GPDs from DVCS at LO and beyond

Kornelija Passek-Kumerički
"Rudjer Bošković" Institute, Zagreb
Collaboration with:
Krešimir Kumerički (Uni. Zagreb), Dieter Müller (Uni. Bochum)

Diffractive and electromagnetic processes at the LHC
Trento, 4-10 Jan 2010

Outline

Introduction

Proton structure (PDFs, form factors ...)
From deeply virtual Compton scattering (DVCS)
to generalized parton distributions (GPDs)

DVCS at LO and beyond

Conformal moments, Mellin-Barnes representation and
higher-orders
Learning from LO

Numerical results

Size of Radiative Corrections
Fitting GPDs to Data
3D image of a proton

Outlook

DVCS (spacelike, timelike), meson electroproduction...

Summary

Parton distribution functions

- Deeply inelastic scattering, $-q_{1}^{2} \rightarrow \infty, x_{B J} \equiv \frac{-q_{1}^{2}}{2 p \cdot q_{1}} \rightarrow$ const

Electromagnetic form factors

- Dirac and Pauli form factors:

$$
q\left(b_{\perp}\right) \sim \int d q_{1} e^{i q_{1} \cdot b_{\perp}} F_{1,2}\left(t=q_{1}^{2}\right)
$$

- "skewless" GPD: $H^{q}\left(x, 0, t=\Delta^{2}\right)=\int \mathrm{d} b_{\perp} e^{i \Delta \cdot b_{\perp}} q\left(x, b_{\perp}\right)$

Probing the proton with two photons

- Deeply virtual Compton scattering (DVCS) [Müller '92, et al. '94]

$$
\begin{aligned}
P & =P_{1}+P_{2} \\
q & =\left(q_{1}+q_{2}\right) / 2
\end{aligned}
$$

generalized Bjorken limit:

$$
\begin{array}{ll}
-q^{2}\left(\stackrel{\mathrm{DVCS}}{\simeq} \mathcal{Q}^{2} / 2\right) \rightarrow \infty & \vartheta=\frac{q_{1}^{2}-q_{2}^{2}}{q_{1}^{2}+q_{2}^{2}} \approx \frac{\eta}{\xi} \stackrel{\mathrm{DVCS}}{=} 1 \\
\xi=\frac{-q^{2}}{2 P \cdot q} \rightarrow \text { const }\left(\text { as } x_{B}\right) & t=\left(P_{2}-P_{1}\right)^{2}
\end{array}
$$

- cross-section can be expressed in terms of Compton form factors (CFFs):
$\mathcal{H}\left(\xi, t, \mathcal{Q}^{2}\right), \mathcal{E}\left(\xi, t, \mathcal{Q}^{2}\right), \tilde{\mathcal{H}}\left(\xi, t, \mathcal{Q}^{2}\right), \tilde{\mathcal{E}}\left(\xi, t, \mathcal{Q}^{2}\right), \ldots$

Deeply virtual Compton scattering

- Measured in leptoproduction of a real photon:

- There is a background process but it can be used to our advantage:

$$
\sigma \propto\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}+\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}+\mathcal{T}_{\mathrm{DVCS}}^{*} \mathcal{I}_{\mathrm{BH}}+\mathcal{T}_{\mathrm{DVCS}} \mathcal{I}_{\mathrm{BH}}^{*}
$$

- Using $\mathcal{T}_{\text {BH }}$ as a referent "source" enables measurement of the phase of $\mathcal{T}_{\mathrm{DVCS}}$

Factorization of DVCS \longrightarrow GPDs

- Compton form factor is a convolution:

$$
{ }^{\mathrm{a}} \mathcal{H}\left(\xi, t, \mathcal{Q}^{2}\right)=\int \mathrm{d} x C^{a}\left(x, \xi, \mathcal{Q}^{2} / \mu^{2}, \alpha_{s}(\mu)\right) H^{a}\left(x, \eta=\xi, t, \mu^{2}\right)
$$

- $H^{a}\left(x, \eta, t, \mu^{2}\right)$ - Generalized parton distribution (GPD)

Properties of GPDs

- Forward limit $(\Delta \rightarrow 0): \Rightarrow$ GPD \rightarrow PDF

$$
F^{q}(x, 0,0)=H^{q}(x, 0,0)=\theta(x) q(x)-\theta(-x) \bar{q}(-x)
$$

Sum rules:

$$
\sum_{q=u, d} Q_{q} \int_{-1}^{1} d x\left\{\begin{array}{l}
H^{q}\left(x, \eta, \Delta^{2}\right) \\
E^{q}\left(x, \eta, \Delta^{2}\right)
\end{array}=\left\{\begin{array}{l}
F_{1}\left(\Delta^{2}\right) \\
F_{2}\left(\Delta^{2}\right)
\end{array}\right.\right.
$$

- Possibility of solution of proton spin problem

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1} d x x\left[H^{q}\left(x, \eta, \Delta^{2}\right)+E^{q}\left(x, \eta, \Delta^{2}\right)\right]=J^{q}\left(\Delta^{2}\right) \tag{Ji'96}
\end{equation*}
$$

based on:

- [DVCS using Mellin-Barnes representation, going to higher-orders and fitting GPDs]
D. Müller,

