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Abstract—Mobile robots equipped with an omnidirectional
camera have gained a considerable attention over the last decade.
Having an entire view of the scene can be very advantageous
in numerous applications as all information is stored in a
single frame. This paper is primarily concerned with detection
of moving objects from optical flow field in cluttered indoor
environments, which is necessary for safe navigation and collision
avoidance. The algorithm is based on the comparison of the
measured optical flow vectors with the generated ones. As depth
information is not available, a novel method is proposed which
iteratively generates optical flow vectors for different possible real
world coordinates of the objects in the scene. This is necessary in
order to incorporate motion estimates given by motor encoders.
Back-projecting into image is then used to generate synthetic
optical flow vectors needed for comparison. The algorithm was
tested on a real system and was able to successfully localize a
moving object under both artificial and natural lighting. The
proposed algorithm can be implemented in real-time on any
system with known calibrated model of the omnidirectional
sensor and reliable motion estimation.

I. INTRODUCTION

Omnidirectional cameras by definition provide a 360◦ view
of its surrounding scene, thus making them a very attractive
sensor. Such an enhanced field of view can by obtained by
using several panoramic cameras, a combination of a standard
camera and a mirror, or simply a standard camera with a wide-
angle lens. This work is concentrated on an omnidirectional
camera constructed from a standard camera and a hyperbolic
mirror.

The advantages of omnidirectional cameras is followed by
distortions caused by the mirror, and smaller resolution since
the entire surrounding scene is fitted into a single standard
camera frame. Furthermore, when detecting moving object
by means of optical flow with non-stationary camera, e.g. a
camera mounted on a mobile platform, the problem becomes
more involved since the motion in the picture caused by the
camera movement has to be taken into account.

When omnidirectional cameras are placed on a mobile
platform, they are often used for estimating ego-motion or
localization [1], [2], [3]. Furthermore, when tracking moving
objects it is practical to pair them with a laser sensor [4],
[5], and in order to detect moving objects from a sequence of
images, optical flow field is often analyzed [6], [7].
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In this paper we are concentrated on detecting moving ob-
jects from the optical flow field recorded by an omnidirectional
camera placed on top of a mobile robot platform as depicted in
Fig 1. The obtained information could then be used for local
navigation, obstacle avoidance etc. In [8] some properties of
optical flow vectors for motion segmentation with a moving
omnidirectional camera were analyzed. The results suggested
that the angle of the optical flow field vectors could be used
for moving object detection. In the present work, the proposed
algorithm is based on searching for differences between the
estimated optical flow field using mobile robot’s odometry and
the calculated optical flow field from the sequence of images.
We are using only the omnidirectional camera and the wheel
odometry, while the optical flow field is calculated in the raw
omnidirectional image, i.e. no image unwarping is performed.
The results show that the algorithm is capable of detecting
moving objects in highly cluttered environments with both
natural and artificial lighting.

II. KINEMATIC MODEL OF A DIFFERENTIAL DRIVE
MOBILE ROBOT

In the present work we are using a Pioneer 3-DX mobile
robot, with a differential drive and one passive caster wheel.
Furthermore, we are using robot motion information, making
it crucial to setup a motion model for estimation.

Calculating odometry solely on the motor encoders mea-
surements is usually highly unreliable due to the accumulation
of small errors over time, but in the present work we are only
interested in difference between two consecutive discrete time
steps. Moreover, for the purpose of image analysis, we assume
that the robot motion consists only of translation and in-place
rotation, but not both at the same time.

Assuming constant velocity between time indices k−1 and
k, movement of a mobile robot can be modeled as follows:

∆xk = Dk cos Θk (1)

∆yk = Dk sin Θk (2)

∆Θk = ωkT (3)

Dk = vkT (4)

vk =
vL,k + vR,k

2
=
R · ωL,k +R · ωR,k

2
(5)



ωk =
vR,k − vL,k

b
=
R · ωR,k −R · ωL,k

b
, (6)

where left and right wheel angular velocities at time index k
are denoted by ωR,k and ωL,k, respectively. Quantities ∆xk,
∆yk represent changes in coordinates of the center of mobile
robots axis, while ∆Θk is the angle between the vehicle axle
and x-axis, and Dk is the traversed distance. Axle length is b
while R is the wheel radius. Center of axle translational speed
between time steps k− 1 and k is vk−1, and sampling period
is denoted by T .

