
Two-Tier Architecture for Web Mapping with NoSQL Data-

base CouchDB

Mario MILER, Damir MEDAK and Drazen ODOBASIC

Abstract

Two of the greatest challenges of mobile data collecting applications are replication and

synchronicity. This paper deals with these challenges and offers a new solution: two-tier

architecture using CouchDB. CouchDB is a RESTful non-relational (NoSQL) document-

oriented database with the ability to serve web pages directly from the database. CouchDB

is acting as a web server and data storage on the server side and as a web browser on a

client side. Although cloud functions on a mobile device can be used, the main advantage

of CouchDB is the ability to work offline with both data and application, replicating the

results back to the server. Combining such a solution with GPS we get simple mobile GIS

data collector in a standard browser application. Many smartphones and mobile devices can

be transformed to mobile data collectors with ease. In this paper, we will show the funda-

mental CouchDB concepts as a data and application storage.

1. Introduction

Web mapping is the easiest and the most widely accessible usage of GIS technology. Dur-

ing the last few years, we witnessed the “Google Map phenomenon,” which opened a new

market demand for the integration of mainstream GIS (Andrews, 2007). As the GIS indus-

try tries to supply this demand, new technologies arise rapidly migrating to the mobile

market. The development of new mobile devices with Internet connections provides new

opportunities for web mapping. There are two commonly used approaches in mobile data

collection: through standalone application and a standard web browser. Most of these solu-

tions are based on database-server-browser/application architecture (later referred as three-

tier architecture), and can operate both in online and offline mode. In online mode, this

model requires stable high-bandwidth Internet connection for retrieving data from a data-

base. Since mobile devices cannot guarantee such connection will always be available,

offline solutions have to be implemented. Offline solutions require synchronization of data

when a connection is established. Synchronicity and replication is the process of sharing

information between multiple redundant storage sources. When using this approach with a

standard Internet browser, an offline solution is not possible because it requires a constant

connection to the server. Few commercial solutions available provide applications for off-

line GIS data viewing and editing. These solutions are often very expensive and often do

not follow standard communication protocols needed for data interoperability. This paper

proposes a data model and alternative architecture for mobile/desktop web mapping solu-

tion. The prototype application is based on open source NoSQL database CouchDB and a

web application written in standard HTML and JavaScript programming language.

This paper is structured as follows: the next section will present basic concept of prototype

application. Section 3 describes used technologies and protocols. Section 4 describes the

M. Miler, D. Medak and D. Odobasic 2

structure and retrieval methods for raster and vector data in the database. In section 5, we

will assess and discuss our solution. The conclusion is provided in section 6.

2. Objectives

The main research objective was to create an application that would store, provide and

replicate spatial data using as little technology as possible. The solution has to be simple

enough to use and develop to implement standard, open communication protocols, and not

be bound to one operating system. This requires basic architecture, which is independent of

constant Internet connection and which is not bound to a single operating system. Such

system should be able to work offline and replicate the data when connection is established.

Open and standard communication protocols must be used.

The easiest way to accomplish this is to use a standard web browser, which supports

JavaScript. Such web browsers are common on all operating systems. Usually web map-

ping is achieved with standard web mapping services like WMS, WFS, or TMS, but they

require a constant Internet connection. In areas where such connection is weak or not avail-

able, this approach is not possible. The solution is to use local data storage serving data and

to replicate it once the connection is available. We propose a NoSQL implementation lean-

ing on CouchDB database with its ability to serve web pages directly from the database and

data via REST interface. Geospatial data are integrated within the same application.

3. Applications and methods

3.1. The NoSQL movement

NoSQL is a term in information technologies that describe database management systems,

which depart from classic RDBMS (Relational Database Management Systems) altogether,

or in some parts. The term was first used for lightweight open source databases that did not

use SQL (Structured Query Language) as a database language. The name “NoSQL” could

indicate that these databases do not support SQL, but in this case it actually means “Not

Only SQL”. In his 2008 article, Strozzi claimed that because the NoSQL movement departs

from the relational model altogether, it would more appropriately be called 'NoREL'. The

term was re-introduced as a general term in 2009 by Eric Evan at Rackspace. In academic

research papers, these databases are referred to as a structured storage or non-relational

database. As opposed to SQL as a standard querying language, most of the NoSQL data-

bases implement MapReduce algorithm for querying and extracting relevant data.

