
Emerging Security Threats for Mobile Platforms

G. Delac*, M. Silic* and J. Krolo**
* Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

**Google Inc., New York, USA

{goran.delac, marin.silic}@fer.hr, jakov@google.com

Abstract - The proliferation of smart-phone devices, with

ever advancing technological features, has brought the issue

of mobile device security back into focus. Mobile devices are

rapidly becoming attractive targets for malicious attacks

due to significant advances in both hardware and operating

systems. The modern mobile platforms, like Android, iOS

and Symbian, increasingly resemble traditional operating

systems for PCs. Therefore, the challenges in enforcing

smart-phone security are becoming similar to those present

in PC platforms. By installing malicious content, smart-

phones can be infected with worms, trojan horses or other

virus families, which can compromise user’s security and

privacy or even gain complete control over the device. Such

malicious content can easily spread due to advances in

mobile network technologies which provide smart-phones

with capability of constant Internet connection over 3G or

Wi-Fi networks. Additionally, the improvements in smart-

phone features introduce new types of security concerns. By

compromising mobile OS, malicious applications can access

voice-recording devices, cameras, intercept SMS messages

or gain location information. Such security breaches

severely compromise user’s privacy. In this paper we

present an analysis of contemporary mobile platform

threats and give an in-depth overview of threat mitigation

mechanisms built into state of the art mobile operating

systems.

I. INTRODUCTION

In recent years the expanding mobile hand-held device
market is becoming an increasingly attractive target for
malicious attacks. According to recent security reports
[1][2], the number of possible malicious exploits and
executed attacks is going to surge in 2011. This trend can
be attributed to two key factors: the ever increasing user
base and the emergence of smart-phone technology. The
size of mobile device market is clearly visible from the
latest reports issued by the ITU [3] which indicate that by
the end of the 2010 there will be an estimated 5.3 billion
mobile phone users in the world. Although malicious
exploits for mobile phones have been steadily developing
over the last decade [4][5], the constraints in both
hardware and operating systems have limited the attacks
both in their scale and impact. Therefore, the endorsement
of smart-phone technology, which provides more
computing power and functionality, is proving to be a
turning point in development of malicious exploits for
mobile hand-held devices. The estimates indicate that the
market share of smart-phones in the US could exceed 50%
of the total mobile hand-held device market by the end of
2011 [6]. Since the rest of the developed world is showing
similar trends, a significant increase in smart-phone user
base is expected over the next few years, thus making this
platform an attractive target for malicious attacks. In

addition, the smart-phones are starting to resemble PCs
both in their capabilities and the way people use them.
The smart-phone mobile platforms, like Android, iOS,
Blackberry OS, Symbian and Windows Mobile are
increasingly resembling PC operating systems[7]. Thus,
the standard malicious attacks for PCs, like worms and
trojans, as well as attack vectors, like the Internet access,
are becoming applicable to the mobile platforms. Since
the modern mobile platforms can be installed on devices
other than smart-phones, like tablets or other appliances,
the same security issues exist. We will shortly refer to all
devices with a mobile platform installed as mobile devices
in the rest of this paper.

Although rich in basic features, mobile platforms can
be extended by installing applications in much the same
way it is possible for PC operating systems. Since
applications can originate from third party providers, they
present an opportunity for introduction of malicious
exploits. Apart from utilizing computing power provided
by mobile devices, the attackers are starting to target the
data. This is due to the fact that the smart-phones are
becoming storage units for personal information through
use of various social networking applications, personal
organizers and e-mail clients.

In this paper we present an attacker-centric threat
model for mobile platforms. The threat model addresses
three key issues of mobile device security: attacker's
goals, attack vectors and mobile malware. First, it defines
the motives for attacking mobile platforms in order to
identify the attacker‟s interests and potential targets. The
attack goals focus on the motives introduced by modern
mobile platforms and devices. Second, the model
incorporates the attack vectors in order to present possible
entry points for malicious content on mobile devices.
Finally, the model considers threat types applicable to
mobile platforms if the presented attack vectors are
successfully utilized.

