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1. Introduction

The thesis starts with giving an overview on network protocol theory including proto-

col design, specification and implementation. This provides the appropriate terminol-

ogy and a knowledge framework for developing a network protocol specification lan-

guage, called Wire. A custom protocol is developed to demonstrate Wire, thus showing

its motivation, purpose and inner workings. Detailed descriptions are provided on mak-

ing of the Wire compiler including language analysis and code generation. The second

part of this thesis analyses the task of automatic recognition of network protocols. The

approach taken for solving this problem is evolutionary computation technique, more

specifically genetic algorithms. By utilizing the Evolutionary Computation Frame-

work, a network protocol genotype and corresponding genetic operators are described

and implemented.

1



2. Wire definition language

Wire is a network protocol definition language derived from Interface Definition Lan-

guage (IDL)1. It is used to represent an on the wire representation of a certain network

protocol in an intuitive and highly abstract manner. The Wire compiler is designed

to address the automatic generation of code that handles all of the defined protocol’s

communications, parsing and construction of packets.

Coding handlers for network protocols is time consuming and highly error prone.

One must deal with sanity checks upon packet parsing/construction, integer byte or-

dering and sizes, various charset encodings, data alignment and padding, error report-

ing and debugging. Furthermore when considering protocol operations, programmers

must take into account memory allocation and buffering, timing, various types of op-

erations such as blocking/nonblocking (synchronous/asynchronous) operations. Pro-

grammers take various approaches for tackling coding of network protocol handlers

and thus code reusability is low, modularity is weak and uniformity is non-existent (in

most cases).

Wire is intended to provide an intuitive way of defining a protocol that can be situ-

ated in Link, Network, Transport or Application layer. Furthermore the code generated

by the compiler fits nicely with the network protocol theory and as such is easy read-

able. The API provided by the generated code library tends to be simple and easy to

use, but of course that depends on the protocol definition. To that point Wire strives to

provide an abstraction to its users from underlying networking technologies (Berkley

sockets, WinSock, TLI) and host configurations (byte/bit ordering, register sizes, float-

ing point representations, character encodings).

The initial idea for Wire was to create a definition language in which one would

define a protocol, run it trough a compiler and get a program library that would han-

dle that particular network protocol. The protocol at hand is already suppose to have

a specification such as Internet protocol (IP) or even Hyper Text Transfer Protocol

(HTTP). Thus with a single Wire definition a compiler could generate handlers in mul-

1IDL is a specification language used to describe a software component’s interface.
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tiple languages and/or for various systems and frameworks. For example code gen-

eration could be extended to generate Lua libraries or more specifically NMAP NSE

libraries which are written in Lua but exist in a more specialized framework. Also one

could generate dissection methods for Wireshark. The natural extension to the initial

idea is to define your own network protocol for whatever purposes. This makes Wire

a definition language and the underlying encoding algorithms a serialization protocol.

Similar technologies include ASN.1, JSON, XDR. Wire conceptually differs from men-

tioned projects in the fact that these projects weren’t designed to provide means to

define an already existing protocol. One can, by using Wire, specify the on the wire

representation of a defined network protocol at hand.

2.1. Network protocol theory

What is a protocol? A computer protocol can be defined as a well-defined set of mes-

sages (bit patterns or, increasingly today, octet strings) each of which carries a defined

meaning (semantics), together with the rules governing when a particular message can

be sent. However, a protocol rarely stands alone. Rather, it is commonly part of a

protocol stack, in which several separate specifications work together to determine the

complete message emitted by a sender, with some parts of that message destined for

action by intermediate (switching) nodes, and some parts intended for the remote end

system. In this layered protocol model:

– One specification determines the form and meaning of the outer part of the

message, with a ‘hole’ in the middle. It provides a carrier service (or just

service) to convey any material that is placed in this ‘hole’.

– A second specification defines the contents of the ‘hole’, perhaps leaving a

further ‘hole’ for another layer of specification, and so on.

2.1 illustrates the TCP/IP stack, where real networks provide the basic carrier mech-

anism, with the IP protocol carried in the ‘hole’ they provide, and with IP acting as a

carrier for TCP (or the the less well-known User Datagram Protocol - UDP), forming

another protocol layer, and with a (typically for TCP/IP) monolithic application layer

- a single specification completing the final ‘hole’. The precise nature of the service

provided by a lower layer (lossy, secure, reliable), and of any parameters controlling

that service, needs to be known before the next layer up can make appropriate use

of that service. We usually refer to each of these individual specification layers as a

protocol. Note that in 2.1, the ‘hole’ provided by the IP carrier can contain either a
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Figure 2.1: TCP/IP model (‘hole’)

TCP message or a UDP message - two very different protocols with different proper-

ties (and themselves providing a further carrier service). Thus one of the advantages of

layering is in reusability of the carrier service to support a wide range of higher level

protocols, many perhaps that were never thought of when the lower layer protocols

were developed. When multiple different protocols can occupy a ‘hole’ in the layer

below (or provide carrier services for the layer above), this is frequently illustrated by

the layering diagram shown in 2.2

Figure 2.2: TCP/IP layering
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2.1.1. Layered architecture

The layering concept is perhaps most commonly associated with the International

Standards Organization (ISO) and International Telecommunications Union (ITU) ar-

chitecture or ‘7-layer model’ for Open Systems Interconnection (OSI) shown in 2.3.

To reduce their design complexity, most networks are organized as a stack of layers or

levels, each one built upon the one below it. The number of layers, the name of each

layer, the contents of each layer, and the function of each layer differ from network

to network. The purpose of each layer is to offer certain services to the higher layers,

shielding those layers from the details of how the offered services are actually imple-

mented. This is know as encapsulation. In a sense, each layer is a kind of ‘virtual

machine’, offering certain services to the layer above it.

Figure 2.3: OSI model (7-layered)

Between each pair of adjacent layers is an interface. The interface defines which
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primitive operations and services the lower layer makes available to the upper one.

When network designers decide how many layers to include in a network and what

each one should do, one of the most important considerations is defining clean inter-

faces between the layers. Doing so, in turn, requires that each layer perform a specific

collection of well-understood functions. In addition to minimizing the amount of in-

formation that must be passed between layers, clear-cut interfaces also make it simpler

to replace the implementation of one layer with a completely different implementation

(eg., all the telephone lines are replaced by satellite channels) because all that is re-

quired of the new implementation is that it offer exactly the same set of services to its

upstairs neighbor as the old implementation did. In fact, it is common that different

hosts use different implementations.

While many of the protocols developed within this framework are not greatly used

today, it remains an interesting academic study for approaches to protocol specifica-

tion. In the original OSI concept in the late 1970s, there would be just 6 layers pro-

viding (progressively richer) carrier services, with a final application layer where each

specification supported a single end-application, with no ‘holes’.

2.1.2. Network protocol operations

Considering the layered model, lower layer network protocol provides services to a

higher layer protocol. This services are exposed trough protocols interface. A proto-

col then performs certain operations to the point of servicing a higher layer protocol

which requested a service. For example TCP provides connection-oriented, ordered

and reliable transfer of data from one TCP endpoint to another, for higher level pro-

tocol such as Simple Mail Transfer Protocol (SMTP) or File Transfer Protocol (FTP).

This is achieved using operations such as handshaking, acknowledging and signaling.

A simple protocol operation would be to start the operation and then wait for it

to complete. But such an approach (called synchronous or blocking operation) would

block the progress of a program while the communication is in progress, leaving sys-

tem resources idle. The thread of control is blocked within the function performing

the protocol operation, and it can use the result immediately after the function returns.

This means that the processor can spend almost all of its time idle waiting for a certain

protocol operation to complete.

Alternatively, it is possible, to start the operation and then perform processing that

does not require that the operation has completed. This type of operation is called asyn-

chronous or non-blocking operation. Any task that actually depends on the operation
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having completed (this includes both using the return values and critical operations that

claim to assure that a protocol operation at hand has been completed) still needs to wait

for the protocol operation to complete, and thus is still blocked, but other processing

which does not have a dependency on the protocol operation can continue. Situations

in which a protocol operation should operate in asynchronous mode are those that can

get extremely slow, for reasons such as writing or reading from a hard drive (in the

context of network file systems).

Additional issue which needs to be addressed concerning protocol operations is the

time period in which they must perform. This are called operation timeouts and they

vary a lot and usually depend on the semantics and the context of the operation itself.

Further we can separate operations to passive and active, considering if the op-

eration is initiating communication with the other endpoint (eg. active), or is simply

waiting for the communication to be initiated by the other endpoint (eg. passive). Also

we can utilize terminology such as server operations and client operations, for passive

and active operations, respectively.

2.1.3. Network protocol data units

What it boils down to, a protocol operation is actually the exchange of messages. These

messages are transmitted across a virtual communication line between endpoints or

peers that reside on the same layer and thus ‘speak’ the same protocol. The abstraction

level that the layering approach provides us allows us to think of these peers being di-

rectly connected. The message that carries the required semantics among the protocol

peers at hand is called the protocol data unit (PDU).

A PDU in general consists of a header which contains some kind of protocol-

control information and possibly user data of that layer. The other part is considered

to be the payload data, formally referred to as service data unit (SDU). The semantics

and syntax of the SDU is known to the higher layer protocol which is being serviced

by the lower layer protocol. The lower layer protocol has no such knowledge and thus

SDU is considered as a ‘hole’ to the protocol at hand.

For example in relation to the OSI model layers, the Physical layer PDU is a bit,

the Data Link layer PDU is referred to as a frame, while the Network layer and the

Transport layer use the terms packet and segment, respectively.

PDUs are commonly binary-based or text-based (also referred to as character-

based). Generally with binary-based PDUs protocol gains in speed and bandwidth

usage, but in turn has to deal with different integer sizes and sign, floating point rep-
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resentations, bit and byte ordering. On the other hand text-based PDUs are relatively

simple to handle as they are most commonly ASCII encoded and thus human-readable

and easy debugged. Of course it’s clear that such PDUs are heavy on bandwidth usage.

2.2. Network protocol specification

Protocols can be (and historically have been) specified in many ways. One fundamental

distinction is between protocols that utilize character-based PDUs versus binary-based

PDUs. Such specifications are commonly referred to as character-based and binary-

based specification, respectively:

Character-based specification The protocol is defined as a series of lines of ASCII

encoded text.

Binary-based specification The protocol is defined as a string of octets or of bits.

Character-based protocols are often designed as a command line or statement-

based protocols. The communication of such protocols consist of series of lines of

text each of which can be thought of as a command or a statement, with textual param-

eters (frequently comma separated) within each command or statement. The examples

of such text based protocols are HTTP, FTP, POP3, etc.

