

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

SVEUČILIŠTE U ZAGREBU

FAKULTET ELEKTROTEHNIKE I RA ČUNARSTVA

DIPLOMA THESIS no. 153

DIPLOMSKI RAD br. 153

CONTEXT – AWARE FILTERING AND

DISSEMINATION OF RICH PRESENCE

INFORMATION

KONTEKSTNO – SVJESNO FILTRIRANJE I

RAZAŠILJANJE INFORMACIJA BOGATE

PRISUTNOSTI

Aleksandar Antonić

Zagreb, June 2011.

Zagreb, lipanj 2011.

Acknowledgements

I would like to thank my advisors Prof. Ivana Podnar Žarko

and Prof. Manfred Hauswirth for their guidance and provided

assistance in making this thesis.

The work presented in this diploma thesis has been performed at the Department of
Telecommunications of the Faculty of Electrical Engineering and Computing,
University of Zagreb, and Digital Enterprise Research Institute (DERI), National
University of Ireland, Galway during an internship from April 1st until June 30th,
2011. The work performed in DERI has been conducted under the supervision of
Prof. Manfred Hauswirth

Contents
Introduction ... 1

1. A Model for Presence .. 2

1.1. Communication between the entities ... 3

1.2. Message structure .. 5

1.2.1. Publication/Notification .. 5

1.2.2. Subscription ... 6

2. SIP Presence .. 7

2.1. Architecture ... 7

2.2. Communication and protocol .. 9

2.3. Presence Information Data Format – PIDF ... 12

3. Extensible Messaging and Presence Protocol ... 15

3.1. Architecture ... 15

3.2. Communication and protocol .. 16

3.2.1. XML stanzas .. 17

3.2.2. Subscription process .. 17

3.2.3. Publishing process ... 19

3.2.4. Notification process ... 19

4. Rich presence service for physical presence ... 21

4.1. Architecture ... 21

4.2. where.deri.ie .. 24

4.3. Implementation of the RPS and integration with where.deri.ie 26

5. Supported Presence Subscriptions ... 32

5.1. Simple subscription ... 32

5.1.1. Simple presence service... 32

5.1.2. Geo–fence service.. 34

5.1.3. Virtual secretary .. 34

5.2. Parallel subscription .. 36

5.2.1. Meeting scheduler.. 36

5.2.2. Sequence subscription ... 38

Conclusion ... 40

References ... 41

Summary .. 43

Sažetak ... 44

1

Introduction

Presence as a service is widely spread in today’s world of communications (telephony,

instant messaging, e–mail, etc), and is often referred to as the dial tone of the 21st century.

Currently there are two competing protocol suites for presence: SIP presence and

eXtensible Messaging and Presence Protocol (XMPP). Although both protocols are widely

deployed, existing solutions still face a number of challenges: existing presence solutions

typically ship all generated presence updates from presentities to watchers, without taking

into account watcher context, while it is difficult to control the disclosure of sensitive

personal presence information. This generates a large number of messages that can use up

client battery power rather quickly, and introduces serious scalability problems within the

core network. Moreover, existing solutions do not include various aspects of presence

information from physical, online, and virtual presence sources that would contribute to

provide a usable flow of information within different communities (business partners,

social groups, family, etc) while retaining the simplicity of use for end users.

This thesis describes a rich presence service as an integrating solution for presence which

is compatible with existing protocols (SIP Presence and XMPP). It enables context-aware

collection and exposure of rich presence information, and offers fine-grained filtering of

presence information in accordance with user context and predefined policies. The rich

presence service can be used to extend existing services by integrating independent data

sources and filtering their content in accordance with current user interests and needs.

The thesis is structured in the following way. Chapter 1 provides an overview of the basic

model for presence services. Chapter 2 and Chapter 3 describe currently the two most

popular solutions for presence: SIP Presence and XMPP. Chapter 4 describes the rich

presence service, followed by a description of supported subscriptions and services in

Chapter 5. Chapter 6 concludes the thesis.

2

1. A model for Presence

Presence information (abbreviated as presence) is defined as user willingness and ability to

communicate with other users across a set of devices and tools. Presence service is a

service which receives, stores, and disseminates presence information to all interested

parties. Presence service has emerged in conjunction with instant messaging systems, but

today is regarded as an independent service.

A model for presence, shown in Figure 1.1, defines all entities involved in the exchange of

presence information, and describes the protocols and messages used in a system

implementing a presence service [3]. Presence service allows users to subscribe to

presence updates generated by their contacts, and to be notified of changes regarding their

presence information (e.g. available, busy, do not disturb).

Figure 1.1 Presence Service model

A presence service entity accepts all presence updates, stores it and distributes to

subscribed users. It also keeps records about watchers and their activities (subscriptions to

presence information). Prior to disseminating any presence information, the service checks

the watcher’s access rights to verify whether the watcher is allowed to receive presence

updates from a particular presentity.

3

A presentity provides presence information about users (humans) or resources (laptop,

projector) to the Presence Service (PS). It is supplied with data (presence information)

from Presence User Agents.

A Presence User Agent (PUA) is an entity that generates presence-related information such

as status, location, contact means, etc. Usually it is a client application on a user’s

computer or mobile phone, but it can also be an object or resource that represents a

presence information producer, e.g. a sensor generating presence-related contextual

information.

A watcher is an entity that requests presence information about presentities from a

presence service. Requests are defined as one-time queries or continuous user

subscriptions. Accordingly, there are two types of watchers: a fetcher explicitly asks for

the current presence status of one or more presentities using one time queries, and a

subscriber specifies subscriptions or continuous queries that ask the PS to notify it

immediately about any changes of presence information generated by one or more

presentities. This request is defined as an active subscription stored by the PS. Watcher

serves as an intermediary between a PS and Watcher User Agent.

A Watcher User Agent (WUA) is an entity that enables a watcher to specify subscriptions

to presence updates and displays presence notifications to a user. Usually it is a client

application on a user’s computer or mobile phone, or part of another application (e.g. a

meeting scheduler, calendar, etc.).

1.1. Communication between the entities

The communication between a PUA and presentity, or between a WUA and watcher uses

some of the well known communications protocols (e.g. SIP, XMPP or HTTP). The PS

communicates with presentities and watchers using the presence protocol (as shown in

Figure 1.2).

4

Presentity Watcer

Presence
Service

pr
es

en
ce

 p
ro

to
co

l :
su

bs
cr

ipt
ion

/

no
tifi

ca
tio

n

Presence User
Agent

Watcher User
Agent

Figure 1.2 Presence Service communication

The above mentioned protocols, the well known communications protocols and presence

protocol, carry three types of messages: subscription, publication and notification. A

subscription is the message which expresses continuous request for presence information

of some presentity on behalf of a user. A publication is a message that carries new, fresh

presence information about a user or resource. A notification is a message that delivers

presence information generated by a presentity of interest to the watcher user agent.

