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Abstract - The needs for automated digital system design 

rise with constant technology improvements and time-to-

market shortening. High-level synthesis tools cope with this 

problem by raising the design specification to a higher level. 

We have implemented the methodology of custom processor 

automated modeling for DCT algorithm. This algorithm is 

often used in signal and image processing applications. At 

front end, the methodology assumes C code input 

specification as it is the case of many high-level synthesis 

tools. C programming language popularity offers the 

applicability for a broader spectrum of users. At back end, 

logic synthesis tools produce the FPGA implementation of 

the algorithm. The results are evaluated in terms of 

execution cycles required for completing the algorithm and 

processor’s datapath components allocations, and compared 

to previous work. 

I. INTRODUCTION 

Moore's Law [1] has accurately predicted the growth 
in IC complexity in the last 40 years and it has remained a 
reliable method of calculating future trends and the pace 
of innovation. It states that the capability of technology 
rises twice every 18 months, while the hardware design 
productivity grows by 1.6 times in the same period. In the 
same time there is a software productivity gap as the 
needs for software support became higher with the 
potentials of hardware. The actual software productivity 
grows twice every 5 years, and the requirements are much 
higher as they rise twice every 10 months [2]. 

The opinions are that the key to bridging the software 
gap lies in increased development of EDA (Electronic 
Design Automation) tools for IP (Intellectual Property) 
cores production that will help to close the hardware gap. 
This concept of hardware-software co-design is closely 
and thoroughly investigated in embedded system design 
especially in the last two decades. As stated in [3], the 
embedded design primarily consists of hardware and 
software synthesis, and the synthesis of their interface and 
communication channels. 

The synthesis of hardware in a more traditional design 
view starts by writing the Hardware Description 
Languages (HDLs) code, i.e. VHDL or Verilog. This code 
has to be written by logic synthesis standards, timing 
constraints, functional and interface requirements. It is a 
feasible task when there is plenty of time available, but 
time-to-market pressures cause that only some 
requirements (functional at first) are fulfilled. In High-

Level Synthesis (HLS) approach the design specification 
is raised to the style of higher level programming 
languages, i.e. C and C++ or SystemC. It is also referred 
to in the literature as C synthesis, or algorithmic synthesis 
as it is an automated process of hardware design from 
algorithmic specification. This process analyzes the input 
code and produces RTL schedule led by the architectural 
constraints. The logic synthesis process translates the RTL 
description into an integrated circuit. Lifting the 
specification level means better control over design, 
optimizations and verification at RTL level by means of 
specialized tools. In the mid 90s when it emerged, the C 
synthesis appeared to be successful industrial solution. 
The key was in the popularity, abstraction level and 
flexibility of C programming language and its integration 
of design flows and modeling of the time. The ratings of 
programming languages’ popularity [4,5] show that C and 
C++ with usage rate of approximately 25% range among 
the top 3 languages. On the other hand, hardware 
description languages have a usage rate below 2%. 

The high-level synthesis is targeted for ASIC and 
FPGA based designs. There are several tools that take C 
input specification and produce RTL code, and use logic 
synthesis tools to produce target implementation [6]. They 
are all conceptually similar but can differ in the scope of 
optimizations they perform on input code and the allowed 
level of user interventions. One of them, No-Instruction-
Set Computer (NISC) is developed at the UCI Center for 
Embedded Computer Systems [7]. It is a C-to-Verilog 
compiler that assumes user customizable processor 
architecture as input, besides the input C code. In a 
previous work [8], we showed the principle of applying 
the code and architectural optimizations using the NISC 
toolset on a case of Binary Decision Diagram (BDD) 
structure manipulation. 

The code optimizations techniques were extensively 
investigated in compiler design topic research and some of 
the high-level synthesis tools [9]. The architectural 
customizations were investigated to a lesser extent. High-
level synthesis tools usually produce low-level design 
implementation without its microprocessor level 
interpretation, but there are processor implementations 
with configurable instruction sets, i.e. Application-
Specific Instruction-Set Processors (ASIPs) [10]. 

