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Abstract—Fast and accurate positioning and swing minimiza-
tion of the containers and other loads in crane manipulation
are demanding and in the same time conflicting tasks. For
accurate positioning, the main problem is nonlinear friction
effect, especially in the low speed region. In this paper authors
propose position controller realized as hybrid controller. It
consists of the tensor product based nonlinear feedback controller
with additional friction self-learning neural compensator. The
experimental results show that friction compensator is able to
remove position error in steady state.

Index Terms—Single Pendulum Gantry, Neural Network, Fric-
tion Compensation, RBFnetwork, on-line network learning.

I. INTRODUCTION

Translational gantry cranes are widely used for the heavy
loads transfer in modern industrial systems. The problem faced
in load transfer is a negative influence of the crane acceler-
ation required for the motion. Any change of the reference
position causes an undesirable load swing, having negative
consequences on the system control and safety performances.

In order to achieve acceptable system performances for a
fast load positioning (i.e. minimal load transfer time), the
swing of the suspended load should be controlled as well. This
conflicting control demands can be solved with state feedback
controller, designed according to linear quadratic optimum
criteria, [4]. This design technique is imposed as a logical
solution and it is used by several authors for solving similar
control tasks.

Although the load swing problem is generally nonlinear
most of the solutions are based on the linearized mathemat-
ical model. Typical control approaches are adaptive (gain-
scheduling logic with optimal controllers used by Corriga,
Giua and Usai in [4]), optimal (Wang and Surgenor in [15]) or
robust (G. Bartolini et al. in [2]), applied on the similar types
of the electromechanical systems.

Due to crane system complexity and the fact that linearised
mathematical model only partially represents the real system,
some authors used fuzzy controller, [10], [8], [14]. Controller
based on fuzzy logic can partially solve an undesirable effects
caused by the system nonlinearities, [14].

Recently, nonlinear control approach based on tensor prod-
uct model representation (TP) of the process is proposed [1],
[13] and successfully applied to control of Single Pendulum
Gantry process [7]. The TP model represents the linear pa-

rameter varying state-space models by the parameter varying
combination of Linear Time Invariant (LTI) models.

However, neither of proposed techniques provide solution
for the main problem of accurate positioning - friction. Due to
its highly nonlinear characteristics complex nonlinear behavior
like limit cycle may occur if the controller includes the integral
action, [6]. In order to reduce or eliminate the impact of
friction, a neural network based compensator is proposed
as additional feedforward loop to TP model based feedback
controller. However, in real application friction characteristics
is only partially known or even completely unknown the neural
network compensator parameters need to be updated in a on-
line manner. In order to ensure stability of both control and
network parameters updating law they have to derived using
Lyapunov stability analysis.

The rest of the paper is organized as follows. In section
II mathematical model of the single pendulum gantry is
presented. In section III TP based controller controller design
procedure is given while in section IV neural network based
friction compensator is presented. Experimental results are
given in section V.

II. MATHEMATICAL MODEL OF THE SINGLE PENDULUM
GANTRY

The single pendulum gantry mounted on the linear cart is
presented in the Fig.1, [5]. When facing the cart, a positive
direction of the cart motion is to the right and a positive
sense of the pendulum rotation is defined as counter clockwise.
Also, the zero angle, corresponds to a suspended pendulum
vertical rest down position. Single pendulum gantry can be
represented as a system with one input u (motor voltage),
and two outputs: α (pendulum angle) and xc (cart position).
Mathematical equations of the system motion can be derived
via Lagrange equations, by defining total potential and kinetic
energy of the system as a functions of generalized coordinates:
cart position xc and pendulum swing angle α. The result is
the nonlinear model represented by equations (1) and (2).