Next-to-next-to leading order corrections to deeply virtual Compton scattering: The Non-singlet case, [hep-ph/0510109]
K. Kumerički, D. Müller, K. Passek-K., A. Schäfer,

Deeply virtual Compton scattering beyond next-to-leading order: the flavor singlet case, [hep-ph/0605237]
K. Kumerički, D. Müller, K. Passek-K.,

Towards a fitting procedure for deeply virtual Compton scattering at next-to-leading order and beyond, [hep-ph/0703179]

- [Getting the right information from LO]
K. Kumerički, D. Müller, K. Passek-K.,

Sum rules and dualities for generalized parton distributions: Is there a holographic principle?, [arXiv:0805.0152 [hep-ph]]
K. Kumerički, D. Müller,

Deeply virtual Compton scattering at small $\times(B)$ and the access to the GPD H, [arXiv:0904.0458 [hep-ph]]

Kornelija Passek-Kumerički: GPDs from DVCS at LO and beyond

Introduction 000000		tion $\begin{aligned} & \text { DVCS at LO and beyond } \\ & 0 \bullet 0000\end{aligned}$	Numerical result 00000	Outloo	Summary 0	
${ }^{a} \mathcal{H}\left(\xi, t, \mathcal{Q}^{2}\right)=\int \mathrm{d} x C^{a}\left(x, \xi, \mathcal{Q}^{2} / \mu^{2}, \alpha_{s}(\mu)\right) H^{a}\left(x, \eta=\xi, t, \mu^{2}\right)$ $a=\mathrm{NS}, \mathrm{S}(\Sigma, G)$ - C^{a} (hard-scattering amplitude i.e. Wilson coefficient): - LO, NLO (1st order in α_{s}) [Ji et al, Belitsky et al, Mankiewicz et al, '97] \Rightarrow need NNLO to stabilize perturbation series and investigate convergence - H^{a} (GPD): - Complete deconvolution is impossible, so to extract GPDs from the experiment we need to model their functional dependence. - Evolution known to NLO order and not trivial to implement.						

- factorization formula for singlet DVCS CFFs:

$$
s_{\mathcal{H}\left(\xi, t, \mathcal{Q}^{2}\right)}=\int \mathrm{d} x \mathbf{C}\left(x, \xi, \mathcal{Q}^{2} / \mu^{2}, \alpha_{s}(\mu)\right) \mathbf{H}\left(x, \xi, t, \mu^{2}\right)
$$

- ... in terms of conformal moments
(analogous to Mellin moments in DIS: $\left.x^{n} \rightarrow C_{n}^{3 / 2}(x), C_{n}^{5 / 2}(x)\right)$:

$$
\begin{array}{r}
=2 \sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}\left(\mathcal{Q}^{2} / \mu^{2}, \alpha_{s}(\mu)\right) \mathbf{H}_{j}\left(\xi=\eta, t, \mu^{2}\right) \\
H_{j}^{q}(\eta, \ldots)=\frac{\Gamma(3 / 2) \Gamma(j+1)}{2^{j+1} \Gamma(j+3 / 2)} \int_{-1}^{1} \mathrm{~d} x \eta^{j-1} C_{j}^{3 / 2}(x / \eta) H^{q}(x, \eta, \ldots)
\end{array}
$$

H_{j}^{a} even polynomials in η with maximal power η^{j+1}

- series summed using Mellin-Barnes integral over complex j :

$$
=\frac{1}{2 i} \int_{c-i \infty}^{c+i \infty} d j\left[i+\tan \left(\frac{\pi j}{2}\right)\right] \xi^{-j-1} \mathbf{C}_{j}\left(\mathcal{Q}^{2} / \mu^{2}, \alpha_{s}(\mu)\right) \mathbf{H}_{j}\left(\xi, t, \mu^{2}\right)
$$

Advantages of conformal moments and Mellin-Barnes representation

- NNLO corrections accessible by making use of conformal OPE and known NNLO DIS results
- enables simpler inclusion of evolution effects
- possible efficient and stable numerical treatment \Rightarrow stable and fast computer code for evolution and fitting
- powerful analytic methods of complex \mathbf{j} plane are available (similar to complex angular momentum of Regge theory)
- opens the door for interesting modelling of GPDs
- moments are equal to matrix elements of local operators and are thus directly accessible on the lattice

Modelling conformal moments

- η-dependence inspired by $\mathbf{S O}(3)$ partial wave decomposition of $\gamma^{*} \gamma \rightarrow p p$ scattering (similar to "dual" parametrization [Polyakov, Shuvaev '02])

$$
\mathbf{H}_{j}(\eta, t)=\underbrace{\binom{N_{\Sigma}^{\prime} F_{\Sigma}(t) \mathrm{B}\left(1+j-\alpha_{\Sigma}(0), 8\right)}{N_{\mathrm{G}}^{\prime} F_{\mathrm{G}}(t) \mathrm{B}\left(1+j-\alpha_{\mathrm{G}}(0), 6\right)}}_{\text {Leading partial wave }}+\binom{s_{\Sigma}}{s_{\mathrm{G}}}\left(\begin{array}{l}
\text { subleading par- } \\
\text { tial waves, } \eta^{-} \\
\text {dependence! }
\end{array}\right)
$$

