UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

SVEUCILISTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE | RA CUNARSTVA

DIPLOMA THESIS no. 153

DIPLOMSKI RAD br. 153
CONTEXT — AWARE FILTERING AND
DISSEMINATION OF RICH PRESENCE

INFORMATION

KONTEKSTNO — SVJESNO FILTRIRANJE |
RAZASILJANJE INFORMACIJA BOGATE
PRISUTNOSTI

Aleksandar Antoni¢

Zagreb, June 2011.

Zagreb, lipanj 2011.



Acknowledgements

I would like to thank my advisors Prof. Ivana Podnar Zarko
and Prof. Manfred Hauswirth for their guidance and provided

assistance in making this thesis.



SVEUCILISTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE | RACUNARSTVA
ODBOR ZA DIPLOMSKI RAD PROFILA

Zagreb, 18. veljate 2011.

DIPLOMSKI ZADATAK br. 153

Pristupnik:  Aleksandar Antonié

Studij: Informacijska i komunikacijska tehnologija

Profil: Telekomunikacije i informatika

Zadatak: Context-aware filtering and dissemination of rich presence information
Opis zadatka:

Presence information, expressing user willingness and ability to communicate, represents an essential
prerequisite for real-time communications. Presence service enables users (watchers) to subscribe to
presence information generated by their contacts (presentities), and to receive their presence updates
in real-time. However, existing solutions typically ship all generated presence updates, without taking
into account watcher context and actual interest. The rich presence layer and the underlying
publish/subscribe system that have been designed and developed at the Department of
telecommunications, FER, enable filtering and dissemination of rich presence information in
accordance with user-defined subscriptions and policies. Your task is to integrate the rich presence
layer with a prototype system where.deri.ie for tracking physical presence from sensor data, which has
been developed at DERI, National University of Ireland, Galway. You should design and implement a
matching algorithm for the publish/subscribe system which is optimized for the particular type of
presence data coming from where.deri.ie. In addition, you should provide a complete presence
solution optimized for efficient filtering and dissemination of presence updates, and perform extensive
experiments to investigate system performance.

The work will be performed at the Department of telecommunications, FER, and DERI, NUI, Galway
during a student internship from April 1st until June 30th, 2011. The work performed in DERI will be
conducted under the supervision on Prof. Manfred Hauswirth, and the thesis will be written in English.

Zadatak uru€en pristupniku: 25. veljade 2011.

Rok za predaju rada: 10. lipnja 2011.
Mentor: Predsjednik odbora za
T e, g B L, diplomski rad profila:
Doc.dr.sc. lvana Podnar Zarko %\
Djelovoda: Prof.dr.sc. Ig% Sunday Pandzié

LS o

Doc.dr.sc. Mario Kusek




The work presented in this diploma thesis has Ipeeformed at the Department of
Telecommunications of the Faculty of Electrical Exgring and Computing,
University of Zagreb, and Digital Enterprise Resbanstitute (DERI), National
University of Ireland, Galway during an internsfipm April 1 until June 38,

2011. The work performed in DERI has been conduateter the supervision of
Prof. Manfred Hauswirth



Contents

INEFOTUCTION ...t e e e e e e s e e e e e e 1
1. A MOAEl fOF Pr@SENCE ...ttt 2
1.1. Communication between the entities...........cccccee s 3
1.2, MESSAQE SITUCLUIE ...t e e e ettt e e e e e e e e e e e e e e eeeeennnnns 5

1.2.1.  Publication/NOLIfICAtION ...........uuuuiiiiiiimeemee e 5
1.2.2.  SUDBSCHIPLION ... s e e e e e e e e e e e e e e eeeeeenannnn s nnnnannnns 6
2. SIP PIESENCE ....oviiiiiiiiiiiii et 7
2.1, ATCRITECIUIE ...ttt e e e e e e e 7
2.2.  Communication and ProtOCOI ............oouiiiiriiimiiiiiiiii e 9
2.3. Presence Information Data Format — PIDF ....ccccceeiiiiiiiiiiieeecee 12
3. Extensible Messaging and Presence ProtoCOl..ccccccc.....ooovvvvviviiiiiiiiiiiieeeeeeeee, 15
3.1, ATCHITECIUIE oot e e e e e 15
3.2. Communication and ProtoCOl .............euuiummeemmiiiiiiiiiiiar e 16
3.2. 1. XML StANZAS.....uuiiiiiiiiiiiii i 17
3.2.2.  SUDSCIIPLION PrOCESS ...cevvvvviiiiinse s e eeeeeeaneassseeeaaeeaaseeeeeeesssssnnns 17
3.2.3.  PUDIISNING PrOCESS .....ciiiiiiiiiiiiiiiii s s e et 19
3.2.4. NOUTICAtION PrOCESS .....ceieiiiiiiitiiennn s s e e e e e e e e e e e e e e eeeeeeeseseeeeaa e eens 19
4. Rich presence service for physiCal PreSENCE. c.cioeiiiiiiieiiiccrie e, 21
4. 1. ANCHITECIUIE ..o e e e 21
4.2, WREIE.UBIIIE et e e e e e 24
4.3. Implementation of the RPS and integration with veb@eri.ie ......................... 26
5. Supported Presence SUDSCIHPLIONS........ummmmmmme e eeeeeeeeeeeeeiiiirns e eeeeaeee s 32
5.1.  SIMPle SUDSCHPLION ...uuuiiiiii et eeeee s e e e e e e e e e e e eeeaeaeennnnneenees 32
5.1.1.  SIiMPIE PreSENCE SEIVICE......uuuururuunisiceeererennnnnaaaseaaeeaeaaeeareeeeennnnnns 32

B.1.2. GO CNCE SOIVICE. ... e e e anas 34



5.1.3.  Virtual SECIELArY ......ccoeviiiiiiiiiiiii ettt e e eees 34

5.2.  Parallel SUDSCHPLION ....coooiiiiiiiieeeemm e 36
5.2.1.  Meeting SCREAUIET......cccco ittt e e e e e e e e e enen 36
5.2.2. Sequence SUDSCIPLION .......uuueeeiiii e ccceeeees s e e e e 38

(©0] o (o111 ] o] o WP PPPPPPPPPPR 40
RETEIEINCES ... ettt e e e e e e e e e e 41
SUIMIMIATY .. ettt e et e e ererem e e et e e ettt e e e eaa e e e et e e e e s e et e e aeeesa e e ean e e eennneeenans 43

Y- VA=) - | TP 44



Introduction

Presence as a service is widely spread in todagisdwof communications (telephony,
instant messaging, e—mail, etc), and is often redeto as the dial tone of the®2dentury.
Currently there are two competing protocol suites presence: SIP presence and
eXtensible Messaging and Presence Protocol (XMRIEjyough both protocols are widely
deployed, existing solutions still face a numbechéllenges: existing presence solutions
typically ship all generated presence updates fpoesentities to watchers, without taking
into account watcher context, while it is difficuth control the disclosure of sensitive
personal presence information. This generatesge lanmber of messages that can use up
client battery power rather quickly, and introdusesious scalability problems within the
core network. Moreover, existing solutions do notlude various aspects of presence
information from physical, online, and virtual peese sources that would contribute to
provide a usable flow of information within differe communities (business partners,

social groups, family, etc) while retaining the pimity of use for end users.

This thesis describes a rich presence service agegrating solution for presence which
is compatible with existing protocols (SIP Preseand XMPP). It enables context-aware
collection and exposure of rich presence inforrmatend offers fine-grained filtering of

presence information in accordance with user cardexi predefined policies. The rich
presence service can be used to extend existingcsgrby integrating independent data
sources and filtering their content in accordanh wurrent user interests and needs.

The thesis is structured in the following way. Cleafd provides an overview of the basic
model for presence services. Chapter 2 and Ch&ptescribe currently the two most
popular solutions for presence: SIP Presence andPEXMChapter 4 describes the rich
presence service, followed by a description of suj@ol subscriptions and services in

Chapter 5. Chapter 6 concludes the thesis.



1. A model for Presence

Presence information (abbreviated as presence&fiised as user willingness and ability to
communicate with other users across a set of dewacel tools. Presence service is a
service which receives, stores, and disseminatesepce information to all interested
parties. Presence service has emerged in conjoneiib instant messaging systems, but

today is regarded as an independent service.

A model for presence, shown in Figure 1.1, defiaéentities involved in the exchange of
presence information, and describes the protocold messages used in a system
implementing a presence service [3]. Presence cgerallows users to subscribe to
presence updates generated by their contactspdvel otified of changes regarding their

presence information (e.g. available, busy, dodisiurb).

A =
) A4
luka@fer hr @ Presence iva@t.ht.hr

Information
Presentity Watcher

\ /:::ess rules

Presence Service

PUA - Presence User Agent
WUA - Watcher User Agent

Figure 1.1 Presence Service model

A presence service entity accepts all presence tepdatores it and distributes to
subscribed users. It also keeps records about ergtemd their activities (subscriptions to
presence information). Prior to disseminating argspnce information, the service checks
the watcher’s access rights to verify whether tlacher is allowed to receive presence

updates from a particular presentity.