Fig. 1: Pioneer 3-DX equipped with an omnidirectional camera

III. OMNIDIRECTIONAL CAMERA SYSTEM

Our omnidirectional camera system is composed of a hy-
perbolic mirror and a standard camera. Such setup is called
a catadioptric camera. One important property of catadioptric
systems is the presence (or absence) of single effective view-
point, a point in which all collected rays of light intersect.
Systems that have a single effective viewpoint are called
central projection cameras. This property is important because
only central projection cameras can have completely sharp
images. The mirror in our system satisfies these properties
to an extent.

A. Image forming

In an omnidirectional camera, an image is formed by
light passing through a system consisting of a mirror, lenses,
and a digitization procedure. The following assumptions are
commonly taken [2], [9]:
• The mirror is rotationally symmetric with respect to its

axis. This symmetry is guaranteed by manufacturing.
• The mirror (lens) axis is perpendicular to the sensor

plane.
An example of how the image is formed in an omidirectional
camera is shown in Fig. 2. The reference coordinate system
(X,Y, Z) is situated in the single effective viewpoint. Point

Fig. 2: Forming of an image in an omnidirectinal camera

X in the scene is mapped to the point u′′ in the sensor plane
defined with coordinate system (u, v). In order to make scene
analysis, we need to determine, for each point u′′, a vector p
emanating from the coordinate system origin and pointing to
the X.

Firstly, we assume that the camera and mirror axes are
perfectly aligned, we can see from Fig. 2 that real world coor-
dinates (X,Y ) of the point X in the scene, are proportional to
the sensor plane coordinates (u, v) with some positive scalar
α. We can now write p = [αu, αv, F (u, v)]. It is important to
notice that p is not a point, but a vector, which allows us to
include scalar α into the F (u, v) function, yielding:

p =

XY
Z

 =

 u
v

F (u, v)

 . (7)

All points in the direction of this vector p will have same
coordinates in the sensor plane.

Furthermore, the second assumption is that our mirror is
rotationally symmetric, thus we can rewrite F (u, v) as F (ρ),
where ρ =

√
u2 + v2. Function F (ρ) is given in form of a

polynomial of arbitrary order:

F (ρ) = a0 + a1ρ+ a2ρ
2 + a3ρ

3 + a4ρ
4 + ... (8)

However, in [2] it is suggested that a polynomial of order
four is best suited for most systems. Our primary interest
is now in finding F (ρ), which is achieved through camera
calibration.

B. Camera calibration

Camera calibration is a necessary task for any vision system
from which exact metric information is needed. The camera
used in our experiments is a standard perspective Basler Scout
camera. The mirror is hyperbolic in shape but the parameters
of the hyperbola are unknown. In order to estimate cam-
era’s intrinsic and extrinsic parameters OCamCalib Toolbox
proposed in [10] is used. Idea behind this method is to
estimate the system parameters using a series of chessboard



TABLE I: Extrinsic and intrinsic system parameters

Extr. Param. Value Intr. Param. Value

a0 -195.889 xcen 397.9
a1 0 ycen 513.5
a2 1.412 · 10−3 c 0.99987
a3 −9.0145 · 10−7 d −6.019 · 10−6

a4 7.594 · 10−10 e 5.478 · 10−6

pattern images with known dimensions. Corners of the patterns
are extracted automatically and least squares minimization is
used to estimate the function F (ρ). Afterwards, using the
symmetrical property of the mirror, projection center of the
image (xcen, ycen) is found. To account for the the camera
and axis misalignment and digitizing effects, a linear model
is used. Full camera system is modeled as follows:[

u′

v′

]
=

[
c d
e 1

] [
u
v

]
+

[
xcen
ycen

]
. (9)

Estimated parameters of the system are given in Table I.