- Leading wave (we have used in [hep-ph/0703179]):

- Regge-inspired ansatz

- for $t=0$ corresponds to x-space PDFs of the form

$$
\Sigma(x)=N_{\Sigma}^{\prime} x^{-\alpha_{\Sigma}(0)}(1-x)^{7} ; \quad G(x)=N_{G}^{\prime} x^{-\alpha_{G}(0)}(1-x)^{5}
$$

- at NLO data can be fitted with leading wave only
- but at LO we need η-dependence!
\rightarrow included in the new LO analysis

Introduction	DVCS at LO and beyond	Numerical results	Outlook
000000	00000	00000	00

Sum rules and GPDs from LO

[Teryaev '05; Kumerički, Müller and Passek-K. '07, '08; Diehl and Ivanov '07;]

- LO perturbative prediction

$$
\begin{aligned}
\mathcal{H}\left(\xi, t, \mathcal{Q}^{2}\right) \stackrel{\text { LO }}{=} \int_{-1}^{1} d x\left(\frac{1}{\xi-x-i \epsilon}-\frac{1}{\xi+x-i \epsilon}\right) H\left(x, \xi, t, \mu^{2}=\mathcal{Q}^{2}\right) \\
\Downarrow \\
\frac{1}{\pi} \Im m \mathcal{H}\left(\xi=x, t, \mathcal{Q}^{2}\right) \stackrel{\text { LO }}{=} H\left(x, \xi=x, t, \mathcal{Q}^{2}\right)-H\left(-x, \xi=x, t, \mathcal{Q}^{2}\right) \\
\bullet \text { dispersion relation }
\end{aligned}
$$

\Rightarrow various sum rules ...
The goal is to reveal from DVCS data the GPDs at their cross-over trajectory $\eta(=\xi)=x$ and to obtain a generic understanding of the skewness effect.
\rightarrow model dependent extraction of H at the cross-over trajectory also for large ξ (JLab data) [Kumerički and Müller '09]

NLO and NNLO corrections

- $\int \mathrm{d} j C_{j}\left(\mathcal{Q}^{2}\right) \times \mathcal{E}_{j}\left(\mathcal{Q}^{2}, \mathcal{Q}_{0}^{2}\right) \times H_{j}\left(\mathcal{Q}_{0}^{2}\right) \Rightarrow$ Observable
- Check by comparison to QCD-Pegasus [Vogt '04] and evolution of Les Houches benchmark PDFs

Fits (GeParD output)

-t

Kornelija Passek-Kumerički: GPDs from DVCS at LO and beyond

Three-dimensional image of a proton

Kornelija Passek-Kumerički :

Complementary processes

(general) DVCS
$\gamma^{*} p \rightarrow \gamma^{*} p$
$\left(e p \rightarrow e p I^{+} l^{-}\right)$

Guidal, Vanderhaeghen '02]

spacelike DVCS

$\gamma^{*} p \rightarrow \gamma p$
$(e p \rightarrow e p \gamma)$

timelike DVCS
$\gamma p \rightarrow \gamma^{*} p$
$\left(\gamma p \rightarrow p{l^{+}}^{-}\right)$
[Berger, Diehl, Pire '01; Pire et al '08, Afanasev et al '09]

deeply virtual electroproduction of mesons (DVEM) more difficult, but access to flavours

$$
\gamma^{*} p \rightarrow M p
$$

NLO: [Belitsky and Müller '01, Ivanov et al '04]

Timelike DVCS

$$
\gamma\left(q_{1}\right) p\left(P_{1}\right) \rightarrow \gamma^{*}\left(q_{2}\right) p\left(P_{2}\right), q^{2}=q_{2}^{2}=\mathcal{Q}^{2} \rightarrow \infty
$$

- experimentaly accesible from exclusive photoproduction of lepton pairs ($\gamma p \rightarrow I^{+} I^{-} p$)
- Bethe-Heitler amplitude much more important \rightarrow always bigger then DVCS
- offers relatively simple access to the real part of the Compton amplitude via the angular distribution of the lepton pair
- preliminary analysis was performed at LO [Berger, Diehl, Pire '01]
- in timelike regime important contributions and effects possible at higher-orders
- To do:
- modification of [Belitsky and Müller '03] formulas for $p p \rightarrow p p I^{+} I^{-}$ process relevant for, say, ALICE
-applying the formalism and higher-order expressions developed for spacelike DVCS to the timelike case
-analysis of the experimental feasibilities (see, e.g., [Pire et al '08])
Kornelija Passek-Kumerički: GPDs from DVCS at LO and beyond

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS, DVEM ... different processes offer different insight and should provide more complete picture.
- Spacelike DVCS analyzed up to NNLO:
- Using conformal moments of GPDs has several advantages, including
- elegant approach to NLO and NNLO corrections
- providing convenient framework for GPD modelling
- NLO corrections can be sizable; NNLO corrections are small,supporting perturbative framework of DVCS; scale dependence is not so conclusive: large NNLO effects for $\xi \lesssim 10^{-3}$
- Fits to available DVCS and DIS data also work well and give access to transversal distribution of partons; in order to get good LO fits, one needs more sophisticated GPD modelling.
- The analysis of DVEM and timelike DVCS along the same lines is under way.