The common way of defining a text based protocol is with use of Backus Naur

Form or simply BNF. It is very powerful for defining arbitrary syntactic structures, but

it does not in itself determine how variable length items are to be delimited or iteration

counts determined. A part of HTTP specification written in BNF is shown in 2.1

Listing 2.1: BNF specification of HTTP protocol
1 SPACE := ‘ ‘ ’ ’

2 CRLF := ‘ ‘ \ r \ n ’ ’

3 HTTP−REQUEST := HTTP−REQUEST−LINE HTTP−REQUEST−HEADERS HTTP−MESSAGE−BODY

4 HTTP−REQUEST−LINE := HTTP−METHOD SPACE HTTP−URI SPACE HTTP−VERSION CRLF

5 HTTP−METHOD := ‘ ‘OPTIONS ’ ’ | ‘ ‘GET ’ ’ | ‘ ‘HEAD’ ’ | ‘ ‘POST ’ ’ | ‘ ‘PUT ’ ’ | ‘ ‘DELETE ’ ’ | ‘ ‘TRACE ’ ’ | ‘ ‘CONNECT’ ’

6 HTTP−VERSION := ‘ ‘HTTP / 1 . 0 ’ ’ | ‘ ‘HTTP / 1 . 1 ’ ’

7 HTTP−REQUEST−HEADERS := HTTP−REQUEST−HEADERS HTTP−REQUEST−HEADER | HTTP−REQUEST−HEADER

8 HTTP−URI := . . .

9 HTTP−REQUEST−HEADER := . . .

10 HTTP−MESSAGE−BODY := . . .

Binary protocols are more difficult to implement and their wire representation is

not human-readable, but generally they are more efficient in both bandwidth usage

and speed. For binary-based specification, approaches vary from various picture-

based methods (2.4) to use of separately defined notation (syntax) with associated

application-independent encoding rules (serialization protocols).
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Figure 2.4: UDP picture-based specification

The later is called the ‘abstract syntax’ approach (2.2). This is the approach taken

with technologies such as ASN.1, Protocol Buffers, SUN-RPC, ONC-RPC, SOAP etc.

It has the advantage that it enables designers to produce specifications without undue

concern with the encoding issues, and also permits application-independent tools to be

provided to support the easy implementation of protocols specified in this way. More-

over, because application-specific implementation code is independent of encoding

code, it makes it easy to migrate to improved encodings as they are developed.

Listing 2.2: ASN.1 abstract syntax notation example
1 F o o P r o t o c o l DEFINITIONS : : = BEGIN

2 FooQues t ion : : = SEQUENCE {

3 t r ack ingNumber INTEGER ,

4 q u e s t i o n I A 5 S t r i n g

5 }

6 FooAnswer : : = SEQUENCE {

7 ques t ionNumber INTEGER ,

8 answer BOOLEAN

9 }

10 END

2.2.1. PDU specification

A PDU is specified using various data types. Let’s divide data types into primitive

types or basic types and constructed types or composite types. Primitive types include

integers, floating point numbers, characters, booleans etc. Constructed data types are

constructed using primitive data types and other constructed types. They provide en-

closure for some data type set. Structures, arrays, strings, unions, enumerators etc., fall

into constructed data type category.
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Different kinds of computers use different conventions for the ordering of bytes

within data types that are multiple of a byte. Some computers put the most signif-

icant byte (eg. MSB) within such data type first, this is called ‘big endian’ order,

and others put it last, thus called ‘little endian’ order (eg. LSB). The same goes for

bit ordering, all though it’s rare to find little endian bit ordering into the wild, both

on processor architecture and network protocol specifications. Integer sizes also dif-

fer amongst architectures, not to mention floating point representations. Strings have

different character encodings (ie. character set or simply charset).

So that machines with different conventions and specifications can communicate,

the network protocol specification must clearly define these attributes to every data

type transmitted over the network.

Formally we can define integers as a data type which represents some finite subset

of mathematical integers (integral data type). When specifying an integer data type

one must consider the following attributes:

Size Most commonly integer sizes are byte multiples, and as such are usually named

with the following size specifiers: char, short, long, long long or hyper respec-

tively pertaining to sizes of 1,2,4,8 bytes. It’s not uncommon to define a bit

multiple integer size, for instance 13 bits offset field in the IP PDU specification.

Byte order Byte order concept is only valid with byte multiple sized data types so

only byte sized integers must have byte ordering defined. Thus called byte-sized

integers.

Bit order Data types that have size defined as bit multiple are called bit-sized data

types, therefor such integers are called bit-sized integers. Bit order can be spec-

ified for both byte-sized and bit-sized integers. When specified for bit-sized in-

teger the bits are arranged accordingly for the integer as a whole. For byte-sized

integers the bit order is considered bytewise and thus is set for each byte.

Sign An integer can be signed or unsigned. Signed integers are stored in a computer

using 2’s complement. Distinction must be made as integer operations are dif-

ferent for unsigned versus signed integers.

In computer science, floating point describes a system for representing real num-

bers which support a wide range of values. The following are the attributes applicable

to floating point data type:
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Representation There are several floating point representations used today in com-

puting. Different processor architectures utilize different representations. These

are: IEEE754, VAX, Cray, IBM...

Size The size of a floating point type is usually determined by it’s representation, and

most commonly are byte sized.

Byte order As a byte-sized data type it must have a defined byte order.

Bit order Similar to byte-sized integers bit order is defined bytewise (not as a whole).

One more primitive data type is a character. A character data type is used to store

symbols such as alphanumeric text, whitespace, punctuation and others. These sym-

bols exist at a higher level of abstraction then integers and floating point numbers. But

similarly to these primitive types, characters also must have a mapping from character

abstraction to a certain binary representation that can be stored in computer memory

or transmitted across a network. Essentially a character is mapped into an integer data

type, so we can use object oriented paradigm terminology to describe a character type

as being a specialized form of an integer type. As such a character inherits all of the

mentioned integer data type attributes to additionally introducing some of its own:

Character set Also referred to as a charset, character encoding, character map or a

code page. It represents a mapping of symbols into an integer for the purpose

of storing these symbols in the computer memory or transmission over the net-

work. These mapping can be either specified using a predefined set of symbol to

number conversion (ASCII) or using an encoding algorithm (Unicode).

2.3. Abstract and transfer syntax

The terms abstract and transfer syntax were primarily developed within the OSI work,

and are variously used in other related computer disciplines. These terms will provide

us with the terminology for formally defining Wire language and it’s purpose.

The following steps are necessary when specifying the messages forming a proto-

col:

– The determination of the information that needs to be transferred in each mes-

sage. We here refer to this as the semantics associated with the message.
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– The design of some form of data-structure (at about the level of generality of a

high-level programming language, and using a defined notation) which is capa-

ble of carrying the required semantics. The set of values of this data-structure

are called the abstract syntax of the messages. We call the notation we use to

define this data structure or set of values the abstract syntax notation.

– The crafting of a set of rules for encoding messages such that, given any mes-

sage defined using the abstract syntax notation, the actual bits on the line to

carry the semantics of that message are determined by an algorithm specified

once and once only (independent of the application). We call such rules encod-

ing rules, and we say that the result of applying them to the set of messages for

a given application defines a transfer syntax for that particular abstract syntax.

Therefor, a transfer syntax is the set of bit-patterns to be used to represent the

abstract values in the abstract syntax, with each bit-pattern representing just

one abstract value.

So to simplify a little bit, let’s say, for example, that we wish to make a notation to

declare an integer type and assign it a value. To that point let us borrow the notation

that C language uses or simply:

Listing 2.3: C abstract syntax notation
1 i n t a = 1 ;

We can now say that the value ‘1’ is an abstract value that represents an integer

value. The set of these abstract values (ie. ...-1, 0, 1, 2, 3, 4, 5, 6, 7...) is called

the abstract syntax. The notation used to declare and define an instance of an abstract

syntax is called an abstract syntax notation.

The usage of term ‘abstract’ is totally justified, considering we are dealing with

the abstraction of integers, floating point numbers, characters etc. The representation

used to store an abstract syntax in computer memory is called the concrete syntax.

For example IEEE754 floating point representation is one of the concrete syntaxes for

storing floating point numbers.

Abstract syntaxes should be independent of the concrete syntaxes which can and

usually do differ amongst different machines.

The transfer syntax is the representation used to transfer the abstract syntax over the

communication line. A certain instance of the abstract syntax or the abstract value must

have a unique transfer value so it can be restored on the other endpoint. The transfer

syntax must take in order the differences in concrete syntaxes between communicating

peers, therefore the transfer syntax must correspond to some sort of protocol. The
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protocol or algorithm or encoder or whatever you might call it, which maps the abstract

syntax to a corresponding transfer syntax or even a concrete syntax, which carries its

semantics, is called serialization.

Figure 2.5: Syntax relations

The figure 2.5 illustrates the mentioned concepts and their relations.

What’s left is to list some technologies and formally describe them using these

newly learned terminology. First lets mention the Abstract Syntax Notation One tech-

nology (ASN.1), which is, as you may noticed, named quite literal. Some of the ab-

stract data types that the ASN.1 provides are:

1. Basic (primitive) types boolean, integer, real, enumerated, bit string, octet string,

null . . .

2. Constructed types include sequence, set, choice...

The ASN.1 is an abstract syntax notation which uses several different serialization

protocols to produce the transfer syntax:

1. Basic Encoding Rules (BER)

2. Canonical Encoding Rules (CER)

3. Distinguished Encoding Rules (DER)

4. XML Encoding Rules (XER)

5. Packed Encoding Rules (PER)
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6. Generic String Encoding Rules (GSER)

Other popular technology that is utilized by the SUN-RPC remote procedure call

protocol is the External Data Representation (XDR). XDR also includes an abstract

syntax notation that defines basic data types such as integer and hyper, float and dou-

ble, quadruple, bool and constructed data types such as structures, enumerations and

unions. The serialization for each data type is specified in RFC4506.

JavaScript Object Notation or simply JSON is widely known and popular data in-

terchange technology used in Web today. It consists of an abstract syntax notation that

is a subset of JavaScript scripting language. All though its main purpose is the serial-

ization and transmission of JavaScript objects between a server and a web application

(client), JSON is language independent. The serialized objects,aka the transfer syntax,

is in human-readable text form.

2.4. Wire formal definition

By using the terminology and concepts elaborated in the previous sections, we will for-

mally define the Wire project. First of all Wire is a computer language, more precisely a

subset which is called a definition language. It’s a domain-specific or a special-purpose

language (we’ll get to that later on), oppose to general-purpose languages such as C or

Java. Also, to specify a bit deeper, Wire provides an abstract syntax notation.