IV. MOVING OBJECT DETECTION

In order to detect moving objects in the scene, a number
of steps must be taken. The first step is to use the camera
model (9) and robot motion estimates (1), (2) and (3) in order
to estimate the possible optical flow vectors caused by motion
and to segment out the vectors that are not considered to be
parts of the static surrounding. Afterwards, it is necessary to
classify segmented vectors to interpret the data and detect
moving objects in the scene, in order to finally calculate
measurement information which can be used for moving object
tracking. The proposed algorithm is developed as a part of
a multisensor fusion system for dynamic object tracking.
Therefore, it should not be computationally demanding since
it will be sharing CPU time with several other sensors. Some
other approaches to motion segmentation based on structure-
from-motion can be found in [11], [12].

A. Optical flow calculation

At a time index k we grab an image frame Ik and read
odometry data. Image frame from the previous time index
Ik−1 is also kept in the memory. We need to extract features
from Ik−1 image which we will search for in Ik to form an
optical flow field. Images are taken every TI = 0.2 seconds.
Shi and Tomasi [13] algorithm is used to extract the features,
i.e. corners. Corners in the image Ik−1 are denoted by Cik−1,
where i ∈ {1, 2, ..., Nc}, with Nc being the number of corners
searched in the image. Each corner Cik is given in terms of
the coordinates in the image, Cik = (ui

′

k , v
i′

k ).
The search for the corners in the current image Cik is done

via pyramidal Lucas-Kanade feature tracker [14], which takes
a list of corners Cik−1 as input and tries to find those corners in
the Ik image. The output of the algorithm is a list of estimated
coordinates of corners in Ik image denoted by Cik.

Fig. 3: An example of optical flow field caused by translation

B. Translation

Having tracked corners over two consecutive frames, we
use the encoder data to estimate robot motion given by (1),
(2) and (3). Total translation at time index k is given by Lk =√

∆x2k + ∆y2k. This information is necessary because we are
generating synthetic optical flow, calculated on the basis of
robot motion estimates as opposed to measured optical flow
which is provided by the optical flow algorithm. An example
of simulated optical flow caused by translational motion form
right to left in an omnidirectional image is shown in Fig. 3.

Aside from the robot motion, optical flow of a particular
corner strongly depends on the real world coordinates of the
object projected onto the image plane. The further away the
point is from the mirror (robot coordinate system) the smaller
the optical flow will be detected. As stated earlier, we have
no depth information which makes our task somewhat more
difficult. To circumvent this particular problem, we propose a
novel approach. The idea is to iteratively back-project Cik−1
onto X − Y planes with different heights, which is necessary
to incorporate motion estimates. Once we back-project Cik−1
onto height Zji , we can extract the other two real world
coordinates of the point X = (Xj

i , Y
j
i , Z

j
i ). At this moment,

we can translate the point in the space by value of Lk,
yielding new coordinates with respect to the mobile robot
Xn = (Xj

i ± Lk, Y
j
i , Z

j
i ). Ambiguity of the sign of L(k)

can be solved by inspection of direction in which features
moved. This requires to assume that there are more features
that belong to stationary scenery than to moving objects, which
we consider to be a sound assumption. Since only translation
is performed, we are updating only the Xj

i coordinate in 3D
space. By knowing all three translated real world coordinates,
we can project the point back onto the image plane, thus giving
us expected position of the corner in the current image Ĉik.

Figure 4 illustrates the idea of projection onto different
planes. By repeating this procedure for different heights, we
are able to find the closest corner in pixels to the measured one.
This enables us to evaluate if the optical flow vector belongs
to a static object or to a moving one. For each corner we
keep track of real world coordinates X at which best match
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Fig. 4: Synthetic flow generation with odometry estimates

was found because we can use that information to estimate
depth of the static object. The assumption that the mobile
robot does not perform both translation and rotation at the
same time is somewhat unrealistic. The fact is that robot will
almost certainly have some unwanted rotation. As it turns out,
this is very inconvenient, especially for the corners that have
small optical flow vectors like the one lying on the line of
motion. Therefore, it will be necessary to compensate for the
rotation which can be done easily with no need for the camera
model. Equations are given as follows:

r =
√

(x− xcen)2 + (y − ycen)2 (10)

θprev = arctan(
y − ycen
x− xcen

) (11)

xnew = r cos(θprev + ∆Θk) + xcen (12)

ynew = r sin(θprev + ∆Θk) + ycen, (13)

where r is the distance of the pixel to the image center, θ is the
angle of the pixel relative to (xcen, ycen), while (xnew, ynew)
are the coordinates of the pixel compensated for rotation.