Definition of GPDs

- In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$
\begin{aligned}
F^{q}(x, \eta, t & \left.=\Delta^{2}\right)
\end{aligned}=\left.\int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P_{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P_{1}\right\rangle\right|_{z^{+}=0, z_{\perp}=\mathbf{0}} .
$$

$P=P_{1}+P_{2} ; \quad \Delta=P_{2}-P_{1} ; \quad \eta=-\frac{\Delta^{+}}{P^{+}}$(skewedness)

Properties of GPDs

- Decomposing into helicity conserving and non-conserving part:

$$
F^{a}=\frac{\bar{u}\left(P_{2}\right) \gamma^{+} u\left(P_{1}\right)}{P^{+}} H^{a}+\frac{\bar{u}\left(P_{2}\right) i \sigma^{+\nu} u\left(P_{1}\right) \Delta_{\nu}}{2 M P^{+}} E^{a} \quad a=q, g
$$

- Forward limit $(\Delta \rightarrow 0): \Rightarrow$ GPD \rightarrow PDF

$$
F^{q}(x, 0,0)=H^{q}(x, 0,0)=\theta(x) q(x)-\theta(-x) \bar{q}(-x)
$$

Sum rules:

$$
\sum_{q=u, d} Q_{q} \int_{-1}^{1} d x\left\{\begin{array}{l}
H^{q}\left(x, \eta, \Delta^{2}\right) \\
E^{q}\left(x, \eta, \Delta^{2}\right)
\end{array}=\left\{\begin{array}{l}
F_{1}\left(\Delta^{2}\right) \\
F_{2}\left(\Delta^{2}\right)
\end{array}\right.\right.
$$

- Possibility of solution of proton spin problem

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1} d x x\left[H^{q}\left(x, \eta, \Delta^{2}\right)+E^{q}\left(x, \eta, \Delta^{2}\right)\right]=J^{q}\left(\Delta^{2}\right) \tag{Ji'96}
\end{equation*}
$$

OPE

- DVCS belongs to a class of two-photon processes (DIS, DVCS, two-photon production of hadronic states ...) calculable by means of OPE

$$
\begin{aligned}
T_{\mu \nu}(q, P, \Delta) & =\frac{i}{e^{2}} \int d^{4} x e^{i x \cdot q}\left\langle P_{2}, S_{2}\right| T j_{\mu}(x / 2) j_{\nu}(-x / 2)\left|P_{1}, S_{1}\right\rangle \\
& \rightarrow C_{j} O_{j}
\end{aligned}
$$

$$
\downarrow
$$

$\left.\begin{array}{l}\text { generalized Bjorken kinematics } \\ \text { conformal symmetry }\end{array}\right\} \rightarrow$ unified description

Conformal OPE (COPE)

- COPE prediction for general kinematics reads

$$
\begin{aligned}
& C_{j}\left(\eta / \xi, Q^{2} / \mu^{2}, \alpha_{s}^{*}=\text { fixed }\right) \\
& \quad=c_{j}\left(\alpha_{s}^{*}\right)_{2} F_{1}\left(\left.\begin{array}{c}
\left(2+2 j+\gamma_{j}\left(\alpha_{s}^{*}\right)\right) / 4,\left(4+2 j+\gamma_{j}\left(\alpha_{s}^{*}\right)\right) / 4 \\
\left(5+2 j+\gamma_{j}\left(\alpha_{s}^{*}\right)\right) / 2
\end{array} \right\rvert\, \frac{\eta^{2}}{\xi^{2}}\right)\left(\frac{\mu^{2}}{Q^{2}}\right)^{\gamma_{j}\left(\alpha_{s}^{*}\right)}
\end{aligned}
$$

- $\eta=0$: DIS

$$
\lim _{\eta \rightarrow 0} C_{j}\left(\eta / \xi, Q^{2} / \mu^{2}, \alpha_{s}^{*}\right)=\left.c_{j}^{D I S}\left(\alpha_{s}^{*}\right)\right|_{\beta=0}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\gamma_{j}\left(\alpha_{s}^{*}\right) / 2}
$$

- $\eta=\xi$: DVCS
- $\eta=1$: photon-to-pion transition form factor

Breaking of conformal symmetry

- massless QCD is conformally symmetric at the tree level
- conformal symmetry broken at the loop level (renormalization introduces mass scale)
- running of the coupling constant $\Rightarrow \beta \neq 0$
- renormalization of the composite operators \Rightarrow non-diagonal anomalous dimensions $\gamma_{j k}=\delta_{j k} \gamma_{j}+\gamma_{j k}^{\mathrm{ND}}$

$$
\begin{aligned}
\mu \frac{d}{d \mu} O_{j}\left(\ldots, \mu^{2}\right) & =-\sum_{k=0}^{j} \gamma_{j k}\left(\alpha_{s}(\mu)\right) \eta^{j-k} O_{k}\left(\ldots, \mu^{2}\right), \\
\left.\mu \frac{d}{d \mu} C_{j}\left(\ldots, Q^{2} / \mu^{2}, \alpha_{s}(\mu)\right)\right] & =\sum_{k=j}^{\infty} C_{k}\left(\ldots, Q^{2} / \mu^{2}, \alpha_{s}(\mu)\right) \gamma_{k j}\left(\alpha_{s}(\mu)\right)\left(\frac{\eta}{\xi}\right)^{k-}
\end{aligned}
$$