Since we consider the mobile applications to be the
most convenient method for performing malicious attacks,
we analyze the security model implemented by two
widely spread platforms: the Android by Google and the
iOS by Apple. The analyzed mobile platforms differ in
their approaches to enforcing application security. The
Android isolates applications in order to prevent them
from interfering with other applications or the operating
system. On the other hand, the iOS applications are
screened for malicious intentions by code reviewers, thus
allowing implementation of simpler security mechanisms.
In order to demonstrate how Android‟s permission based
security model could be breached, we present a fictive
mobile application.

The rest of the paper is structured as follows: In
Section 2 we present an attacker-centric threat model for
mobile platforms. Overview of the Android security
model is presented in Section 3 followed by description of
iOS security model in Section 4. An example of a
malicious application for Android is presented in Section
5. Section 6 concludes the paper.

II. THREAT MODEL FOR MOBILE PLATFORMS

In order to present a broad overview of challenges
facing mobile devices‟ security, we present an attacker-
centric threat model for mobile platforms. We analyze
attacker‟s goals and motives as well as delivery methods
and attack strategies. Therefore, the threat model is
divided into three sections: attack goals, attack vectors and
mobile malware.

A. Attack Goals

In this subsection we present three basic motives for
breaching mobile device‟s security. The first two goals
described are covert, while the latter is harmful. Covert
approach to executing an attack is to perform malicious
operations while avoiding user‟s detection. The goal of
such attacks is to disrupt the operation of the device as
little as possible while performing activities useful to the
attacker. On the other hand, harmful attacks are aimed at
disrupting the normal operation of a mobile device.

1) Collect Private Data

Since the mobile devices are in effect becoming
storage units for personal data, they are an attractive target
for breaching user‟s privacy. The attackers target both the
confidentiality and integrity of stored information. A
successfully executed attack can empower the attacker
with ability to read SMS and MMS messages, e-mail
messages, call logs and contact details. Furthermore, the
attacker can intercept or send fake SMS, forward e-mails
to alternative inboxes, and access the information from
personal organizers and calendars. Additional information
can be gathered by reading Instant Messaging client logs,
data stored by applications used to access social networks
or data stored by browsers. Any other data located in
device‟s memory or on SD card, like documents, photos
or videos, could also be compromised [8].

In addition, tapping into phone‟s basic hardware
features provides an opportunity to collect additional data
from user‟s surroundings. By utilizing the voice recording
hardware, the attacker can turn the infected mobile phone
into a listening device. Accessing the camera provides an
opportunity to take photos or record video of the user‟s
surroundings. Additional momentum to compromising
user's privacy can be achieved by exploiting the location
information. Mobile devices can provide location
information by utilizing the GPS module, or by
triangulating the position using the service provider's
network infrastructure.

2) Utilize Computing Resources

The increase in computing resources is setting the
contemporary mobile devices into focus for malicious
attacks with aim to covertly exploit the raw computing
power in combination with broadband network
access. For example, high end mobile devices have CPU

operating frequencies in excess of 1GHz, and physical
memory well over 512MB. In addition, multicore
processors for mobile devices are under development.
Combined with high speed Internet links, mobile devices
are becoming attractive for malicious exploits, such as
deployment of botnets[9].

3) Harmful Malicious Actions

Harmful malicious actions are aimed at generating
device user‟s discomfort rather on performing useful
operations for the attacker. Although such attacks are
usually easily discoverable, they are aimed at inflicting as
much damage as possible. The attacks can range from data
loss to draining the devices battery[10] and other
resources, like generating huge network traffic.
Ultimately, by gaining access to critical systems the
attacker could disable the device permanently, i.e. brick
the device.

B. Attack vectors

Mobile platforms provide multiple attack vectors for
delivery of malicious content. We classify the attack
vectors into four categories: mobile network services,
Internet access, Bluetooth, and access to USB and other
peripheral devices.

1) Mobile network services

Cellular services like SMS, MMS and voice calls can
be used as attack vectors for mobile devices. For example,
SMS and MMS messages can be used to deliver malicious
content and to maintain the communication with the
attacker. This is especially applicable to MMS messages
as they support rich content which allows the attacker to
embed hidden XML messages [11]. Furthermore, the
cellular services provide opportunities for phishing
attacks. Phishing is an attack strategy in which the attacker
gains sensitive information from the user by presenting
itself as a trustworthy entity. Two basic phishing attacks
over mobile networks exist: smishing and vishing.
Smishing[12] is a phising attack executed using SMS
messages. The attacker uses SMS to send URL links that
when clicked automatically open a browser window
rendering the device vulnerable to attack. On the other
hand, vishing[12] attack is carried out using voice calls.
By masking the true voice call id, the attacker can trick the
user into calling a certain number. The attacker can then
gain sensitive information from the user by pretending to
be a trustworthy entity, like a bank or insurance company.