A presentity provides presence information abowrsighumans) or resources (laptop,
projector) to the Presence Service (PS). It is kegpwith data (presence information)

from Presence User Agents.

A Presence User Agent (PUA) is an entity that gatesrpresence-related information such
as status, location, contact means, etc. Usuallg i& client application on a user’s
computer or mobile phone, but it can also be areatbpr resource that represents a
presence information producer, e.g. a sensor gemgrgresence-related contextual

information.

A watcher is an entity that requests presence nmétion about presentities from a
presence service. Requests are defined as one-jusgies or continuous user
subscriptions. Accordingly, there are two typesmattchers: a fetcher explicitly asks for
the current presence status of one or more préssntising one time queries, and a
subscriber specifies subscriptions or continuousriga that ask the PS to notify it
immediately about any changes of presence infoonagjenerated by one or more
presentities. This request is defined as an asilmscription stored by the PS. Watcher

serves as an intermediary between a PS and WaiskeerAgent.

A Watcher User Agent (WUA) is an entity that enabdewatcher to specify subscriptions
to presence updates and displays presence natifisato a user. Usually it is a client
application on a user’'s computer or mobile phonepart of another application (e.g. a

meeting scheduler, calendar, etc.).

1.1. Communication between the entities

The communication between a PUA and presentitjpetwveen a WUA and watcher uses
some of the well known communications protocolg.(&IP, XMPP or HTTP). The PS
communicates with presentities and watchers udmegpresence protocol (as shown in
Figure 1.2).



Presence User Watcher User
Agent Agent

publication

communication protocol :
communication protocol
subscription/notification

Presentity Watcer

Presence
Service

Figure 1.2 Presence Service communication

The above mentioned protocols, the well known comigations protocols and presence
protocol, carry three types of messages: subsgniptpublication and notification. A
subscription is the message which expresses cantintequest for presence information
of some presentity on behalf of a user. A publaais a message that carries new, fresh
presence information about a user or resource. tAigadion is a message that delivers

presence information generated by a presentitgtefest to the watcher user agent.

Since presence uses the publish/subscribe stgemmunication, it does not conform to a
strict flow of messages between the entities whicha characteristic of the request—
response communication mechanism. On one handcriptiesns and publications are

generated in an ad-hoc fashion independently ofh eaiher. On the other hand,

notifications are produced by the PS only in cadesmatching event. The matching event
is an event when a subscription previously defibgda watcher, which is defined by a
presence URI (pres URI) identifying a presentityirdkrest, overlaps with the presence
information generated by the presentity. Additibnahe watcher needs to be granted with
a permission to receive presence information from presentity of interest. Currently

there are two widespread presence protocol implatiens, SIP Presence and XMPP,

described in detail in Chapters 2 and 3.



1.2. Message structure

1.2.1. Publication/Notification

Presence information

—P> Presence tuple

Status

v

Communication address

v

—P Contact means

—> Contact address

—p Other markup

—ﬂ Presence tuple

Figure 1.3 The structure of presence information

Both publication and notification messages have same structure because they both
carry presence updates about a presentity. Figidesiows the structure of presence
information (defined by RFC 2778 [3]) which consisif one or more presence tuples.
Each presence tuple describes a single commumcptiont associated with a presentity,
and consists of a status and optional communicaiitlniness and presence markup. A status
carries the basic information about a presentityd aisually describes the user’s
willingness for communication. It primary definesuaer status as being either open or
closed, and expresses the specific communicatiatusstrelated to a presentities
communication point, e.g. online, offline, busyt mvailable. A communication address

includes the following fields: communication mearend a contact address.



Communication means indicates a method whereby conuation can take place (e.g.
instant messaging, e-mail, phone), and contactadds an identifier through which a user
or resource can be reached. Presence markup iscamyeadditional information included

in the presence information of the presentity (lagation, mood, time).
1.2.2.  Subscription

The basic presence model and RFC 3859 [4] definsulascription message as a
subscription to a pres URI. Each subscription ngssmust contain the following
attributes: watcher, target, duration, subscriptibnand TransID. A watcher attribute
identifies a subscriber (via a user’s pres URI)ileva target attribute identifies a presentity
(also via a pres URI). A duration specifies the mmxn number of seconds that the
subscription is active. A subscription ID is a uregdentifier used for unsubscribing, and
TransID is a message identifier that is used iesponse message generated as a request to
a subscription message.

RFC 4661 [5] describes an extension for a subscniégsage. The subscribe message is an
XML document containing the <filter-set> element m®t element. The <filter-set>
element may contain one <ns-bindings> element aredas more <filter> elements. The
<ns-bindings> element is used to bind namespacésct prefixes used in expressions
that select elements or attributes in the <filtetement. The <filter> element is used to
specify the content of an individual subscripti&ach <filter> element has the uri attribute
containing value of a pres URI of the user of ies¢r The <what> element is used to
specify the content to be delivered to the useat,tha <trigger> element identifies changes

that a resource has to encounter before the coistdetivered to the subscriber.



2. SIP Presence

SIP Presence is also known as Session Initiatiao€uol for Instant Messaging and
Presence Leveraging Extensions (SIMPLE) developethéd SIMPLE Working Group. It

is an instant messaging and a presence protoctd based on the Session Initiation
Protocol (SIP). SIP architecture and protocolsravsed for presence because SIP location
services already maintain certain user-relatedemes information in the form of user
registrations. SIP networks are capable of routeguests from any network to the server
that holds the registration state for another user.

2.1. Architecture

The architecture [6] (as shown in Figure 2.1) mikir to the generic model described in
Chapter 1. The central presence component is thewR&h includes three entities:

Register, Edge Presence Server, and Presence Age&iP Presence, a watcher entity is
embedded in a WUA, and presentitiy is embeddedR/A.

A presentity may use multiple PUAs, one for eveeyide that can produce new presence
information (e.g. mobile phone and laptop). EactARtbependently generates a part (i.e.

tuple) of the overall presence information, andh@ssit into the presence system.

WUA manipulates user’s subscriptions and displayghé user all incoming notifications.
A user may apply multiple WUAs. The user can defuabscriptions on any WUA that
sends updates into the presence system, but atitifis will be displayed to the user only

on the a single (probably the last active) WUA.

WUA and PUA are implemented in client applicatimmsuser's communication resource
(e.g. mobile phone, computer). Client applicaticoually include implementations of both

entities.

The core of the SIP Presence system is implemdryt@adPresence Agent. It is a SIP server
which is capable of receiving and processing sillIscmessages and generating
notifications of changes in presence state. Presehgent receives and processes
publication messages and therefore maintains tlogvletige about the presence statuses

for all registered presentities.



Presence

Watcher User
User Agent Agent \
/ notification
publication subscription
Proxy Proxy Proxy
Server Server Server
Edge Edge
Presence Presence
Server Server
Presence
Agent
Register

Figure 2.1 SIP Presence arhitecture

An Edge Presence Server is a Presence Agent tlat-liscated with a Presence User
Agent. It is aware of the presentities presenceriétion and is therefore capable to
process (part) of subscriptions in the system bhod teduce load on the Presence Agent. A

Presence Agent and Edge Presence Server conatiresence Server.

A Register is the server that receives and prosessgistration messages and records
every log in to the system from a presentity orchat. It also keeps the data about the
currently active WUA (this information is requirdéor the delivery of notifications). The

register in some cases also stores user’s (pgrtiedence information.

Proxy Server routes messages to the appropriaters@resence Agent or corresponding
Edge Presence Server.



2.2. Communication and protocol

When a WUA (on behalf of a user) wants to recenesence information from some other
user (a presentity), it creates a subscribe messhgee the presentity is identified in the
Request-URI, using a SIP URI or pres URI. A proayries this message to the Presence
Server (Presence Agent or Edge Presence Servetheitmost recent update of presence
information). The Presence Server first autherggand then authorizes the subscription.
If the subscription is authorized, a 200 OK respgoissreturned. A 403, 603 (rejected) or
202 (pending) response is returned for non autbdrigubscriptions. In both cases the
Presence Server also sends a notification messagaiing requested user’'s presence
information. In case of 202, a response notificatinessage is also sent which always
indicates that a user of interest is offline (Noleato communicate).

The subscription persists for a duration stateahifcxpires header field of the subscription
message. It is necessary to refresh the subseripgore its expiration, if the user is still

interested in the presence information.

The unsubscription process is similar to the supsan process. WUA sends a subscribe
message which is similar to the one previously sehen defining the original
subscription: the only difference is that the Egpiheader field has a value set to zero. The
Presence Server also replies with a status me$2@0eOK or 202) and after that sends a
notification message with the current presencermédion for the indicated user. This
feature also supports one-time queries for presericamation. In both cases, either when
used for unsubscriptions or one-time querying, fresence Server authenticates and

authorizes requests prior to processing them.