Conformal scheme

- non-diagonal terms of anomalous dimensions ($\overline{\mathrm{MS}}$ scheme) can be removed by finite renormalization, i.e, specific choice of factorization scheme \rightarrow conformal subtraction $(\overline{\mathrm{CS}})$ scheme:

$$
\begin{aligned}
& C^{\overline{\mathrm{MS}}} O^{\overline{\mathrm{MS}}}=C^{\overline{\mathrm{MS}}} B B^{-1} O^{\overline{\mathrm{MS}}}=C^{\overline{\mathrm{CS}}} O^{\overline{\mathrm{CS}}} \\
& \gamma_{j k}^{\overline{\mathrm{CS}}}=\delta_{j k} \gamma_{k}+\frac{\beta}{g} \Delta_{j k}
\end{aligned}
$$

- however, there is ambiguity in $\overline{\mathrm{MS}} \rightarrow \mathrm{CS}$ rotation matrix:

$$
B=B^{(\beta=0)}+\frac{\beta}{g} \delta B
$$

and by judicious choice of δB one can "push" mixing to NNLO ($\overline{\mathrm{CS}}$ scheme, [Melić et al. '02]) $\rightarrow \Delta_{j k}$ - unknown correction, starts at NNLO, and can be suppressed by choice of initial condition - neglected

NNLO DVCS

- Finally

$$
\begin{aligned}
& C_{j}^{\overline{\mathrm{CS}}, \operatorname{DVCS}}\left(Q^{2} / \mu^{2}, \alpha_{s}(\mu)\right)= \\
& \quad C_{k}\left(1, \alpha_{s}(Q)\right) \mathcal{P} \exp \left\{\int_{Q}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{j}\left(\alpha_{s}\left(\mu^{\prime}\right)\right) \delta_{k j}\right\}\right.
\end{aligned}
$$

with

$$
C_{j}\left(1, \alpha_{s}(Q)\right)=\frac{2^{1+j+\gamma_{j}\left(\alpha_{s}\right) / 2} \Gamma\left(\frac{5}{2}+j+\gamma_{j}\left(\alpha_{s}\right) / 2\right)}{\Gamma(3 / 2) \Gamma\left(3+j+\gamma_{j}\left(\alpha_{s}\right) / 2\right)} c_{j}^{\overline{\mathrm{MS}}, \mathrm{DIS}}\left(\alpha_{s}\right)
$$

- we take
$c_{j}^{\mathrm{MS}, \mathrm{DIS}}\left(\alpha_{s}\right)$ from [ZZijlstra, v. Neerven '92, '94, v. Neerven and Vogt '00]
γ_{j} from [Vogt, Moch and Vermaseren '04]

Conformal algebra

- Conformal group restricted to light-cone $\underset{\left[L_{+}, L_{-}\right]=\mp L_{-}}{\sim} O(2,1)$ conf.spin j :

$$
\begin{aligned}
L_{+} & =-i P_{+} & {\left[L_{0}, L_{\mp}\right] } & =\mp L_{\mp} \\
L_{-} & =\frac{i}{2} K_{-} & {\left[L_{-}, L_{+}\right] } & =-2 L_{0} \\
L_{0} & =\frac{i}{2}\left(D+M_{-+}\right) & & \text {Casimir: }
\end{aligned} r \begin{array}{ll}
\left.L^{2}, \mathbb{O}_{n, n+k}\right]= \\
& =L_{0}^{2}-L_{0}+L_{-} L_{+}
\end{array}
$$

($D-$ dilatations, $K_{-}-$special conformal transformation (SCT))

Operator Product Expansion

$$
\begin{aligned}
& J_{\mathrm{em}}(x) J_{\mathrm{em}}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(\frac{1}{x^{2}}\right)^{2} x_{-}^{n+k+1} C_{n, k} O_{n, k} \\
& k=0: \quad O_{n, 0} \equiv \quad \bar{\psi} \gamma^{+}\left(i \stackrel{\leftrightarrow}{D_{+}}\right)^{n} \psi \quad i \partial_{+} \xrightarrow{\text { M.E. }}-\Delta_{+} \\
& \stackrel{\leftrightarrow}{D}_{+} \equiv \vec{D}_{+}-\overleftarrow{D}_{+}
\end{aligned}
$$

- $C_{n, 0}$ and γ_{n} of $O_{n, 0}$ are well known from DIS up to NNLO.
- But $C_{n, k}$ and $\gamma_{n, k}$ are not so well known.
- $\gamma_{n, k} \neq 0 \Rightarrow$ operators $O_{n, k}$ mix under evolution.
- Choosing operator basis in which $\gamma_{n, k}$ is diagonal would help. But how to diagonalize unknown matrix?!
- (At least) to LO answer is: use conformal operators.