Since presence uses the publish/subscribe style of communication, it does not conform to a

strict flow of messages between the entities which is a characteristic of the request–

response communication mechanism. On one hand, subscriptions and publications are

generated in an ad-hoc fashion independently of each other. On the other hand,

notifications are produced by the PS only in cases of a matching event. The matching event

is an event when a subscription previously defined by a watcher, which is defined by a

presence URI (pres URI) identifying a presentity of interest, overlaps with the presence

information generated by the presentity. Additionally, the watcher needs to be granted with

a permission to receive presence information from the presentity of interest. Currently

there are two widespread presence protocol implementations, SIP Presence and XMPP,

described in detail in Chapters 2 and 3.

5

1.2. Message structure

1.2.1. Publication/Notification

Presence information

Presence tuplePresence tuple

Status

Communication address

Contact means

Contact address

Other markup

Presence tuple

...

Figure 1.3 The structure of presence information

Both publication and notification messages have the same structure because they both

carry presence updates about a presentity. Figure 1.3 shows the structure of presence

information (defined by RFC 2778 [3]) which consists of one or more presence tuples.

Each presence tuple describes a single communication point associated with a presentity,

and consists of a status and optional communication address and presence markup. A status

carries the basic information about a presentity, and usually describes the user’s

willingness for communication. It primary defines a user status as being either open or

closed, and expresses the specific communication status related to a presentities

communication point, e.g. online, offline, busy, not available. A communication address

includes the following fields: communication means and a contact address.

6

Communication means indicates a method whereby communication can take place (e.g.

instant messaging, e-mail, phone), and contact address is an identifier through which a user

or resource can be reached. Presence markup includes any additional information included

in the presence information of the presentity (e.g. location, mood, time).

1.2.2. Subscription

The basic presence model and RFC 3859 [4] define a subscription message as a

subscription to a pres URI. Each subscription message must contain the following

attributes: watcher, target, duration, subscription ID and TransID. A watcher attribute

identifies a subscriber (via a user’s pres URI), while a target attribute identifies a presentity

(also via a pres URI). A duration specifies the maximum number of seconds that the

subscription is active. A subscription ID is a unique identifier used for unsubscribing, and

TransID is a message identifier that is used in a response message generated as a request to

a subscription message.

RFC 4661 [5] describes an extension for a subscribe message. The subscribe message is an

XML document containing the <filter-set> element as root element. The <filter-set>

element may contain one <ns-bindings> element and one or more <filter> elements. The

<ns-bindings> element is used to bind namespaces to local prefixes used in expressions

that select elements or attributes in the <filter> element. The <filter> element is used to

specify the content of an individual subscription. Each <filter> element has the uri attribute

containing value of a pres URI of the user of interest. The <what> element is used to

specify the content to be delivered to the user, and the <trigger> element identifies changes

that a resource has to encounter before the content is delivered to the subscriber.

7

2. SIP Presence

SIP Presence is also known as Session Initiation Protocol for Instant Messaging and

Presence Leveraging Extensions (SIMPLE) developed by the SIMPLE Working Group. It

is an instant messaging and a presence protocol suite based on the Session Initiation

Protocol (SIP). SIP architecture and protocols are reused for presence because SIP location

services already maintain certain user-related presence information in the form of user

registrations. SIP networks are capable of routing requests from any network to the server

that holds the registration state for another user.

2.1. Architecture

The architecture [6] (as shown in Figure 2.1) is similar to the generic model described in

Chapter 1. The central presence component is the PS, which includes three entities:

Register, Edge Presence Server, and Presence Agent. In SIP Presence, a watcher entity is

embedded in a WUA, and presentitiy is embedded in a PUA.

A presentity may use multiple PUAs, one for every device that can produce new presence

information (e.g. mobile phone and laptop). Each PUA independently generates a part (i.e.

tuple) of the overall presence information, and pushes it into the presence system.

WUA manipulates user’s subscriptions and displays to the user all incoming notifications.

A user may apply multiple WUAs. The user can define subscriptions on any WUA that

sends updates into the presence system, but notifications will be displayed to the user only

on the a single (probably the last active) WUA.

WUA and PUA are implemented in client applications on user’s communication resource

(e.g. mobile phone, computer). Client application usually include implementations of both

entities.

The core of the SIP Presence system is implemented by a Presence Agent. It is a SIP server

which is capable of receiving and processing subscribe messages and generating

notifications of changes in presence state. Presence Agent receives and processes

publication messages and therefore maintains the knowledge about the presence statuses

for all registered presentities.

8

Presence
Agent

Edge
Presence

Server

Register

Edge
Presence

Server

Proxy
Server

Proxy
Server

Proxy
Server

Presence
User Agent

Watcher User
Agent

publication

notification

subscription

Figure 2.1 SIP Presence arhitecture

An Edge Presence Server is a Presence Agent that is co-located with a Presence User

Agent. It is aware of the presentities presence information and is therefore capable to

process (part) of subscriptions in the system and thus reduce load on the Presence Agent. A

Presence Agent and Edge Presence Server constitute a Presence Server.

A Register is the server that receives and processes registration messages and records

every log in to the system from a presentity or watcher. It also keeps the data about the

currently active WUA (this information is required for the delivery of notifications). The

register in some cases also stores user’s (partial) presence information.

Proxy Server routes messages to the appropriate server, Presence Agent or corresponding

Edge Presence Server.

9

2.2. Communication and protocol

When a WUA (on behalf of a user) wants to receive presence information from some other

user (a presentity), it creates a subscribe message where the presentity is identified in the

Request-URI, using a SIP URI or pres URI. A proxy carries this message to the Presence

Server (Presence Agent or Edge Presence Server with the most recent update of presence

information). The Presence Server first authenticates and then authorizes the subscription.

If the subscription is authorized, a 200 OK response is returned. A 403, 603 (rejected) or

202 (pending) response is returned for non authorized subscriptions. In both cases the

Presence Server also sends a notification message containing requested user’s presence

information. In case of 202, a response notification message is also sent which always

indicates that a user of interest is offline (not able to communicate).

The subscription persists for a duration stated in an Expires header field of the subscription

message. It is necessary to refresh the subscription before its expiration, if the user is still

interested in the presence information.

The unsubscription process is similar to the subscription process. WUA sends a subscribe

message which is similar to the one previously sent when defining the original

subscription: the only difference is that the Expires header field has a value set to zero. The

Presence Server also replies with a status message (200 OK or 202) and after that sends a

notification message with the current presence information for the indicated user. This

feature also supports one-time queries for presence information. In both cases, either when

used for unsubscriptions or one-time querying, the Presence Server authenticates and

authorizes requests prior to processing them.

A Presence Server may send a notification message to a WUA at any time, usually when

the presence information of a presentity changes (i.e. after the Presence Server receives a

new publication message).

A notification message contains the presence information in its body in the Presence

Information Data Format (PIDF). It is common to generate notification messages with

complete presence information. Extensions enable a watcher to request notifications

containing only changes in presence information, rather than complete presence

information. If the resource is not in a meaningful state, the Presence Server can send

notification message without a body (i.e. presence information).