MapReduce is a programming model that enables the easy development of scalable parallel

applications to process vast amounts of data on large clusters of commodity machines

(Yang at al., 2007). The model implements only two functions commonly used in func-

tional programming: map and reduce. It was introduced in a paper by Google Inc. (Dean,

Ghemawat, 2004) to support distributed computing on large data sets on clusters of com-

puters. The combination of the map and reduce functions in CouchDB is called a view. Map

function is called once for every document in the database, deciding whether to skip or emit

key/value par. CouchDB views are stored in rows and are indexed by the emitted key,

which makes data retrieving very fast, even with millions of rows. When writing a view,

 2-Tier architecture for web mapping with CouchDB 3

the goal is to adapt future searches from the key and data searched to the emitted value of

the key/value pair.

NoSQL is often considered a synonym for open source databases, but NoSQL is not about

open source. The business model does not matter here; it is the technology (Kellogg, 2010).

Traditional RDBMS databases like PostgreSQL, Oracle, SQL Server or MySQL rely on

ACID (Atomicity, Consistency, Isolation and Durability) properties, which NoSQL data-

bases lack or partially lack. NoSQL databases are developed to run on a cluster of “cheap”

and commodity servers and personal computers. In order to achieve this some NoSQL

databases neglect some of the ACID properties. ACID properties do not contradict or ne-

gate the concept of NoSQL, but there seems to be a trend following that opinion. NoSQL

does not mean that ACID properties are not implemented (Orend, 2010).

NoSQL databases are fundamentally schema-free key-value pair datastore. It is a direct

alternative to traditional RDBMSs, which store data in terms of tables. All data are stored

in a table, and when modelling complex data structures, an individual piece of data may be

split across one or more tables. For some applications and data types, this is a perfectly

logical and reasonable way of approaching and storing your data. For some applications the

table structure does not map very well to the data you want to store (Couchone, 2010).

NoSQL is a part of a broader trend in database systems - specialization. Traditional

RDBMSs work very well for most applications but are not the best solution for everything

(Varley, 2009).

There are several classifications of NoSQL databases, but all current implementations be-

long to four major classes (Varley, 2009):

 key-value stores, also known as distributed hash tables, e.g. Amazon's Dynamo,

Voldemort, Berkeley DB, Hadoop

 bigtable, also known as multi-dimensional tabular systems, e.g. Google's Bigtable,

Hypertable, HBase

 document-oriented databases, e.g. CouchDB, MongoDB

 graph-oriented databases, e.g. Neo4j, AllegroGraph.

3.2. CouchDB

CouchDB is a part of the Apache Software Foundation, which provides organizational,

legal, and financial support for a broad range of open source software projects. CouchDB is

developed in Erlang, which is a robust functional programming language designed at the

Ericsson Computer Science Laboratory for building concurrent, distributed systems. Erlang

is a programming language designed. Open-source Erlang is being released to help encour-

age the spread of Erlang outside Ericsson (Armstrong, Däcker, Lindgren, & Millroth,

2010). Initially, CouchDB was developed in C++, but from 2006, development was moved

to Erlang because of its concurrency control, fault tolerance, and distributed applications

which suited perfectly for CouchDB usage.

CouchDB is a multi-platform schema-free document-oriented database with an optimistic

replication mechanism (Anderson, Lehnardt, & Slater, 2009). Each document is uniquely

named in the database with its ID. The main segment of data in CouchDB is a single docu-

ment. In traditional RDBMSs, it could be seen as one row of data in one table. A document

can consist of any number of fields and attachments, which can differ from document to

M. Miler, D. Medak and D. Odobasic 4

document for the same database. Document fields must be uniquely named, and data are

not limited by size or number of elements. Each document can have a different number of

fields or no fields at all (with the exception of a unique id). Basically, this is what makes

CouchDB a schema-free database. In traditional RDBMSs, the schema is mostly fixed and

highly structured. Very often it is hard to change or update schema after data has been en-

tered into the tables. In CouchDB, (NoSQL databases in generally) there is no such con-

straint. This makes NoSQL databases ideal for systems where the hard structure of data is

changing. CouchDB is designed to store large amounts of semi-structured, document- ori-

ented data.