2) Internet access

Mobile devices can access the Internet using Wi-Fi
networks or 3G/4G services provided by mobile network
operators. Although such high speed Internet connections
ensure comfortable browsing, they also expose the mobile
devices to the same threats as PCs. Since mobile devices
are usually constantly switched on, they can maintain a
continuous connection to the Internet. However,
prolonged connection to the Internet also increases the
chances of a successful malicious attack. The attack
probably increases if the device is connected to a public
network over a Wi-Fi hotspot. In addition, the attackers
can use multiple emerging Internet services to spread
malicious content. For example, social networks, like
Tweeter or Facebook, are commonly used to share URL

links in order to indicate items of interest on the Web.
Since links sometimes become long and unpractical to
share, the URL shortening services are becoming a
common way for reducing the link size. For example, the
URL: http://www.mipro.hr/MIPRO2011.ISS/ELink.aspx
could be shortened to: http://goo.gl/tL20e .

Since the shortened link completely replaces the
original, it is not possible to find out the destination
without clicking on the link. By spreading the links over
social networks, using previously compromised devices,
the attackers can easily fool the users into clicking the
harmful links. This way the attackers can trick users into
downloading malicious content or navigating them to
phishing sites.

3) Bluetooth

Bluetooth attacks are a method used for device-to-
device malware spreading. Once the two devices are in
range, the compromised device pairs with its target by
using default Bluetooth passwords. When the connection
is established, the compromised device sends malicious
content. However, the Bluetooth is a limited attack vector
for injecting malicious content due to several security
factors. First, the mobile devices usually are not set as
discoverable by default and the period in which they can
be discovered is limited. Second, the user has to confirm
the file transfer and then manually install the file.

4) USB and Other Periphetals
Apart from the mentioned attack vectors, mobile

devices could be compromised by using other
connections, like widely spread USB. The USB
connection in commonly used to synchronize the mobile
device with a personal computer. If the software used to
synchronize the mobile device was compromised, the
attacker could access private information and install
malicious applications on the device. In addition, since
some mobile platforms allow the device to connect as
USB storage device, traditional USB malware could be
applied.

C. Mobile Malware

Since the mobile platforms increasingly resemble
traditional operating systems, the security threats
characteristic for PCs are migrating to mobile devices. In
this subsection we give a brief overview of the most
common mobile malware. However, the actual attacks
usually combine multiple variants of the presented mobile
malware.

1) Trojan horse

By deploying malicious mobile applications the
attacker could gain control over the device. Such
applications usually perform some useful functionality
while running malicious activities in the background. This
way the Trojan can be used to gather private information
or to install other malicious applications like worms or
botnets. In addition, Trojans can be used to commit
phishing activities. For example, a false banking
application could collect sensitive data from the
user. Such applications can easily spread through
unsupervised application stores or through social
networks.

2) Botnet
Botnet is a set of compromised devices which can be

controlled and coordinated remotely. This attack strategy
is used to utilize the computing power of compromised
devices in order to commit various activities ranging from
sending spam mail to committing DOS attacks. An
example of a botnet designed specifically for mobile
devices is Waledac[11]. Waledac uses SMS and MMS
messages to exchange the data between nodes therefore
enabling the botnet to remain active even if the nodes are
not connected to the Internet.

3) Worm

Worm is a self-replicating malicious application
designed to spread autonomously to uninfected systems.
This type of malware has been ported to mobile platforms
since the introduction of Cabir[12]. Cabir is a worm
designed to attack Symbian S60 devices by spreading
through Bluetooth links. A more recent example of a
worm type malware for mobile devices is Ikee.B[13]
which is used to steal financially sensitive data from
jailbroken iPhones.