The idea behind Wire is to provide a language which is used to describe/define (ie.

definition language) the on the wire representation of an arbitrary network protocol.

One could say that Wire is used to define the transfer syntax for some protocol. So an

abstract syntax notation for describing a transfer syntax.

Wire language compiler takes a specification of a certain protocol written in Wire

and produces code that handles the defined protocol. By that I mean generates code to

easily build and dissect protocol data units as well as handle all of the defined protocol

operations.

2.5. Wire overview

For the sake of demonstrating Wire, we will develop a custom network protocol. The

development process and the making of the final specification will help us explain the

purpose and the inner workings of Wire. Also it will show us some general guidelines

and steps needed when designing a protocol.
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So let’s call this new network protocol ‘Math’, it will resemble a remote procedure

call protocol which will offer a mathematical service. So we’ve already defined:

1. Name - ‘Math’

2. Service - Mathematical operations.

So let’s start writing a Wire definition of our ‘Math’ protocol. This is the simplest

protocol definition in Wire:

Listing 2.4: Wire example - Designing ‘Math’ (step 1)
1 [

2 / / p r o t o c o l a t t r i b u t e s

3 ] p r o t o c o l Math{

4 / / d a t a t y p e d e f i n i t i o n s

5 / / o p e r a t i o n d e c l a r a t i o n s

6 }

This represents nothing yet, but be patient...we’ll get there. First we can notice line

comments similar to those found in C syntax. Second thing to notice is the ‘protocol’

keyword which is used to define a new protocol named ‘Math’. What precedes this

keyword is a pair of square brackets. These will hold a list of attributes that are ap-

plicable to a protocol definition. Actually every Wire component can have attributes

applied to it, which attributes are applicable where we’ll learn gradually.

Let’s define our service a bit more. So we wish to provide basic mathematical

operations such as addition, subtraction, multiplication, division and power:

Listing 2.5: Wire example - Designing ‘Math’ (step 2)
1 [

2 / / p r o t o c o l a t t r i b u t e s

3 ] p r o t o c o l Math{

4 / / d a t a t y p e d e f i n i t i o n s

5 / / o p e r a t i o n d e c l a r a t i o n s

6 o p e r a t i o n Add ( ) ;

7 o p e r a t i o n Sub ( ) ;

8 o p e r a t i o n Mul ( ) ;

9 o p e r a t i o n Div ( ) ;

10 o p e r a t i o n Pow ( ) ;

11 }

The ‘operation’ keyword is assigned the honor of declaring our protocol opera-

tions. Currently these operations are dumb as they have an empty arguments list. The

operation declaration can only have arguments of ‘pdu’ data type. This is reasonable

as an operation is the exchange of messages between peers, these messages are called

protocol data units and the ‘pdu’ data type embodies this concept in Wire.

So a pdu definition is defined using the ‘pdu’ keyword. I decided to define one

general PDU that can capture all of the required semantics. I called it ‘Math’ protocol

data unit. One could decide to go with, for example, two PDUs, one which will carry
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the request information and the other that will hold the response information. Notice

that this is a design issue and as such falls under personal preference.

Listing 2.6: Wire example - Designing ‘Math’ (step 3)
1 [

2 / / p r o t o c o l a t t r i b u t e s

3 ] p r o t o c o l Math{

4 / / d a t a t y p e d e f i n i t i o n s

5 pdu Math {} ;

6 / / o p e r a t i o n d e c l a r a t i o n s

7 o p e r a t i o n Add ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

8 o p e r a t i o n Sub ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

9 o p e r a t i o n Mul ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

10 o p e r a t i o n Div ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

11 o p e r a t i o n Pow ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

12 }

Now our operations have a valid argument list. Each pdu local declaration in the

argument list has been applied an attribute. These ‘push’ and ‘pull attributes are only

applicable to pdu declarations that are placed in the argument list of an operation dec-

laration:

push It’s a notion used to define that a pdu is being sent to the carrier service which

conveys it to the other endpoint. The carrier service is situated at a lower layer,

so the PDU is virtually being ‘pushed’ down.

pull Similar to ‘push’, with the exception that the pdu is being received from the other

endpoint, or ‘pulled’ up from the lower layer protocol.

Each operation pushes one pdu, similar to function arguments, and pulls one, ie.

function return value. Obviously these pdus must be designed so that are able to carry

all the required information such as integer number and/or real number arguments,

result of the mathematical operation and quite possibly some sort of error messages

that indicate an exception (for example division by zero).

Listing 2.7: Wire example - Designing ‘Math’ (step 4)
1 [

2 / / p r o t o c o l a t t r i b u t e s

3 ] p r o t o c o l Math{

4

5 / / d a t a t y p e d e f i n i t i o n s

6 enum PDUType{

7 REQUEST = 0 ,

8 REPLY = 1

9 } ;

10

11 s t r u c t MathReq {} ;

12

13 s t r u c t MathRep {} ;

14

15 pdu Math{

16 enum PDUType epdu_ type ;

17 un ion <epdu_type > {

18 case REQUEST:
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19 s t r u c t MathReq s m a t h r e q ;

20 case REPLY :

21 s t r u c t MathRep s m a t h r e p ;

22 d e f a u l t :

23 e x c e p t i o n ( " epdu_ type : v a l u e not used " ) ;

24 } ;

25 } ;

26

27 / / o p e r a t i o n d e c l a r a t i o n s

28 o p e r a t i o n Add ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

29 o p e r a t i o n Sub ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

30 o p e r a t i o n Mul ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

31 o p e r a t i o n Div ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

32 o p e r a t i o n Pow ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

33 } ;

We extended our ‘Math’ pdu with the union construct which allows us to define

conditional structuring. A union declaration has a switch which determines the proper

structure at runtime. The switch value is used to check the equality of cases so the code

can unambiguously process the structure. This particular union declaration instance is

an example of the, so called, anonymous union declaration, oppose to a named union

declaration.

Another handy data type we introduced with this progress is the enumeration data

type. It’s no novelty, but it’s usage results in more elegant definitions. The enum

definition takes a list of names (ie. identifiers) for integer constants who will later on

be referenced by that name.

Our ‘Math’ pdu definition is now equipped with sufficient information to carry

both the request and response information. We’ve reached the second checkpoint in

designing a network protocol:

1. Interface – We’ve designed the exact interface to our mathematical service. It

consists of operations: Add, Sub, Mul, Div, Pow.

2. PDU – Decided on the structure of the protocol data units. Preferred on a single

PDU definition that can carry a more general information.

What’s next is to exactly define the information that will be carried within request

and reply structures. So we introduce the structure definition notation with the ‘struct’

keyword. Syntactically it’s no different from the pdu definition. Another primitive

type used is the string defined using the ‘string’ keyword. We used it to carry the error

message.

Listing 2.8: Wire example - Designing ‘Math’ (step 5)
1 [

2 / / p r o t o c o l a t t r i b u t e s

3 ] p r o t o c o l Math{

4

5 / / d a t a t y p e d e f i n i t i o n s
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6 enum PDUType{

7 REQUEST = 0 ,

8 REPLY = 1

9 } ;

10

11 enum ReplyType {

12 FAILURE ,

13 SUCCESS

14 } ;

15

16 enum NumberType{

17 INTEGER ,

18 REAL

19 } ;

20

21 s t r u c t MathReq {

22 enum NumberType enumber_ type ;

23 u n s i g n e d i n t na rgumen t s ;

24 un ion <enumber_type > {

25 case INTEGER :

26 u n s i g n e d i n t s i z e _ a r g ;

27 s i g n e d i n t s i n t _ a r g s [ na rgumen t s ] ;

28 case FLOAT:

29 u n s i g n e d i n t s i z e _ a r g ;

30 f l o a t f p _ a r g s [ na rgumen t s ] ;

31 d e f a u l t :

32 e x c e p t i o n ( " enumber_ type : v a l u e not used " ) ;

33 } ;

34 } ;

35

36 s t r u c t MathRep{

37 enum ReplyType e r e p l y _ t y p e ;

38 un ion < e r e p l y _ t y p e >{

39 case FAILURE :

40 s t r i n g s t r e r r o r ;

41 case SUCCESS :

42 enum NumberType enumber_ type ;

43 un ion <enumber_type > {

44 case INTEGER :

45 u n s i g n e d i n t s i z e _ r e s ;

46 s i g n e d i n t s i n t _ r e s ;

47 case REAL:

48 u n s i g n e d i n t s i z e _ r e s ;

49 f l o a t f p _ a r g s

50 d e f a u l t :

51 e x c e p t i o n ( " enumber_ type : v a l u e not used " ) ;

52 } ;

53 d e f a u l t :

54 e x c e p t i o n ( " enumber_ type : v a l u e not used " ) ;

55 } ;

56 } ;

57

58 pdu Math{

59 enum PDUType epdu_ type ;

60 un ion <epdu_type > {

61 case REQUEST:

62 s t r u c t MathReq s m a t h r e q ;

63 case REPLY :

64 s t r u c t MathRep s m a t h r e p ;

65 d e f a u l t :

66 e x c e p t i o n ( " epdu_ type : v a l u e not used " ) ;

67 } ;

68 } ;

69

70 / / o p e r a t i o n d e c l a r a t i o n s

71 o p e r a t i o n Add ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

72 o p e r a t i o n Sub ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

73 o p e r a t i o n Mul ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

74 o p e r a t i o n Div ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

75 o p e r a t i o n Pow ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

76 } ;
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Notice the exception statement. It’s a Wire construct used to designate an excep-

tion state of some kind. This function call like statement takes variable length list of

arguments that are passed to the runtime that will eventually handle the exception at

hand. What’s considered an exception is decided by the protocol designer. I used it to

designate the occurrence of invalid value.

At this point we’ve, semantically, fully defined the protocol from an abstraction

level that only deals with information and its exchange trough operations. Needless

to say we’ve defined the abstract syntax of the Math protocol. In the process we’ve

encountered every Wire component: protocol definition, operation declarations and

data type definitions. Primitive data types: integers, floats and strings and constructed

data types: protocol data units, structures, unions, arrays and enumerations.

Now it’s time to define and utilize the Wire attribute concept to exactly define the

on the wire representation of the protocol at hand. Attributes can be applied to every

Wire component. They are used to semantically link scope related objects, define

sanity checks and to give instructions to both the Wire serialization engine and the

communication engine. One could say that by using attributes you can exactly define

the transfer syntax of a protocol.