The FPGA device as implementation platform usually 
has a low operational frequency, but the design can be 
customized to fully extract parallelism. The actual 



comparisons of FPGA, Graphic Processor Unit (GPU) and 
general purpose CPU show a high performance of FPGA 
based implementations in image processing tasks [11]. 

In this work, we have implemented the methodology 
of processor architecture design automation according to 
C code input requirements, as introduced in [3]. We have 
analyzed it on DCT algorithm case and presented the 
results in execution cycle count metric. The strength of the 
approach is in a rapid design development and the style of 
specification familiar to the huge population of users. The 
methodology assumes the input code as it is and does not 
apply any compiler-style optimizations, but fully 
customizes the architecture. Thus, the emphasis is on 
optimizations that are closer to the implementation 
platform while still preserving the processor style of 
execution. The hard-to-solve problem of HLS flow 
optimizations is broken into two stages: one that presents 
the execution engine, i.e. the processor, and the other that 
maps it on the implementation platform. The FPGA 
implementation platform is flexible enough to be 
considered as a natural target of such rapid design 
development style. The available NISC toolset is the 
prototype of the tool that implements the design flow. 

In the following Section II there is a short outline of 
the related work on DCT implementations and the NISC 
concept. Section III describes the methodology of custom 
processor design, while Section IV shows its application 
to DCT algorithm. Section V discusses the results, and 
Section VI provides the final observations on the applied 
methodology and the presented results. 

II. RELATED WORK 

A. No-Instruction-Set Computer 

The related work on processor architecture 
customization is based on NISC toolset. The concept of 
this toolset allows full customization of datapath and 
program words that make up the control unit. The 
customization of datapath assumes that a particular 
functional unit is responsible only for a single operation or 
combination of operations. Thus the minimization of 
datapath resources is supported. The program words are 
constructed according to the contents of datapath. The 
architecture is translated into synthesizable Verilog code 
targeted for FPGA implementation. 

B. Manual Design 

Previous work [14] uses NISC toolset to explore the 
design space for discrete cosine transform. The transform 
was calculated using two consecutive 8×8 matrix 
multiplications, Listing 1. 

The code and architectural exploration have been 
performed synchronously, and respective designs have 
been synthesized for Virtex-II FPGA device. The 
evaluation metrics included the execution time by means 
of the number of execution cycles and clock frequency, 
power and energy consumption and area occupation. 

The architecture exploration started with NISC 
predefined architecture constructed as general-purpose 
MIPS style datapath and it underwent through multiple 
transformations. For the MIPS style datapath the DCT 

code required over 10,000 execution cycles. The C code 
was then transformed to increase the parallelism in the 
code. The inner-most loop was unrolled, two outer loops 
merged and the functional units simplified, i.e. addition 
and multiplication were converted into OR and AND 
operations, Listing 2. 

Parallel with that, architectural transformations were 
conceived to be mapped to the code transformations, Fig. 
1. The OR-ALU units’ chain is instanced to accomplish 
the A and B array addressing (odd lines starting with 
Line05 to Line19 in Listing 2) in one cycle. The read 
values (aL, bL) have been propagated to Mul-Adder units 
cascade to sum the products of arrays’ values (even lines 
starting with Line06 to Line20 in Listing 2). 

 
Line01: for(i=0; i<8; i++) 

Line02: { 

Line03:   for(j=0; j<8; j++) 

Line04:   { 

Line05:      sum = 0; 

Line06:      for(k=0; k<8; k++) 

Line07:      { 

Line08:         sum = sum + A[i][k]*B[k][j]; 

Line09:      } 

Line10:      C[i][j] = sum; 

Line11:   } 

Line12: } 

Listing 1. DCT code 

 
Line01: ij=0; 

Line02: do { 

Line03:   i8 = ij & 0xF8; 

Line04:   j = ij & 0x7; 

Line05:   aL = *(A+(i8|0)); bL = *(B + (0|j)); 

Line06:   sum = aL * bL; 