A Presence Server may send a notification messageWUA at any time, usually when
the presence information of a presentity changes diter the Presence Server receives a

new publication message).

A notification message contains the presence irdtion in its body in the Presence
Information Data Format (PIDF). It is common to geate notification messages with
complete presence information. Extensions enablatcher to request notifications
containing only changes in presence informationthera than complete presence
information. If the resource is not in a meaningétite, the Presence Server can send

notification message without a body (i.e. presenfiemation).



For reasons of privacy, it is necessary to endtyptcontents of the notifications. This can
be accomplished using the S/MIME forrhat

After the change of a presence status, a new @iioic message is created by a Presence
User Agent (on behalf of a user) and sent to tesdhce Server. The Presence Server sets
a soft state” for a designated presentity and sends a 200 Oponsg as a confirmation.
Presence information is contained in the body pilalication message, written in PIDF.

Before the expiry time specified in the Expires dezafield is reached, a Presence User
Agent must refresh the presence information ifisstill valid. The process of presence
information refreshing requires that a PUA sendsea publication message. Such a
message has an empty body (because there is ngecimapresence information) but has a
value in SIP-If-Match field to indicate the refresperation and new value in the Expires

header field. After a successful refresh procéssPtS responds with 200 OK.

For immediate removal of presence information, &Rltkates a publish message with an
Expires header field set as zero. This messagehalsmo body, and has a value in SIP-If-
Match field to indicate which presence informatit;h be removed from the Presence

Server.

SIP Presence allows partial modification of preseinformation. For this operation, PUA
creates and sends a publish message with SIP-ifHddtfield and body that contains only
changed presence information. Presence Server méspwoith a 200 OK message for

successful partial update of presence information.

! Secure/Multipurpose Internet Mail Extensions

? soft state is a state of the presentity when there is acfikesence information with defined lifetime;

persistent presence information setshiel state of the presentity

10



Presentity HEEIED Watcher

Server SUBSCRIBE sip:presentity@example.com SIP/2.0
Via: SIP/2.0/UDP
host.example.com;branch=z9hG4bKnashds7
To: <sip:presentity@example.com>
From: <sip:watcher@example.com>;tag=12341234
Call-ID: 12345678@host.example.com
CSeq: 1 SUBSCRIBE
Max-Forwards: 70
Expires: 3600
Event: presence
Contact: sip:user@host.example.com

Content-Length: 0
h —

SIP/2.0 200 OK
Via: SIP/2.0/UDP host.example.com;branch=z9hG4bKnashds7

;received=192.0.2.1

To: <sip:presentity@example.com>;tag=abcd1234
From: <sip:watcher@example.com>;tag=12341234
Call-ID: 12345678 @host.example.com

CSeq: 1 SUBSCRIBE

Contact: sip:pa.example.com

Expires: 3600

Content-Length: 0

NOTIFY sip:user@host.example.com SIP/2.0
Via: SIP/2.0/UDP pa.example.com;branch=z9nG4bK8sdf2
To: <sip:watcher@example.com>;tag=12341234
From: <sip:presentity@example.com>;tag=abcd 1234
Call-ID: 12345678@host.example.com
PUBLISH sip:presentity@example.com SIP/2.0 CSeq: 1 NOTIFY
Via: SIP/2.0/UDP pua.example.com;branch=z9hG4bK652hsge Max-Forwards: 70
To: <sip:presentity@example.com> Event: presence
From: <sip:presentity@example.com>;tag=1234wxyz Subscription-State: active; expires=3599
Call-ID: 81818181 @pua.example.com Contact: sip:pa.example.com
CSeq: 1 PUBLISH Content-Type: application/pidf+xml
Max-Forwards: 70 Content-Length: ...
Expires: 3600
Event: presence [PIDF document]
Content-Type: application/pidf+xml | —— »
Content-Length: ... SIP/2.0 200 OK

[Published PIDF document] I

‘ SIP/2.0 200 OK ‘

| ‘ NOTIFY sip:user@host.example.com SIP/2.0 ‘

SIP/2.0 200 OK
‘PUBLISH sip:presentity@example.com SIP/2.0 ‘

—

SIP/2.0 200 OK

PUBLISH sip:presentity@example.com SIP/2.0 I

SIP/2.0 200 OK

Figure 2.2 Message flow

Figure 2.2 shows a sample message flow in SIP ReeseA watcher subscribes to
presence information of a presentity. After a sasfid subscription process, a Presence
Server responds with a 200 OK message and inclindesurrent presence status of the
addressed presentity. Subsequently, when the pitysgublishes a new presence
message, the Presence Server processes it aneéspemds with a 200 OK message. The
Presence Server also checks whether there is argilm that matches the newly

published information. This results with a notitioca which is sent to the watcher with a

11



matching presence subscription. The final messagsed to refresh the current presence
information of the presentity and it does not tagg notification process.

The SIP protocol is used for communication betwaépresence entities and therefore all
exchanged messages include a SIP header. Thénesif a message defines the required
operation. SUBSCRIBE identifies a subscribe messalgich is followed by a presentity

URI and protocol designation. The following field Tontains the presentity URI (not a
Presence Server URI), and the From field contaweswatcher URI that defines a new
subscription. The Expires field sets the duratibthe subscription (time in seconds from

receiving subscription message).

A notification message is identified by a NOTIF¥ld followed by a URI of the intended
watcher (subscriber) and protocol designation THe To field also contains a watcher’s
URI while the From field contains the presentity IURot a Presence Server URI). The
body of the message contains the whole presenaemation in PIDF.

For publication message is used PUBLISH method ff8lpwed by presentity URI and
protocol designation. Fields To and From fieldsehprvesentity URI. Expires field sets the
duration of publication (time in seconds). Presenéarmation is in the body of message,
written in PIDF.

Responses to messages SUBSCRIBE and NOTIFY stént the protocol designation

followed by status message. All header fields laeesame as in the request message.

2.3. Presence Information Data Format — PIDF

SIP Presence requests that presence informationiten in the Presence Information
Data Format (PIDF) [9]. PIDF was developed from recommendatitor the basic model
of presence servicksPIDF supports all options mentioned in sectichILof this thesis,
but also expands the presence information withriige of contact addresses (to give
preference to some communication means) and adiuilseatamp to a presence update.

PIDF encodes presence information in eXtensible kMjar Language (XML). The

% Also is used PIDF extension RPID (Rich Presenéerimation Data Format) which allows a more detailed

description of presence.

4 RFC 2778

12



designation for the PIDF presence information edrrin the SIP message body is
application/pidf+xml.

All PIDF presence information must start with an KMeclaration. The root element is
the <presence> element. Attribute fields contaimespace declarations used in PIDF
elements and a mandatory ‘entity’ attribute (URIthe presentity). The <presence>
element contains any number of <tuple> elementsswimcludes any number of <node>
elements with any number of optional extension el&i® from other namespaces. A
<tuple> element consists of a mandatory <statusmet, followed by any number of
optional extension elements (including from othamespaces), followed by an optional
<contact> element any number of <note> elements aanoptional <timestamp> element.
Tuples are segments of presence information. Tthbwte Id is mandatory, and is used to
distinguish a tuple from other tuples in the sani@FPdocument. The <status> element
contains a single <basic> element, followed by mumypber of optional extension elements.
The <basic> element can declare one of the follgvatates: “open”, which indicates a
user willingness to communicate, or “closed” otheay The <contact> element contains a
URL of the contact address. Each tuple has a pyriattribute, whose value means a
relative priority of this contact address over ththers. A priority value is a decimal
number between 0 and 1. The <note> element congastsing value, which is usually
used as a human readable comment. The <timestaleyprer contains a string indicating

the date and time of status change of this tuple.

Figure 2.3 shows an example presence informatioBRIDF stating that the user can be
reached via an instant messaging address, or e-8tatus busy and lower priority on

instant messenger contact mean indicates thapusiers contact via e-mail.

13



<?xml version="1.0" encoding="UTF-8"?>
<presence xmlns="urn:ietf:params:xml:ns:pidf"
xmins:im="urn:ietf:params:xml:ns:pidf:im"
xmlns:myex="http://id.example.com/presence/
entity="pres:someone@example.com">
<tuple id="bs35r9">
<status>
<basic>open</basic>
<im:im>busy</im:im>
<myex:location>home</myex:location>
</status>
<contact priority="0.8">im:someone@mobilecar
<note xml:lang="en">Don't Disturb Please!</n
<note xml:lang="fr">Ne derangez pas, s'il vo
<timestamp>2001-10-27T16:49:29Z</timestamp>
</tuple>
<tuple id="eg92n8">
<status>
<basic>open</basic>
</status>
<contact priority="1.0">mailto:someone @examp
<note>I'll be in Tokyo next week</note>
</tuple>
</presence>

rier.net</contact>
ote>

us plait</note>

le.com</contact>

Figure 2.3 Presence information in PIDF

14



3. Extensible Messaging and Presence Protocol

The Extensible Messaging and Presence Protocol @M$?an application profile of the
Extensible Markup Language (XML) that enables teak exchange of data between two
or more network entities. The protocol was origywalamed Jabber, developed by the
Jabber open source community and subsequently gedday the XMPP Working Group.
Many large companies (e.g., Google, Cisco, Facebsogport XMPP in their services

which lead to a large user base.