First let’s talk to the communication engine. What we need to define for Math

protocol is the carrier service. The carrier service is a lower layer protocol which is

assigned the job of carrying the Math PDUs to the other Math endpoint. To decide on

the carrier service for Math, I took into consideration the following:

1. Math endpoints must be able to communicate over the IP networks.

2. The information exchanged over the wire is sensitive in a way that it must be cor-

rectly transported to the other side, thus we want reliable and ordered transport

service.

So a common practice when met with such requirements is to choose the Trans-

mission Control Protocol. TCP resides on top of the IP protocol and uses the port

addressing concept to deliver data from one process to another. So let’s choose our

port number to be 31337 (elitenzi).

Wire uses the endpoint attribute for defining protocol endpoint information. Gen-

erally endpoint attribute takes a name and the addressing information of the carrier

protocol. Note that a protocol can specify any number of carrier services, but practi-

cally it depends on the communication engine and what services it supports.

Listing 2.9: Wire example - Designing ‘Math’ (step 6)
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1 [

2 / / p r o t o c o l a t t r i b u t e s

3 e n d p o i n t ( ‘ ‘ t c p :31337 ’ ’ ) ,

4 s i z e ( 4 ) ,

5 b y t e _ o r d e r ( ‘ ‘MSB’ ’ ) ,

6 b i t _ o r d e r ( ‘ ‘MSB’ ’ )

7 ] p r o t o c o l Math{

8

9 / / d a t a t y p e d e f i n i t i o n s

10 [ s i z e ( 1 ) ] enum PDUType{

11 REQUEST = 0 ,

12 REPLY = 1

13 } ;

14

15 enum ReplyType {

16 FAILURE ,

17 SUCCESS

18 } ;

19

20 enum NumberType{

21 INTEGER ,

22 REAL

23 } ;

24

25 s t r u c t MathReq {

26 enum NumberType enumber_ type ;

27 [ s i z e ( 2 ) , b y t e _ o r d e r ( ‘ ‘LSB ’ ’ ) ] u n s i g n e d i n t na rgumen t s ;

28 un ion <enumber_type > {

29 case INTEGER :

30 [ r a n g e ( 1 , 3 2 ) ] u n s i g n e d i n t s i z e _ a r g ;

31 [ s i z e _ b i t s ( s i z e _ a r g ) ] s i g n e d i n t s i n t _ a r g s [ na rgumen t s ] ;

32 case FLOAT:

33 [ l i s t ( 3 2 , 6 4 ) ] u n s i g n e d i n t s i z e _ a r g ;

34 [ s i z e _ b i t s ( s i z e _ a r g ) , f p _ r e p ( ‘ ‘ IEEE754 ’ ’ ) ] f l o a t f p _ a r g s [ na rgumen t s ] ;

35 d e f a u l t :

36 e x c e p t i o n ( " enumber_ type : v a l u e not used " ) ;

37 } ;

38 } ;

39

40 s t r u c t MathRep{

41 enum ReplyType e r e p l y _ t y p e ;

42 un ion < e r e p l y _ t y p e >{

43 case FAILURE :

44 [ c h a r s e t ( ‘ ‘ ASCII ’ ’ ) , d e l i m i t e r ( ‘ ‘ \ 0 ’ ’ ) ] s t r i n g s t r e r r o r ;

45 case SUCCESS :

46 enum NumberType enumber_ type ;

47 un ion <enumber_type > {

48 case INTEGER :

49 [ r a n g e ( 1 , 3 2 ) ] u n s i g n e d i n t s i z e _ r e s ;

50 [ s i z e _ b i t s ( s i z e _ r e s ) ] s i g n e d i n t s i n t _ r e s ;

51 case REAL:

52 [ l i s t ( 3 2 , 6 4 ) ] u n s i g n e d i n t s i z e _ r e s ;

53 [ s i z e _ b i t s ( s i z e _ r e s ) , f p _ r e p ( ‘ ‘ IEEE754 ’ ’ ) ] f l o a t f p _ a r g s

54 d e f a u l t :

55 e x c e p t i o n ( " enumber_ type : v a l u e not used " ) ;

56 } ;

57 d e f a u l t :

58 e x c e p t i o n ( " enumber_ type : v a l u e not used " ) ;

59 } ;

60 } ;

61

62 pdu Math{

63 enum PDUType epdu_ type ;

64 un ion <epdu_type > {

65 case REQUEST:

66 s t r u c t MathReq s m a t h r e q ;

67 case REPLY :

68 s t r u c t MathRep s m a t h r e p ;

69 d e f a u l t :

70 e x c e p t i o n ( " epdu_ type : v a l u e not used " ) ;

71 } ;

72 } ;

73
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74 / / o p e r a t i o n d e c l a r a t i o n s

75 [ t i m e o u t ( 5 ) ] o p e r a t i o n Add ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

76 [ t i m e o u t ( 5 ) ] o p e r a t i o n Sub ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

77 [ t i m e o u t ( 5 ) ] o p e r a t i o n Mul ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

78 [ t i m e o u t ( 5 ) ] o p e r a t i o n Div ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

79 [ t i m e o u t ( 5 ) ] o p e r a t i o n Pow ( [ push ] pdu Math math_req , [ p u l l ] pdu Math math_rep ) ;

80 } ;

The timeout attribute takes the number of seconds as the sole argument, and is

applicable to operation objects. This states the maximum amount of time that the

operation has to finish, timing from the invocation moment. If the operations has

failed to do so for whatever reason the timeout exception is raised and handled by the

application logic.

The attributes applicability is defined as the context in which the attribute is valid,

or equally as the list of objects that are directly influenced by the attribute. For example

the floating point representation attribute (‘fp_rep’) is applicable only to float local

declarations, oppose to integer local declarations. An attribute can be defined as a

general attribute, which is useful for general application. So for example if we define

byte order attribute (‘byte_order’) in the protocol definition attribute list it means that

every enclosed object receives this attribute (except when overriden by a more specific

attribute statement).

We’ve defined a few general attributes for the Math protocol. We’ve set the general

byte order and bit order to big endian, while defining the default primitive size to 4

bytes.

We’ve listed a few of the command attributes that are used to define the trans-

fer syntax of our protocol, by commanding the serialization and the communication

engine. There are also attributes that define certain semantic checks that must be

performed for a given object at runtime. Range and list check for integer and float

declarations are example of such attributes.

2.6. Wire lexical conventions

Lexical analysis is the process of converting a sequence of characters into a sequence

of lexical units called tokens. Wire uses GNU Flex tool to generate the Wire tokenizer.

Flex is really convenient for processing textual files as it allows users to simply describe

tokens using regular expressions. Appendix A.1 holds the flex source file which lists

all of the defined Wire tokens and their corresponding regular expressions.

Let’s introduce some, more relevant, lexical conventions for Wire users. The fol-

lowing lists the reserved words:
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Listing 2.10: Wire keywords

1 b y t e enum o p e r a t i o n

2 u i n t s t r u c t i m p o r t

3 s i n t un ion t y p e d e f

4 f l o a t pdu d e f a u l t

5 s t r i n g p r o t o c o l

A Wire identifier follows C syntax rules, so the following are valid examples of

Wire identifiers:

Listing 2.11: Wire identifier

1 i d e n t 1 2 3 4

2 i d e n t _ 1 2 3 4

3 i d e n t 1 2 3 4 _

4 _ i d e n t 1 2 3 4

A valid character set for a Wire identifier consists of alphanumeric Al characters

and the underscore. Note that the first character must be a letter or an underscore sign.

The last thing that’s left are the numeric constants and the string constants. Integer

constants can be stated in decimal, hexadecimal, binary and octal form:

Listing 2.12: Wire integer constants

1 255

2 0xFF or 0 x f f

3 0377

4 0 b11111111

Floating point number constants look like:

Listing 2.13: Wire floating point constants

1 3 . 1 4

2 3 . 1 4 e10

3 3 . 1 4 E10

4 3 . 1 4 e−10

The ‘e’ or ‘E’ notation is used for defining an exponent. A string constant is en-

closed between the two double apostrophe signs:

Listing 2.14: Wire string constants

1 ‘ ‘ Th i s i s a s t r i n g c o n s t a n t ’ ’

2 ‘ ‘ Wire u s e s t h e \ \ a s t h e e s c a p e symbol ’ ’

Wire string constants follow the same rules of C strings.
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Figure 2.6: Wire tokenizer compilation process

2.6 shows the compilation process which generates the Wire tokenizer code. The

Flex tool takes a ‘wire.l’ file as the input. This file holds token descriptions written

in Flex syntax. Flex processes this file and produces the actual C code that does the

lexical analysis, ‘wire.yy.c’. The output file contains ‘yylex()’ function which upon

invocation returns the next token in the assigned stream.

2.7. Wire syntax

Parsing or formally syntax analysis is the process of analyzing a text, made of a se-

quence of tokens (for example, words), to determine its grammatical structure with

respect to a given (more or less) formal grammar. Wire utilizes the GNU Bison tool

which reads a specification of a context-free language, warns about any parsing am-

biguities, and generates a parser in C which reads sequences of tokens and decides

whether the sequence conforms to the syntax specified by the grammar. Bison gener-

ates LALR parsers.

Figure 2.7: Wire parser compilation process

Figure 2.7 demonstrates the translation process which generates the Wire parser

code. Bison input is a ‘wire.y’ file which contains the syntax definition written in Bison

variance of BNF syntax definition notation. File ‘wire.tab.c’ contains the C code that

implements the parsing logic for our language.

My intention was to make Wire syntax simple and intuitive, clean and easy memo-

rable. Appendix B.1 contains a numbered list of all Wire grammar rules.
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This chapter holds a brief explanation for every syntactical grouping found in Wire

syntax.