4) Rootkit
Rootkit is a malicious application which gained rights

to run in a privileged mode. Such malicious applications
usually mask their presence from the user by modifying
standard operating system functionalities. Although no
current rootkit type threats for mobile devices exist, recent
research efforts [14] indicate the potential of this attack
strategy and classify it as an emerging threat to mobile
security.

In the rest of this paper we will focus on mobile apps
as delivery methods for malicious activates. This threat
type is characteristic for state-of-the-art mobile platforms,
since the apps are used to augment basic functionalities
provided by the operating system. Furthermore, rapid
spread of mobile applications, both in their number and
overall number of downloads through application stores
and other sources, provides appealing opportunities for
injecting and spreading malicious activities.

III. ANDROID SECURITY MODEL

Android is an application execution platform for
mobile devices comprised out of an operating system, core
libraries, development framework and basic applications
[15]. Android operating system is built on top of a Linux
kernel. The Linux kernel is responsible for executing core
system services such as: memory access, process
management, access to physical devices through drivers,
network management and security. Atop the Linux kernel
is the Dalvik virtual machine along with basic system
libraries. The Dalvik VM is a register based execution
engine used to run Android applications. In order to
access lower level system services, the Android provides
an API through afore mentioned C/C++ system libraries.
In addition to the basic system libraries, the development
framework provides access the top level services, like
content providers, location manager or telephony
manager. This means that it is possible to develop
applications which use the same system resources as the
basic set of applications, like built-in web browser or mail
client. However, such a rich development framework

presents security issues since it is necessary to prevent
applications from stealing private data, maliciously
disrupting other applications or the operating system itself.
In order to address the security issues, the Android
platform implements a permission based security model,
as demonstrated in Figure 1.

The model is based on application isolation in a
sandbox environment [16]. This means that each
application executes in its own environment and is unable
to influence or modify execution of any other application.
Application sandboxing is performed at the Linux kernel
level. In order to achieve isolation, Android utilizes
standard Linux access control mechanisms. Each Android
application package (.apk) is on installation assigned a
unique Linux user ID. This approach allows the Android
to enforce standard Linux file access rights. Since each
file is associated with its owner‟s user ID, applications
cannot access files that belong to other applications
without being granted appropriate permissions. Each file
can be assigned read, write and execute access permission.
Since the root user owns system files, applications are not
able to act maliciously by accessing or modifying critical
system components. On the other hand, to achieve
memory isolation, each application is running in its own
process, i.e. each application has its own memory space
assigned. Additional security is achieved by utilizing
memory management unit (MMU), a hardware
component used to translate between virtual and physical
address spaces. This way an application cannot
compromise system security by running native code in
privileged mode, i.e. the application is unable to modify
the memory segment assigned to the operating system.

The presented isolation model provides a secure
environment for application execution. However,
restrictions enforced by the model also reduce the overall
application functionality. For example, useful
functionalities could be achieved by accessing critical
systems like: access to network services, camera or
location services. Furthermore, exchange of data and
functionalities between applications enhances the
capabilities of the development framework. The shared
user ID and permissions are two mechanisms, introduced
by the Android, which can be used to lift the restrictions
enforced by the isolation model. The mechanisms must
provide sufficient flexibility to the application developers
but also preserve the overall system security. As presented
in Figure 1, two applications can share data and
application components, i.e. activities, content providers,
services and broadcast receivers. For example, an
application could run an activity belonging to other
application or access its files.

The shared user ID allows applications to share data
and application components. In order to be assigned a
shared user ID the two applications must be signed with
the same digital certificate. In effect, the developers can
bypass the isolation model restrictions by signing
applications with the same private key. However, since
there is not a central certification authority, the developers
are responsible to keep their private keys secure. By
sharing the user ID, applications gain the ability to run in
the same process.

The alternative to the shared user ID approach is to
use the Android permissions. In addition to sharing data
and components, the permissions are used to gain access
to critical system modules. Each android application can
request and define a set of permissions. This means that
each application can expose a subset of its functionalities
to other applications if they have been granted the
corresponding permissions. In addition, each application
can request a set of permissions to access other
applications or system libraries. Permissions are granted
by the operating system at installation and cannot be
changed afterwards. There are four types of permissions:
normal, dangerous, signature and signature-or-system.

