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Abstract—This paper describes a model of a hierarchical, 

heterogeneous knowledge-base. The proposed model consists of 

an associative level that is implemented by a Kanerva-like sparse 

distributed memory (SDM) and a semantic level realized by a 

knowledge-representation scheme based on the Fuzzy Petri Net 

theory. The levels are interconnected with forward and backward 

connections that are used for the robust initialization of multi-

reasoning procedures (inheritance, recognition and intersection 

search) at the semantic level. Multi-reasoning supports reasoning 

for an unknown concept (i.e., a concept that is not defined at the 

semantic level), parallel reasoning for more than one concept that 

is obtained by forward connections from the associative level and 

used for multiple initialization, and the chaining of associative 

information retrieval and the reasoning process using forward 

and backward connections. An example of the initialization of the 

multi-inheritance procedure is given. 

Keywords: hierarchical knowledge-base, associative level, 

semantic level, Fuzzy Petri Net, reasoning, inheritance. 

I.  INTRODUCTION 

The motivation for the presented research is to design a 
model that supports manipulation with human knowledge about 
real or abstract concepts obtained from the real world that are 
fuzzy uncertain, vague and ambiguous. The approach of this 
work was inspired by biological, neurological and 
psychological models obtained by analyzing how human and 
animal brains abstract, process, store and retrieve knowledge 
from interactions with the environment. In general, neuro-
anatomical studies have concluded that all cortical systems 
display a significant degree of hierarchical organization [1-4]. 
The hierarchical processing of stimuli in the brain is mediated 
by forward connections that connect lower to higher 
hierarchical levels and backward connections that connect 
higher to lower levels [5]. The important anatomical and 
functional distinctions between forward and backward 
connections are [5]: forward connections are less divergent, and 
transmit known stimuli directly to higher levels, and backward 
connections are more divergent and they are used when 
processing unknown stimuli. On the other hand, psychological 
support for a hierarchical and heterogeneous multilevel 
organization of a knowledge-base can be found in a study by 
Piaget and Inhelder [6], who studied the intellectual 
development of children. Their observations confirm that the 
acquisition of knowledge about specific objects starts at lower, 

and proceeds to higher, levels of abstraction. Hierarchical 
learning systems have been demonstrated by the phenomena 
discovered and studied using Gestalt psychology [7, 8]. 

A brief overview of the related work is given in the 
following paragraph. In [9] a heterogeneous, hierarchical 
knowledge-base model called HETHI is described. It consists 
of one level of the Kanerva-like Sparse Distributed Memory 
(SDM) that performs the associative information retrieval 
process and supports the initialization of the inheritance 
process at higher levels, the semantic and rule-based levels. In 
[10], an enhanced version of the SDM, augmented with the use 
of genetic algorithms, as an associative memory in a 
„conscious‟ software agent CMattie is described. In [11] the 
authors describe in detail the IDA (Intelligent Distribution 
Agent) architecture of autonomous software agents as a 
cognitive model of human cognition that employs the SDM as 
a working, episodic and associative memory. In [12] the SDM 
is used for multilevel cognitive tasks. The SDM is organized to 
link low-level information and high-level correlations. In [13] 
issues in developing cognitive architectures, called CLARION, 
as generic computational models of cognition are discussed in 
detail. It consists of two levels: the top level that captures 
explicit processes and the bottom level that handles implicit 
processes. It provides a conceptual reasoning capability. 

Based on biological, neurological and psychological studies 
[1-8], a hierarchical, heterogeneous knowledge-base model is 
proposed in this paper. The proposed model consists of two 
levels: the associative level, realized by Kanerva-like SDM, 
and the semantic level, realized by Fuzzy Petri Nets. The paper 
describes the architecture of the fuzzy-associative hierarchical 
knowledge-base and the robust initialization for multi-
reasoning at the semantic level. 

II. ARHITECTURE OF THE HIERARCHICAL HETEROGENEOUS 

KNOWLEDGE-BASE MODEL 

The proposed hierarchical, heterogeneous knowledge-base 
consists of associative and semantic levels interconnected with 
forward and backward connections and a graphical user 
interface (GUI) (Fig.1). 
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Figure 1.  The architecture of the proposed model. 

A. Associative level 

The associative level of the knowledge-base is implemented 
with the use of concepts related to the addressing mechanism of 
the Kanerva‟s SDM [14]. The SDM model is defined in the 

space of {0, 1}
n
, n  , where  is a set of the natural numbers. 

Elements of the SDM model are n-dimensional vectors with 
binary components that are represented as points in an n-
dimensional space. The number of points in an  
n-dimensional space is N = 2

n
. However, N is also used for 

naming the space itself, i.e., N-space. 

The main feature of N-space is its distribution, defined on 
the basis of the distances among the points. The distance d(x, y) 
between two points x and y in N-space is defined as the number 
of corresponding vector components at which they differ, 
known as the Hamming distance. 