10

For reasons of privacy, it is necessary to encrypt the contents of the notifications. This can

be accomplished using the S/MIME format1.

After the change of a presence status, a new publication message is created by a Presence

User Agent (on behalf of a user) and sent to the Presence Server. The Presence Server sets

a soft state2 for a designated presentity and sends a 200 OK response as a confirmation.

Presence information is contained in the body of a publication message, written in PIDF.

Before the expiry time specified in the Expires header field is reached, a Presence User

Agent must refresh the presence information if it is still valid. The process of presence

information refreshing requires that a PUA sends a new publication message. Such a

message has an empty body (because there is no change in presence information) but has a

value in SIP-If-Match field to indicate the refresh operation and new value in the Expires

header field. After a successful refresh process, the PS responds with 200 OK.

For immediate removal of presence information, a PUA creates a publish message with an

Expires header field set as zero. This message also has no body, and has a value in SIP-If-

Match field to indicate which presence information to be removed from the Presence

Server.

SIP Presence allows partial modification of presence information. For this operation, PUA

creates and sends a publish message with SIP-If-Matched field and body that contains only

changed presence information. Presence Server responds with a 200 OK message for

successful partial update of presence information.

1 Secure/Multipurpose Internet Mail Extensions

2 soft state is a state of the presentity when there is active presence information with defined lifetime;

persistent presence information sets the hard state of the presentity

11

Presentity
Presence

Server
Watcher

SIP/2.0 200 OK
Via: SIP/2.0/UDP host.example.com;branch=z9hG4bKnashds7
;received=192.0.2.1
To: <sip:presentity@example.com>;tag=abcd1234
From: <sip:watcher@example.com>;tag=12341234
Call-ID: 12345678@host.example.com
CSeq: 1 SUBSCRIBE
Contact: sip:pa.example.com
Expires: 3600
Content-Length: 0

PUBLISH sip:presentity@example.com SIP/2.0

Via: SIP/2.0/UDP pua.example.com;branch=z9hG4bK652hsge

To: <sip:presentity@example.com>

From: <sip:presentity@example.com>;tag=1234wxyz

Call‐ID: 81818181@pua.example.com

CSeq: 1 PUBLISH

Max‐Forwards: 70

Expires: 3600

Event: presence

Content‐Type: application/pidf+xml

Content‐Length: ...

[Published PIDF document]

SUBSCRIBE sip:presentity@example.com SIP/2.0
Via: SIP/2.0/UDP

host.example.com;branch=z9hG4bKnashds7
To: <sip:presentity@example.com>
From: <sip:watcher@example.com>;tag=12341234
Call-ID: 12345678@host.example.com
CSeq: 1 SUBSCRIBE
Max-Forwards: 70
Expires: 3600
Event: presence
Contact: sip:user@host.example.com
Content-Length: 0

NOTIFY sip:user@host.example.com SIP/2.0
Via: SIP/2.0/UDP pa.example.com;branch=z9hG4bK8sdf2
To: <sip:watcher@example.com>;tag=12341234
From: <sip:presentity@example.com>;tag=abcd1234
Call-ID: 12345678@host.example.com
CSeq: 1 NOTIFY
Max-Forwards: 70
Event: presence
Subscription-State: active; expires=3599
Contact: sip:pa.example.com
Content-Type: application/pidf+xml
Content-Length: ...

[PIDF document]

SIP/2.0 200 OK

SIP/2.0 200 OK

NOTIFY sip:user@host.example.com SIP/2.0

SIP/2.0 200 OK

PUBLISH sip:presentity@example.com SIP/2.0

SIP/2.0 200 OK

PUBLISH sip:presentity@example.com SIP/2.0

SIP/2.0 200 OK

Figure 2.2 Message flow

Figure 2.2 shows a sample message flow in SIP Presence. A watcher subscribes to

presence information of a presentity. After a successful subscription process, a Presence

Server responds with a 200 OK message and includes the current presence status of the

addressed presentity. Subsequently, when the presentity publishes a new presence

message, the Presence Server processes it and also responds with a 200 OK message. The

Presence Server also checks whether there is a subscription that matches the newly

published information. This results with a notification which is sent to the watcher with a

12

matching presence subscription. The final message is used to refresh the current presence

information of the presentity and it does not trigger a notification process.

The SIP protocol is used for communication between all presence entities and therefore all

exchanged messages include a SIP header. The first line of a message defines the required

operation. SUBSCRIBE identifies a subscribe message which is followed by a presentity

URI and protocol designation. The following field To contains the presentity URI (not a

Presence Server URI), and the From field contains the watcher URI that defines a new

subscription. The Expires field sets the duration of the subscription (time in seconds from

receiving subscription message).

A notification message is identified by a NOTIFY field followed by a URI of the intended

watcher (subscriber) and protocol designation [7]. The To field also contains a watcher’s

URI while the From field contains the presentity URI (not a Presence Server URI). The

body of the message contains the whole presence information in PIDF.

For publication message is used PUBLISH method [8], followed by presentity URI and

protocol designation. Fields To and From fields have presentity URI. Expires field sets the

duration of publication (time in seconds). Presence information is in the body of message,

written in PIDF.

Responses to messages SUBSCRIBE and NOTIFY start with the protocol designation

followed by status message. All header fields are the same as in the request message.

2.3. Presence Information Data Format – PIDF

SIP Presence requests that presence information is written in the Presence Information

Data Format3 (PIDF) [9]. PIDF was developed from recommendations for the basic model

of presence services4. PIDF supports all options mentioned in section 1.2.1 of this thesis,

but also expands the presence information with priorities of contact addresses (to give

preference to some communication means) and adds a timestamp to a presence update.

PIDF encodes presence information in eXtensible Markup Language (XML). The

3 Also is used PIDF extension RPID (Rich Presence Information Data Format) which allows a more detailed

description of presence.

4 RFC 2778

13

designation for the PIDF presence information carried in the SIP message body is

application/pidf+xml.

All PIDF presence information must start with an XML declaration. The root element is

the <presence> element. Attribute fields contain namespace declarations used in PIDF

elements and a mandatory ‘entity’ attribute (URI of the presentity). The <presence>

element contains any number of <tuple> elements, which includes any number of <node>

elements with any number of optional extension elements from other namespaces. A

<tuple> element consists of a mandatory <status> element, followed by any number of

optional extension elements (including from other namespaces), followed by an optional

<contact> element any number of <note> elements, and an optional <timestamp> element.

Tuples are segments of presence information. The attribute Id is mandatory, and is used to

distinguish a tuple from other tuples in the same PIDF document. The <status> element

contains a single <basic> element, followed by any number of optional extension elements.

The <basic> element can declare one of the following states: “open”, which indicates a

user willingness to communicate, or “closed” otherwise. The <contact> element contains a

URL of the contact address. Each tuple has a priority attribute, whose value means a

relative priority of this contact address over the others. A priority value is a decimal

number between 0 and 1. The <note> element contains a string value, which is usually

used as a human readable comment. The <timestamp> element contains a string indicating

the date and time of status change of this tuple.