The top level grouping is a protocol grouping, and is defined as follows:

Listing 2.15: Wire protocol definition
1 3 p r o t o c o l : a t t r i b u t e _ l i s t _ o p t tPROTOCOL tIDENTIFIER ’ { ’ p r o t o c o l _ b o d y _ o p t ’ } ’

2 4 p r o t o c o l _ b o d y _ o p t : p r o t o c o l _ b o d y

3 5 | /∗ empty ∗ /

4 6 p r o t o c o l _ b o d y : p r o t o c o l _ b o d y _ c o m p o n e n t ’ ; ’

5 7 | p r o t o c o l _ b o d y p ro t o c o l _ b o d y _ c o m p o n e n t

6 8 p r o t o c o l _ b o d y _ c o m p o n e n t : t y p e _ d e f i n i t i o n

7 9 | o p e r a t i o n _ d e c l a r a t o r

The ‘tPROTOCOL’ token represents the ‘protocol’ keyword and ‘tIDENTIFIER’

token the identifier lexical unit. The protocol body is constructed of components that

are separated by a semicolon (‘;’). These components can be a type definition or a

operation declaration. Notice that the protocol definition is prepended an optional

attribute syntactical grouping:

Listing 2.16: Wire attribute list
1 10 a t t r i b u t e _ l i s t _ o p t : ’ [ ’ a t t r i b u t e _ l i s t ’ ] ’

2 11 | /∗ empty ∗ /

3 12 a t t r i b u t e _ l i s t : a t t r i b u t e

4 13 | a t t r i b u t e _ l i s t ’ , ’ a t t r i b u t e

5 14 a t t r i b u t e : tIDENTIFIER

6 15 | tIDENTIFIER ’ ( ’ a t t r i b u t e _ a r g u m e n t _ l i s t ’ ) ’

7 16 a t t r i b u t e _ a r g u m e n t _ l i s t : a t t r i b u t e _ a r g u m e n t

8 17 | a t t r i b u t e _ a r g u m e n t _ l i s t ’ , ’ a t t r i b u t e _ a r g u m e n t

9 18 a t t r i b u t e _ a r g u m e n t : c o n s t _ e x p

The attribute list construct is surrounded by the square brackets. An attribute can be

specified in one of two forms: with arguments or without arguments. When specified

with arguments, these arguments are comma separated and must resolve to syntactical

grouping that represents the constant expression.

Listing 2.17: Wire type definition
1 19 t y p e _ d e f i n i t i o n : e n u m _ d e f i n i t i o n

2 20 | u n i o n _ d e f i n i t i o n

3 21 | s t r u c t _ d e f i n i t i o n

4 22 | p d u _ d e f i n i t i o n

The type definition groups rules for definitions of enumerator, union, structure and

protocol data unit constructs. The enumerator definition looks like:

Listing 2.18: Wire enumerator definition
1 23 e n u m _ d e f i n i t i o n : a t t r i b u t e _ l i s t _ o p t tENUM tIDENTIFIER ’ { ’ enum_body ’ } ’

2 24 enum_body : enum_body_component

3 25 | enum_body ’ , ’ enum_body_component

4 26 enum_body_component : tIDENTIFIER ’= ’ c o n s t _ e x p

5 27 | tIDENTIFIER

As expected the optional attribute list precedes the enumerator definition. The

‘tENUM’ token represents the ‘enum’ keyword. Enumerator body components are
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comma separated and can be specified in one of two forms: with or without explicit

value assignment. If no explicit assignment is specified, for a component, the number-

ing or indexing is calculated considering the offset from last of such assignment (or

from zero if no assignment is specified).

Listing 2.19: Wire union definition
1 28 u n i o n _ d e f i n i t i o n : a t t r i b u t e _ l i s t _ o p t tUNION tIDENTIFIER ’ { ’ union_body ’ } ’

2 29 union_body : union_body_component

3 30 | un ion_body union_body_component

4 31 union_body_component : c o n s t _ e x p ’ : ’ l o c a l _ d e c l a r a t o r _ l i s t

5 32 | tDEFAULT ’ : ’ l o c a l _ d e c l a r a t o r _ l i s t

The union component is a defined as a case component. The case is a constant

expression which is followed by a group of local declarations. The union switch is

defined on union declaration. Its purpose is to provide a notation for conditional pro-

cessing in Wire by checking the equivalence with the listed case constant expressions.

A structure body consists of local declarations separated by a semicolon:

Listing 2.20: Wire structure definition
1 33 s t r u c t _ d e f i n i t i o n : a t t r i b u t e _ l i s t _ o p t tSTRUCT tIDENTIFIER ’ { ’ s t r u c t _ b o d y ’ } ’

2 34 s t r u c t _ b o d y : s t r u c t _ b o d y _ c o m p o n e n t

3 35 | s t r u c t _ b o d y s t r u c t _ b o d y _ c o m p o n e n t

4 36 s t r u c t _ b o d y _ c o m p o n e n t : l o c a l _ d e c l a r a t o r ’ ; ’

Syntactically there is no difference between a structure definition and a protocol

data unit definition:

Listing 2.21: Wire pdu definition
1 37 p d u _ d e f i n i t i o n : a t t r i b u t e _ l i s t _ o p t tPDU tIDENTIFIER ’ { ’ pdu_body ’ } ’

2 38 pdu_body : pdu_body_component

3 39 | pdu_body pdu_body_component

4 40 pdu_body_component : l o c a l _ d e c l a r a t o r ’ ; ’

Next lets look at the local declarator construct:

Listing 2.22: Wire local declarators
1 41 l o c a l _ d e c l a r a t o r : p r i m i t i v e _ l o c a l _ d e c l a r a t o r

2 42 | c o n s t r u c t e d _ l o c a l _ d e c l a r a t o r

3 43 | a n o n _ l o c a l _ d e c l a r a t o r

4 44 l o c a l _ d e c l a r a t o r _ l i s t : l o c a l _ d e c l a r a t o r ’ ; ’

5 45 | l o c a l _ d e c l a r a t o r _ l i s t l o c a l _ d e c l a r a t o r ’ ; ’

6 46 p r i m i t i v e _ l o c a l _ d e c l a r a t o r : a t t r i b u t e _ l i s t _ o p t tBYTE tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

7 47 | a t t r i b u t e _ l i s t _ o p t tFLOAT tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

8 48 | a t t r i b u t e _ l i s t _ o p t tSTRING tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

9 49 | a t t r i b u t e _ l i s t _ o p t tUINT tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

10 50 | a t t r i b u t e _ l i s t _ o p t tSINT tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

11 51 c o n s t r u c t e d _ l o c a l _ d e c l a r a t o r : a t t r i b u t e _ l i s t _ o p t tENUM tIDENTIFIER tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

12 52 | a t t r i b u t e _ l i s t _ o p t tSTRUCT tIDENTIFIER tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

13 53 | a t t r i b u t e _ l i s t _ o p t tUNION tIDENTIFIER tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

14 54 | a t t r i b u t e _ l i s t _ o p t tPDU tIDENTIFIER tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

15 55 a n o n _ l o c a l _ d e c l a r a t o r : a t t r i b u t e _ l i s t _ o p t tUNION ’< ’ c o n s t _ e x p ’> ’ ’ { ’ union_body ’ } ’

16 56 a r r a y _ d e c l a r a t o r _ o p t : ’ [ ’ c o n s t _ e x p ’ ] ’

17 57 | /∗ empty ∗ /
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A local declaration includes a primitive, constructed and anonymous local declara-

tor. The term ‘local’ is used to denote the scope of declared objects. A primitive local

declaration is simply a declaration of object that is of primitive type (such as string

or integer). Similarly the constructed declaration is a declaration of an object that is

of some constructed data type (for example structure). The anonymous local declara-

tion, oppose to a named declaration, is a handy syntactical construct used to declare an

union local declaration without a ‘name’.

All of the declarations can be appended an array declarator which takes a constant

expression to denote the size of the array. Finally, what does the constant expression

look like:

Listing 2.23: Wire local declarators
1 62 c o n s t _ e x p : i n t e g e r _ c o n s t _ e x p

2 63 | f l o a t _ c o n s t _ e x p

3 64 | s t r i n g _ c o n s t _ e x p

4 65 | i d e n t i f i e r

5 66 | a r i t h m e t i c _ e x p

6 67 | r e l a t i o n a l _ e x p

7 68 | l o g i c a l _ e x p

8 69 | b i t w i s e _ e x p

9 70 f l o a t _ c o n s t _ e x p : tFLOATCONST

10 71 s t r i n g _ c o n s t _ e x p : tSTRINGCONST

11 72 i n t e g e r _ c o n s t _ e x p : tINTCONST

12 73 a r i t h m e t i c _ e x p : c o n s t _ e x p ’+ ’ c o n s t _ e x p

13 74 | c o n s t _ e x p ’−’ c o n s t _ e x p

14 75 | c o n s t _ e x p ’∗ ’ c o n s t _ e x p

15 76 | c o n s t _ e x p ’ / ’ c o n s t _ e x p

16 77 | c o n s t _ e x p ’%’ c o n s t _ e x p

17 78 r e l a t i o n a l _ e x p : c o n s t _ e x p ’> ’ c o n s t _ e x p

18 79 | c o n s t _ e x p ’< ’ c o n s t _ e x p

19 80 | c o n s t _ e x p tRELEQU c o n s t _ e x p

20 81 | c o n s t _ e x p tRELNEQU c o n s t _ e x p

21 82 | c o n s t _ e x p tRELGE c o n s t _ e x p

22 83 | c o n s t _ e x p tRELLE c o n s t _ e x p

23 84 l o g i c a l _ e x p : ’ ! ’ c o n s t _ e x p

24 85 | c o n s t _ e x p tLOGAND c o n s t _ e x p

25 86 | c o n s t _ e x p tLOGOR c o n s t _ e x p

26 87 b i t w i s e _ e x p : ’~ ’ c o n s t _ e x p

27 88 | c o n s t _ e x p ’&’ c o n s t _ e x p

28 89 | c o n s t _ e x p ’ | ’ c o n s t _ e x p

29 90 | c o n s t _ e x p ’ ^ ’ c o n s t _ e x p

30 91 | c o n s t _ e x p tBITSR c o n s t _ e x p

31 92 | c o n s t _ e x p tBITSL c o n s t _ e x p

32 93 i d e n t i f i e r : tIDENTIFIER

33 94 | i d e n t i f i e r ’ . ’ tIDENTIFIER

As we can see a constant expression expands to several expressions. So we have

constant expression for primitive types, such as integers, floating point numbers and

strings. There is an identifier expression which must resolve to certain object declared

in a related scope. Furthermore Wire provides arithmetic, relational, logical and bit-

wise expressions.

Listing 2.24: Wire operation declarator
1 58 o p e r a t i o n _ d e c l a r a t o r : a t t r i b u t e _ l i s t _ o p t tOPERATION tIDENTIFIER ’ ( ’ o p e r a t i o n _ a r g _ l i s t ’ ) ’

2 59 o p e r a t i o n _ a r g _ l i s t : o p e r a t i o n _ a r g ’ , ’

3 60 | o p e r a t i o n _ a r g _ l i s t o p e r a t i o n _ a r g

26



4 61 o p e r a t i o n _ a r g : a t t r i b u t e _ l i s t tPDU tIDENTIFIER tIDENTIFIER

The operation declaration construct, similar to function declaration construct found

in other languages, receives an comma separated argument list. Syntax enforces that

argument list of an operation contains only pdu object local declarations.

After a successful reduction of our input Wire definition to the starting parsing

symbol an abstract syntax tree is created for that particular Wire definition instance.