The parameters of the single pendulum gantry linear model
are given in Table I.
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Rmr2mp
−Mplp cos(α)ηgKgηmKt

Rmrmp
Um)

(Mc +Mp)Ip +McMpl2p +M2
p l

2
p · sin2 (α)

(2)

Fig. 1. Single pendulum gantry (SPG) electromechanical model as experi-
mental model of gantry crane

III. TENSOR PRODUCT TRANSFORMATION BASED
CONTROLLER DESIGN

Tensor Product (TP) transformation is recently proposed
procedure of transforming a wide class of nonlinear systems,
represented as a Linear Parameter Varying (LPV) models,
into parameter varying combination of Linear Time Invariant
(LTI) models. Linear Parameter Varying (LPV) system can be
written in the following form:(
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)
= S
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)( x(t)
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)
(3)

where u(t) input vector , y(t) system output vector, and x(t)
state vector. Matrix S

(
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)
which contains varying parame-

ters, is defined as:
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where p(t) ∈ Ω time varying N -dimensional parameter
vector that is the element of the closed hypercube Ω =
[p1,min, p1,max]× [p2,min, p2,max]× . . .× [pN,min, pN,max] ⊂
<N . p(t) also may contain system states (elements of the
matrix x) and thus (3) can be viewed as a special class of
nonlinear dynamic systems in state space.

The goal of TP transformation is to transform the system
(3) into the following form:(
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that can be also written as:(
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where the vector wn(pn), n = 1...N contains weighting coef-
ficients of the membership functions wn,in(pn), in = 1...In.
The parameter In <∞ denotes the number of the membership
functions used in n-th dimension of Ω. At the same time
membership functions satisfy wn,in ∈ [0, 1], ∀n, pn :∑iN
in=1 wn,in = 1.

TABLE I
PARAMETERS OF THE SINGLE PENDULUM GANTRY SYSTEM

Parameters Description

Beq = 5.4[Nms/rad] Equivalent viscous damping
coefficient as seen at the mo-
tor pinion

Bp = 0.0024[Nm/s] viscous damping coefficient
as seen at the pendulum axis

ηg = 1 Planetary gearbox efficiency

ηm = 1 Motor efficiency

g = 9.81[m/s2] Gravitational constant of
earth

Jp = 0.0078838[kgm2] Pendulum moment of inertia

Jm = 3.9e− 7[kgm2] Rotor moment of inertia

Kg = 3.71 Planetary gearbox gear ratio

Km = 0.0076776 Back electro-motive force
(EMF) constant

Kt = 0.007683 Motor torque constant

lp = 0.3302[m] Pendulum length from pivot
to center of gravity

Mc = 1.0731[kg] Lumped mass of the cart sys-
tem, including the rotor iner-
tia

Mp = 0.23[kg] Pendulum mass

Rm = 2.6[Ω] Motor armature resistance

rmp = 0.00635[m] Motor pinion radius
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For the system (5) the controller has the same polytopic
form as TP model. Therefore, the control signal is given by:

u(t) = −(K(p(t))⊗Nn=1 wn(pn))x(t) (7)

where the LTI feedback gains Ki1,i2...iN , are stored in tensor
K.

Based on system description (5) feedback controller can be
designed using various procedures. In this paper we adopted
procedure based on Linear Matrix Inequalities (LMI) where
different constraints can be incorporated into design process.
Beside closed loop stability, constraints on control and output
signal is used as follows:

1) Asymptotic stability: TP model (5) with control law
(7) is asymptotically stable if there exist X > 0 and
Mj such that the following inequality holds:

−XAT
j −AjX + MT

j BT
j + BjMj > 0 (8)

for all j, i

−XAT
j −AjX−XAT

s −AsX + MT
s BT

j +

+ BjMs + MT
j BT

s + BsMj ≥ 0.
(9)

Feedback controller gains are calculated from matrices
X i Mj as:

Kj = Mj ·X−1 (10)

2) Constraint on control signal: We assume that
‖x(0)‖ ≤ ϕ, where x(0) is generally unknown, but
upper bounded by µ. Constaint ‖u(t)‖2 ≤ µ holds for
all t ≥ 0 if the following LMI’s holds:

ϕ2I ≤ X[
X MT

i

Mi µ2I

]
≥ 0 (11)

3) Constraint on output signal: We assume that ‖x(0)‖ ≤
ϕ, where x(0) is generally unknown, but upper bounded
by ϕ. Constraint ‖y(t)‖2 ≤ λ holds for all t ≥ 0 if the
following LMI’s are satisfied:

ϕ2I ≤ X[
X XCT

i

CiX λ2I

]
≥ 0 (12)

A. TP transformation of the Single Pendulum Gantry process

Based on equations (1) and (2) Single Pendulum Gantry
process can be described in form of LPV model as given with
the following equation:
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Applying the TP transform to the LPV system (13) leads to
convex combination of the LTI models (5) where matrices Aij

and Bij are given by equation (14), while matrices C and D
are constant.