Figure 2.3 shows an example presence information in PIDF stating that the user can be

reached via an instant messaging address, or e-mail. Status busy and lower priority on

instant messenger contact mean indicates that user prefers contact via e-mail.

14

Figure 2.3 Presence information in PIDF

<?xml version="1.0" encoding="UTF-8"?>

 <presence xmlns="urn:ietf:params:xml:ns:pidf"

 xmlns:im="urn:ietf:params:xml:ns:pidf:im"

 xmlns:myex="http://id.example.com/presence/ "

 entity="pres:someone@example.com">

 <tuple id="bs35r9">

 <status>

 <basic>open</basic>

 <im:im>busy</im:im>

 <myex:location>home</myex:location>

 </status>

 <contact priority="0.8">im:someone@mobilecar rier.net</contact>

 <note xml:lang="en">Don't Disturb Please!</n ote>

 <note xml:lang="fr">Ne derangez pas, s'il vo us plait</note>

 <timestamp>2001-10-27T16:49:29Z</timestamp>

 </tuple>

 <tuple id="eg92n8">

 <status>

 <basic>open</basic>

 </status>

 <contact priority="1.0">mailto:someone@examp le.com</contact>

 <note>I'll be in Tokyo next week</note>

 </tuple>

</presence>

15

3. Extensible Messaging and Presence Protocol

The Extensible Messaging and Presence Protocol (XMPP) is an application profile of the

Extensible Markup Language (XML) that enables real-time exchange of data between two

or more network entities. The protocol was originally named Jabber, developed by the

Jabber open source community and subsequently supported by the XMPP Working Group.

Many large companies (e.g., Google, Cisco, Facebook) support XMPP in their services

which lead to a large user base.

3.1. Architecture

An XMPP Presence System is typically implemented using a distributed client – server

architecture as depicted in Figure 3.1, wherein a client needs to connect to a server in order

to gain access to the network. XMPP uses globally unique addresses (based on Domain

Name System – DNS) in order to route and deliver messages over the network [10]. All

XMPP entities are addressable on the network. The server’s address is of the form

<domainpart> (e.g. <pres.example.com>. Each user has a unique personal address formed

as <localpart@domainpart> (e.g. <user@pres.example.com>). This address is also known

as the “bare JID5”. When a user connects to the network using a client application on one

of his/her resources, he uses the address formed as <localpart@domainpart/resourcepart>

(e.g. <user@pres.example.com/mobile>).

A client is an entity that establishes an XML stream with a server and then completes

resource binding in order to enable delivery of XML stanzas between the server and the

client over the negotiated stream. XMPP allows simultaneous connection between multiple

clients and server using the same registered account, where each client is differentiated by

the resource part of an XMPP address.

A server is an entity that manages XML streams with connected clients and servers. The

also server delivers XML stanzas to clients. Additional responsibilities can include the

5 JID = Jabber ID

16

storage of data that is used by clients and hosting for add-on services that also use XMPP

as the basis for communication.

Figure 3.1 XMPP architecture

3.2. Communication and protocol

The communication between the entities in an XMPP network (source and destination) is

carried out following the listed steps:

1. Determine the IP address and port number of the destination to which the source

wants to connect to.

2. Open a Transmission Control Protocol (TCP) connection to the destination.

3. Open an XML stream over the TCP connection.

4. Negotiate Transport Layer Security (TLS) for encryption.

5. Authenticate entities in communication.

6. Bind a resource to the stream.

7. Exchange XML stanzas.

8. Close the XML stream.

9. Close the TCP connection.

The source entity first uses DNS to obtain the IP address and port of the destination entity.

After receiving a response, the source opens a TCP connection and establishes an XML

stream with the destination. It is recommended to encrypt the channel communication

using TLS. The Simple Authentication and Security Layer (SASL) is used for entity

authentication. This completes the initialization of the connection. If at least one entity is a

client, a resource (i.e. communication mean, e.g. mobile phone, laptop) is bind to the

17

stream (in server to server communication this step is skipped). The exchange of XML

stanzas fulfills the purpose of establishing the communication. An unlimited number of

XML stanzas can be exchanged during one session. In the end of communication, the

entities close the XML stream and the TCP connection.

Further on we focus on the exchange of XML stanzas which is used for the exchange of

presence information.

3.2.1. XML stanzas

The basic message in the communication using the XMPP protocol is an XML stanza.

There are three kinds of stanzas: <message/>, <presence/> and <iq/>. The <message/>

stanza is used when one entity pushes information to another entity. The <presence/>

stanza is used for disseminating and managing presence information following the

publish/subscribe communication style implemented over XMPP. The <iq6> stanza serves

as a control mechanism, using request – response style of communication. For additional

functionality that extends the basic syntax of stanza, XMPP uses XML namespaces [13].

Attributes ‘to’, ‘from’, ‘id’, ‘type’ and ‘xml:lang’ are common to all stanzas. The ‘to’

attribute specifies the JID of the intended recipient for the stanza, and the ‘from’ attribute

specifies the JID of the sender. The ‘iq’ attribute is used to track response or error stanza

that it might receive from another entity. The ‘type’ attribute specifies the purpose or

context of the stanza. The ‘xml:lang’ attribute specifies the default language of human

readable XML data, is often omitted.

3.2.2. Subscription process

Presence information is disseminated only to other entities that a user has previously

approved [11]. In XMPP, a subscription lasts until an entity unsubscribes or a user invokes

the previously granted subscription approval. For managing subscriptions, entities are

using presence XML stanzas with attributes: subscribe, unsubscribe, subscribed and

unsubscribed.

Figure 3.2 shows an example subscription process using XMPP. A subscriber’s client

generates a subscription request by sending a presence stanza of the type subscribe and a

6 iq = Info/Query

18

URL address of a user of interest in the attribute ‘to’. This request represents a request for

authorization from the user that he/she is interested in. The server expands the subscription

request with the attribute ‘from’, and routes the XML stanza toward the user of interest.

After the server forwards this request, it also sends a response in the form of an iq stanza to

the subscriber. After the client application from the user of interest receives a subscription

request, it presents the request to the user (or replies to it automatically following the

explicit rules predefined by the user). A stanza of the type subscribed is used when an

approval is granted, while a stanza of the type unsubscribed is used otherwise. Further on,

the server expands the presence stanza with an attribute ‘from’, and routes the message to

the subscriber finishing the process with a response to the user in the form of an iq stanza.

Finally, the server needs to deliver the presence information of the successfully subscribed

user to all subscriber devices.

XMPP mandates that each user has a subscription to his own presence information. The

auto-subscribe process is managed by the user’s server.

Figure 3.2 Subscription process using XMPP

When cancelling a subscription, a user can at any time send a presence stanza of the type

unsubscribe and repeat the previously described process with a message of the type

unsubscribe.