This abstract syntax tree is passed over to the next step of the language analysis, the

semantic check.

2.8. Wire semantics

The semantic check stage of Wire language analysis consists of several logically di-

vided phases:

– Attribute check – involves attribute arguments check and attribute applicability

check.

– Local declaration scope check.

– Data type definition and operation declaration name check.

– Constant expression check.

Of course before any of that is possible, we must first formally define the Wire

attribute concept and the related terminology:

Definition 1. Attribute is a Wire construct or a notation used to provide semantic

extensions the language components and to specify instructions to both the Wire seri-

alization engine and communication engine.

Attribute is said to be applied to a certain Wire component:

Definition 2. Attribute applicability is defined as the context in which the attribute

is valid, or equally as the list of Wire components that are directly influenced by the

attribute.

For example the floating point representation attribute is applicable only to floating

point number declarations, oppose to, for example, integer declarations.

I decided to introduce yet another attribute concept, which comes in quite handy:

Definition 3. A general attribute is an attribute that can be placed in the attribute list

of a Wire component that has no applicability relation to that attribute.
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This allows us to define such attribute in a more general context. So for example

if we define byte order attribute in the protocol definition attribute list it means that

every enclosed component, implicitly, receives this attribute (except when overriden

by a more specific attribute definition).

byte_order(string) General serialization attribute applicable to uint,sint,float,string

local declarations.

bit_order(string) General serialization attribute applicable to uint,sint,float,string lo-

cal declarations.

fp_rep(string) General serialization attribute applicable to float local declarations.

char_enc(string) General serialization attribute applicable to string local declarations.

size(uint) General serialization attribute applicable to uint,sint,float,string local dec-

larations.

size_bits(uint) General serialization attribute applicable to uint,sint,float,string local

declarations.

align(uint) Non-general serialization attribute applicable to any local declaration and

any type definition.

delimiter(any) Non-general serialization attribute applicable to array and string dec-

larations.

endpoint(string) Non-general communication attribute applicable to protocol defini-

tion.

timeout(uint) General communication attribute applicable to operation declaration.

exception(any, (any)...) Non-general sanity attribute applicable to any local declara-

tion.

list((any)...) Non-general sanity attribute applicable to any local declaration.

range(any, any) Non-general sanity attribute applicable to any sint,uint,float local

declarations.

const(any) Non-general sanity attribute applicable to any local declaration.

md5(any) Non-general value attribute applicable to any uint local declaration.
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Lets move on to describe the Wire local declaration scoping. Lets first define the

term scope in the broad context of computer programming:

Definition 4. Scope is an enclosing context where values and expressions are associ-

ated.

Typically, scope is used to define the extent of information hiding, that is, the vis-

ibility or accessibility of variables from different parts of the program. Scopes can

contain declarations or definitions of identifiers, statements or expressions, nest or be

nested. In the context of Wire, a scope is as simple as:

Definition 5. Wire scope contains local declarations of a type definition or a operation

declaration.

So every local declaration within a Wire component that holds them, is assigned

a scope, thus making the local declarations that share the same scope - scope related.

The next thing to check for in this stage of language analysis is name conflicts. When

defining a data type or declaring an operation one must follow this rule:

Rule 1. A name is the identifier assigned to a type definition or an operation declara-

tion. It must be assigned uniquely within the same related component namespace.

Related components are those of the same data type and operations. For example all

the defined enumerated types are related and must be named differently. On the other

hand a structure can be named the same as an operation. I’m aware that namespace

rules can be considered as scoping rules, but nevertheless I’ve chosen to divide them

into separate phases.

The constant expression syntactical construct consists of several expressions. Now

we must specify the semantic rules for these expressions, so the first one:

Rule 2. A constant expression must resolve to a primitive data type or to a previously

defined constructed data type.

Lets take a closer look at the constant expression syntactical grouping. The only

places it can be found are the array declarator expression, attribute argument list and

union switches and cases. Wire syntax supports arithmetic expressions, as well as re-

lational expressions, logical expressions and bitwise expressions. These syntactical

constructs are given a different name in the context of language semantics to provide

more meaning. The semantics will refer to these constructs as data type operations.

Every data type operation consists of operators and operands, and can only be applied
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to certain data type. For example it makes no sense (semantically) to do a modu-

lus operation on two strings, but on the other hand it does make sense to utilize the

addition expression as a string concatenation operation. I’ve chosen not to allow to

much freedom here and keep the semantics as simple as possible thus its rules easy to

remember.

Rule 3. Data type operation operands must be resolved to the same data type.

This rule states that, for example, we can not add floating point numbers and in-

tegers. For integer data types all of the mentioned data type operations are defined as

usual. Floating point types don’t have the arithmetic modulus operation defined and

bitwise operations. Of course it’s clear that only the integer types can have defined

bitwise operations. I’ve chosen to add string concatenation and furthermore to use the

arithmetic addition expression to this purpose. Relational operations, at least equality

and inequality, and logical operations are defined for every data type. The result of

such an operation can be a logical truth or false. Wire users work with that specific

abstraction and don’t worry about the internal representation of this logical values.

Our abstract syntax tree is now fully checked for any semantical inconsistencies

and given over to the next phase, code generation.

2.9. Wire code generation

The code generation subsystem receives a semantically valid abstract syntax tree. By

traversing the tree it generates the corresponding code for the current node.

The generated code heavily relies on cross-platform Wire serialization/deserializa-

tion engine written in C, called DeSer. This engine provides a well define interface to

handle serialization and deserialization of basic primitive data types: integers, floating

point numbers and strings. It allows users to define the transfer syntax by specifying

data alignment, byte and bit ordering, sizes, floating point representation, character en-

codings... This library relies on the Bitstring library for serialization and implements

deserialization methods on its own. Lua extensions have also been implemented for

interfacing with mentioned libraries from within Lua runtime environment.

The communication engine is not implemented, but basic use cases exists and the

library interface is in the design phase. The decision lies on whether to implement

this engine on top of Berkley Socket interface, provided on Linux systems, or to use an

open-source, cross-platform and maintained solution. The main candidate is the NSock
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project2.

2Part of the Nmap project
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3. Automatic recognition of network
protocols

For starters let’s further explain the chapter title. Classic approach to recognition of

network protocols is to have a pattern database of known network protocols data units.

This combined with a deterministic matching engine results in a system1 for unam-

biguous recognition of network protocols.

This is where the ‘automatic’ part comes in that completely differentiates pattern

matching method from the one discussed in this thesis.

We’re starting with the assumption that a network protocol assigned for recognition

is yet unseen. Its specification is not publicly available. So our job is to somehow

develop a system that could learn the structure of protocol data units and their exchange

logic, ie. protocol operations.

One could say that, in a real world case scenario, this ‘automatic’ method would

follow the pattern matching method.

There are two scenarios for automatic protocol recognition:

direct or active The system is directly communicating with the target host. It uses

some kind of request/response based algorithm to learn the protocol.

proxy or passive In this case the system is simply an observer that captures the com-

munication of interest between two target hosts. Note that there is a lot more

information exposed when using this method as the system obtains both the re-

quests and responses.

There are analogies with the human communication. I call this the Chinese anal-

ogy. So for example the direct approach would consist of a target Chinese whose

language I don’t understand and me representing this learning system. I would ‘talk’

to the Chinese hoping to get a response. Then by following certain heuristics I would

1Real world examples are Nmap network scanning engine and Amap application mapper
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refine the way I talk, hopefully learning Chinese language. The proxy method would

consist of me (learning system) listening to two Chinese talking to each other. Again

heuristically learning their language.

From a practical point of view this two methods could further be divided into on-

line and off-line methods, pertaining to the fact that the protocol data is collected real-

time or captured and recorded for later processing, respectively.

The approach taken here for tackling the task of automatic protocol recognition is

by using genetic algorithms. For that purpose a demonstrative implementation2 has

been developed using the Evolutionary Computation Framework.

3.1. Genetic algorithms overview

A genetic algorithm (GA) is a search heuristic that mimics the process of natural evo-

lution. This heuristic is routinely used to generate useful solutions to optimization

and search problems. Genetic algorithms belong to the larger class of evolutionary

algorithms (EA), which generate solutions to optimization problems using techniques

inspired by natural evolution, such as inheritance, mutation, selection, and crossover.

Algorithm 1 Genetic algorithm
popsize← DesiredPopulationSize

P ← {}
for popsize times do
P ← P ∪ {NewRandomIndividual}

end for
Best← nil

repeat
PNew ← {}
Evaluate(P )

PNew ← Select(P )

Crossover(PNew)

Mutate(Pnew)

P ← PNew

Best← Best(P )

until Termination criteria achieved

return Best

2A handy name of Babel Fish Project is given to this project
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To use a genetic algorithm, you must represent a solution to your problem as a

genome (or chromosome). The genetic algorithm then creates a population of solutions

and applies genetic operators such as mutation and crossover to evolve the solutions in

order to find the best one(s).

Instead of programming my own GA engine I decided on using - Evolutionary

Computation Framework. ECF is a C++ framework intended for application of any

type of evolutionary computation. It provides a handy evolutionary framework, in-

cluding algorithms, genotypes and genetic operators. Also it has a solid XML based

system for parameterization of your application. My sole occupation is to design a net-

work protocol genotype and corresponding genetic operators (evaluation, crossover,

mutation) and implement them in ECF.

3.2. Network protocol genotype

The method for automatic network protocol recognition developed in the scope of this

thesis is the proxy off-line method, as described in the chapter 3. Further more, for

practical reasons, I’ve limited the search space by reducing the problem to – recogni-

tion of protocol data unit structuring.

When developing a genotype first question you need to ask is: "How does an

instance of a solution look like?". First of all protocol data must be captured and

recorded. Once appropriately processed it’s passed to the input of the learning system

– learning set. Let’s refer to this as pdu instances

Figure 3.1: Network protocol genotype

Well we’re trying to figure out the structuring of protocol data units passed to the

input. Considering there can be more than one in a particular network protocol in-
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stance, the solution consists of a number of pdu structures. Other than structuring,

every pdu structure must have assigned an subset of input. This pdu structure-pdu

instances relation tells us which part of input is ‘described’ by which pdu structure.

The genotype consists (Figure 3.1) of pdu structures and every pdu structure is

assigned a subset of pdu instances. A pdu structure is built of fields. A field can be of

uint, sint and float types pertaining to unsigned and signed integers, and floating point

numbers. Further more a field can be a sized array which size can be set constant or

set by other fields in the same pdu structure.

Every field contains attributes which describes its transfer syntax and semantics.

