cycle counts are within the same order of
magnitude as those obtained by manual design, while the
design time is significantly shortened. The drawback of
the presented results is in excessive datapath components
allocations as there were no explicit components
constraints (except those related to the number of ports in
data memory cores). Thus, the design is fully optimized in

terms of execution cycles, but takes a considerable amount
of implementation area.

ACKNOWLEDGMENT

This work is supported by research grant No. 036-
0362980-1929 from the Ministry of Science, Education
and Sports of the Republic of Croatia and Unity through
Knowledge Fund (UKF).

REFERENCES

[1] G. E. Moore, “Cramming More Components onto Integrated
Circuits,” in Electronics, vol. 38, no. 8, pp. 114–117, April 1965.

[2] W. Ecker, W. Muller, R. Dömer, Hardware-dependent Software:
Principles and Practice, Springer, 2009, pp. 1-6.

[3] D. D. Gajski, A. Gerstlauer, S. Abdi, G. Schirner, Embedded
System Design, Springer, 2009, pp. 199-254.

[4] TIOBE Programming Community Index,
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[5] How popular are various programming languages?,
http://www.complang.tuwien.ac.at/anton/comp.lang-statistics

[6] C to HDL, http://en.wikipedia.org/wiki/C_to_HDL

[7] M. Reshadi, B. Gorjiara, D. D. Gajski, “NISC Technology and
Preliminary Results,” Technical Report, University of California,
Center for Embedded Computer Systems, Irvine, August 2005.

[8] D. Ivosevic, V. Sruk, “Evaluation of embedded processor based
BDD implementation,” in Proceedings of the 33rd International
Convention MIPRO, pp. 619-623, 2010.

[9] Riverside Optimizing Compiler for Configurable Computing
(ROCCC) 2.0, http://roccc.cs.ucr.edu

[10] Xtensa Customizable Processors,
http://www.tensilica.com/products/xtensa-customizable.htm

[11] S. Asano, T. Maruyama, Y. Yamaguchi, “Performance
comparison of FPGA, GPU and CPU in image processing,” in
Proceedings of International Conference on Field Programmable
Logic and Applications, pp. 126-131, 2009.

[12] S. A. Khayam, “The Discrete Cosine Transform (DCT): Theory
and Application,” Department of Electrical & Computer
Engineering, Michigan State University, DCT Tutorial, WAVES-
TR-ECE802.602, March 2003.

[13] G. Aggarwa, D. D. Gajski, "Exploring DCT Implementations,"
UC Irvine, Technical Report ICS-TR-98-10, March 1998..

[14] B. Gorjiara, D. D. Gajski, “Custom Processor Design Using NISC:
A Case-Study on DCT algorithm,” in Workshop on Embedded
Systems for Real-Time Multimedia, pp. 55-60, 2005.

[15] J. Trajkovic, D. D. Gajski, “Custom Processor Core Construction
from C Code,” in Proceedings of Sixth IEEE Symposium on
Application Specific Processors, Anaheim, California, June 2008.

[16] D. D. Gajski, N. D. Dutt, A. C-H Wu, S. Y-L Lin, “High-Level
Synthesis: Introduction to Chip and System Design,” Springer,
1992.

[17] P. Coussy, D. D. Gajski, M. Meredith, A. Takach, “An
Introduction to High-Level Synthesis,” in IEEE Design & Test of
Computers, vol. 26, no. 4, pp. 8-17, July-August 2009.

[18] A. Orailoglu, D. D. Gajski, “Flow graph representation,” in
Proceedings of the 23rd ACM/IEEE Design Automation
Conference, pp. 503 - 509, 1986.

[19] SPARK: A Parallelizing Approach to the High-Level Synthesis of
Digital Circuits, http://mesl.ucsd.edu/spark, University Of
California, San Diego

TABLE II. COMPARISON OF MANUAL AND AUTOMATED DESIGNS

FOR UNROLLED DCT CASE

Automated design
Evaluation

metric
Manual design

[14] 1-port Data

Memory

2-port Data

Memory

#FUs 5 6 8

#Regs 8 16 20

R
es

o
u

rc
e

o
cc

u
p

at
io

n

#Conns 14 52 61

Exec. cycles 3040 1665 1217