Each corner is rotated by the estimated angle from encoders
data. In order to provide the needed robustness, we allow the
ending point of the estimated optical flow vector Ĉik to be in
some proximity of the measured Cik, i.e. look if the ending
points of both vectors differ by more than some distance in
pixels denoted by T transε . If a number of corners on restricted
area shows significant similarities then they can be grouped
together and marked as belonging to a moving object.

An immediate problem with this kind of detection is over-
fitting. If we imagine a situation where the moving robot is
overtaking a slightly slower robot with both robots moving
in the same direction, then projecting vector on to different
heights could yield a high consistency with measured optical
flow vectors classifying them as stationary pixels with wrong
height labels i.e. further away from our robot thus causing
lesser optical flow. This kind of problem cannot be avoided
without additional assumptions (or distance measurements).
However it is unlikely that a moving object will mimic the
movements of our robot for longer periods of time.

Fig. 5: Optical flow caused by in-place rotation

C. In-place rotation

An in-place rotation is a special case, which is fully covered
in the previous subsection under rotation compensation, but it
is important to treat it differently during computation. In our
case, robot rotates only when changing its heading, but it is
also crucial not to lose track of a moving object during that
period as the change of mobile robots heading is quite often
in real world situations. Since no information is gained about
the robot translation, we cannot estimate height of the point
in 3D space from optical flow vectors. It is important to take
this into account in order to avoid false height labels. All we
need to do is rotate the pixels in our image by estimated angle
based on their distance from image center as given by (12) and
(13). After the rotation, all points having Euclidean distance
greater than T εrot are considered to be outliers. Another distinct
feature is that overfitting is no longer a concern which makes
segmentation more reliable. An example of an optical flow
field caused by an in-place counterclockwise motion is shown
in Fig.5

D. Filtering and partitioning of segmented vectors

Once we have selected optical flow vectors that we consider
to be caused by moving objects, we still need to make sense
of that particular set. There still may be a lot of vectors
that are segmented out due to poor optical flow calculation
performance. For example, if we have a single outlier, we can
safely assume that it is just calculation error. The reasoning
behind this is intuitive since we are not tracking small objects,
and are free to assume that objects sizes are comparable to
those of the robot. Furthermore, vectors arising from single
objects should have similarities (similar angle and module),
and hence we remove vectors that have no similar neighbors.
Due to the fact that our interest is in finding groups of similar
vectors, a measure is adopted from [15]:

Dsim(~v1, ~v2) =
|~v1 − ~v2|
| ~v1|+| ~v2|

2 + σ
, (14)

where σ is some arbitrary value to avoid division by zero
problems. For each vector considered as an outlier, we search



Fig. 6: Optical flow calculation and segmentation in the case
of translation with natural lighting

for another vector in the neighborhood of 30 pixels to make
a strong pair. A strong pair are two nearby vectors whose
similarity measure is less than 0.1. If we are not able to find
another vector to make a strong pair, then we consider the first
one to be a calculation error.

After the filtering stage, the vectors are partitioned in
equivalence classes using disjoint set data structure and union
find algorithm. To partition the vectors we need a predicate to
tell us if the two vectors are certainly in the same group or if
they may or may not be. Two vectors are in the same group
if they form a strong pair. Afterwards, additional filtering
is conducted. Examining the sets, all sets having number of
vectors less or equal to Tn are considered insignificant. This
threshold can be set to different value to match specific setups
and camera models. In our case, we choose it to be three.