The defined attributes are:

size_bits Size of the element in bit measure.

byte_order Byte ordering for a byte sized field.

bit_order Bit ordering.

range Semantic attribute that defines a field value range.

const Semantic attribute that defines a field is constant in value.

Our goal is to learn the type of fields in a pdu structure and their attributes.

The network protocol genotype is implemented within ECF framework in ‘Net-

ProtoGen.cpp’ file. It has registered parameters for setting the maximal pdu structures

number and of defining the number of captured data (pdu instances) to be considered

a learning set:

Listing 3.1: Network protocol genotype parameters
1 <Genotype>

2 < N e t P r o t o >

3 < E n t r y key=" max_pdus ">4< / E n t r y >

4 < E n t r y key=" num_cap_pdus ">1000< / E n t r y >

5 < / N e t P r o t o >

6 < / Genotype>

3.3. Genetic operators

ECF provides all of the necessary core elements such as algorithm and fitness compo-

nents. Our job is to develop three operators for our newly defined network protocol

genotype. The first is the evaluation operator, then the crossover and mutation opera-

tors.
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3.3.1. Evaluation

This was probably the most challenging part to implement. It consists of generating

Lua code which performs the dissection of pdu instances according to a pdu structuring

information held by the genotype. This code is invoked from the C++ environment

and executed in Lua environment. Other than parsing it calculates the fitness for that

genotype instance.

The fitness calculation is based on semantic validity of fields with assigned seman-

tic attributes such as range, constant and array size semantic attributes. Note that the

pdu structure size can, in general, be determined in runtime, so fitness calculation takes

the size mismatch for every pair of pdu structure and pdu instance into consideration.

The constant and range attributes are checked for a field in a pdu structure and

for every pdu instance assigned to this pdu structure. Any violation of these semantic

restrictions is punished.

Two things can happen when parsing a field. First he field size can index data be-

yond a pdu instance size. Such occurrence must be punished by the evaluator. The

second thing can indicate a valid data space inside the size boundaries of a pdu in-

stance. This situation must be rewarded by the evaluator.

When the parsing of a single pdu instance is done according to structuring rules of

a pdu structure, the size mismatch is calculated and punished by the evaluator.

The evaluation operator is implemented in ‘NetProtoEvalOp.cpp’. Its registered

parameter sets the file name of the input file which contains the pdu instances.

3.3.2. Crossover

Crossover is a genetic operator used to combine genetic material of parents to produce

a new individual, a child. A crossover operation represents a directed search compo-

nent of genetic algorithms, oppose to a mutation operation which represents a random

search component. By performing a crossover operation on two individuals we hope

to explore the solution space near them, hopefully finding a better solution.

There are two step in recombining network protocol genotypes. The first takes

two random pdu structures from both parents, and performs a sort of one cross-point

crossover with points represented as fields. The second operation deals with pdu in-

stance assignments. If a genotype has the same number of pdu structures then the pdu

instance assignments are copied to a child from randomly chosen parent.

Crossover is implemented in ‘NetProtoCrxOp.cpp’ and it has no registered param-

eters.
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3.3.3. Mutation

This is the simplest operation, and you can get pretty creative when designing a mu-

tation operation. A network protocol genotype mutation operator also operates in two

phases. The first randomly chooses a pdu structure and rebuilds it from scratch and the

second resets the pdu instance assignments.

Mutation is implemented in ‘NetProtoMutOp.cpp’ and it has no registered param-

eters.
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4. Conclusion

Time invested in designing and developing the Wire language for network protocol

specification resulted in clear definitions of language purpose, lexical conventions,

syntax and semantics. A cross-platform serialization engine has been developed (and

ported to Lua) in C on which the generated code is heavily dependent. A priority is the

implementation of a Wire communication engine, or integration with existing open-

source solutions. Future works consists of making a Python based code generation

plug-in architecture, for more practical and easier code generation. Furthermore the

GNU M4 macro language is to be utilized for implementation of Wire code inclusions.

The proposition that the task of automatic network protocol data units recogni-

tion can be solved using the genetic algorithms has proven faulty. Even in theoretical

considerations the choice of using meta-heuristic search methods is wrong. The reason

being that protocol data unit fields are, most commonly, mutually independent and lack

the semantic relationships. Therefore the genetic evaluator has no way, or little way,

of determining a fitness of an individual. Nevertheless a network protocol genotype

has been developed using the C++ ECF framework, including the genetic operators

(evaluator, crossover, mutation). The test example included ‘recognition’ of Internet

Protocol (IP) data units.



Abstract

Thesis gives an overview on network protocol theory including protocol design,

specification and implementation. A network protocol specification language called

Wire has been developed in the scope of this thesis. Detailed descriptions on the anal-

ysis of the Wire language are given, as well as on code generation. An overview of

Wire language is provided using an example network protocol.

The problem of automatic network protocol recognition has been addressed in the

scope of this thesis. Genetic algorithms have been utilized for solving this problem,

therefore a network protocol genotype and corresponding genetic operators have been

developed and implemented using the C++ Evolutionary Computation Framework.

Keywords: network protocol theory, abstract syntax notation, wire definition lan-

guage, automatic recognition, genetic algorithms, evolutionary computation frame-

work
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Metode predstavljanja i automatskog prepoznavanja mrežnih protokola

Sažetak

Rad daje pregled na teorijom mrežnih protokola, uključujući dizajn, specifikaciju

i implementaciju mrežnih protokola. U sklopu rada ostvaren je jezik za specifikaciju

mrežnih protokola nazvan Wire. Analiza jezika Wire i stvaranje koda su detaljno ob-

jašnjeni. Napravljen je pregled nad jezikom Wire koristeći primjerni mrežni protokol.

Problem automatskog prepoznavanja mrežnih protokola takod̄er se obrad̄uje u sklopu

ovog rada. Za rješavanje tog problema korišteni su genetski algoritmi, stoga su razvi-

jeni genotip za predstavljanje mrežnog protokola i odgovarajući genetski operatori ko-

risteći C++ okruženje Evolutionary Computation Framework.

Ključne riječi: teorija mrežnih protokola, notacija za apstraktnu sintaksu, wire jezik,

automatsko prepoznavanje, genetski algoritmi, evolutionary computation framework
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Appendix A
Wire lexical definitions

Listing A.1: wire.l
1 %o p t i o n n o d e f a u l t noyywrap y y l i n e n o

2

3 %{

4 # i n c l u d e < s t d l i b . h>

5 # i n c l u d e < s t d i o . h>

6 # i n c l u d e < s t r i n g . h>

7 # i n c l u d e " w i r e _ u t i l s . h " / / debug , e r r o r

8 # i n c l u d e " w i r e _ l e x . h " / / l e x u t i l s

9 # i n c l u d e " w i r e _ a s t . h " / / so w i re . t a b . h has a d e f i n i t i o n o f pnode_ t

10 # i n c l u d e " wi r e . t a b . h " / / t o k e n s

11

12 i n t y y p a r s e ( ) ;

13

14 # d e f i n e YYDEBUG 1

15 %}

16

17 reCOMMENT ( " /∗ " ( [ ^ "∗" ] | [ \ r \ n ] | ( "∗" + ( [ ^ " ∗ / " ] | [ \ r \ n ] ) ) ) ∗ \ ∗ + \ / ) | ( " / / " . ∗ ) | ( # . ∗ )

18

19 reNEWLINE ( [ \ r ? \ n ] )

20

21 reWHITESPACE ( [ \ t \ f ] + | { reNEWLINE } )

22

23 reIDENTIFIER ( [ A−Za−z_ ] [ A−Za−z0−9_ ]∗ )

24

25 reINTCONST ( {reHEXCONST } | { reBINCONST } | { reOCTCONST } | { reDECCONST} )

26

27 reHEXCONST ( 0 ( x | X)[0−9a−fA−F ] + )

28

29 reBINCONST ( 0 ( b | B ) [ 0 1 ] + )

30

31 reOCTCONST (0[0 −7]+)

32

33 reDECCONST ([0−9][0−9]∗)

34

35 reFLOATCONST ([0 −9]∗ \ . [0 −9]+([ eE ][ −+]?[0 −9]+)?)

36

37 reSTRINGCONST ( \ " ( [ \ 4 0 − \ 4 1 \4 3 − \ 1 7 6 ] )∗ \ " )

38

39 %%

40 {reINTCONST} {

41 y y l v a l . t e x t = s t r d u p ( y y t e x t ) ;

42 p r i n t _ d e b u g ( "INT_CONST : %s \ n " , y y l v a l . t e x t ) ;

43 r e t u r n tINTCONST ;

44 }

45

46 {reFLOATCONST} {

47 y y l v a l . t e x t = s t r d u p ( y y t e x t ) ;

48 p r i n t _ d e b u g ( "REAL_CONST : %s \ n " , y y l v a l . t e x t ) ;

49 r e t u r n tFLOATCONST ;

50 }
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51

52 {reSTRINGCONST} {

53 y y l v a l . t e x t = s t r d u p ( y y t e x t ) ;

54 p r i n t _ d e b u g ( "STRING_CONST : %s \ n " , y y l v a l . t e x t ) ;

55 r e t u r n tSTRINGCONST ;

56 }

57

58 { reIDENTIFIER } {

59 y y l v a l . t e x t = s t r d u p ( y y t e x t ) ;

60 p r i n t _ d e b u g ( " IDENTIFIER : %s \ n " , y y l v a l . t e x t ) ;

61 r e t u r n g e t _ t o k e n _ b y _ i d e n t i f i e r ( y y t e x t ) ;

62 }

63

64 "==" {

65 p r i n t _ d e b u g ( "RELATIONAL OP : %s \ n " , y y l v a l . t e x t ) ;

66 r e t u r n tRELEQU ;

67 }

68

69 " != " {

70 p r i n t _ d e b u g ( "RELATIONAL OP : %s \ n " , y y l v a l . t e x t ) ;

71 r e t u r n tRELNEQU ;

72 }

73

74 " >=" {

75 p r i n t _ d e b u g ( "RELATIONAL OP : %s \ n " , y y l v a l . t e x t ) ;

76 r e t u r n tRELGE ;

77 }

78

79 " <=" {

80 p r i n t _ d e b u g ( "RELATIONAL OP : %s \ n " , y y l v a l . t e x t ) ;

81 r e t u r n tRELLE ;

82 }

83

84 "&&" {

85 p r i n t _ d e b u g ( "LOGICAL OP : %s \ n " , y y l v a l . t e x t ) ;

86 r e t u r n tLOGAND;

87 }

88

89 " | | " {

90 p r i n t _ d e b u g ( "LOGICAL OP : %s \ n " , y y l v a l . t e x t ) ;

91 r e t u r n tLOGOR ;