3.1. Architecture

An XMPP Presence System is typically implementedigus: distributed client — server
architecture as depicted in Figure 3.1, whereihesattneeds to connect to a server in order
to gain access to the network. XMPP uses globaligue addresses (based on Domain
Name System — DNS) in order to route and delivesgages over the network [10]. All
XMPP entities are addressable on the network. Tér@ess address is of the form
<domainpart> (e.g. <pres.example.com>. Each useahaique personal address formed
as <localpart@domainpart> (e.g. <user@pres.exaoqphe:). This address is also known
as the “bare JIPJ. When a user connects to the network using ach@plication on one
of his/her resources, he uses the address formetbealpart@domainpart/resourcepart>

(e.g. <user@pres.example.com/mobile>).

A client is an entity that establishes an XML sinewith a server and then completes
resource binding in order to enable delivery of XMtianzas between the server and the
client over the negotiated stream. XMPP allows siameous connection between multiple
clients and server using the same registered atcatiere each client is differentiated by

the resource part of an XMPP address.

A server is an entity that manages XML streams wiahnected clients and servers. The

also server delivers XML stanzas to clients. Addfigil responsibilities can include the

® JID = Jabber ID

15



storage of data that is used by clients and ho$tingdd-on services that also use XMPP

as the basis for communication.

] <watcher@pres.service.com>
<pres.service.com>

<user@pres.example.com/mobile>

<example.org>

Figure 3.1 XMPP architecture

3.2. Communication and protocol

The communication between the entities in an XMBRvark (source and destination) is

carried out following the listed steps:

1. Determine the IP address and port number of thendéien to which the source

wants to connect to.
2. Open a Transmission Control Protocol (TCP) conoedib the destination.
3. Open an XML stream over the TCP connection.
4. Negotiate Transport Layer Security (TLS) for encigmp.
5. Authenticate entities in communication.
6. Bind a resource to the stream.
7. Exchange XML stanzas.
8. Close the XML stream.
9. Close the TCP connection.

The source entity first uses DNS to obtain thedBrass and port of the destination entity.
After receiving a response, the source opens a dd@Rection and establishes an XML
stream with the destination. It is recommended riorypt the channel communication
using TLS. The Simple Authentication and Securityyér (SASL) is used for entity

authentication. This completes the initializatidrttee connection. If at least one entity is a

client, a resource (i.e. communication mean, e.gbil@ phone, laptop) is bind to the

16



stream (in server to server communication this stepkipped). The exchange of XML
stanzas fulfills the purpose of establishing thengwnication. An unlimited number of
XML stanzas can be exchanged during one sessiothelrend of communication, the

entities close the XML stream and the TCP connactio

Further on we focus on the exchange of XML stanglieh is used for the exchange of

presence information.
3.2.1. XML stanzas

The basic message in the communication using théRMrotocol is an XML stanza.
There are three kinds of stanzas: <message/>, eqmes> and <ig/>. The <message/>
stanza is used when one entity pushes informatoanbther entity. The <presence/>
stanza is used for disseminating and managing mpeesénformation following the
publish/subscribe communication style implementeer XMPP. The <ifp stanza serves
as a control mechanism, using request — respogkeaftcommunication. For additional

functionality that extends the basic syntax of a8 XMPP uses XML namespaces [13].

Attributes ‘to’, ‘from’, ‘id’, ‘type’ and ‘xml:lang are common to all stanzas. The ‘to’
attribute specifies the JID of the intended recipier the stanza, and the ‘from’ attribute
specifies the JID of the sender. The ‘iq’ attribigaused to track response or error stanza
that it might receive from another entity. The #ymttribute specifies the purpose or
context of the stanza. The ‘xml:lang’ attribute dfies the default language of human

readable XML data, is often omitted.
3.2.2.  Subscription process

Presence information is disseminated only to othities that a user has previously
approved [11]. In XMPP, a subscription lasts uatilentity unsubscribes or a user invokes
the previously granted subscription approval. F@naging subscriptions, entities are
using presence XML stanzas with attributes: subscriunsubscribe, subscribed and

unsubscribed.

Figure 3.2 shows an example subscription procesy) USMPP. A subscriber’s client
generates a subscription request by sending aruestanza of the type subscribe and a

®ig = Info/Query

17



URL address of a user of interest in the attribtate This request represents a request for
authorization from the user that he/she is inteckst. The server expands the subscription
request with the attribute ‘from’, and routes thBlIX stanza toward the user of interest.
After the server forwards this request, it alsodsesm response in the form of an ig stanza to
the subscriber. After the client application frone tuser of interest receives a subscription
request, it presents the request to the user (@ieseto it automatically following the
explicit rules predefined by the user). A stanzahaf typesubscribed is used when an
approval is granted, while a stanza of the typeaibssribed is used otherwise. Further on,
the server expands the presence stanza with #dousdtffrom’, and routes the message to
the subscriber finishing the process with a respdaoghe user in the form of an iq stanza.
Finally, the server needs to deliver the presenfmemation of the successfully subscribed

user to all subscriber devices.

XMPP mandates that each user has a subscriptibis town presence information. The

auto-subscribe process is managed by the useverser

SUBSCRIBER SERVER SERVER USER
<sub@pres.example.net> <pres.example.net> <presence.com> <user@presence.com>

<presence id='xk3h1v69' <presence <presence
to="user@presence.com’ from="sub@pres.example.net' from="sub@pres.example.net’
type="subscribe'/> id='Xk3h339' id="xk3h1v69"
to='user@presence.com’ — 0
<iq id="b89c5r7ib574' 4 type="subscribe'/> o "_s.er(?"’e.;ef;ﬁe'“m
to="sub@pres.example.net/ 14 type=subscribe 'N
mobile 4

type='set">
<query xmins="jabber:ig:roster'>
<item ask="subscribe’
jid='user@presence.com’ <presence

subscription="none'/> from="user@presence.com’ <presence id="hdvicakj’

<lquery> id="hdv1cdkj’ to="sub@pres.example.net'
<fig> to="sub@pres.example.net' type="subscribed'/>

type="subscribed'/>

<presence <iq id="a78b4q6ha463'
from="user@presence.com' 1 @p!
id="h4v1ic4kj' type='set">
to="sub@pres.example.net' <query xmins="jabber:ig:roster'>
type='subscribed'/> <item
N jid="sub@pres.example.net'
<iq id='b89¢5r7ib576" subscription="from'/>
to="romeo@example.net/foo’ <lquery>
type='set"> <lig>
<query xmins='jabber:iq:roster'> 14

<item jid='juliet@example.com’
subscription="to'/>
<lquery>
<lig>

<presence from="user@presence.com/
laptop’

id="pw72bc5j'
to="sub@pres.example.net'/>

<presence from="user@presence.com/
laptop’
id="pw72bc5j'
to="sub@pres.example.net'/>

Figure 3.2 Subscription process using XMPP

When cancelling a subscription, a user can at emg send a presence stanza of the type
unsubscribe and repeat the previously described process witheasage of the type

unsubscribe.

18



3.2.3. Publishing process

Publishing process using XMPP is shown in FiguB ®hen publishing a new presence
update, a user sends an empty presence stanzadHdésbthe initial presence). The user’'s
server sends the initial presence to all subs@jbextending the stanza with attributes
‘from’ and ‘to’. It also sends this initial presento the user that published it because of the
auto-subscribe feature. After sending the initi@sence stanza, the user can send the full
presence information. This is done in the sameidashs with the initial presence. The
user’s server disseminates presence informatiall teubscribers, extending the presence
stanza with attributes ‘from’ and ‘to’. For endirtge “presence session” (i.e. going
offline), the user sends a presence stanza ofyfiee unavailable. Status message may or
may not be included.