Line07:   aL = *(A+(i8|1)); bL = *(B + (8|j)); 

Line08:   sum += aL * bL; 

Line09:   aL = *(A+(i8|2)); bL = *(B + (16|j)); 

Line10:   sum += aL * bL; 

Line11:   aL = *(A+(i8|3)); bL = *(B + (24|j)); 

Line12:   sum += aL * bL; 

Line13:   aL = *(A+(i8|4)); bL = *(B + (32|j)); 

Line14:   sum += aL * bL; 

Line15:   aL = *(A+(i8|5)); bL = *(B + (40|j)); 

Line16:   sum += aL * bL; 

Line17:   aL = *(A+(i8|6)); bL = *(B + (48|j)); 

Line18:   sum += aL * bL; 

Line19:   aL = *(A+(i8|7)); bL = *(B + (56|j)); 

Line20:   *(C + ij) = sum + (aL * bL); 

Line21: } while(++ij!=64); 

 

Listing 2. Unrolled DCT code 

 
Such synchronized set of transformations shortened 

the schedules to approximately 2900-3500 cycles while 
increasing the clock frequency and shortening the overall 
execution time. The occupation of Virtex-II FPGA device 
implementation area was also minimized. The occupation 
of the area was achieved owing to dedicating the 
functionality of functional units to the required minimum 
of operations. For instance, the OR unit is dedicated only 
to logical OR operation while ALU unit is dedicated only 
to adding and logical AND operations. In addition, the 
data memory (DMem) is instanced with minimum size 



required by A, B and C arrays, and the control memory 
(CMem) is made up only of control words that implement 
the provided C code. 

C. Automated Design 

As for NISC based design automation, previous work 
[15] attempted to automatically derive the datapath from 
C code. It extracted the initial datapath for maximum 
performance in accordance with C code properties, and 
then optimized it under imposed resource constraints. 
These constraints were expressed in terms of the numbers 
of allowed functional units and register files ports. The 
key strengths of such approach are a rapid design 
development with scalable input C code specifications and 
a quality of designed cores comparable to manual designs. 
The methodology of similar approach is shown in next 
two sections on DCT case. 

III. METHODOLOGY 

A. Traditional High-Level Synthesis Flow 

Traditional HLS flow has a number of common steps: 
lexical processing, algorithm optimizations, control and 
data dependencies analysis, technology library processing, 
resource allocation, operation scheduling, functional units 
and register bindings as well as output processing [16, 17]. 

The lexical processing translates the source code into 
internal representation. The source-code optimizations 
that follow have much in common with high-level and 
parallelizing compiler optimizations. After that, the 
control and data dependencies analysis identifies inputs 
and outputs of the operations and their data dependencies 
in the algorithm. The time component is not considered in 
this task, but is introduced during the technology library 
processing. The libraries representing specific hardware 
design technology are processes focusing on functional, 
timing and resource occupation features. The resource 
allocation phase identifies the set of functional units 
required for design implementation. The operation 
scheduling converts the algorithm into Finite State 
Machine (FSM). Based on the existing data dependencies 
and library-defined functional unit latencies the algorithm 

operations are scheduled by states, i.e. execution cycles 
operated by clock signal. The principles of scheduling can 
be diverse, depending on delays, resource limitations and 
pipelining capabilities. Basically, there is time-constrained 
(TC) scheduling and resource-constrained (RC) 
scheduling. The following phases bind the operations to 
functional unit items from the library and the variables to 
registers. The final step outputs the RTL code that 
implements the finite state machine, and is structured 
according to the logic synthesis optimization levels or the 
readability of the code. 

B. Automated Processor Modeling Flow 

The design flow applied in this work has some 
common HLS phases, but the main difference is that it 
outputs the processor architecture datapath, Fig. 2. The 
datapath is optimized according to the input application 
characteristics. Such architecture is purposed as input for 
NISC toolset which will be used as the compiler to RTL 
level. 