E. Measurement information

The partitioning result is a list of labels mapping a certain
vector to a group. If a number of vectors is associated to a
certain group, we can soundly assume that those vectors are
indicating a moving object. From this information a bearing
angle can be calculated. We propose to calculate the centroid
of the group and use those coordinates as a measure of the
bearing angle. For each group of vectors at time index k,
its centroid coordinates are denoted by xck and yck and are
calculated as follows:

xck =
1

Nk

Nk∑
i=0

xki , yck =
1

Nk

Nk∑
i=0

yki , (15)

where Nk is the number of vectors in the k-th group, xki and
yki are ending points of the vector (output of Lucas-Kanade
algorithm). The object bearing angle Θk , with respect to the
robots coordinate frame, is expressed as

Θk = atan2(yck − ycen, xck − xcen). (16)

If needed, a convex hull can also be determined. Assuming
that the tracked object is moving across the floor, it is possible
estimate its distance from the robot. The idea is to look for

Fig. 7: Translation after filtration and partitioning

the corner (ending point of optical flow vector) that is nearest
to the image center (which also means that it is closest to
the robot). By knowing robots height, real world coordinates
can be calculated using our model (7). However, this is very
uncertain since we are assuming that we have segmented
the bottom of the moving object, which does not have to
be necessarily true as it may happen that the bottom of the
moving object is very similar to the ground and no corners
were detected. The other obvious example is the case when
the object is occluded by a static obstacle. Therefore, in the
present work we are not estimating the range of the object.

V. EXPERIMENTAL RESULTS

The results of our experiments are presented in this section.
The proposed algorithm showed good performance with both
natural and artificial lighting in an indoor environment. It is
beyond the scope of this paper to classify moving objects
and distinguish between interesting objects and reflections or
shadows that pose no threat of collision with mobile robot, but
part of this issue has been addressed through filtering as shad-
ows and reflections tend to have smaller spatial consistency.
Figure 6 shows segmented vectors (red lines with circles at
one end) and the ones we consider to fit in our model of
static background (green lines). The algorithm was set to use
Nc = 2000 corners.

As we can see in Fig. 6, there are a number of vectors that
do not belong to the moving object (another Pioneer 3-DX
mobile robot) – namely on the very light surface of the wall
where optical flow algorithm performs badly due to shadows
and sensitivity to changes in brightness. One vector is assigned
to the reflection of the ground which is also a slow moving
object in the image. There are also some vectors that are just
evidence of incorrect optical flow calculation. But all these
vectors show no spatial consistence and were discarded in the
process of filtering.

Filtering and clustering results are depicted in Fig. 7. A large
number of vectors that showed no spatial consistence were
filtered out. There were a few which have their strong pairs
and were not filtered out. However, they should be grouped



Fig. 8: Optical flow calculation and segmentation in case of
rotation with artificial lighting

together in small groups which is another step of filtering as
the threshold is set to consider a group of pixels as a significant
sign of a moving object. It can be clearly seen that the moving
object had a number of vectors associated with it and was
segmented correctly as a moving object. Each group of vectors
were marked with different color.

Figure 8 shows a scene for the case of rotational motion
and the results of the segmentation under artificial lightning
are shown in Fig. 9. The algorithm was set to use Nc = 1000
corners.

Optical flow vectors can be seen clearly because rotation
causes more pixel movement between two consecutive time
indices. By analyzing Figs. 8 and 9 we can conclude that in
the case of a rotational motion too, the algorithm successfully
detects a moving object.

Experiments were performed on a 2.10 GHz laptop CPU
with a C/C++ implementation. The average computational
time of the complete algorithm was a bit less than 100 ms
per frame on a 1024x768 pixel image.

VI. CONCLUSION

In this work we have analyzed an optical flow vector infor-
mation from the pyramidal Lucas-Kanade algorithm applied to
an omnidirectional image. Camera system model coupled with
movement information from motor encoders was used to seg-
ment out vectors that do not belong to the static scene around
mobile robot. We have proposed a novel approach to iteratively
refine our match between measured and estimated optical flow
vectors and to additionally filter vectors potentially indicating a
moving object. The measurement of the sensor, as the bearing
of the object, was calculated from the centroids of the grouped
optical flow field vectors. The experiments showed that the
algorithm is able to detect a moving object in an adverse
scenario under natural and artificial lighting.
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Fig. 9: Rotation after filtration and partitioning
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