Conformal operators

$$
\mathbb{O}_{n, n+k}=\left(i \partial^{+}\right)^{n+k} \bar{\psi} \gamma^{+} C_{n}^{3 / 2}\left(\frac{\overleftrightarrow{D^{+}}}{\partial^{+}}\right) \psi
$$

- they have well-defined conformal spin $j=n+2$
- massless QCD is conformally symmetric at the tree level \Rightarrow conformal spin is conserved
- mixing of operators with different n is forbidden by conformal symmetry, while mixing of those with different $n+k$ is forbidden by Lorentz symmetry $\Rightarrow \mathbb{O}_{n, n+k}$ don't mix at LO
- conformal symmetry broken at the loop level (renormalization introduces mass scale, dimensional transmutation) \Rightarrow
- running of the coupling constant $\partial g / \partial \ln \mu \equiv \beta \neq 0$
- anomalous dimensions of operators $\gamma_{j k}=\delta_{j k} \gamma_{j}+\gamma_{j k}^{\mathrm{ND}}$

$$
\Rightarrow \mathbb{O}_{n, n+k} \text { start to mix at NLO }
$$

Conformal Towers

- Diagonalize in artificial $\beta=0$ theory by changing scheme

$$
\mathbb{O}^{\mathrm{CS}}=B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}} \quad \text { so that } \quad \gamma_{j k}^{\mathrm{CS}}=\delta_{j k} \gamma_{k}
$$

- $C_{n, k}=(-1)^{k} \frac{(n+2)_{k}}{k!(2 n+4)_{k}} C_{n, 0} \quad \Rightarrow$ summing complete tower
- In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$
\gamma_{j k}^{\mathrm{CS}}=\delta_{j k} \gamma_{k}+\frac{\beta}{g} \Delta_{j k}
$$

- However, there is also ambiguity in $\overline{\mathrm{MS}} \rightarrow \mathrm{CS}$ rotation matrix:

$$
B=B^{(\beta=0)}+\frac{\beta}{g} \delta B
$$

- By judicious choice of δB one can "push" mixing to NNLO (CS scheme, [Melić, Müller and Passek '02]).
- But how to calculate rotation matrix B ? This is problem equivalent to calculation of $\gamma_{j, k}$.
- The $B^{(\beta=0)}$ is constrained by conformal Ward identities ...

$$
B_{j k}^{(\beta=0) \mathrm{NLO}}=\delta_{j k}-\frac{\alpha_{s}}{2 \pi} \theta(j>k) \frac{\gamma_{j k}^{\text {scT, LO }}}{a_{j k}} \quad \begin{aligned}
& \text { (ajk }- \text { known matrix }) \\
& {[\text { Müller '93] }}
\end{aligned}
$$

SCT \equiv special conformal transformation

- ... and, as a consequence

$$
\overline{\mathrm{MS}} \gamma_{j k}^{\mathrm{ND},(1)}=\frac{\left[\gamma^{\mathrm{SCT},(0)}-\beta_{0} \frac{b}{g}, \gamma^{(0)}\right]_{j k}}{a_{j k}}
$$

- Final result:
n-loop DIS (diagonal) result $+(n-1)$-loop SCT anomaly $=$ n-loop non-diagonal prediction

Mellin-Barnes representation of CFFs

$$
\begin{aligned}
& { }^{s_{\mathcal{H}}\left(\xi, t, \mathcal{Q}^{2}\right)} \\
& \quad=\frac{1}{2 i} \int_{c-i \infty}^{c+i \infty} d j\left[i+\tan \left(\frac{\pi j}{2}\right)\right] \xi^{-j-1} \mathbf{C}_{j}\left(\mathcal{Q}^{2} / \mu^{2}, \alpha_{s}(\mu)\right) \mathbf{H}_{j}\left(\xi, t, \mu^{2}\right)
\end{aligned}
$$

- We have used previously developed formalism to

1. investigate size of NNLO corrections to non-singlet [D. Müller, Phys.Lett. B634 (2006), hep-ph/0510109] and singlet Compton form factors in $\overline{\mathrm{CS}}$ scheme [K. Kumerički, D. Müller, K. P-K., A. Schäfer, Phys.Lett. B648 (2007), hep-ph/0605237]
2. compare the $\overline{\mathrm{CS}} \mathrm{NLO}$ predictions to complete $\overline{\mathrm{MS}} \mathrm{NLO}$ predictions (non-diagonal evolution included) and analyze the latter [K. Kumerički, D. Müller, K. P-K., Nucl. Phys. B794 (2008), hep-ph/0703179]
3. perform fits (in both schemes) to DVCS (and DIS) data and extract information about GPDs [K. Kumerički, D. Müller, K. P-K., Nucl. Phys. B794 (2008), hep-ph/0703179]
4. analyze the new HERA data to LO (investigating η-dependent GPD model) [K. Kumerički and D. Müller, arXiv:0904.0458 [hep-ph]]

- Check by comparison to QCD-Pegasus [Vogt '04]
- evolution of Les Houches benchmark PDFs:

NLO corrections

$$
\delta^{P} K=\frac{\left|\mathcal{H}^{\mathrm{N}^{P}} \mathrm{LO}\right|}{\left|\mathcal{H}^{\mathrm{N}^{P-1} \mathrm{LO}}\right|}-1, \quad \delta^{P} \varphi=\arg \left(\frac{\mathcal{H}^{\mathrm{N}^{P}} \mathrm{LO}}{\mathcal{H}^{\mathrm{N}^{P-1} \mathrm{LO}}}\right)
$$