Documents in CouchDB are stored in a single structure, JSON (JavaScript Object Notation)

format. The JSON format allows for a complex structure of fields, arrays, objects, and sca-

lar types, which can be combined into an entire record (Orend, 2010). JSON is a text format

for the serialization of structured data. It is derived from the object literals of JavaScript, as

defined in the ECMAScript Programming Language Standard, Third Edition (Crockford,

2006). ECMAScript is the scripting language standardized by Ecma International in the

ECMA-262 specification and ISO/IEC 16262. A few years ago, the geospatial community

has suggested a geographic dialect of JSON, called GeoJSON. The idea was to standardize

the way of distributing spatial data over the web. GeoJSON can be used to represent ge-

ometry, feature, a collection of geometries, or collection of features. Each feature (geome-

try object) can contain additional properties. Supported geometry types in GeoJSON are

Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and Box. A com-

plete GeoJSON data structure is always an object (in JSON terms) (Schaub, Doyle, & Daly,

2008).

Figure 1 Example of point in GeoJSON data structure stored in CouchDB

3.3. CouchApp

A CouchApp is a JavaScript and HTML5 application that can be served directly to the

browser from CouchDB database, with no other applications in the middle. A standard way

of writing a dynamic database-backed web application is by using the three-tier architecture

consisting of the client, application server and database.

 2-Tier architecture for web mapping with CouchDB 5

Figure 2 Three-tier and two-tier architecture

Three-tier architecture (Ramirez, 2000):

 Tier 1: the client contains the presentation logic, e.g. Internet Explorer, Mozilla

Firefox, Google Chrome etc. This application is also known as a thin client.

 Tier 2: the middle tier is also known as the application server, which provides the

processes logic and the data access.

 Tier 3: the data server provides the data

Most of web applications written today are based on three-tier architecture. CouchApp is a

set of scripts that allows complete, stand-alone CouchDB applications to be built using just

HTML and JavaScript (Anderson, Lehnardt, & Slater, 2009). CouchApp enables web appli-

cations to be served directly from the database as they would be served through any other

web server. This is mostly possible because CouchDB has a RESTful interface. It means

that one can communicate with CouchDB as they would with any webserver. The only

difference that response is not a standard HTML webpage as it might be expected from a

standard webserver but data (documents) in JSON format. The fact is that CouchDB has a

protocol that is universal, and not binary like the one of common databases such as MS

SQL Server, Oracle or MySQL. Although CouchDB has a RESTful API for accessing the

database, the entire API is not RESTful (Anderson et al., 2009). Essentially, database re-

sources can be accessed via ordinary web browser (e.g. Mozilla Firefox, Internet Explorer,

Chrome etc.) without any service in between. The term Representational State Transfer

was introduced and defined in 2000 by Roy Fielding in his doctoral dissertation. “REST

enables intermediate processing by constraining messages to be self-descriptive: interaction

is stateless between requests, standard methods and media types are used to indicate seman-

tics and exchange information, and responses explicitly indicate cacheability.” (Fielding,

2000).

3.4. Openlayers and TileCache

Openlayers is an open source geospatial AJAX toolkit designed to display and manage

spatial data in a web browser, originally developed by MetaCarta. It is entirely written in

JavaScript and has no requirement from the client side except the web browser, which sup-

ports JavaScript. OpenLayers implements industry-standard methods for geographic data

access, such as the OpenGIS Consortium's Web Mapping Service (WMS) and Web Feature

Service (WFS) protocols, GeoJSON, KML, GML and other formats. It is agnostic of

Http clients

Web browsers

Application

server
Database

Http clients

Web browsers

Application server

& Database

M. Miler, D. Medak and D. Odobasic 6

server-side technologies, which means the technology used on the server-side is insignifi-

cant as long as it follows the standard communication protocols.

TileCache is an implementation of a WMS-C compliant server, which was also developed

by MetaCarta. It provides a Python-based WMS-C/TMS server, with pluggable caching

mechanisms and rendering backends like MapServer or Mapnik. Its primary function is to

speed up the WMS request by caching generated tiles on disk and can speed up access to

WMS server by factors of 10-100, or more (TileCache, 2010). Tiles are stored on disk in a

structured directory hierarchy, e.g. layer/0/000/001/053/000/021/052.png.