92 }

93

94 "<<" {

95 p r i n t _ d e b u g ( "BITWISE OP : %s \ n " , y y l v a l . t e x t ) ;

96 r e t u r n tBITSL ;

97 }

98

99 ">>" {

100 p r i n t _ d e b u g ( "BITWISE OP : %s \ n " , y y l v a l . t e x t ) ;

101 r e t u r n tBITSR ;

102 }

103

104 [ " \ [ \ ] ( ) { } % /∗ +\ −; ,=&|\^ < >:! ."] {

105 p r i n t _ d e b u g ( "OP: %c \ n " , ∗ y y t e x t ) ;

106 r e t u r n ∗ y y t e x t ;

107 }

108

109 { reWHITESPACE} ;

110

111 . {

112 p r i n t _ e r r o r ("% s <%s> −− l i n e %d " , " i n v a l i d c h a r a c t e r " , y y t e x t , y y l i n e n o ) ;

113 e x i t ( 1 ) ;

114 }

115

116

117 %%

118 i n t main ( i n t argc , char∗ argv [ ] )

119 {

120 y y i n = f o p e n ( argv [ argc −1], " r " ) ;

121 i f ( y y i n == NULL)

122 {

123 p e r r o r ( " f o p e n " ) ;
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124 r e t u r n 2 ;

125 }

126

127 y y p a r s e ( ) ;

128 r e t u r n 0 ;

129 }
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Appendix B
Wire syntax definitions

Listing B.1: Wire BNF grammar listing produced by GNU Bison report mechanism
1 Grammar

2

3 0 $ a c c e p t : w i r e $end

4

5 1 wi r e : p r o t o c o l

6 2 | /∗ empty ∗ /

7

8 3 p r o t o c o l : a t t r i b u t e _ l i s t _ o p t tPROTOCOL tIDENTIFIER ’ { ’ p r o t o c o l _ b o d y _ o p t ’ } ’

9

10 4 p r o t o c o l _ b o d y _ o p t : p r o t o c o l _ b o d y

11 5 | /∗ empty ∗ /

12

13 6 p r o t o c o l _ b o d y : p r o t o c o l _ b o d y _ c o m p o n e n t ’ ; ’

14 7 | p r o t o c o l _ b o d y p r o t o c o l _ b o d y _ c o m p o n e n t

15

16 8 p r o t o c o l _ b o d y _ c o m p o n e n t : t y p e _ d e f i n i t i o n

17 9 | o p e r a t i o n _ d e c l a r a t o r

18

19 10 a t t r i b u t e _ l i s t _ o p t : ’ [ ’ a t t r i b u t e _ l i s t ’ ] ’

20 11 | /∗ empty ∗ /

21

22 12 a t t r i b u t e _ l i s t : a t t r i b u t e

23 13 | a t t r i b u t e _ l i s t ’ , ’ a t t r i b u t e

24

25 14 a t t r i b u t e : tIDENTIFIER

26 15 | tIDENTIFIER ’ ( ’ a t t r i b u t e _ a r g u m e n t _ l i s t ’ ) ’

27

28 16 a t t r i b u t e _ a r g u m e n t _ l i s t : a t t r i b u t e _ a r g u m e n t

29 17 | a t t r i b u t e _ a r g u m e n t _ l i s t ’ , ’ a t t r i b u t e _ a r g u m e n t

30

31 18 a t t r i b u t e _ a r g u m e n t : c o n s t _ e x p

32

33 19 t y p e _ d e f i n i t i o n : e n u m _ d e f i n i t i o n

34 20 | u n i o n _ d e f i n i t i o n

35 21 | s t r u c t _ d e f i n i t i o n

36 22 | p d u _ d e f i n i t i o n

37

38 23 e n u m _ d e f i n i t i o n : a t t r i b u t e _ l i s t _ o p t tENUM tIDENTIFIER ’ { ’ enum_body ’ } ’

39

40 24 enum_body : enum_body_component

41 25 | enum_body ’ , ’ enum_body_component

42

43 26 enum_body_component : tIDENTIFIER ’= ’ c o n s t _ e x p

44 27 | tIDENTIFIER

45

46 28 u n i o n _ d e f i n i t i o n : a t t r i b u t e _ l i s t _ o p t tUNION tIDENTIFIER ’ { ’ union_body ’ } ’

47

48 29 union_body : union_body_component

49 30 | un ion_body union_body_component

50
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51 31 union_body_component : c o n s t _ e x p ’ : ’ l o c a l _ d e c l a r a t o r _ l i s t

52 32 | tDEFAULT ’ : ’ l o c a l _ d e c l a r a t o r _ l i s t

53

54 33 s t r u c t _ d e f i n i t i o n : a t t r i b u t e _ l i s t _ o p t tSTRUCT tIDENTIFIER ’ { ’ s t r u c t _ b o d y ’ } ’

55

56 34 s t r u c t _ b o d y : s t r u c t _ b o d y _ c o m p o n e n t

57 35 | s t r u c t _ b o d y s t r u c t _ b o d y _ c o m p o n e n t

58

59 36 s t r u c t _ b o d y _ c o m p o n e n t : l o c a l _ d e c l a r a t o r ’ ; ’

60

61 37 p d u _ d e f i n i t i o n : a t t r i b u t e _ l i s t _ o p t tPDU tIDENTIFIER ’ { ’ pdu_body ’ } ’

62

63 38 pdu_body : pdu_body_component

64 39 | pdu_body pdu_body_component

65

66 40 pdu_body_component : l o c a l _ d e c l a r a t o r ’ ; ’

67

68 41 l o c a l _ d e c l a r a t o r : p r i m i t i v e _ l o c a l _ d e c l a r a t o r

69 42 | c o n s t r u c t e d _ l o c a l _ d e c l a r a t o r

70 43 | a n o n _ l o c a l _ d e c l a r a t o r

71

72 44 l o c a l _ d e c l a r a t o r _ l i s t : l o c a l _ d e c l a r a t o r ’ ; ’

73 45 | l o c a l _ d e c l a r a t o r _ l i s t l o c a l _ d e c l a r a t o r ’ ; ’

74

75 46 p r i m i t i v e _ l o c a l _ d e c l a r a t o r : a t t r i b u t e _ l i s t _ o p t tBYTE tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

76 47 | a t t r i b u t e _ l i s t _ o p t tFLOAT tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

77 48 | a t t r i b u t e _ l i s t _ o p t tSTRING tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

78 49 | a t t r i b u t e _ l i s t _ o p t tUINT tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

79 50 | a t t r i b u t e _ l i s t _ o p t tSINT tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

80

81 51 c o n s t r u c t e d _ l o c a l _ d e c l a r a t o r : a t t r i b u t e _ l i s t _ o p t tENUM tIDENTIFIER tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

82 52 | a t t r i b u t e _ l i s t _ o p t tSTRUCT tIDENTIFIER tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

83 53 | a t t r i b u t e _ l i s t _ o p t tUNION tIDENTIFIER tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

84 54 | a t t r i b u t e _ l i s t _ o p t tPDU tIDENTIFIER tIDENTIFIER a r r a y _ d e c l a r a t o r _ o p t

85

86 55 a n o n _ l o c a l _ d e c l a r a t o r : a t t r i b u t e _ l i s t _ o p t tUNION ’< ’ c o n s t _ e x p ’> ’ ’ { ’ union_body ’ } ’

87

88 56 a r r a y _ d e c l a r a t o r _ o p t : ’ [ ’ c o n s t _ e x p ’ ] ’

89 57 | /∗ empty ∗ /

90

91 58 o p e r a t i o n _ d e c l a r a t o r : a t t r i b u t e _ l i s t _ o p t tOPERATION tIDENTIFIER ’ ( ’ o p e r a t i o n _ a r g _ l i s t ’ ) ’

92

93 59 o p e r a t i o n _ a r g _ l i s t : o p e r a t i o n _ a r g ’ , ’

94 60 | o p e r a t i o n _ a r g _ l i s t o p e r a t i o n _ a r g

95

96 61 o p e r a t i o n _ a r g : a t t r i b u t e _ l i s t tPDU tIDENTIFIER tIDENTIFIER

97

98 62 c o n s t _ e x p : i n t e g e r _ c o n s t _ e x p

99 63 | f l o a t _ c o n s t _ e x p

100 64 | s t r i n g _ c o n s t _ e x p

101 65 | i d e n t i f i e r

102 66 | a r i t h m e t i c _ e x p

103 67 | r e l a t i o n a l _ e x p

104 68 | l o g i c a l _ e x p

105 69 | b i t w i s e _ e x p

106

107 70 f l o a t _ c o n s t _ e x p : tFLOATCONST

108

109 71 s t r i n g _ c o n s t _ e x p : tSTRINGCONST

110

111 72 i n t e g e r _ c o n s t _ e x p : tINTCONST

112

113 73 a r i t h m e t i c _ e x p : c o n s t _ e x p ’+ ’ c o n s t _ e x p

114 74 | c o n s t _ e x p ’−’ c o n s t _ e x p

115 75 | c o n s t _ e x p ’∗ ’ c o n s t _ e x p

116 76 | c o n s t _ e x p ’ / ’ c o n s t _ e x p

117 77 | c o n s t _ e x p ’%’ c o n s t _ e x p

118

119 78 r e l a t i o n a l _ e x p : c o n s t _ e x p ’> ’ c o n s t _ e x p

120 79 | c o n s t _ e x p ’< ’ c o n s t _ e x p

121 80 | c o n s t _ e x p tRELEQU c o n s t _ e x p

122 81 | c o n s t _ e x p tRELNEQU c o n s t _ e x p

123 82 | c o n s t _ e x p tRELGE c o n s t _ e x p
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124 83 | c o n s t _ e x p tRELLE c o n s t _ e x p

125

126 84 l o g i c a l _ e x p : ’ ! ’ c o n s t _ e x p

127 85 | c o n s t _ e x p tLOGAND c o n s t _ e x p

128 86 | c o n s t _ e x p tLOGOR c o n s t _ e x p

129

130 87 b i t w i s e _ e x p : ’~ ’ c o n s t _ e x p

131 88 | c o n s t _ e x p ’&’ c o n s t _ e x p

132 89 | c o n s t _ e x p ’ | ’ c o n s t _ e x p

133 90 | c o n s t _ e x p ’ ^ ’ c o n s t _ e x p

134 91 | c o n s t _ e x p tBITSR c o n s t _ e x p

135 92 | c o n s t _ e x p tBITSL c o n s t _ e x p

136

137 93 i d e n t i f i e r : tIDENTIFIER

138 94 | i d e n t i f i e r ’ . ’ tIDENTIFIER
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