Kornelija Passek-Kumerički: GPDs from DVCS at LO and beyond

Thick lines: "hard" gluon $N_{G}=0.4$ $\alpha_{G}(0)=\alpha_{\Sigma}(0)$ $+0.05$

Thin lines: "soft" gluon $N_{G}=0.3$ $\alpha_{G}(0)=\alpha_{\Sigma}(0)$

Parton probability density

- Fourier transform of GPD for $\eta=0$ can be interpreted as probability density depending on x and transversal distance b [Burkardt '00, '02]

$$
H(x, \vec{b})=\int \frac{d^{2} \vec{\Delta}}{(2 \pi)^{2}} e^{-i \vec{b} \cdot \vec{\Delta}} H\left(x, \eta=0, \Delta^{2}=-\vec{\Delta}^{2}\right)
$$

- Average transversal distance :

$$
\left\langle\vec{b}^{2}\right\rangle\left(x, \mathcal{Q}^{2}\right)=\frac{\int d \vec{b} \vec{b}^{2} H\left(x, \vec{b}, \mathcal{Q}^{2}\right)}{\int d \vec{b} H\left(x, \vec{b}, \mathcal{Q}^{2}\right)}=4 B\left(x, \mathcal{Q}^{2}\right),
$$

(at $\mathcal{Q}^{2}=4 \mathrm{GeV}^{2}$)
$\left\langle\vec{b}^{2}\right\rangle_{\text {gluon }}\left(\xi=10^{-3}\right)=$
$0.30_{-0.04}^{+0.07} \mathrm{fm}^{2}$

Beam charge asymmetry

$$
B C A \equiv \frac{\mathrm{~d} \sigma_{e^{+}}-\mathrm{d} \sigma_{e^{-}}}{\mathrm{d} \sigma_{e^{+}}+\mathrm{d} \sigma_{e^{-}}}=\frac{\mathcal{A}_{\text {Interference }}}{\left|\mathcal{A}_{\mathrm{DVCS}}\right|^{2}+\left|\mathcal{A}_{\mathrm{BH}}\right|^{2}} \stackrel{\mathrm{LO}}{\propto} F_{1} \mathcal{H}+\frac{|t|}{4 M^{2}} F_{2} \mathcal{E}
$$

- Model $E_{\text {sea }}$ as $\kappa_{\text {sea }} H_{\text {sea }}$ and take $\mathrm{B}_{\text {sea }} \equiv \int \mathrm{d} x x E_{\text {sea }}$ as parameter

- H1 data enable exclusion only of very negative $B_{\text {sea }}$

Modelling conformal moments of GPDs

- How to model η-dependence of GPD's $H_{j}(\eta, t)$?
- Idea: consider crossed t-channel process $\gamma^{*} \gamma \rightarrow p p$

When crossing back to DVCS channel we have:

$$
\cos \theta_{\mathrm{cm}} \rightarrow-\frac{1}{\eta}
$$

- and dependence on $\theta_{\text {cm }}$ in t-channel is given by $\mathrm{SO}(3)$ partial wave decomposition of $\gamma^{*} \gamma$ scattering $\mathcal{H}(\eta, \ldots)=\mathcal{H}^{(t)}\left(\cos \theta_{\mathrm{cm}}=-\frac{1}{\eta}, \ldots\right)=\sum_{J}(2 J+1) f_{J}(\ldots) d_{0, \nu}^{J}(\cos \theta)$
- $d_{0, \nu}^{J}$ - Wigner SO(3) functions (Legendre, Gegenbauer,...)
- Similar to "dual" parametrization [Polyakov, Shuvaev '02]

Modelling conformal moments of GPDs (II)

- OPE expansion of both \mathcal{H} and $\mathcal{H}^{(t)}$, as well as trivial crossing properties of Wilson coefficients C_{j}, leads to

$$
H_{j}(\eta, t)=\eta^{j+1} H_{j}^{(t)}\left(\cos \theta=-\frac{1}{\eta}, s^{(t)}=t\right)
$$

- and t-channel partial waves are modelled as:

$$
H_{j}(\eta, t)=\sum_{J}^{j+1} h_{J, j} \frac{1}{J-\alpha(t)} \frac{1}{\left(1-\frac{t}{M^{2}(J)}\right)^{p}} \eta^{j+1-J} d_{0, \nu}^{J}
$$

- Similar to "dual" parametrization [Polyakov, Shuvaev '02]

Kornelija Passek-Kumerički: GPDs from DVCS at LO and beyond

Skewness effect (I) — R

$$
\left.R \equiv \frac{\mathcal{I} m A_{\mathrm{DVCS}}}{\mathcal{I} m A_{\mathrm{DIS}}}\right|_{t=0} \stackrel{\llcorner O}{=} \frac{H(\xi, \xi)}{H(2 \xi, 0)} \quad \text { [Shuvaev et al. '99] }
$$

- Significant skewness effect?