Normal permissions give access to isolated
application-level functionalities. These functionalities
have little impact on system or user security and are
therefore granted without an explicit user's approval.
However, the user can review which permissions are
requested prior to application installation. An example of
a normal level permission is access to the phone's
vibration hardware. Since it is an isolated functionality,
i.e. user's privacy or other applications cannot be
compromised, it is not considered a major security risk.

On the other hand, dangerous permissions provide
access to private data and critical systems. For example,
by obtaining a dangerous permission, an application can
use telephony services, network access, location
information or gain other private user data. Since
dangerous permissions present a high security risk, the
user is promoted to confirm them before the installation.

Signature permission can be granted to the application
signed with the same certificate as application declaring
the permission. The signature permission is in effect a
refinement of the shared user ID approach and provides
more control in sharing application data and components.
On the other hand, signature-or-system permission
extends the signature permission by granting permission
to the applications installed in the Android system image.
However, caution is required since both the signature and
signature-or-system permissions will grant access rights
without asking for the user's explicit approval.

Figure 1. Android Security Model

IV. IOS SECURITY MODEL

Unlike the Android security architecture, iOS security
model provides different philosophy for achieving mobile
device security and user‟s protection. The iOS application
platform empowers developers to create new applications
and to contribute to the application store. However, each
application submitted by a third party developer is sent to
the revision process. During the revision process the
application code is analyzed by professional developers
who make sure that the application is safe before it is
released the application store. However, such an
application, when installed, gets all the permissions on a
mobile device. Application might access local camera,
3G/4G, Wi-Fi or GPS module without user's knowledge.
While Android lets each user handle its own security on
their own responsibility, the iOS platform makes
developers to write safe code using iOS secure APIs and
prevents malicious applications from getting into the app
store.

The iOS security APIs are located in the Core Services
layer of the operating system and are based on services in
the Core OS (kernel) layer of the operating system [17].
Application that needs to execute a network task, may use
secure networking functions through the CFNetwork API,
which is also located in the Core Services layer. The iOS
security implementation includes a daemon called the
Security Server that implements several security
protocols, such as access to keychain items and root
certificate trust management. The Security Server has no
public API. Instead, applications use the Keychain
Services API and the Certificate, Key, and Trust services
API, which in turn communicate with the Security Server.

Keychain Services API is used to store passwords,
keys, certificates, and other secret data. Its implementation
therefore requires both cryptographic functions (to encrypt
and decrypt secrets) and data storage functions (to store
the secrets and related data in files). To achieve these
aims, Keychain Services uses the Common Crypto
dynamic library.

CFNetwork is a high-level API that can be used by
applications to create and maintain secure data streams
and to add authentication information to a message.
CFNetwork calls underlying security services to set up a
secure connection.

The Certificate, Key, and Trust Services API include
functions to create, manage, and read certificates, add
certificates to a keychain, create encryption keys, encrypt
and decrypt data, sign data and verify signatures and
manage trust policies. To carry out all these services, the
API calls the Common Crypto dynamic library and other
Core OS–level services.

Randomization Services provides cryptographically
secure pseudorandom numbers. Pseudorandom numbers
are generated by a computer algorithm (and are therefore
not truly random), but the algorithm is not discernible
from the sequence. To generate these numbers,
Randomization Services calls a random-number generator
in the Core OS layer.

In case that the developers use the presented API
properly and do not integrate malicious activities into the

application, the application will be accepted into the App
store.

V. EXAMPLE OF A MALICIOUS APPLICATION

In order to demonstrate how malicious content could
be spread and used to extract sensitive information, we
present a simple malicious application for the Android
platform. We focus on the permission based security
model implemented by the Android since one of the key
security factors is the user himself. Since the Android is
an open platform, which enforces security by sandboxing
applications, it provides the users with the opportunity to
install applications from various untrusted sources.
Therefore, fooling a user into installing malicious content
is an important attack strategy to consider.

As stated in the threat model presented in Section 2,
multiple attack vectors for mobile devices exist. In context
of modern smart-phone devices we focus on the Internet
connection as the delivery path for malware. An example
scenario for delivery of malicious content to Android
devices via Internet is presented in Figure 2.