SUBSCRIBER SERVER SERVER USER
<sub@pres.example.net> <pres.example.net> <presence.com> <user@presence.com>

‘ <presence/> ‘

pi
N

<presence from="user@p

<presence from="user@presence.com/laptop’ to="sub@pres.example.net/> R

to="sub@pres.example.net'/>

<presence from="user@presence.com/laptop’
to='user@presence.com'/>

b/

b
4

<presence>
<show>away</show>
<I/presence>

<presence from="user@presence.com/laptop’ | |4
to="sub@pres.example.net' N

<presence from="user@presence.com/laptop’ <show>away</show> <presence from='user@presence.com/laptop’
to="sub@pres. ple.net' <Ipres: to="user@presence.com/laptop’
<show>away</show> Z <show>away</show>

N <Ipresence>

<Ipresence>

p type='
going on
<Ipresence>

h

<presence from="user@p
to="sub@pres.example.net'
type="unavailable'>
going on
<Ipresence>

|
<presence from="user@presence.com/laptop’
to="user@presence.com/laptop’
type="unavailable'>
going on i

<presence from="user@pr: ptog
to="sub@pres.example.net'

type="unavailable'>

going on i A

<Ipresence>

Figure 3.3 Publishing process using XMPP

If the user wants to send his/her presence infooma&b another user that is not subscribed
to his/her presence, he/she can do this by seraipgsence stanza with a ‘to’ attribute
that contains the JID of the intended recipient $arvers will route the stanza through the

network to the intended user.
3.2.4. Notification process

Figure 3.4 shows notification process using XMPFew a user logs onto the network,
he/she wants to check the presence informationharausers that he/she is subscribed to.
This is the responsibility of the user’s serverd émus it sends a presence probe stanza for
each subscription. A server that has the presamoemation about the user of interest

19



responds to the presence probe stanza with a peestanza that contains the full presence

information.

SUBSCRIBER SERVER SERVER USER
<sub@pres.example.net> <pres.example.net> <presence.com> <user@presence.com>
<presence from="sub@pres.example.net’

id="ign291v5'
to="user@presence.com’
type="probe'>

1"
V
<presence from="user@presence.com/laptop’
<presence from="user@presence.com/laptop’ id="ps6t1fu3"
id="ps6t1fu3’ to="sub@pres.example.net’>
to="sub@pres.example.net'> <show>away</show>
<show>away</show> <Ipresence>
</presence> :

Figure 3.4 Notification process using XMPP

20



4. Rich presence service for physical presence

The rich presence service (RPS) is a service tlaatages physical and virtual presence. It
may be used by many applications that need a dnpiiesence solution. The RPS uses the
RPID format [14] for storing and exchanging pregennformation. RIPD includes
contextual information, such as location, mood aativity (associated with physical

presence) or status and contact means (associdtedinual presence).

State-of-the-art presence service implementationscdlly do not support physical
presence, only virtual presence, offering simplésstiptions to all presence updates
generated by a single presentity, information myvas quite limited [2]. The RPS
(developed at Department of Telecommunication$iefRaculty of Electrical Engineering
and Computing, University of Zagreb) [1] is a systéhat provides a presence service
without mentioned deficiencies. Integration of tRPS with where.deri.ie enables
additional services associated with the presencker@/deri.ie updates user presence
information, the RPS processes and disseminatesnterested users.

4.1. Architecture

The position of the RPS within a presence systethisncomponents are shown in Figure
4.1. The RPS integrates SIP and XMPP presencd@wuith additional presence related
services (e.g. meeting scheduler, calendar).

The central components of the RPS are the followimgh presence layer,

publish/subscribe layer, and policy server. Thé& gpeesence layer (RPL) offers a web
service interface and can be accessed directlyS@&P. The RPL accepts presence
updates in the RPID format and presence subsamgptiefined using XPath. The RPL

converts presence updates and subscriptions tblesipisubscribe message format.

The publish/subscribe layer (PSL) is implemented thg Mobile Publish/Subscribe

(MoPS), a content—based publish/subscribe systefiltering and disseminating presence
updates optimized for mobile environments. The R8tepts presence data from various
presence—related data sources (e.g. Facebookemvatisensor network, calendar) either

directly when a data source is extended by a Moksigher that publishes data objects

21



according to the MoPS publish/subscribe protocolthoough the middleware layer for
presence-data acquisition which fetches data amdects them to a publish/subscribe
message format. The combination of different mefansproviding data to the system
improves its performance, e.g. presence relatel dizs not need to pass through the two
layers (rich presence middleware and publish/sutescrto be matched against
subscriptions. Moreover, a distributed publish/sabg implementations allows efficient

filtering of data objects close to data sourcesiaithey have high publication rates.

The rich presence service includes a Presencerseheh consists of an Openfire XMPP
server and/or a SIP presence server. Both sereext to be expanded to comunicate with
the rich presence layer. Thus, the RPS serves arag as a gateway between XMPP and
SIP networks, thus offering a rich presence satutmthe users of both networks (since
servers without such extensions can process omhplsi presence messages). Such
distributed architecture enables integration witltious presence domains and presence

service implementations.

A policy server handles watcher and presentitygmedi A presentity can set different
levels of presence visibility to different groupsveatchers (e.g. his/her location is visible
to family members all the time, but to colleaguesation is visible only during office
hours). A watcher defines policies for receivingggance updates (e.g. do not display
presence updates during a meeting, a company cak presence updates from friends
during office hours). Also policies can be useddefining preferable means (devices and
applications) for notification delivery. In the cant implementation, the policy server is
used to define access rights to presence informaebtween watchers and presentities.

Applications can use the RPS either directly, ooulgh a presence server. When using
clients that do not support the RPID format, contakdata from a RPID document is
displayed as a textual message in addition to ptigetate, while a watcher defines rich

presence subscriptions directly using the web fiaxterof the RPS.

22



J 00

Applications
Presence- .
IM Meeting M
(XMPP client) e;?::ggf scheduler VolP (SIP client)
]
T
I
I
|
|
e ‘ ™
XMPP Presence server
SOAP
XMPP SIP SIP
server Presence
N\ /)
Rich presence layer

Publish/subscribe layer

PUB-SUB
PROTOCOL

Middleware for
presence-data

————{ Policy server ]

acquisition
Rich presence
service
N
Presence-related data sources
PUB-SUB
PROTOCOL

Facebook,
Twitter

Sensors | | Calendar

J

Figure 4.1 Rich presence architecture

23



4.2. where.deri.ie

Digital Enterprise Research Institute (DERI) hasealeped an application that manages
presence information using the Linked Data and &&emantic Web principles. The goal
is to rely on the already existing models and datg. the FOAF ontology), design a
loosely-coupled architecture and make it accesdiolem a wide range of devices. This
application is used as an independent presenceedalata source that combines presence
updates directly from users (using mobile phondiegions) and from a sensor network.

RDF{SHOWL data
from the Web and the Enterprise

HIH:a—enahlbd
buidings description

Figure 4.2 Architecture of the Presence Managei@gsitem

The architecture (as shown in Figure 4.2) consi$tmdependent data sources from the
Web (e.g. user profiles in FOAf a Presence Management System (PMS) and thitg-par
applications [15]. The PMS aggregates data and gesngresence information. For
publishing new presence information, third—partplegations on various devices are used
(e.g. a mobile application that checks whether er is in the room or in the building).
Independent data sources from the Web are used$/tB retrieve context of presence

information and details about users (e.g. pictiulepame, affiliation).

" FOAF (from ,friend of a friend“) is an RDF basechema to describe persons and their social netimosk

semantic way

24



The service is visible on http://where.deri.ie ¢gh®wn in Figure 4.3), the URL points to
the root of the PMS. For publishing new presendermation, HTTP POST request is
used containing a FOAF URI of the user, while thguest is addressed to the URI of the
room. For exampleROST /room/r309 HTTP/1.1 Is used when a user logs into the
room 309. The service is using a REST-ful desigtiepa therefore a room URI is:
http://where.deri.ie/room/xxx, where xxx is an itéer of the room. The Web service
provides the information about a user, his/hertiocaand check in time. Also it indicates

user availability, comment, and offers a link te tiser’s profile page.

o Aleksandar 5L‘@ in Room 309 & an Tue, 10 May 2011 14:47:18 +0100 using Web interface

* Yinod Hegde 5[’@ in Meeting Room & {213} & an Thu, 05 May 2011 14:56:19 +0100 using Android application (poi wag caif)

* Alexandre Passant 5[”\_:' in Conference Room {212} & on Fri, 15 apr 2011 15:15:07 +0100 using android application (Comments)
o Alexandre Passant 5L’:_:' in Room 117 &% on Fri, 15 Apr 2011 14:02: 47 40100 using &ndroid application (Cormments)

Figure 4.3 Presence information published on thesie

The publication of the new presence informatiompassible through the Web interface,
using an application for Android phones or withamive RFID tag. RFID base stations

are deployed in the DERI building, which, with &etiRFID tags form the global sensor
network (GSN). Each RFID tag is associated to a F@#ofile of a user wearing it, thus

enabling tracking the location of a user. A semsiwork can provide location information

about a user, but status information is provideithgus simple mobile application that

indicates status, available or unavailable. Whenphone is turned over (display facing
the floor) the user status is set to unavailableijlemvhen the phone is turned back, the
user status is set to available.

Another Android application allows users to mandgeir presence information by
scanning a QR — codassigned to a location. This application requiteployed QR —

codes throughout the environment.

An alternate way to update presence informatidoyisising a web interface where a user

fills out the form on the webpage of the approgriaom.