Skewness effect (II) — r

- Skewness effect is naturally defined by ratio of GPDs $H(x, \eta)$ at two physically relevant trajectories: $\eta=x$ and $\eta=0$
$r=\frac{H(x, x)}{H(x, 0)} \underset{\sim}{L O} \frac{1}{2^{\alpha}} R \quad$ for $\quad q(x \rightarrow 0) \sim x^{-\alpha} \quad \alpha \approx 1$

Skewness effect (III)

- To get the correct normalization and t-dependence, one has to compensate "natural" DVCS-to-DIS enhancement factor [Shuvaev et al. '99]

$$
\left.\frac{2^{j+2} \Gamma(j+5 / 2)}{\sqrt{\pi} \Gamma(j+3)}\right|_{j=\alpha-1 \approx 0.2} \approx 1.5
$$

- at NLO radiative corrections take care of that
- at LO resummed subleading partial waves have to give negative contribution:
$\mathbf{H}_{j}(\eta, t)=\binom{N_{\Sigma}^{\prime} F_{\Sigma}(t) \mathrm{B}\left(1+j-\alpha_{\Sigma}(0), 8\right)}{N_{\mathrm{G}}^{\prime} F_{\mathrm{G}}(t) \mathrm{B}\left(1+j-\alpha_{\mathrm{G}}(0), 6\right)}+\underbrace{\binom{s_{\Sigma}}{s_{\mathrm{G}}}\left(\begin{array}{l}\text { subleading par- } \\ \text { tial waves, } \eta_{-} \\ \text {dependence! }\end{array}\right)}_{<0}$
negative "intrinsic skewness"

GPDs and sum rules

[K. Kumerički, D. Müller, K. Passek-K., arXiv:0805.0152 [hep-ph]],
[Teryaev '05; Diehl and Ivanov '07]

- LO perturbative prediction

$$
\begin{gathered}
\mathcal{H}\left(\xi, t, \mathcal{Q}^{2}\right) \stackrel{\mathrm{LO}}{=} \int_{-1}^{1} d x\left(\frac{1}{\xi-x-i \epsilon}-\frac{1}{\xi+x-i \epsilon}\right) H\left(x, \xi, t, \mu^{2}=\mathcal{Q}^{2}\right) \\
\Downarrow \\
\frac{1}{\pi} \Im m \mathcal{H}\left(\xi=x, t, \mathcal{Q}^{2}\right) \stackrel{\text { LO }}{=} H\left(x, \xi=x, t, \mathcal{Q}^{2}\right)-H\left(-x, \xi=x, t, \mathcal{Q}^{2}\right)
\end{gathered}
$$

- LO perturbative prediction

$$
\begin{aligned}
& \mathcal{H}\left(\xi, t, \mathcal{Q}^{2}\right) \stackrel{\mathrm{LO}}{=} \int_{0}^{1} d x\left(\frac{1}{\xi-x-i \epsilon}-\frac{1}{\xi+x-i \epsilon}\right) H^{-}\left(x, \xi, t, \mu^{2}=\mathcal{Q}^{2}\right) \\
& \Downarrow \\
& \frac{1}{\pi} \Im m \mathcal{H}\left(\xi=x, t, \mathcal{Q}^{2}\right) \stackrel{\mathrm{LO}}{=} H^{-}\left(x, \xi=x, t, \mathcal{Q}^{2}\right) \\
& \Re \mathrm{e} \mathcal{H}\left(\xi, t, \mathcal{Q}^{2}\right) \stackrel{\mathrm{LO}}{=} P V \int_{0}^{1} d x\left(\frac{1}{\xi-x}-\frac{1}{\xi+x}\right) H^{-}\left(x, \xi, t, \mu^{2}=\mathcal{Q}^{2}\right)
\end{aligned}
$$

- dispersion relation

$$
\mathcal{H}\left(\xi, t, \mathcal{Q}^{2}\right)=\int_{0}^{1} d x\left(\frac{1}{\xi-x-i \epsilon}-\frac{1}{\xi+x-i \epsilon}\right) \frac{\Im m \mathcal{H}\left(x, t, \mathcal{Q}^{2}\right)}{\pi}+\mathcal{C}_{\mathcal{H}}\left(t, \mathcal{Q}^{2}\right)
$$

$\Re \mathrm{H}\left(\xi, t, \mathcal{Q}^{2}\right) \stackrel{\mathrm{LO}}{=}$

$$
P V \int_{0}^{1} d x\left(\frac{1}{\xi-x}-\frac{1}{\xi+x}\right) H^{-}\left(x, x, t, \mathcal{Q}^{2}\right)+\mathcal{C}_{\mathcal{H}}\left(t, \mathcal{Q}^{2}\right)
$$

- \Rightarrow various sum rules

One strategy for extracting GPD information to LO accuracy:

- model the t-dependency of the GPD at $\eta=0$
- parameterize the skewness function S defined in

$$
H^{-}\left(x, x, t, \mathcal{Q}^{2}\right)=\left[1+S\left(x, t, \mathcal{Q}^{2} \mid H^{-}\right)\right] H^{-}\left(x, \eta=0, t, \mathcal{Q}^{2}\right) .
$$

- fit parameters to measured observables (CFFs)

The goal of this LO analysis and of this concept is to reveal GPDs at their cross-over trajectory $\eta=x$ from DVCS data and to obtain a generic understanding of the skewness effect.

More work in this direction needed...

Relevance of GPDs for collider physics

- heavy particle production \Rightarrow collision is more central \Rightarrow larger probability for multiple parton collisions
- [Frankfurt, Strikman and Weiss '04]
- No influence on total inclusive cross sections, but event structure is sensitive to transversal parton distributions.
- Relevant for LHC?