19

3.2.3. Publishing process

Publishing process using XMPP is shown in Figure 3.3. When publishing a new presence

update, a user sends an empty presence stanza (also called the initial presence). The user’s

server sends the initial presence to all subscribers, extending the stanza with attributes

‘from’ and ‘to’. It also sends this initial presence to the user that published it because of the

auto-subscribe feature. After sending the initial presence stanza, the user can send the full

presence information. This is done in the same fashion as with the initial presence. The

user’s server disseminates presence information to all subscribers, extending the presence

stanza with attributes ‘from’ and ‘to’. For ending the “presence session” (i.e. going

offline), the user sends a presence stanza of the type unavailable. Status message may or

may not be included.

Figure 3.3 Publishing process using XMPP

If the user wants to send his/her presence information to another user that is not subscribed

to his/her presence, he/she can do this by sending a presence stanza with a ‘to’ attribute

that contains the JID of the intended recipient. The servers will route the stanza through the

network to the intended user.

3.2.4. Notification process

Figure 3.4 shows notification process using XMPP. When a user logs onto the network,

he/she wants to check the presence information of other users that he/she is subscribed to.

This is the responsibility of the user’s server, and thus it sends a presence probe stanza for

each subscription. A server that has the presence information about the user of interest

20

responds to the presence probe stanza with a presence stanza that contains the full presence

information.

Figure 3.4 Notification process using XMPP

21

4. Rich presence service for physical presence

The rich presence service (RPS) is a service that manages physical and virtual presence. It

may be used by many applications that need a unified presence solution. The RPS uses the

RPID format [14] for storing and exchanging presence information. RIPD includes

contextual information, such as location, mood and activity (associated with physical

presence) or status and contact means (associated with virtual presence).

State-of-the-art presence service implementations typically do not support physical

presence, only virtual presence, offering simple subscriptions to all presence updates

generated by a single presentity, information privacy is quite limited [2]. The RPS

(developed at Department of Telecommunications of the Faculty of Electrical Engineering

and Computing, University of Zagreb) [1] is a system that provides a presence service

without mentioned deficiencies. Integration of the RPS with where.deri.ie enables

additional services associated with the presence. Where.deri.ie updates user presence

information, the RPS processes and disseminates it to interested users.

4.1. Architecture

The position of the RPS within a presence system and its components are shown in Figure

4.1. The RPS integrates SIP and XMPP presence solutions with additional presence related

services (e.g. meeting scheduler, calendar).

The central components of the RPS are the following: rich presence layer,

publish/subscribe layer, and policy server. The rich presence layer (RPL) offers a web

service interface and can be accessed directly via SOAP. The RPL accepts presence

updates in the RPID format and presence subscriptions defined using XPath. The RPL

converts presence updates and subscriptions to a publish/subscribe message format.

The publish/subscribe layer (PSL) is implemented by the Mobile Publish/Subscribe

(MoPS), a content–based publish/subscribe system for filtering and disseminating presence

updates optimized for mobile environments. The PSL accepts presence data from various

presence–related data sources (e.g. Facebook, Twitter, a sensor network, calendar) either

directly when a data source is extended by a MoPS publisher that publishes data objects

22

according to the MoPS publish/subscribe protocol, or through the middleware layer for

presence-data acquisition which fetches data and converts them to a publish/subscribe

message format. The combination of different means for providing data to the system

improves its performance, e.g. presence related data does not need to pass through the two

layers (rich presence middleware and publish/subscribe) to be matched against

subscriptions. Moreover, a distributed publish/subscribe implementations allows efficient

filtering of data objects close to data sources even if they have high publication rates.

The rich presence service includes a Presence server which consists of an Openfire XMPP

server and/or a SIP presence server. Both servers need to be expanded to comunicate with

the rich presence layer. Thus, the RPS serves may serve as a gateway between XMPP and

SIP networks, thus offering a rich presence solution to the users of both networks (since

servers without such extensions can process only simple presence messages). Such

distributed architecture enables integration with various presence domains and presence

service implementations.

A policy server handles watcher and presentity policies. A presentity can set different

levels of presence visibility to different groups of watchers (e.g. his/her location is visible

to family members all the time, but to colleagues location is visible only during office

hours). A watcher defines policies for receiving presence updates (e.g. do not display

presence updates during a meeting, a company can block presence updates from friends

during office hours). Also policies can be used for defining preferable means (devices and

applications) for notification delivery. In the current implementation, the policy server is

used to define access rights to presence information between watchers and presentities.

Applications can use the RPS either directly, or through a presence server. When using

clients that do not support the RPID format, contextual data from a RPID document is

displayed as a textual message in addition to presentity state, while a watcher defines rich

presence subscriptions directly using the web interface of the RPS.

23

Presence server

XMPP
server

SIP
Presence

Presence-related data sources

Facebook,
Twitter

Sensors

Applications

Calendar

SIP

XMPP

IM
(XMPP client)

Presence-
enhanced
calendar

IM
(SIP client)

Meeting
scheduler

… VoIP

Rich presence layer

Middleware for
presence-data

acquisition

PUB-SUB
PROTOCOL

Rich presence
service

Policy server

SOAP

Publish/subscribe layer

PUB-SUB
PROTOCOL

Figure 4.1 Rich presence architecture

24

4.2. where.deri.ie

Digital Enterprise Research Institute (DERI) has developed an application that manages

presence information using the Linked Data and Social Semantic Web principles. The goal

is to rely on the already existing models and data (e.g. the FOAF ontology), design a

loosely-coupled architecture and make it accessible from a wide range of devices. This

application is used as an independent presence–related data source that combines presence

updates directly from users (using mobile phone applications) and from a sensor network.

Figure 4.2 Architecture of the Presence Management System

The architecture (as shown in Figure 4.2) consists of independent data sources from the

Web (e.g. user profiles in FOAF7), a Presence Management System (PMS) and third-party

applications [15]. The PMS aggregates data and manages presence information. For

publishing new presence information, third–party applications on various devices are used

(e.g. a mobile application that checks whether a user is in the room or in the building).

Independent data sources from the Web are used by PMS to retrieve context of presence

information and details about users (e.g. picture, full name, affiliation).

7 FOAF (from „friend of a friend“) is an RDF based schema to describe persons and their social network in a

semantic way

25

The service is visible on http://where.deri.ie (as shown in Figure 4.3), the URL points to

the root of the PMS. For publishing new presence information, HTTP POST request is

used containing a FOAF URI of the user, while the request is addressed to the URI of the

room. For example, POST /room/r309 HTTP/1.1 is used when a user logs into the

room 309. The service is using a REST-ful design pattern, therefore a room URI is:

http://where.deri.ie/room/xxx, where xxx is an identifier of the room. The Web service

provides the information about a user, his/her location, and check in time. Also it indicates

user availability, comment, and offers a link to the user’s profile page.

Figure 4.3 Presence information published on the website

The publication of the new presence information is possible through the Web interface,

using an application for Android phones or with an active RFID8 tag. RFID base stations

are deployed in the DERI building, which, with active RFID tags form the global sensor

network (GSN). Each RFID tag is associated to a FOAF profile of a user wearing it, thus

enabling tracking the location of a user. A sensor network can provide location information

about a user, but status information is provided using a simple mobile application that

indicates status, available or unavailable. When the phone is turned over (display facing

the floor) the user status is set to unavailable, while when the phone is turned back, the

user status is set to available.