The C code is converted into Control and Data Flow 
Graph (CDFG) [18]. Such representation exposes control 
and data dependencies present in the code. The CDFG 
representation relies on three-address code notation. Each 
line of the code is converted into one or more three-
address code statements. During this process new, 
temporary, variables are introduced to preserve the data 
flow consistency. We use SPARK parallelizing compiler 
[19] to get CDFG from C code. The structure of the code 
is represented by basic blocks constructs of the CDFG. 
Basic blocks are units of code consisting of three-address 
code statements without control dependencies involved. 
The general structure of the input code is therefore 
represented as a set of basic blocks divided by control 
dependencies. For instance, the branch and loop constructs 
are transformed as shown in Fig. 3. The boxes represent 
the basic blocks with an appropriate set of three-address 
statements. The bodies (if_body, else_body, loop_body) of 
those constructs are separated from initialization 
(loop_initialization), increment (loop_increment) and test 
conditions (branch_condition, loop_condition). The basic 
blocks that conclude these constructs (branch_end, 
loop_end) are kept only to preserve the structure of the 
CDFG. 

 
Figure 1.  Manually designed architecture for unrolled DCT code 

([14]) 
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Figure 2.  Path of transformations from C code to processor 

architecture 



The data dependencies are localized inside the basic 
blocks. Thus, the scheduling of the three-address code is 
performed separately for each basic block. The applied 
principle of scheduling is As-Late-As-Possible (ALAP) 
list scheduling algorithm with a constraint on the number 
of data memory ports. This ALAP principle appears to 
expose more parallelism than As-Soon-As-Possible 
(ASAP) principle. The constraint on the data memory 
ports number is assumed by the fact that this number is 
usually limited for FPGA implementations. In NISC based 
implementations, the proprietary Xilinx IP cores with such 
limitations are used for memory blocks instantiation. The 
product of scheduling is Finite State Machine with Data 
(FSMD) representation where three-address statements are 
scheduled by states holding both information of operation 
performed and variables involved in the operation. The 
analysis of lifetimes of variables and usages of operations 
by states optimizes the allocations of registers and 
functional units and, consequently, accomplishes their 
bindings to variables and operations. The final architecture 
is composed by incorporation of particular basic blocks 
architectures. 

IV. CASE STUDY: DCT ALGORITHM 

A discrete cosine transform (DCT) is a mathematical 
form used in coding signals and images [12,13]. It is used 
in JPEG image compression and MPEG video 
compression standards. The most common variant is the 
2-dimensional transform, or type-II DCT that takes the 
image digitized to pixels as input. 

As in typical designs the image is sub-divided to 8x8 
blocks of pixels, we also use DCT source introduced in 
Section II. Fig. 4 shows the CDFG representation of 
Listing 1 DCT code. There are three nested loops. The 
outer loop (i indexed in Listing 1) is closed within set of 
basic blocks denoted as BB1 to BB13 and is iterated 8 
times. The first inner loop (j indexed in Listing 1) is 
closed within basic blocks BB3 to BB11 and is iterated 64 
times, while the innermost loop (k indexed in Listing 1) is 
closed within basic blocks BB6 to BB8 and is iterated 512 
times. The methodology described in Section III can be 
applied on all basic blocks to create the custom processor 
datapath. However, the basic blocks with a higher impact 
on the customization of the architecture are those with 
more computation enclosed and those that are iterated 
more times. The quantity of computation can be expressed 
in terms of the number of FSMD scheduled states. 

The basic block with the most computation is BB7 as 
it is scheduled in 7 or 8 FSMD states. It represents the 
body of the innermost loop (Line08): 

sum = sum + A[i][k]*B[k][j] 

Basic block BB10 is scheduled in 4 FSMD states and 
represents the middle loop body other than the innermost 
loop (Line10): 

C[i][j] = sum 

Their contents in CDFG view are presented in Fig. 5. 
All other basic blocks are too simple to analyze. They 
consist only of one assignment, increment or comparison 
operation, and they are therefore scheduled in 1 FSMD 
state. Their demand on the datapath is one comparator and 
one adder.  