The scenario consists out of four entities: the attacker,
social network sites, application hosting sites and the user
community. First, the attacker deploys the malicious
application at a hosting site (1). Since the Android
applications do not undergo a code review, the attacker
can place them on the Android Market. The attacker then
places a link pointing to his application on popular social
networks, like Tweeter or Facebook (2). In case that the
attacker decided to host the malicious application at a
location other than the Market, the true address can be
masked by using shortened URLs. When the user clicks
on the link (3) he gets redirected to the site from which the
application can be downloaded (4). Finally, the user
downloads the application and accepts the requested
permissions (5).

In Figure 3 a fictive example malicious application
World Weather is presented. The World Weather is a
Trojan horse designed to provide weather forecasts
depending on the user‟s location, while in the background
periodically sending location information to a remote
server. Upon installation the application requests the
permissions to access the Internet, location information
and phone state and identity. Since the application did not
go through a code review and is potentially harmful, the
user has to decide upon his best judgment on whether
application‟s permission requests are well funded. In this
case, it is logical to expect the application to request
network access since it is necessary to fetch the forecast.

Figure 2. Malicious content delivery scenario for Android

In addition, the location information request is also
expected since the location is used to retrieve the forecast
for the user‟s current location. The phone state and
identity permission is suspicious but is used by a lot of
applications to check on phone status, like weather a voice
call is in progress. For example, a music player app would
use the phone status to mute the sound during the voice
call. On the other hand the identity information is
sometimes used to register the users that purchased an
application in order to reduce the piracy. Unfortunately,
this is an example of poor permission grouping since the
applications that need to check on status often do not need
to access the sensitive identity information, like IMEI or
IMSI. Furthermore, the Android 1.6 applications are
automatically assigned the phone state and identity
permission. Since this permission is widely used, the user
will be less suspicious if an application requests it.
Acquiring the phone status and identity permission allows
the World Weather application to pair the identity
information with location information, i.e. link the user
and location. By acquiring this information, the attacker
can easily monitor the mobile device user‟s movement.

To conclude, the presented Trojan commits malicious
actions by using permissions that are reasonable for its
supposed functionality, i.e. weather forecast retrieval.
Therefore, the user cannot detect the malware by
observing the requested permissions but rather by
monitoring the application‟s activity or by consulting
other sources, like security reports and alerts.

VI. CONCLUSION

Recent advancements in mobile technology have
brought the mobile devices into focus of malicious
attacks. The trends show a severe increase in mobile
malware as many threats, designed for PC operating
systems, migrate to mobile platforms.

In this paper we presented an attacker-centric threat
model for mobile platforms. We analyzed attacker‟s goals,
attack vectors and attack strategies. Furthermore, we
presented the security models implemented by two widely
spread mobile platforms: the Google Android and Apple
iOS. The two platforms have distinctly different
approaches in dealing with security issues.

The Android security model relies on user‟s judgment
to install applications from reliable sources or to evaluate
whether the application requests reasonable permissions
for its intended operation. By presenting an example
malicious application, we demonstrated how careful
choice of permissions could mask malicious activities.

Therefore, we argue that the Android‟s permission based
security model should be improved with the goal to
separate some critical permission like phone status and
identity information. Furthermore, since permissions often
do not indicate application‟s malicious intentions, an
official certification authority would contribute to overall
security.

On the other hand, lack of isolation in iOS platform
could severely compromise the mobile device since the
malicious application would easily gain access to critical
systems and private data. The risks are substantially
higher in case of jailbroken devices. Such devices could
easily be used to install and spread highly malicious
content like rootkits and worms.

REFERENCES

[1] Cisco Systems inc., “The Tipping Point: Cybercriminals Targeting
Mobile Platforms”, Cisco Annual Security Report 2010,
http://www.cisco.com/en/US/prod/collateral/vpndevc/security_ann
ual_report_2010.pdf.

[2] M. Ahmad, et al., “Emerging Cyber Threats Report for 2011”,
Georgia Tech Information Security Center, October 2010,
http://www.gtisc.gatech.edu/pdf/cyberThreatReport2011.pdf.

[3] International Telecommunication Union, “The World in 2010:
ICT Facts and Figures”, 2010, http://www.itu.int/ITU-
D/ict/material/FactsFigures2010.pdf.