Another Android application allows users to manage their presence information by

scanning a QR – code9 assigned to a location. This application requires deployed QR –

codes throughout the environment.

An alternate way to update presence information is by using a web interface where a user

fills out the form on the webpage of the appropriate room.

8 RFID = Radio Frequency Identification

9 QR = quick response; QR – code is a matrix barcode readable by dedicated QR barcode readers or camera

phones.

26

4.3. Implementation of the RPS and integration with

where.deri.ie

where.deri.ie

Sensors

Presence
client

(watcher)

Rich presence layer

Middleware for
presence-data

acquisition

PUB-SUB
PROTOCOL

Rich presence
service

Policy server

SOAP

Publish/subscribe layer

HTTP

where.deri.ie
Application
(presentity)

Web client

PUB-SUB
PROTOCOL

Figure 4.4 Implementation the RPS at DERI

The rich presence service implementation at DERI is shown in Figure 4.4 and it is done in

accordance with the architecture defined in chapter 4.1.

The rich presence layer represents an entry point for distributing rich presence information

in RPID format and relies on the underlying publish/subscribe layer for efficient

dissemination of rich presence updates. It accepts rich presence subscriptions in the form

of an XPath query or conjunction of XPath queries, and presence status updates in RPID

format both defined by end users or generated by presence–enabled applications.

27

Figure 4.5 An example Xpath subscription

Figure 4.5 shows an example rich presence subscription defined using XPath. The

subscription is related to Aleksandar Antonić, identified by his FOAF profile URL which

states that a presence update should be sent when his location equals room 309 in the DERI

building (visible from the FOAF profile URL of room). In cases when the RPS includes an

XMPP and/or SIP presence service that use pres URI to identify an entity (as defined in

RFC 3859 [4]), it is necessary to convert a FOAF profile into a press URI. In addition, the

RPL needs to identify a watcher that has defined a subscription in order to be able to

forward presence updates to the adequate destination. Therefore, the RPL maintains a list

of watchers that are currently registered and connected to it (each watcher is identified by a

FOAF profile URI). An XPath subscription is converted by the RPL to publish/subscribe

subscription format (as shown in Figure 4.6) before being forwarded to the PSL.

Figure 4.6 An example publish/subscribe subscription

Rich presence status updates are encoded using the RPID format. An example RPID

publication is given in Figure 4.7 which defines a presence status for Aleksandar Antonić

as open, and his location is room 309. Figure 4.8 shows the same publication after

conversion by the RPL into the publish/subscribe format. The same format of documents

are used in the notification process, only this time the RPL converts messages from the

publish/subscribe format to RPID format.

<?xml version="1.0" encoding='UTF-8'?>

<subscription type="booleanHashtable">

<validity>-1</validity>

<attribute name="location-info" operator="=" type=" string">

http://lab.linkeddata.deri.ie/2010/deri-rooms#r309 </attribute>

<attribute name="entity" operator="=" type="string" >

http://www.deri.ie/about/team/member/aleksandar_ant onic#me </attribute>

</subscription>

/presence/[@entity=http://www.deri.ie/about/team/me mber/aleksandar_antonic#me]

/presence/tuple/[@location-info= http://lab.linkedd ata.deri.ie/2010/deri-rooms#r309]

28

Figure 4.7 An example RPID publication/notification

Figure 4.8 An example publish/subscribe publication/notification

The rich presence layer also integrates an XML database (eXist database) to store all

subscription and publications. The database is used as persistent storage.

The publish/subscribe layer is a content–based publish/subscribe system optimized for

mobile environments and frequent disconnections of publishers and subscribers. It uses its

own publish/subscribe protocol (based on TCP) and syntax for publications and

subscriptions. Subscriptions are defined as a conjunction of predicates, where each

<?xml version="1.0" encoding="UTF-8"?>

<publication type="hashtable">

<validity>-1</validity>

<attribute name="presence/entity" operator="==" typ e="string">

http://www.deri.ie/about/team/member/aleksandar_ant onic#me </attribute>

<attribute name="tuple/id" operator="=="

type="string">bs35r9</attribute>

<attribute name="status/basic" operator="=="

type="string">open</attribute>

<attribute name="location-info" operator="==" type= "string">

http://lab.linkeddata.deri.ie/2010/deri-rooms#r309< /attribute>

<attribute name="priority" operator="==" type="inte ger">3</attribute>

<attribute name="timestamp" operator="==" type="str ing">2011-05-

27T16:49:29Z</attribute>

</publication>

<?xml version="1.0" encoding="UTF-8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"

xmlns:lt="urn:ietf:params:xml:ns:location-type"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

entity=" http://www.deri.ie/about/team/member/aleks andar_antonic#me">

 <tuple id="bs35r9">

 <status>

<basic>open</basic>

 </status>

<priority>3</priority>

<location-info> http://lab.linkeddata.deri.ie/2010/deri-

rooms#r309</location-info>

<timestamp>2011-05-27T16:49:29Z</timestamp>

 </tuple>

</presence>

29

predicate is composed of an attribute, operator and value (as shown in Figure 4.6). A

publication is a simple hashtable with (attribute, value) pairs (as shown in Figure 4.8).

Such definition of publications and subscriptions on the PSL enables the implementation of

efficient algorithms for matching incoming publications to numerous subscriptions

organized in trees or lists (depends on the type of subscription). Since the publish/subscribe

layer offers a remote service interface, presence sources can publish and receive presence

updates directly through this interface, and thus avoid the conversion from the RPID to

publish/subscribe format.

The policy server stores policies defined by presentities granting access rights to watchers

and groups of watchers. After receiving a subscription from a watcher, the PSL retrieves,

from the policy server, the watcher access right which is then integrated in the

subscription. This avoids unnecessary generation of notifications inside the system (when

condition from a subscription is satisfied but the user does not have sufficient access rights

to see a notification). The policy server stores two types of policies in the XML database.

The first one contains all subscribers and their membership in user groups together with

their position within the group (e.g. Ph.D./M.Sc. student, unit leader), and the second one

associates user groups and positions to access rights.

Methods implemented by the RPS (as shown in Figure 4.9) are the following:

• registerWatcher – registers a watcher with a listener object which can receive

notify messages from the rich presence layer;

• registerPresentity – registers a presentity;

• subscribe/unsubscribe – creates/deletes a watcher subscription;

• publish – publishes a presence update;

• notify – notifies a watcher about presentity’s presence updates.

30

Figure 4.9 Rich presence service methods

Figure 4.10 depicts a sequence diagram showing an interaction within the RPS subsystems.