As presented in Fig. 5, the temporary variables Tx are 
used to break the complex expressions and complete the 
form of three-address statement. The schedules of basic 
block BB7’s CDFG (in Fig. 5(a)) are listed in Fig. 6 under 
data memory ports constraints. On assumption of 1-port 
data memory the code is scheduled in 8 states (a), and on 
assumption of 2-port data memory the code is scheduled 
in 7 states (b). 

The allocation and binding phase picks appropriate 
functional units and bind them to three-address 
statements. For schedule in Fig. 6(a) there are maximums 
of 2 additions and 1 multiplication operation per state 
which is reflected in the demand for two adders and one 
multiplier instance in the datapath. In Fig. 6(b), the 
schedule is shorter, but 2 adders and 2 multipliers are 
required to encompass it. All variables are bound to 
registers taking care that variables that are used in the 
same states do not share a register. For instance, variables 
T3, j, A and T7 are used only as inputs for additions in 
state S3 in Fig. 6(a), and are not supposed to share the 
register. On the contrary, variable B is used only in state 
S4 and is allowed to share a register with any variable 
used in state S3. 

branch_condition

if_body else_body

branch_end

loop_condition

loop_body
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TRUE

TRUE FALSE

loop_end
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(a)                                               (b) 

Figure 3.  Control flow representation of (a) branch and (b) loop 
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Figure 4.  Control flow of DCT code 



The schedule of BB10’s CDFG (in Fig. 5(b)) is not 
dependent on data memory ports constraint. It is always 
scheduled in 4 states and demands 1 adder and 1 
multiplier instances. These demands are the subset of 
basic block BB7’s demands and thus are satisfied if the 
datapath is fully customized to BB7. The demands of 
other basic blocks are also encompassed within those of 
BB7 with the exception of a comparator functional unit 
demanded by branch_condition basic blocks BB1, BB3 
and BB6. 

V. RESULTS AND DISCUSSION 

The datapath for Listing 1 DCT code with the 
assumption of 1-port data memory is formed as shown in 
Fig. 7. There are 2 adder instances, 1 multiplier and 1 
comparator functional unit instances. All adder and 

multiplier instances are not used simultaneously so there 
is one combined adder/multiplier unit. The optimizations 
during allocation and binding phase derived such a 
datapath to save implementation platform resources. 
There are 4 registers with contents listed in Table I. For 
instance, the multiplication scheduled in state S1 is 
executed by the functional unit FU1. Variable i is read 
from register Reg2, constant 8 is read from register Reg1, 
and the result is stored as variable T6 in register Reg2. By 
taking into consideration the schedules and iteration 
counts of basic blocks there is a total of 6314 execution 
cycles of DCT code with this datapath which is almost 
40% less than for MIPS style datapath used in [14]. 

The datapath that is produced for DCT with the 
assumption of 2-port data memory has two combined 
adder/multiplier functional units and a comparator. The 
difference from the one with 1-port data memory 
constraint is in another multiplier instance combined with 
adder of FU2. With this enhancement the DCT is 
executed in 5802 cycles which is close to 45% 
improvement over MIPS style datapath used in [14]. 

The Unrolled DCT case in Listing 2 has much more 
parallelizing opportunities than the original DCT code and 
the resulting custom datapaths much differ under different 
data memory ports constraints. There is only one loop so 
CDFG has one complex basic block that represents the 
loop body (lines from Line03 to Line20 in Listing2), while 
the other basic blocks represent loop initialization, 
condition test and increment. 