The two basic characteristics of the above-described SDM 
model are: the similarity and the sparseness of the memory. 
Similarity is based on the distance between the points in the N-
space. Sparseness is derived from the fact that the actual 
number of points used is very few compared with 2

n
, n >>1, 

and they are distributed randomly in the N-space. Even for a 
relatively small dimensionality of the N-space (for example, 
n = 100) an enormous number of possible locations (N = 2

100
) 

exists. Let us suppose that only a fraction of the possible points 
(for example, N' = 10

6
) is available and they are randomly 

distributed over the entire N-space. Such a type of space is 
called a sparse memory. 

At the associative level of our model, which is based on 
Kanerva‟s SDM, we use four features: address, location, 
concept and address region. The address of a memory location 
in the N'-space is represented by an n-bit vector that defines a 
location where a concept is stored. The address region of an 
arbitrary address a of location x in the N'-space is defined as a 
circle O with a radius r and a centre a. The address region of a 
contains a set of points that satisfy the following relation: 
O(r,a)={a'│d(a,a') ≤ r}, where d(a,a') is the Hamming distance 
between address a and a'. 

The distance d(a,a') is used to express the similarity 
between the concepts that are stored in locations defined by the 
addresses a and a'. 

A multi-set of concepts stored at the associative level is 
denoted as C

A
, and the set of concepts stored at the semantic 

level is denoted by C
S
. Note that the cardinality of C

A
 is much 

larger than the cardinality of C
S
: 

card (C
A
) >> card (C

S
), and C

S
  C

A
. 

A linguistic variable L is used to express the similarity 
among the concepts. The values of the linguistic variable L are 
from the following set: {not, minimally, minorly, more-or-less, 
moderately, considerably, very, extremely, identical}. The 
values of the linguistic variable L are transformed to the 
intervals of the Hamming distances (see TABLE I). 

TABLE I.  MAPPING OF THE VALUES OF THE LINGUISTIC VARIABLE L TO 

THE HAMMING DISTANCES AND CONFIDENCE VALUES 

Values of the 

linguistic 

variable L; 

intervals 

Interval of 

Hamming 

distances 

[dmin, dmax] 

Initial 

confidence 

value, 

conf 

[dmin, dmax], 

n = 100, p = 10-4, 

rp = 31,  = 3 

identical 

[1.0, 1.0] 
[0, 0] 1 [0, 0] 

extremely 
[0.95, 0.99] 

[1, rp] 0.95 [1, 31] 

very 

[0.80, 0.94] 
[rp+1, rp+ ] 0.80 [32, 34] 

considerably 
[0.65, 0.93] 

[rp+ +1, rp+ 2 ] 0.65 [35, 37] 

moderately 

[0.45, 0.64] 
[rp+2 +1, rp+3 ] 0.45 [38, 40] 

more-or-less 
[0.30, 0.44] 

[rp+3 +1, rp+4 ] 0.30 [41,43] 

minorly 

[0.10, 0.29] 
[rp+4 +1, rp+5 ] 0.10 [44, 46] 

minimally 
[0.01, 0.09] 

[rp+5 +1, rp+6 ] 0.01 [47, 49] 

not 

[0.0, 0.0] 
[rp+6 +1, n] 0.00 [50, 100] 

 
The radius rp (TABLE I) defines an address region O(rp,a) 

represented by an n-dimensional sphere, which contains the 
number of addresses a' equal to an average p proportion of the 
total number of addresses in the N'-space: 

O(rp,a)={a'│d(a,a') ≤ rp}. 

The radius rp is obtained from [14] based on the number of 
dimensions of the SDM and the proportion p. This proportion p 
is determined experimentally and its value is 10

-4
. In our case 

for n = 100, N' = 10
6
 and p = 10

-4
, the radius rp is 31, which 

means in the address region O(31,a) there are 10
6
  10

-4
 = 100 

addresses.  defines the incremental change of intervals of the 
Hamming distances associated with the values of the linguistic 
variable L (see TABLE I) and it is determined experimentally 

based on the value of n. The value of  is 3 for n = 100. The 
value of the linguistic variable is represented by an interval of a 
confidence values. It expresses our strength of belief in the 
meaning of the connection between concepts. The column 
“Initial confidence value conf” (TABLE I) defines values of 
initialized concepts, i.e. initial values of tokens (see Section III. 
B). Note that the initial value conf for the concept of interest is 
always 1 if ci  C

S
. 

The values of the linguistic variables in TABLE I are 
determined based on [15], while others are obtained 
experimentally. 

Associative level 

Semantic level 

INPUT OUTPUT 

forward 
connections 

backward 

connections 
 

User 

Graphical user (GUI) I/O Interface 
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The main task of the associative level is to enable the robust 
and fuzzy initialization of multi-reasoning processes at the 
semantic level. The robust initialization means that it is 
possible to start multi-reasoning for the following two cases: 

i)  the concept of interest is present at the semantic level, 

ii) the concept of interest is not present at the semantic level. 

In case i) it is possible to use, besides the defined concept of 
interest, also concepts obtained from the associative level based 
on the similarity among the defined concept and others stored 
at the associative level. These concepts are transferred to the 
semantic level and used for initialization of the process of 
multi-reasoning.  