Figure 3 Example of stored tiles on disk

4. Prototype application

The software component used to create the prototype application is CouchDB 1.0.1,

Openlayers JavaScript mapping library, Mapnik library for generating tiles, TileCache for

storing tile structure, and Python programming language for scripting. As one of the objec-

tives was to create an application that was simple to develop, only basic knowledge pro-

gramming in JavaScript and Python was necessary for all the coding.

4.1. Raster data (Map tiles)

For mapping applications, it is important to have access to both raster and vector data. Dis-

playing georeferenced raster data in a web browser is difficult if these rasters are not served

with some web mapping service. WMS is commonly used, but it is not appropriate in this

case because it requires a constant, active service on the device or connection to the server.

In order to use large raster images efficiently in a web browser, raster images need to be

tiled in „mosaic-like pieces‟. Storing and reading large raster images as a whole would

drastically slow down the application, especially for a mobile device. Mapnik and Tile-

Cache were used for tiling and rendering raster data. Mapnik is an open source mapping

library for map rendering raster and vector data used in WMS, TMS or other web mapping

services. TileCache was used for caching those rendered tiles from Mapnik to structured

 2-Tier architecture for web mapping with CouchDB 7

directory hierarchy on a disk. Later, this structured hierarchy will be very important for

retrieving a particular tile.

Using the Python programming language and Couchdbkit library, all rendered tiles were

imported into CouchDB as a document attachment with a unique ID. This unique ID is

important for retrieving a particular tile from the database. The unique ID is a string con-

catenated of layer, zoom level, structured TileCache tile identification and name of the tile.

For example, tile on a disk with the directory location

layer/0/000/001/053/000/021/052.png would correspond to layer0000001053000021052.

This string uniquely identifies one tile in a particular layer. For the sake of simplicity, the

prototype application uses a short and unique ID, which does not include redundant zeros

(see Figure 4).

Figure 4 One tile stored as an attachment in CouchDB document

With all tiles imported into the CouchDB database, we can use CouchDB‟s ability to access

every tile via standard REST interface directly from the CouchDB database using previ-

ously generated unique ID, e.g.

http://localhost:5984/my_app/layer0000001053000021052/052.png

An Openlayers plugin was necessary to use restfulness of CouchDB with Openlayers map-

ping library. The plugin is reading the tiles in the same way it would read the tiles from any

other web mapping service. It was possible to calculate tile ID based on the current view in

application, because TileCache creates a structured directory hierarchy based on tile geo-

location, using that same algorithm.

http://localhost:5984/my_app/layer0000001053000021052/052.png

M. Miler, D. Medak and D. Odobasic 8

Figure 5 Accessing one tile via REST interface

4.2. Vector data (JSON)

Vector data are a collection of points, lines and polygons. CouchDB could have been used

for storing standard GIS data formats as an attachment (similar to raster data). Such solu-

tion would have problems with reading and writing to the database. The GeoJSON format

was used for storing of all vector data because CouchDB is basically the JSON storage.

Slight modification had to be made using JavaScript to format CouchDB JSON document

to fit GeoJSON standard used in Openlayers library. The current prototype application is

capable of rendering of saved vector data and input new data depending on location. It is

straightforward to develop editing and deleting of data.

Visualization of georeferenced vector data directly from the database is simpler than raster

data. The problem occurs if a large number of objects are to be displayed in a web browser.

Web browsers are not optimized for displaying of vector data.

Figure 6 Dots show vector point data from local CouchDB storage (left) and one point

stored in JSON format (right)

Using Geolocation API that is implemented in all modern web browsers, it is possible to

store current location into the database as a point or a waypoint data. The Geolocation API

defines a high-level interface (usually web browser) to the location information (longitude

and latitude) associated only with the device hosting the implementation. The API itself is

 2-Tier architecture for web mapping with CouchDB 9

agnostic of the underlying location information sources. Common sources of location in-

formation include Global Positioning System (GPS) and location inferred from network

signals such as IP address, RFID, WiFi and Bluetooth, MAC addresses, and GSM/CDMA

cell IDs, as well as user input. There is no guarantee that the API will return the device's

actual location (W3C, 2010).

5. Discussion

During the development of this prototype application, we have realized that although it uses

basic technology, it would take a lot more work to create a full-working application. Even

some basic features that are standard in other mobile data collection applications like ex-

porting and uploading new data would require a lot of customization programming.