The preliminary results show higher occupations of 
datapath components than for manual design [14] as there 
were no such constraints. Table II shows a rough 
comparison of manual (Fig. 1) and both cases of 
automated designs. It is expressed in allocations of 
datapath components, while the estimation of 
implementation resources occupation is currently beyond 
the scope of this work. The 2-port memory allows more 

TABLE I.  CONTENTS OF REGISTERS FOR FIG. 7 DATAPATH 

Register Variables and constants 

Reg1 A, 8, Addr26, Addr27, T10, T11 

Reg2 B, i, T3, T6, T8, T9 

Reg3 sum, j, k, T5, T12 

Reg4 C, Addr28, T2, T4, T7 

T9 = T8 × T5

T5 = DMEM[Addr26]

T10 = sum + T9

sum = T10

T8 = DMEM[Addr27]

Addr26 = B + T4 Addr27 = A + T7

T4 = T3 + j T7 = T6 + k

T3 = k × 8 T6 = i × 8

 
(a) 

 

DMEM[Addr28] = sum

Addr28 = C + T12

T12 = T11 + j

T11 = i × 8

 
(b) 

Figure 5.  Data flow of basic blocks: (a) BB7, (b) BB10 

 

State Scheduled statements 

S1 T6 = i × 8 

S2 
T3 = k × 8 

T7 = T6 + k 

S3 
T4 = T3 + j  

Addr27 = A + T7 

S4 
Addr26 = B + T4 

T8 = DMEM[Addr27] 

S5 T5 = DMEM[Addr26] 

S6 T9 = T8 × T5 

S7 T10 = sum + T9 

S8 sum = T10 
 

State Scheduled statements 

S1 
T3 = k × 8 

T6 = i × 8 

S2 
T4 = T3 + j 

T7 = T6 + k 

S3 
Addr26 = B + T4 

Addr27 = A + T7 

S4 
T5 = DMEM[Addr26] 

T8 = DMEM[Addr27] 

S5 T9 = T8 × T5 

S6 T10 = sum + T9 

S7 sum = T10 
 

(a) 1-port data memory                     (b) 2-port data memory 

Figure 6.  FSMDs for basic block BB7 of DCT code 
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Figure 7.  The datapath for DCT code (with 1-port data memory) 



parallelized execution which is reflected in a higher 
number of functional units in datapath and in a lower 
number of execution cycles. For 1-port data memory case 
one pass of loop body is scheduled in 24 states, and for 2-
port data memory it is scheduled in 17 states. That is 
reflected in the number of total execution cycles. The total 
cycle count for 1-port memory is 1665, and for 2-port 
memory it is 1217, which is 40-60% less than for manual 
design [14]. The tool produced presented designs in a few 
seconds, while for manual design we do not have the exact 
information. 

VI. CONCLUSION 

In this paper, we have presented automated design of 
custom processor architecture for Discrete Cosine 
Transform - DCT algorithm. Such architecture is 
purposed as input for the No-Instruction-Set computer 
concept of high-level synthesis where the design is 
synthesized according to processor architecture and input 
C code application. 

Previous work elaborated the design space exploration 
by looking into the features of input C code and manual 
customization of processor architecture. Here, we have 
automated the construction of processor with a specific 
tool. The tool analyzes the control and data dependencies 
of the code, schedules the operations and allocates the 
registers and functional units. After that, it binds 
architectural components to three-address code 
expressions representing the input algorithm code, and 
applies optimizations to avoid redundancies in the design. 
The methodology does not apply code optimizations, but 
accepts the code as it is. The optimizations are applied at 
the architectural level resulting that different codes 
performing the same functionality have different custom 
architectures. 

The exploration of custom processor structure is 
automated with respect to achieving a minimal number of 
execution cycles. The results show that the achieved 
execution cycle counts are within the same order of 
magnitude as those obtained by manual design, while the 
design time is significantly shortened. The drawback of 
the presented results is in excessive datapath components 
allocations as there were no explicit components 
constraints (except those related to the number of ports in 
data memory cores). Thus, the design is fully optimized in 

terms of execution cycles, but takes a considerable amount 
of implementation area. 
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TABLE II.  COMPARISON OF MANUAL AND AUTOMATED DESIGNS  

FOR UNROLLED DCT CASE 

Automated design 
Evaluation 

metric 
Manual design 

[14] 1-port Data 

Memory 

2-port Data 

Memory 

#FUs 5 6 8 

#Regs 8 16 20 

R
es

o
u

rc
e 

o
cc

u
p

at
io

n
 

#Conns 14 52 61 

# Exec. cycles 3040 1665 1217 