8 RFID = Radio Frequency Identification

° QR = quick response; QR — code is a matrix barceddable by dedicated QR barcode readers or camera

phones.

25



4.3. Implementation of the

where.deri.ie

R

Presence

RPS and integration with

client Web client
(watcher)
[
SOAP
PUB-SUB |
PROTOCOL Rich presence layer
-———- Policy server
Publish/subscribe layer
PUB-SUB
PROTOCOL

Middleware for
presence-data

Rich presence

acquisition .
‘ service
HTTP
where.deri.ie where.deri.ie
fffff Application
(presentity)

Sensors

Figure 4.4 Implementation the RPS at DERI

The rich presence service implementation at DERhmwn in Figure 4.4 and it is done in

accordance with the architecture defined in chagpter

The rich presence layer represents an entry poirdistributing rich presence information

in RPID format and relies on the underlying pubksibscribe layer for efficient

dissemination of rich presence updates. It acaeghspresence subscriptions in the form

of an XPath query or conjunction of XPath querss] presence status updates in RPID

format both defined by end users or generated éygmce—enabled applications.

26



/presence/[@entity=http://www.deri.ie/about/team/me mber/aleksandar_antonic#me]
Ipresenceltuple/[@Ilocation-info= http://lab.linkedd ata.deri.ie/2010/deri-rooms#r309]

Figure 4.5 An example Xpath subscription

Figure 4.5 shows an example rich presence subsceriptefined using XPath. The
subscription is related to Aleksandar Antondentified by his FOAF profile URL which
states that a presence update should be sent whiarcdtion equals room 309 in the DERI
building (visible from the FOAF profile URL of rogmin cases when the RPS includes an
XMPP and/or SIP presence service that use presttJRlentify an entity (as defined in
RFC 3859 [4]), it is necessary to convert a FOA®fif® into a press URI. In addition, the
RPL needs to identify a watcher that has definesulascription in order to be able to
forward presence updates to the adequate destndtierefore, the RPL maintains a list
of watchers that are currently registered and coiedeto it (each watcher is identified by a
FOAF profile URI). An XPath subscription is conwvadtby the RPL to publish/subscribe
subscription format (as shown in Figure 4.6) betmemg forwarded to the PSL.

<?xml version="1.0" encoding="UTF-8'?>
<subscription type="booleanHashtable">
<validity>-1</validity>

<attribute name="location-info" operator="="type=" string">
http://lab.linkeddata.deri.ie/2010/deri-rooms#r309 </attribute>
<attribute name="entity" operator="="type="string" >
http://www.deri.ie/about/team/member/aleksandar_ant onic#me </attribute>

</subscription>

Figure 4.6 An example publish/subscribe subscmiptio

Rich presence status updates are encoded usingRHe format. An example RPID
publication is given in Figure 4.7 which defineprasence status for Aleksandar Antoni
as open, and his location is room 309. Figure A8ws the same publication after
conversion by the RPL into the publish/subscribenfit. The same format of documents
are used in the notification process, only thisetithe RPL converts messages from the

publish/subscribe format to RPID format.

27



<?xml version="1.0" encoding="UTF-8"?>
<presence xmlns="urn:ietf:params:xml:ns:pidf"
xmins:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmins:It="urn:ietf:params:xml:ns:location-type"
xmlins:rpid="urn:ietf:params:xml:ns:pidf:rpid"
entity=" http://www.deri.ie/about/team/member/aleks andar_antonic#me">
<tuple id="bs35r9">
<status>
<basic>open</basic>
</status>
<priority>3</priority>
<location-info> http://lab.linkeddata.deri.ie/2010/deri-
rooms#r309</location-info>
<timestamp>2011-05-27T16:49:29Z</timestamp>
</tuple>
</presence>

Figure 4.7 An example RPID publication/notification

<?xml version="1.0" encoding="UTF-8"?>

<publication type="hashtable">
<validity>-1</validity>
<attribute name="presence/entity" operator="=="typ e="string">
http://www.deri.ie/about/team/member/aleksandar_ant onic#me </attribute>
<attribute name="tuple/id" operator="=="
type="string">bs35r9</attribute>
<attribute name="status/basic" operator="=="

type="string">open</attribute>

<attribute name="location-info" operator="=="type= "string">
http://lab.linkeddata.deri.ie/2010/deri-rooms#r309< [attribute>
<attribute name="priority" operator="==" type="inte ger">3</attribute>
<attribute name="timestamp" operator="==" type="str ing">2011-05-

27T16:49:29Z</attribute>
</publication>

Figure 4.8 An example publish/subscribe publicdtiotification

The rich presence layer also integrates an XML liga (eXist database) to store all

subscription and publications. The database is asgursistent storage.

The publish/subscribe layer is a content—basedigiublbscribe system optimized for
mobile environments and frequent disconnectiongublishers and subscribers. It uses its
own publish/subscribe protocol (based on TCP) amgdtag for publications and

subscriptions. Subscriptions are defined as a oetipn of predicates, where each

28



predicate is composed of an attribute, operator \@lde (as shown in Figure 4.6). A
publication is a simple hashtable with (attributalue) pairs (as shown in Figure 4.8).
Such definition of publications and subscriptionstioe PSL enables the implementation of
efficient algorithms for matching incoming publicats to numerous subscriptions
organized in trees or lists (depends on the tymbscription). Since the publish/subscribe
layer offers a remote service interface, presencecses can publish and receive presence
updates directly through this interface, and thusicathe conversion from the RPID to

publish/subscribe format.

The policy server stores policies defined by préses granting access rights to watchers
and groups of watchers. After receiving a subscripfrom a watcher, the PSL retrieves,
from the policy server, the watcher access righticlvhis then integrated in the
subscription. This avoids unnecessary generatiamotfications inside the system (when
condition from a subscription is satisfied but tleer does not have sufficient access rights
to see a notification). The policy server stores types of policies in the XML database.
The first one contains all subscribers and theimivership in user groups together with
their position within the group (e.g. Ph.D./M.Student, unit leader), and the second one

associates user groups and positions to accegs.righ

Methods implemented by the RPS (as shown in Figi@eare the following:

registerWatcher — registers a watcher with a listener object witah receive

notify messages from the rich presence layer;
e registerPresentity — registers a presentity;
* subscribe/unsubscribe — creates/deletes a watcher subscription;
e publish - publishes a presence update;

e notify — notifies a watcher about presentity’s presemciates.

29



Application Layer

registerWatcher subscribe | | notify registerPresentity() publish '
(presenceListener) | (watcherlD, filter) | | (RPIDDocument) o y (RPIDDocument. presentitylD)

Rich Presence Layer

subscribe nofify publish )
(XMLDocument) (XMLDocument) (XMLDocument) Policy Server

Publish/Subscribe Layer getPrioriy(watcher ID)

Figure 4.9 Rich presence service methods

Figure 4.10 depicts a sequence diagram showingtaraction within the RPS subsystems.
A watcher first registers with the rich presenggelaand provides its listener object that is
used later on to receive matching presence ndiica from the RPL. The RPL responds
with a unique watcher identifier and creates a seWwscriber object associated with this
watcher. When a watcher wishes to subscribe, dsarsubscription request containing an
XPath subscription and its identifier. The RPL e®the subscription in the form of an
XML document in its XML database, converts the XPaubscription into an XML
document recognized by the PSL, and uses the wasthiscriber object to submit the
XML subscription to the PSL. The PSL gets accessllef watcher from the policy and
integrates it into the subscription. Later on, asentity updates its presence information
using where.deri.ie. The middleware layer recewdsrwarded presence update, converts
it into an XML document recognized by the PSL, andblishes the document to the PSL.
Since the XML document matches a previously defisidaiscription, the PSL notifies the
watcher subscriber object at the RPL with the matcdocument. Subsequently, the RPL

converts the received document into RPID formadl, &mrwards it to the watcher listener.

30



where.deri.ie Middleware

Watcher

Rich Presence
Layer

XML database

Publish/Subscribe

Layer Policy Server

HTTP POST
(presence RDF)

registerWatcher
(listener)

watcherlD

subscribe
(watcherlD,
XPath_subscription)

subscriptionID

store
(XMLSubscription)

subscribe

(XMLDocument)

publish(XMLDocument)

getPriority(watcher ID)

priority

notify(RPIDDocument)

notify(XMLDocument)

Found matching
subscription!

Figure 4.10 Sequence diagram showing an interaetithin the RPS

31




5. Supported Presence Subscriptions

The rich presence service offers to a user thrpestpf subscriptions: simple, parallel and
sequence subscriptions. A simple subscription &l wghen a user subscribes to presence
information of a single presentity. Two other sulon types are composite

subscriptions, and enable subscriptions to morsepitéies at the same time.

5.1. Simple subscription

A simple subscription consists of a conjunctionpoédicates which describe the user
request for presence information of a presentiachEpredicate is composed of an attribute
(an attribute is an element in RPID format, i.ditgnlocation-info, status/basic, note, etc.),

operator (equal or not equal) and value. A usear défines the duration of a subscription.