Feedback controller which satisfies the conditions (8)-(12)
is obtained using the Yalmip1/SeDuMi2 optimization software
and given by:

K11 =
[

41, 5267 25, 5667 −55, 4898 6, 3188
]

K21 =
[

34, 1430 20, 4908 −51, 1911 4, 5319
]

K31 =
[

37, 0720 22, 5380 −53, 0596 5, 2122
]

K41 =
[

34, 0835 20, 4521 −51, 1550 4, 5016
]

K12 =
[

41, 5266 25, 5666 −55, 4899 6, 3189
]

K22 =
[

34, 0846 20, 4463 −51, 1305 4, 5065
]

K32 =
[

37, 0719 22, 5379 −53, 0595 5, 2122
]

K42 =
[

34, 1393 20, 4949 −51, 2144 4, 5261
]

IV. NETWORK NETWORK BASED FRICTION COMPENSATOR

In order to compensate nonlinear friction effect an artifi-
cial neural network is employed. Neural networks commonly
consist of big number of highly interconnected neurons orga-
nized in two or more layers [9]. These interconnections give
them universal approximation capability, i.e. a neural network
can approximate arbitrary continuous nonlinear function with
desired accuracy [3],[12] if consisted of at least two layers.
Generally, a two-layer neural network with linear output layer
can be described by the following equation:

yNN = W2 · σ(W1,u), (15)

1http://control.ee.ethz.ch/research/software.en.html
2http://sedumi.ie.lehigh.edu/
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where yNN is neural network output, W1, W2 are parameter
matrices of hidden and output network layer, respectively.
Various neural network structures are obtained by choosing
different kernel functions. In this paper Radial Basis Function
is used as a network kernel function and such the network
is usually called RBF neural network. The parameters of the
hidden network layer W1 are set offline while the output layer
weight matrix is to be adapted on-line. Taking into account
universal approximation capability and assuming that friction
characteristic can be described by the Stribeck model [11],
following approximation can be written:

f(ẋC) = W∗
2σ(W1ẋC) + ε, (16)

where f(ẋC) is the friction force, W∗
2 is optimal (but un-

known) output parameter matrix. Thus, neural network com-
pensator can be described by:

yNN = Ŵ2σ(W1ẋc), (17)

where the matrix W2 is updated using the on-line learning
procedure. Additionally, it is assumed that the network ap-
proximation error is quadratically bounded as:

εTPεε < ε̄ (18)

The neural network based compensator design procedure is
summarized in the following theorem.

Theorem 1. Let the system is described by Eq. (5) and
feedback controller satisfies conditions (8)-(12). Then neural
network parameters adaptation law given by:

˙̂W
T

2 =
( N∑
i=1

hi(x)BT
i

)
PxσT (W1ẋC)P−1

W (19)

ensures that system states are stable and converge to the
hyperball of radius

√
ε̄/λmin(Q).

Proof: The closed loop dynamic of the system with neural
network based friction compensator can described by:

ẋ =
N∑
i=1

N∑
j=1

wi(x)wj(x)(Ai −BiKj)x+

+
( N∑
i=1

wi(x)Bi

)
W̃2σ(W1ẋC) +

( N∑
i=1

wi(x)Bi

)
ε

(20)

Let the Lyapunov function candidate is chosen as:

V (x) = xTPx + tr{W̃T
2 PWW̃2} (21)

Lyapunov function time derivative is given by:

V̇ (x) = ẋTPx + xTPẋ + 2tr{ ˙̃W
T

2 PWW̃2} (22)

Combining equations (20) and (22) leads to the following
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expression:

V̇ (x) =
N∑
i=1

N∑
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C,ijPx+

+
N∑
i=1

N∑
j=1

wi(x)wj(x)xTPAC,ijx+

+ 2xTP
( N∑
i=1

wi(x)Bi

)
W̃2σ(W1ẋC)
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which can be also written as:
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With the neural network parameters adaptation law chosen as:

˙̂W
T

2 =
( N∑
i=1

wi(x)BT
i

)
PxσT (W1ẋC)P−1

W (25)

time derivative of the Lyapunov function become:

V̇ (x) =
N∑
i=1

N∑
j=1

wi(x)wj(x)xT (AT
C,ijP+

+ PAC,ij)x + 2xTP
( N∑
i=1

wi(x)Bi

)
ε

(26)

Due to symmetry of the matrix P and using the following
matrix inequality:

XTY + (XTY)T ≤ XTΛ−1X + YTΛY, (27)

that is satified for every X,Y∈ <n×k and positive defi-
nite symmetric matrix 0 < Λ = ΛT ∈ <n×n, term
2xTP

(∑N
i=1 wi(x)Bi

)
ε in equation (26) can be written as:

xTP
( N∑
i=1

wi(x)Bi

)
ε+

(
xTP

( N∑
i=1

wi(x)Bi

)
ε
)T
≤

≤ xTΛ−1x + εT
( N∑
i=1

wi(x)BT
i

)T
PTΛP

( N∑
i=1

wi(x)Bi

)
ε

(28)

where ε is assumed to be quadratically bounded as:

εT
( N∑
i=1

wi(x)BT
i

)T
PTΛP

( N∑
i=1

wi(x)Bi

)
ε =

εTPεε ≤ ε̄

(29)

Taking the previous equation into account time derivative
of the Lyapunov function can be written as:

V̇ (x) ≤ −xTQx + ε̄ (30)

where:

Q = −
N∑
i=1

N∑
j=1

wi(x)wj(x)(AT
C,ijP + PAC,ij)−Λ−1. (31)

With matrix P already obtained from TP feedback controller
design such that satisfies:

AT
C,iiP + PAC,ii < 0, i = 1, ..., N (32)

and ∀j < i except ∀p(t) : wi(p(t))wj(p(t)) = 0:(
AC,ij + AC,ji

2

)T
P +

(
AC,ij + AC,ji

2

)
P ≤ 0, (33)

it is possible to choose Λ such that Q > 0. In that case
following assessment is valid:

V̇ ≤ −λmin(Q) · ‖x‖2 + λmax(Pε) · ‖ε‖2 (34)

from which it can be concluded that time derivative of the
Lyapunov function V̇ is negative whenever λmin(Q) · ‖x‖2 >
λmax(Pε) · ‖ε‖2. Thus the system states will surely converge
to the hyperball of radius

√
ε̄/λmin(Q).

V. EXPERIMENTAL RESULTS

Experimental verification of the proposed algorithm has
been made on laboratory Single Pendulum Gantry process
using two different reference signals:

1) filtered step reference signal,
2) sinusoidal reference signal.

Proposed algorithm has been compared to TP based controller
without friction compensator. Experimental results for both
reference signals are in Figs 2-5. From Figs 2 and 3 it
can be seen that steady state position error is significantly
reduced (from 4.5 cm to 5mm) using the proposed con-
trol/compensation scheme. However, in order to overcome the
static friction force compensation algorithm produced more
active control signal in steady state (Fig. 4). Good performance
of the compensation algorithm is also apparent in the case of
sinusoidal reference signal (Fig. 5)

VI. CONCLUSION

In this paper TP based controller with neural network based
friction compensator for Single Pendulum Gantry process is
proposed. Controller/compensator design procedure consists of
two steps: (i) TP based feedback controller design neglecting
the friction effect and (ii) neural network compensator design
using the results from step (i). The main advantage of the
proposed procedure is that no a-priory knowledge on friction
characteristic is needed since the neural network parameters
are adapted in an on-line manner. Stability of the the overall
control/learning system is guaranteed using Lyapunov stability
theory.
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