At any time, application should not display a large number of vector data. Web browsers,

especially older versions, are not optimized for displaying large quantities of vector data.

Mobile devices do not have processors fast enough for displaying large amount of vector

data without significant performance loss. An alternative approach would be to render a

part of vector data to the raster format. The problem is to develop a service that would intel-

ligently render only required raster tiles from vector data that are not needed to be in vector

format.

The largest disadvantage of rasterized and rendered data as tiles is the required amount of

disk storage space. Although current mobile devices have more disk space than before, it is

still not enough, especially if there are more layers. This problem can be resolved by up-

loading the area of interest only, which requires additional customization at both the server

and client side.

The proposed solution, in its current implementation, is designed for lightweight applica-

tions. Major development effort is needed for the preparation of an enterprise solution.

Nevertheless, CouchDB has proved to be an interesting solution for storing and providing

spatial information without any service between the database and clients.

6. Conclusions

The NoSQL movement and CouchDB in particularly are changing the perception of data-

bases and the interaction between clients and databases. The prototype application is dem-

onstrating the ability of a web browser and CouchDB to serve as a data collecting applica-

tion. The use of standard GIS functions could be implemented by adding other JavaScript

libraries, which could be the next step of the development. Using CouchDB, which is avail-

able on almost all operating systems, this application is fully platform-independent. Future

will bring more NoSQL databases to the mainstream GIS because of its versatility, per-

formance and openness.

7. References

M. Miler, D. Medak and D. Odobasic 10

Anderson, J. C., Lehnardt, J., & Slater, N. (2009). CouchDB: The Definitive Guide. Sebas-

topol: O‟Reilly.

Andrews, C. (2007). Emerging Technology: AJAX and GeoJSON. Retrieved December 14,

2010, from Direction Magazine: http://www.directionsmag.com/authors/christopher-j-

andrews/122075

Armstrong, J., Däcker, B., Lindgren, T., & Millroth, H. (2010). Retrieved January 27, 2011,

from Erlang.org: http://www.erlang.org/white_paper.html

Couchone. (2010). How to Move from MySQL to CouchDB. Retrieved December 9, 2010,

from http://blog.couchone.com/post/2145537100/how-to-move-from-mysql-to-couchdb-

part-1

Crockford, D. (2006). The application/json Media Type for JavaScript Object Notation

(JSON). Retrieved December 9, 2010, from http://tools.ietf.org/html/rfc4627

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clus-

ters. San Francisco.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures (Doctoral dissertation). Irvine: University of California.

Kellogg, D. (2010). Six Thoughts on The NoSQL Movement. Retrieved December 8, 2010,

from http://kellblog.com/2010/06/18/six-thoughts-on-the-nosql-movement/

Orend, K. (2010). Analysis and Classification of NoSQL Databases and Evaluation of their

Ability to Replace an Object-relational Persistence Layer. Munich: Technical University

Munich, Faculty of Informatics.

Ramirez, A. O. (2000). Three-Tier Architecture. Retrieved December 2010, from Linux

Journal: http://www.linuxjournal.com/article/3508

Schaub, T., Doyle, A., & Daly, M. (2008). GeoJSON Specification draft version 6. Re-

trieved December 14, 2010, from http://wiki.geojson.org/GeoJSON_draft_version_6

Strozzi, C. (2008). NoSQL A Relational Database Management System. Retrieved Decem-

ber 2010, from http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home Page

TileCache. (2010). TileCache -- Web Map Tile Caching. Retrieved December 2010, from

http://tilecache.org/

Varley, I. T. (2009). No Relation: The Mixed Blessings of Non-Relational Databases (Mas-

ter's Thesis). Austin: The University of Texas.

W3C. (2010). Geolocation API Specification. Retrieved December 2010, from W3C Web

site: http://dev.w3.org/geo/api/spec-source.html

Wikipedia. (2010). NoSQL. Retrieved December 2010, from Wikipedia, The Free Encyclo-

pedia: http://en.wikipedia.org/wiki/NoSQL

Yang, H.-C., Dasdan, A., Hsiao, R.-L., & Parker, D. S. (2007). Map-Reduce-Merge: Sim-

plified Relational Data Processing on Large Clusters. SIGMOD. Beijing.