[4] M.Jakobsson and S. Wetzel, “Security Weakness in Bluetooth”,
Lecture Notes in Computer Science, Springer, 2001, pp. 176-191.

[5] N. Leavitt, “Mobile phones: the next frontier for hackers?”, IEEE
Computer, vol. 2 no. 4, April 2005, pp. 20-23.

[6] R. Entner, “Smartphones to Overtake Feature Phones in U.S. by
2011”, Nielsen Wire, March 2010,
http://blog.nielsen.com/nielsenwire/consumer/smartphones-to-
overtake-feature-phones-in-u-s-by-2011/.

[7] J. Chen, “An Introduction to Android”, Google I/O 2008, May
2008,
http://androidgroup.googlecode.com/files/Introduction%20to%20
Android.pdf.

[8] T. Cannon, “Android Data Stealing Vulnerability”, 2010,
http://thomascannon.net/blog/2010/11/android-data-stealing-
vulnerability/.

[9] P. Traynor, et al., „On cellular botnets: measuring the impact of
malicious devices on a cellular network core“, CCS '09
Proceedings of the 16th ACM conference on Computer and
communications security, November 2009, pp. 223-234.

[10] R. Racic, “Exploiting mms vulnerabilities to stealthily exhaust
mobile phone‟s battery”, In SecureComm 06, 2006, pp. 1-10.

[11] A. R. Flo and Audun Josang, “Consequences of Botnets Spreading
to Mobile Devices”, Short-Paper Proceedings of the 14th Nordic
Conference on Secure IT Systems (NordSec 2009), October 2009,
pp. 37-43.

[12] K. Dunham, “Mobile Malware Attacks and Defense”, Syngress
Publishing, 2008.

[13] F-Secure, Worm:iPhoneOS/Ikee.B, http://www.f-secure.com/v-
descs/worm_iphoneos_ikee_b.shtml.

[14] J. Bickford, et al., “Rootkits on Smart Phones: Attacks,
Implications and Opportunities”, HotMobile „10 Proceedings of
the Eleventh Workshop on Mobile Computing Systems &
Applications, February 2010, pp. 49-54.

[15] Google Android, “The Developer‟s Guide”,
http://developer.android.com/guide/index.html.

[16] A. Shabtai, et al., Google Android: “A Comprehensive Security
Assessment”, IEEE Security & Privacy, vol. 8, no. 2, March-April
2010, pp. 35-44.

[17] Apple inc., iOS Reference Library, Security Overview,
http://developer.apple.com/library/ios/#documentation/Security/C
onceptual/Security_Overview/Introduction/Introduction.html#//ap
ple_ref/doc/uid/TP30000976-CH201-TPXREF101

Figure 3. Example malicious alpplication for Android

http://www.cisco.com/en/US/prod/collateral/vpndevc/security_annual_report_2010.pdf
http://www.cisco.com/en/US/prod/collateral/vpndevc/security_annual_report_2010.pdf
http://www.gtisc.gatech.edu/pdf/cyberThreatReport2011.pdf
http://www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf
http://www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf
http://www.springerlink.com/content/?Author=Markus+Jakobsson
http://blog.nielsen.com/nielsenwire/consumer/smartphones-to-overtake-feature-phones-in-u-s-by-2011/
http://blog.nielsen.com/nielsenwire/consumer/smartphones-to-overtake-feature-phones-in-u-s-by-2011/
http://thomascannon.net/blog/2010/11/android-data-stealing-vulnerability/
http://thomascannon.net/blog/2010/11/android-data-stealing-vulnerability/
http://www.f-secure.com/v-descs/worm_iphoneos_ikee_b.shtml
http://www.f-secure.com/v-descs/worm_iphoneos_ikee_b.shtml
http://developer.android.com/guide/index.html
https://docs.google.com/document/d/1_YwEnhHrHqLubHGCztIdCynkmow8dW9NaF0VyU6KPEo/edit?hl=en
https://docs.google.com/document/d/1_YwEnhHrHqLubHGCztIdCynkmow8dW9NaF0VyU6KPEo/edit?hl=en
https://docs.google.com/document/d/1_YwEnhHrHqLubHGCztIdCynkmow8dW9NaF0VyU6KPEo/edit?hl=en