As long as the subscription is active, the useeives notification messages (presence
updates about a presentity). Notification messaayeyccomplete presence information

(complete RPID document as it is published by tlesgntity).

5.1.1. Simple presence service

Simple subscriptions need to contain a presentRy (ds shown in Figure 5.1). Additional
constraints can also be specified, such as locaimhstatus. Figure 5.2 shows a received

matching notification when user of interest upddisgpresence information..

32



resence client

Notifications | Subscriptions |

Add new subcription | Simple subscription | |

Entity iname)  |aleksandar_antonic] |

[INOT  Validity (minutes)

Location (room, e.g.r309) | |

[INOT

Status (open of closed) | |

Subscribe

L pad subscription

Figure 5.1 Simple subscription

Presence client

| Notifications | Subscriptions |

=7umlversion="1.0" encoding="UTF-3"%=
=presence ¥mins="urn:iettparamsxmlns:pidf
ymingdm="urn:ietf paramsxmlns: pidfdata-modal”
¥mins:t="urniett paramsxmins location-type"
¥ming:rpid="urn:iettparams xmlnspidfrpid’
entity="http:Manaen deri iefahoutteamimemberaleksandar_antonic#me"=
=tuple id="sd35r8"=
=timestamp=2011-06-12T16:18:287=fimestamp=
=priatity=1=fariotitye=
=location-info=hitp:iab.linkeddata.deri.ie/201 0ideri-roms#ra09=<focation-info=

=status==basic=hitpfanline-presence netiopofnsf#Available=lbasic==/status=
=ituple=

=/presences=

Load notification Delete notification

Figure 5.2 Presence service notification

33



5.1.2. Geo—fence service

Simple subscriptions can also be used for the imeigation of geo-fence services. A
geo—fence is a virtual perimeter for a real-wordgyaphic area. A geo—fence service is a
service which sends a warning to a user when apersa resource crosses the fence (i.e.
leaves a designated area). The rich presence systeomjunction with a sensor network
can be used as a geo—fence system. Figure 5.3 sh@ubscription used as the geo—
fencing service. The subscription expresses a stdoea notification whenever the video
projector 1 is not in room 212 and the subscriptrahidity time is infinite. Independent
presence—related data source provides locatiomniaiion about a resource to the RPS
(RFID base stations monitor location of a RFID ésgociated with a resource). When the
RPS detects that the resource is not in the apptepoom, it sends a notification to the

administration office.

B Presence client

| Motifications | Subscriptions |

Add new subcription iSimpIe subscription | - |
Entity (name)  [videa_projector! | [nor  validity (minutes)  [-1]
Location (room, e.g. 309} [r2172 | wINOT

Status (open or closed) | |

Subscribe

Load subscription

Figure 5.3 Geo-fencing service subscription
5.1.3. Virtual secretary

Another possible usage of a simple subscriptionthes implementation of a virtual

secretary. Virtual secretary is a service that jiew information about people who wanted
to contact a user while he/she was unavailable i®.@ meeting, busy). A user subscribes
to presence information related to his/her offiae $hown in Figure 5.4). When someone

comes to the user’s office and realizes that tlee issnot available at the moment, the RPS

34



records the visitor's presence in the user’s off\@#en the user becomes available (e.qg.
returns to the office, finishes a meeting) the RBIEsend notifications for each person
that visited the office during the period of undahility. If a visitor wants to leave a
message, he/she can include it in a presence uf@asdiown in Figure 5.5).

B presence client

| Notifications | Subscriptions |

Add new subcription ISimpIe subscription | v|

Entity (name) | |  [Onor  Validity (minutes) |

Location (room, e.q. r309)  [rz00 |

[CInot

Status (open or closed) | |

Subscribe

Load subscription

Figure 5.4 Virtual secretary subscription

B presence client

| Motifications | Subscriptions |

=Puml version="1.0" encoding="UTF-8"?=
=presence xmins="urn:ietfparamsxmlnspidf
¥mins:dm="urniettparamsxmins: pidf data-model”
rmingt="urmiiett paramsxming location-type"
yminsrpid="urniettparams xmlns pidfrpid*
entity="http M. deriiefaboutteamfmembenaleksandar_antonic#me"=
=tuple id="=d2184"=
=timestamp=2011-06-12T14:1 5:48Z=fimestamp=
=priarity=3=priority=
=lacation-info=http:fab linkeddata deri.ief201 Ofderi-rooms#r200=/ocation-info=
=note=Call me an my cellwhen you are back, I'm leaving now. =fnote=
=status==basic=hitpfonline-presence netiopofnsf#Available=lbasic==/status=
=ituple=
=/presences

Load notification Delete notification

Figure 5.5 Virtual secretary notification

35



5.2. Parallel subscription

A parallel subscription consists of a conjunctidnsonple subscriptions thus allowing a
user to receive presence notifications dependinthempresence status of multiple users at
the same time. Notification is generated when mresdanformation of each presentity
overlaps another matching subscription. A thresHioicdgenerating a notification message
Is set by a user via the variable coverage. Thaiar coverage represents the minimum
percentage of satisfied simple subscriptions shahd matching event is detected. Figure
5.6 shows a parallel subscription to presence egdait three different users expressed as
simple subscriptions. If the coverage has a vafug (100%) a notification is generated
only at a point in timés; if coverage is set to 0.66 (66%) or less, a ruatifon is generated

at time pointst, and ts. The coverage with value of 0.33 (33%) or lessegates a

notification at all three time points.

Parallel subscription

! ! time _
t t t;

Figure 5.6 Parallel subscription coverage

5.2.1. Meeting scheduler

A meeting scheduler is an application for schedulmeeting times and organizing
personal itineraries. A meeting scheduler can eedripresence statuses (virtual and
physical) of potential participants before the tstdithe meeting (e.g. 5 minutes before the
start) and then proceed in accordance with thevedalata (cancel a meeting, reschedule
or send a confirmation). Figure 5.7 shows a pdraidscription to three (potential)
participants who have open (i.e. available) statubcoverage is set to 66% (a meeting can
be held without one person). If a meeting schedwdeeives a notification from the RPS
before the beginning of the meeting, it can sendfigoation that the meeting will take

place at the agreed time. If notification is nataieed before the beginning of the meeting

36



(it means that two or more users are not availablattend the meeting), a meeting
scheduler should try to reschedule or cancel thetingg A meeting scheduler waits for a
notification as shown in Figure 5.8.

B presence client

Notifications | Subscriptions |

Add new subcription |Paralle| subscription |V|

Entity {name) !Iing_chen;anh_le_tuan;danh_le_phuoc; | Walidity {minutes)

Location (room, e.g. r309) | |

Status {open or closed) !Dpen |

Coverage (0.0-1.0) [066 |

Subscribe

Load subscription

Figure 5.7 Meeting scheduler subscription

B3 presence client

Notifications | Subscriptions |

=Pumlwersion="1.0" encoding="UTF-3"%=

=presence ¥mins="urmietf params:xmlns:pidt*

sminsdm="urnietfparams xmlns:pidfdata-model

¥mins i="urniettparamsxmlnsglocation-type”

¥ming rpid="urn:ietf. paramsxmlng:pidfrpid’

entity="Rich presence system"=
=timestamp=2011/06/20 00:00:54=fimestamp=
=status==hasic_3=hitpifonline-presence netiopa/ns®vailable=ihasicI==/status=
=presence=<entity_3=httpifwhere deriisipersonidanh_le_phuoc#me=fentity_3==/presence=
=status==hasic_2=httpfonline-presence netiopa/ns®#tvailable=ihasic_2==/status=
=presence==entity_Z=hitpihwhere deriiefpersonfanb_le_tuan#me=ientity_2==ipresences
=gtatug==hasic_1=httpJionline-presence.netfiopoins#available=fbasic_1==/status=
=presence==entity_1=hitphwhere deriiefpersoniling_chen#me=lentity_1==fpresence=
=type=parallel=ftype=

=lpresences=

Load notification Delete notification

Figure 5.8 Meeting scheduler naotification

37



5.2.2. Sequence subscription

A sequence subscription consists of a conjunctiénsimple subscriptions, but a
notification is generated after a sequence of evepécified in a sequence subscription,
regardless of the time when a certain event occhigure 5.9 shows a sequence
subscription to presence updates of three diffenesers. The system generates a
notification only att; because then a sequence of events stated inlikerigtion is fully
satisfied. The fact that presence information efuker 1 and user 2 does not satisfy simple

subscriptions at the timeg, thas no effect on a notification process.

Sequence subscription

time _

t t t;
Figure 5.9 Sequence subscription coverage

A sequence subscriptions can be used for studygonglp behavior and habits, for example
to monitor the physical movement within the buiglinnumber of changes in the
availability of a user during a period of time. giie 5.10 shows an example sequence
subscription. The subscription is related to Linlge@ and states that a presence update
should be sent when his availability changes frqgmanoto closed. Figure 5.11 shows a

notification generated for a sequence subscriptouest.