A watcher first registers with the rich presence layer, and provides its listener object that is

used later on to receive matching presence notifications from the RPL. The RPL responds

with a unique watcher identifier and creates a new subscriber object associated with this

watcher. When a watcher wishes to subscribe, it sends a subscription request containing an

XPath subscription and its identifier. The RPL stores the subscription in the form of an

XML document in its XML database, converts the XPath subscription into an XML

document recognized by the PSL, and uses the watcher subscriber object to submit the

XML subscription to the PSL. The PSL gets access level of watcher from the policy and

integrates it into the subscription. Later on, a presentity updates its presence information

using where.deri.ie. The middleware layer receives a forwarded presence update, converts

it into an XML document recognized by the PSL, and publishes the document to the PSL.

Since the XML document matches a previously defined subscription, the PSL notifies the

watcher subscriber object at the RPL with the matching document. Subsequently, the RPL

converts the received document into RPID format, and, forwards it to the watcher listener.

31

Rich Presence
Layer

Policy ServerXML database
Publish/Subscribe

Layer

Found matching

subscription!

subscribe

(watcherID,

XPath_subscription) store

(XMLSubscription)

subscribe

(XMLDocument)

subscriptionID

registerWatcher

(listener)

watcherID

WatcherMiddleware

publish(XMLDocument)

notify(XMLDocument)

notify(RPIDDocument)

getPriority(watcher ID)

priority

where.deri.ie

HTTP POST

(presence RDF)

Figure 4.10 Sequence diagram showing an interaction within the RPS

32

5. Supported Presence Subscriptions

The rich presence service offers to a user three types of subscriptions: simple, parallel and

sequence subscriptions. A simple subscription is used when a user subscribes to presence

information of a single presentity. Two other subscription types are composite

subscriptions, and enable subscriptions to more presentities at the same time.

5.1. Simple subscription

A simple subscription consists of a conjunction of predicates which describe the user

request for presence information of a presentity. Each predicate is composed of an attribute

(an attribute is an element in RPID format, i.e. entity, location-info, status/basic, note, etc.),

operator (equal or not equal) and value. A user also defines the duration of a subscription.

As long as the subscription is active, the user receives notification messages (presence

updates about a presentity). Notification message carry complete presence information

(complete RPID document as it is published by the presentity).

5.1.1. Simple presence service

Simple subscriptions need to contain a presentity URI (as shown in Figure 5.1). Additional

constraints can also be specified, such as location and status. Figure 5.2 shows a received

matching notification when user of interest updates his presence information..

33

Figure 5.1 Simple subscription

Figure 5.2 Presence service notification

34

5.1.2. Geo–fence service

Simple subscriptions can also be used for the implementation of geo-fence services. A

geo–fence is a virtual perimeter for a real–world geographic area. A geo–fence service is a

service which sends a warning to a user when a person or a resource crosses the fence (i.e.

leaves a designated area). The rich presence system in conjunction with a sensor network

can be used as a geo–fence system. Figure 5.3 shows a subscription used as the geo–

fencing service. The subscription expresses a request for a notification whenever the video

projector 1 is not in room 212 and the subscription validity time is infinite. Independent

presence–related data source provides location information about a resource to the RPS

(RFID base stations monitor location of a RFID tag associated with a resource). When the

RPS detects that the resource is not in the appropriate room, it sends a notification to the

administration office.

Figure 5.3 Geo-fencing service subscription

5.1.3. Virtual secretary

Another possible usage of a simple subscription is the implementation of a virtual

secretary. Virtual secretary is a service that provides information about people who wanted

to contact a user while he/she was unavailable (e.g. in a meeting, busy). A user subscribes

to presence information related to his/her office (as shown in Figure 5.4). When someone

comes to the user’s office and realizes that the user is not available at the moment, the RPS

35

records the visitor’s presence in the user’s office. When the user becomes available (e.g.

returns to the office, finishes a meeting) the RPS will send notifications for each person

that visited the office during the period of unavailability. If a visitor wants to leave a

message, he/she can include it in a presence update (as shown in Figure 5.5).

Figure 5.4 Virtual secretary subscription

Figure 5.5 Virtual secretary notification

36

5.2. Parallel subscription

A parallel subscription consists of a conjunction of simple subscriptions thus allowing a

user to receive presence notifications depending on the presence status of multiple users at

the same time. Notification is generated when presence information of each presentity

overlaps another matching subscription. A threshold for generating a notification message

is set by a user via the variable coverage. The variable coverage represents the minimum

percentage of satisfied simple subscriptions such that a matching event is detected. Figure

5.6 shows a parallel subscription to presence updates of three different users expressed as

simple subscriptions. If the coverage has a value of 1 (100%) a notification is generated

only at a point in time t3; if coverage is set to 0.66 (66%) or less, a notification is generated

at time points t2 and t3. The coverage with value of 0.33 (33%) or less generates a

notification at all three time points.

Figure 5.6 Parallel subscription coverage

5.2.1. Meeting scheduler

A meeting scheduler is an application for scheduling meeting times and organizing

personal itineraries. A meeting scheduler can retrieve presence statuses (virtual and

physical) of potential participants before the start of the meeting (e.g. 5 minutes before the

start) and then proceed in accordance with the received data (cancel a meeting, reschedule

or send a confirmation). Figure 5.7 shows a parallel subscription to three (potential)

participants who have open (i.e. available) status and coverage is set to 66% (a meeting can

be held without one person). If a meeting scheduler receives a notification from the RPS

before the beginning of the meeting, it can send confirmation that the meeting will take

place at the agreed time. If notification is not received before the beginning of the meeting

37

(it means that two or more users are not available to attend the meeting), a meeting

scheduler should try to reschedule or cancel the meeting. A meeting scheduler waits for a

notification as shown in Figure 5.8.

Figure 5.7 Meeting scheduler subscription

Figure 5.8 Meeting scheduler notification

38

5.2.2. Sequence subscription

A sequence subscription consists of a conjunction of simple subscriptions, but a

notification is generated after a sequence of events specified in a sequence subscription,

regardless of the time when a certain event occurs. Figure 5.9 shows a sequence

subscription to presence updates of three different users. The system generates a

notification only at t3 because then a sequence of events stated in the subscription is fully

satisfied. The fact that presence information of the user 1 and user 2 does not satisfy simple

subscriptions at the time t3, has no effect on a notification process.

Figure 5.9 Sequence subscription coverage

A sequence subscriptions can be used for studying people behavior and habits, for example

to monitor the physical movement within the building, number of changes in the

availability of a user during a period of time. Figure 5.10 shows an example sequence

subscription. The subscription is related to Ling Chen and states that a presence update

should be sent when his availability changes from open to closed. Figure 5.11 shows a

notification generated for a sequence subscription request.

39

Figure 5.10 Sequence subscription example

Figure 5.11 Notification on sequence subscription request

40

Conclusion

Existing solutions implementing presence are very popular despite the fact that they have

limited support for context-awareness. The main drawbacks are limited support for

presence information filtering and insufficient privacy control. This thesis presents a

solution which uses the rich presence specification in conjunction with filtering of presence

updates. The rich presence service (RPS) can handle complex subscriptions, provides

better information access control and is independent of a particular presence protocol. It

integrates a content-based publish/subscribe implementation for efficient matching of

presence-related subscriptions to presence updates, and uses where.deri.ie as an

independent presence–related data source of linked data managing presence information

related to people in the DERI building.