38



[ Notifications |* Subscriptions |

Add new subcription ISequence Subscription | - |

Entity {(name) |Iing_chen; ling_chen; | Validity {minutes)

Location (room, e.g. r309) | |

Status {open or closed) Iopen; closed, |

Load subscription

Figure 5.10 Sequence subscription example

Presence client

| Motifications | Subscriptions |

EEX

=ml version="1.0" encoding="UTF-8"7=

=presence xmins="urnietf paramsxmlns:pidf*

¥mins dm="urniettparams ¥mlnsg pidfdata-model”

smins i="urniettparamsxmlns:location-type"

¥mins rpid="urn:iett paramsxmins:pidfrpid"

entity="Rich presence gystem"=
=timestamp=2011/06/20 00:058:50=fimestamp=
=presence==gntity_2=hitpifwhere deriisipersoniling_chen#me=fentity_2==presence=
=fype=saguence=iypea=
=presence==entity_1=httpifwhere deriieipersoniling_chen#me=fentity_1==lpresences=
=gtatus=<hasic_2=httpJionline-presence.netiopoins#DoMotDisturb=fhasic_2==/status=

=status==hasic_1=httpfonline-presence netiopa/ns#tvailable=thasic_1==/status=
=fpresence=

Load notification Delete notification

Figure 5.11 Notification on sequence subscriptexuest

39




Conclusion

Existing solutions implementing presence are vaputar despite the fact that they have
limited support for context-awareness. The mainwbecks are limited support for

presence information filtering and insufficient yacy control. This thesis presents a
solution which uses the rich presence specificatiaonjunction with filtering of presence

updates. The rich presence service (RPS) can haihglex subscriptions, provides
better information access control and is independém particular presence protocol. It
integrates a content-based publish/subscribe ingiéation for efficient matching of

presence-related subscriptions to presence updated, uses where.deri.ie as an
independent presence—related data source of lidéal managing presence information
related to people in the DERI building.

The integration of the RPS with where.deri.ie hasated a platform for a number of new
services for end users: a user-related presensgcesawith additional presence status
filtering, geo-fence service and virtual secret@gsides the listed services, the RPS can
interact with many other applications such as argdr application, meeting scheduler, or
various policy—enabled applications which changeptesence status of a user depending
on the current time of day, location and activity. [The interaction between the RPS and
applications is achieved through the web servicerface offered by the rich presence
layer or directly through the publish/subscribeclay’he RPS is a step closer to a complete

solution to the problem of consolidated presenageasribed in Hauswirth et al. [2].

Future work includes expansion of the policy seteemclude context-dependant policy
rules. Another interesting direction is the reptaeat of the RPID format with an
appropriate RDF Schema as a uniform platform faycessing presence information.
Future efforts will also be directed to improvingseem performance and to the

development of new applications which rely on thSR

40



References

[1]

[2]

[3]
[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

PODNAR ZARKO, |., KUSEK, M., PRIPUZIC, K., ANTONIC, A. Presence@FER: An
Ecosystem for Rich Presence Aroceedings of the 11th International Conference
on Telecommunications, Graz, Austria, June 2011, pp. 133-140.

HAUSWIRTH, M., EUZENAT, J.,FRIEL, O.,GRIFFIN, K., HESSION P.,JENNINGS, B.,
GROZA, T., HANDSCHUH, S.,PODNAR ZARKO, |., POLLERES A., ZIMMERMANN, A.
Towards consolidated presencePnoceedings of the 6th International Conference
on Collaborative Computing: Networking, Applications and Worksharing,
CollaborateCom 2010, Chicago, lllinois, USA, October 2010, invited pap

DAY, M., ROSENBERG J.,SUGANO, H. A Model for Presence and Instant Messaging
(RFC 2778), IETF, February 2000., http://www.ietfiofc/rfc2778.txt

PETERSON J.Common Profile for Presence (CPP) (RFC 3859), IEAuUgust 2004.,
http://www.ietf.org/rfc/rfc3859.txt

KHARTABIL, H., LEPPANEN E.,LONNFORS M., COSTA-REQUENA, J. An Extensible
Markup Language (XML)-Based Format for Event Netafion Filtering, IETF,
September 2006., http://www.ietf.org/rfc/rfc4661.tx

ROSENBERG J., SCHULZRINNE, H., CAMARILLO , G.,JOHNSTON A., PETERSON J.,
SPARKS, R.,HANDLEY, M., SCHOOLER E. SIP: Session Initiation Protocol (RFC
3261), IETF, June 2002., http://www.ietf.org/rfc8R61.txt

ROSENBERG J. A Presence Event Package for the Session ioiti&rotocol (SIP)
(RFC 3856), IETF, August 2004.,http://www.ietf.afg/rfc3856.txt

NIEMI, A. ED. Session Initiation Protocol (SIP) Extension foeBtState Publication
(RFC 3903), IETF, October 2004.,http://www.ietf ofg/rfc3903.txt

SUGANOH., FusimoTO S.,KLYNE G.,BATEMAN A., CARRW., PETERSON J. Presence
Information Data Format (PIDF) (RFC 3863), IETF,gust 2004.,
http://www.ietf.org/rfc/rfc3863.txt

Saint-Andre, P. Extensible Messaging and Preserated®| (XMPP): Core (RFC
6120), IETF, March 2011., http://www.ietf.org/rfld6120.txt

Saint-Andre, P. Extensible Messaging and Preserated®! (XMPP): Instant
Messaging and Presence (RFC 6121), IETF, March.2011
http://www.ietf.org/rfc/rfc6121.txt

MILLARD, P.,SAINT-ANDRE, P.,MEIJER R. XEP-0060: Publish-Subscribe (v1.13),
XMPP Standards Foundation (XSF), July 2010., Hipipp.org/extensions/xep-
0060.html

SAINT-ANDRE, P.,SMITH, K. XEP-0163: Personal Eventing Protocol (v1.2), X¥P
Standards Foundation (XSF), July 2010., http://xropggextensions/xep-0163.html

SCHULZRINNE, H., GURBANI, V., KYzIVAT, P.,ROSENBERG J. RPID: Rich Presence
Extensions to the Presence Information Data Fo(Ri&tF) (RFC 4480), IETF, July
2006., http://www.ietf.org/rfc/rfc4480.txt

41



[15] PASSANT, A., HEGDE, V., REYNOLDS, V., CYGANIAK, R.,HAUSWIRTH, M. Linked
Data, Social Semantic Web and QR codes for Preddanagement in the
Enterprise

[16] Content Networking lectures, Faculty of ElectriEalgineering and Computing,
University of Zagreb, 2011.

42



Summary

Title: Context — aware filtering and dissemination of githsence information

Summary: Presence is defined as user willingness and abidigommunicate with other
users across a set of devices and tools. Presengeesis a service which receives, stores,
and disseminates presence information to all isteteparties. This thesis presents the rich
presence service solution developed at the Depattoke Telecommunications of the
Faculty of Electrical Engineering and Computingjuémnsity of Zagreb which is integrated
with where.deri.ie developed by Digital Enterprigesearch Institute, National University
of Ireland, Galway. The first part of the thesises an overview of the basic model for
presence service and describes the two most wigssdg protocols for presence, SIP and
XMPP, while the second part describes the richgmes service solution and supported

services.

Keywords: presence information, physical presence, virtuasgnce, rich presence,
PIDF, RPID, publish—subscribe system, XMPP, SIFs&mee, watcher, presentity, policy

control

43



Sazetak

Naslov: Kontekstno — svjesno filtriranje i razaSiljanjeanihacija bogate prisutnosti

Sazetak: Prisutnost se definira kao spremnost i ntogst korisnika na komunikaciju s

drugim korisnicima korisi@ razlicite ureiaje i alate. Usluga prisutnosti je usluga koja
prima, pohranjuje i razaSilje informacije o priso$ti svim zainteresiranim strankama.
Ovaj rad prezentira sustav koji pruza uslugu bogmatsutnosti razvijen na Zavodu za
telekomunikacije, Fakulteta elektrotehnike éunarstva, SvdiiliSta u Zagrebu, integriran

sa sustavom where.deri.ie razvijenim u Digital Emiee Research Institute, National
University of Ireland, Galway. Prvi dio rada dajeegled osnovnog modela za uslugu
prisutnosti i opis dva najraSirenija protokola, $IRMPP, a drugi dio opisuje sustav za

uslugu bogate prisutnosti i usluge koje pruza.

Klju €ne rije €i: informacija o prisutnosti, fizka prisutnost, virtualna prisutnost, bogata
prisutnost, PIDF, RPID, objavi—pretplati sustav, RR| SIP Presence, pretplatnik,
objavljivac, kontrola pristupa

44