The integration of the RPS with where.deri.ie has created a platform for a number of new

services for end users: a user-related presence service with additional presence status

filtering, geo-fence service and virtual secretary. Besides the listed services, the RPS can

interact with many other applications such as a calendar application, meeting scheduler, or

various policy–enabled applications which change the presence status of a user depending

on the current time of day, location and activity [1]. The interaction between the RPS and

applications is achieved through the web service interface offered by the rich presence

layer or directly through the publish/subscribe layer. The RPS is a step closer to a complete

solution to the problem of consolidated presence as described in Hauswirth et al. [2].

Future work includes expansion of the policy server to include context-dependant policy

rules. Another interesting direction is the replacement of the RPID format with an

appropriate RDF Schema as a uniform platform for processing presence information.

Future efforts will also be directed to improving system performance and to the

development of new applications which rely on the RPS.

41

References

[1] PODNAR ŽARKO, I., KUŠEK, M., PRIPUŽIĆ, K., ANTONIĆ, A. Presence@FER: An
Ecosystem for Rich Presence, in Proceedings of the 11th International Conference
on Telecommunications, Graz, Austria, June 2011, pp. 133-140.

[2] HAUSWIRTH, M., EUZENAT, J., FRIEL, O., GRIFFIN, K., HESSION, P., JENNINGS, B.,
GROZA, T., HANDSCHUH, S., PODNAR ŽARKO, I., POLLERES, A., ZIMMERMANN , A.
Towards consolidated presence, in Proceedings of the 6th International Conference
on Collaborative Computing: Networking, Applications and Worksharing,
CollaborateCom 2010, Chicago, Illinois, USA, October 2010, invited paper.

[3] DAY , M., ROSENBERG, J., SUGANO, H. A Model for Presence and Instant Messaging
(RFC 2778), IETF, February 2000., http://www.ietf.org/rfc/rfc2778.txt

[4] PETERSON, J. Common Profile for Presence (CPP) (RFC 3859), IETF, August 2004.,
http://www.ietf.org/rfc/rfc3859.txt

[5] KHARTABIL , H., LEPPANEN, E., LONNFORS, M., COSTA-REQUENA, J. An Extensible
Markup Language (XML)-Based Format for Event Notification Filtering, IETF,
September 2006., http://www.ietf.org/rfc/rfc4661.txt

[6] ROSENBERG, J., SCHULZRINNE, H., CAMARILLO , G., JOHNSTON, A., PETERSON, J.,
SPARKS, R., HANDLEY , M., SCHOOLER, E. SIP: Session Initiation Protocol (RFC
3261), IETF, June 2002., http://www.ietf.org/rfc/rfc3261.txt

[7] ROSENBERG, J. A Presence Event Package for the Session Initiation Protocol (SIP)
(RFC 3856), IETF, August 2004.,http://www.ietf.org/rfc/rfc3856.txt

[8] NIEMI , A. ED. Session Initiation Protocol (SIP) Extension for Event State Publication
(RFC 3903), IETF, October 2004.,http://www.ietf.org/rfc/rfc3903.txt

[9] SUGANO H., FUJIMOTO S., KLYNE G., BATEMAN A., CARR W., PETERSON, J. Presence
Information Data Format (PIDF) (RFC 3863), IETF, August 2004.,
http://www.ietf.org/rfc/rfc3863.txt

[10] Saint-Andre, P. Extensible Messaging and Presence Protocol (XMPP): Core (RFC
6120), IETF, March 2011., http://www.ietf.org/rfc/rfc6120.txt

[11] Saint-Andre, P. Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence (RFC 6121), IETF, March 2011.,
http://www.ietf.org/rfc/rfc6121.txt

[12] MILLARD , P., SAINT-ANDRE, P., MEIJER, R. XEP-0060: Publish-Subscribe (v1.13),
XMPP Standards Foundation (XSF), July 2010., http://xmpp.org/extensions/xep-
0060.html

[13] SAINT-ANDRE, P., SMITH , K. XEP-0163: Personal Eventing Protocol (v1.2), XMPP
Standards Foundation (XSF), July 2010., http://xmpp.org/extensions/xep-0163.html

[14] SCHULZRINNE, H., GURBANI, V., KYZIVAT , P., ROSENBERG, J. RPID: Rich Presence
Extensions to the Presence Information Data Format (PIDF) (RFC 4480), IETF, July
2006., http://www.ietf.org/rfc/rfc4480.txt

42

[15] PASSANT, A., HEGDE, V., REYNOLDS, V., CYGANIAK , R., HAUSWIRTH, M. Linked
Data, Social Semantic Web and QR codes for Presence Management in the
Enterprise

[16] Content Networking lectures, Faculty of Electrical Engineering and Computing,
University of Zagreb, 2011.

43

Summary

Title: Context – aware filtering and dissemination of rich presence information
Summary: Presence is defined as user willingness and ability to communicate with other

users across a set of devices and tools. Presence service is a service which receives, stores,

and disseminates presence information to all interested parties. This thesis presents the rich

presence service solution developed at the Department of Telecommunications of the

Faculty of Electrical Engineering and Computing, University of Zagreb which is integrated

with where.deri.ie developed by Digital Enterprise Research Institute, National University

of Ireland, Galway. The first part of the thesis gives an overview of the basic model for

presence service and describes the two most widely used protocols for presence, SIP and

XMPP, while the second part describes the rich presence service solution and supported

services.

Keywords: presence information, physical presence, virtual presence, rich presence,

PIDF, RPID, publish–subscribe system, XMPP, SIP Presence, watcher, presentity, policy

control

44

Sažetak

Naslov: Kontekstno – svjesno filtriranje i razašiljanje informacija bogate prisutnosti
Sažetak: Prisutnost se definira kao spremnost i mogućnost korisnika na komunikaciju s

drugim korisnicima koristeći različite ureñaje i alate. Usluga prisutnosti je usluga koja

prima, pohranjuje i razašilje informacije o prisutnosti svim zainteresiranim strankama.

Ovaj rad prezentira sustav koji pruža uslugu bogate prisutnosti razvijen na Zavodu za

telekomunikacije, Fakulteta elektrotehnike i računarstva, Sveučilišta u Zagrebu, integriran

sa sustavom where.deri.ie razvijenim u Digital Enterprise Research Institute, National

University of Ireland, Galway. Prvi dio rada daje pregled osnovnog modela za uslugu

prisutnosti i opis dva najraširenija protokola, SIP i XMPP, a drugi dio opisuje sustav za

uslugu bogate prisutnosti i usluge koje pruža.

Klju čne rije či: informacija o prisutnosti, fizička prisutnost, virtualna prisutnost, bogata

prisutnost, PIDF, RPID, objavi–pretplati sustav, XMPP, SIP Presence, pretplatnik,

objavljivač, kontrola pristupa