In case ii) for the initialization of multi-reasoning it is 
necessary to use concepts obtained from the associative level 
based on the similarity among the concept of interest (which is 
only stored at the associative level) and other concepts at the 
associative level. The distances between the concept of interest 
and other concepts will be used at the semantic level for a 
determination of the fuzzy value, which represents the 
confidence value of the initialized concepts. The “initialized 
concept” is the concept transferred from the associative level to 
the semantic level and it is an element of the set C

S
. 

In both cases the initialization is possible owning to 
forward and backward connections that exist between the 
associative and semantic levels (see Fig. 1) and the fact that the 
number of stored concepts at the associative level is a few 
orders of magnitude larger than at the semantic level. The 
semantic level is implemented by the structured network-based 
fuzzy-knowledge representation scheme [16] and its storage 
capacity is therefore limited. 

Note that in “classical” single-level knowledge-bases it is 
not possible to start the reasoning process when the concept of 
interest is unknown. i.e., it is not an element of C

S
. The 

multiple reasoning is also not possible.  

B. Semantic level 

Multi-reasoning that is performed at the semantic level 
supports: 

i) reasoning for an unknown concept (i.e., a concept that is 
not defined at the semantic level); 

ii) parallel reasoning for more than one concept that is 
obtained by the forward connections from the associative level 
and used for multiple initialization; 

iii) chaining of the associative information retrieval and 
reasoning process using forward and backward connections – 
using intermediate or final results of a reasoning process as the 
associative queries for new initializations of the reasoning 
process. 

The semantic level is implemented by a knowledge-
representation scheme based on the Fuzzy Petri Net theory 
called KRFPN. Here we present a brief description of the 
KRFPN relevant for this paper, for details see [17]. The 
KRFPN is defined as being 13-tuple: 

KRFPN = (P, T, I, O, M, , , fT , fM , , , Contr, ),    (1) 

where P, T, I, O, M, , , fT, and fM are components of a 
generalized Fuzzy Petri Net (FPN), as follows: 

P = {p1, p2, ... , pn} is a finite set of places,  

T = {t1, t2, ... , tm} is a finite set of transitions,  

P  T = , 

I: T  P  is an input function, a mapping from transitions 
to bags of places, 

O: T  P
 
is an output function, a mapping from transitions 

to bags of places, 

M = m1, m2, … , mq , 1  q < , is a set of tokens. Note 

that the corresponding value fM: mi  [0, 1] is associated with 
each token mi, 1 ≤ i ≤ q. 

: P  (M), is a mapping, from P to (M), called a 

distribution of tokens, where (M) denotes the power set of 

M. Using 0 we denote the initial distribution of tokens in the 
places of the FPN.  

: P  0 is a marking, a mapping from places to non-

negative integers 0. A mapping  can be represented as an n-

component vector  = ( 1, 2, ... , n), where n is a cardinality 

of the set P. Obviously, (pi) = i, and (pi) denotes the number 
of tokens in the place pi. An initial marking is denoted by the 

vector 0. 

fT: T  [0, 1] is an association function, a mapping from 
transitions to real values between zero and one. 

fM: M  [0, 1] is an association function, a mapping from 
tokens to real values between zero and one.  

The functions  and  give a semantic interpretation to the 
scheme. 

The bijective function : P  C
S
 maps a set of places onto 

a set of concepts C
S
. The set of concepts C

S
 consists of the 

formal objects used for representing objects and facts from the 

agent‟s world. The elements from C
S
 = C S

1
  C S

2
  C S

3
 are as 

follows: elements that denote the classes or categories of 

objects and represent higher levels of abstraction (C S
1

), 

elements corresponding to the individual objects as instances of 

the classes (C S
2

) and those elements representing the intrinsic 

properties of the concepts or values of these properties (C S
3

).  

The surjective function : T   associates a description of 

the relationship among facts and objects to every transition ti  
T; i = 1, 2, ... , m, where m is a cardinality of the set T. The set 

 = 1  2  3 consists of elements corresponding to the 
relationships between the concepts used for partial ordering of 

the set of concepts ( 1), the elements used to specify the types 

of properties to which values from the subset C S
3

 are assigned 

( 2), and the elements corresponding to the relationships 
between the concepts, but not used for hierarchical structuring 

( 3).  

The semantic interpretation requires the introduction of a 
set of contradictions Contr [17].  
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  [0, 1] is a threshold value related to the firing of an 
enabled transition. 

The inverse function 
-1

: C
S
  P, and the generalized 

inverse function 
-1

:   ;   T are defined in the KRFPN 
scheme. 

The scheme can be represented by a bipartite directed 
multi-graph containing two types of nodes: places and 
transitions. Graphically, the circles represent places while the 
bars are used for transitions. The connections among the places 
and transitions are defined by means of the input and output 
functions of the marked Petri net [18]. In the scheme, concepts 
are assigned to the places. The relations that represent concept 
properties, spatial, temporal, spatio-temporal relationships, and 
interclass relations are assigned to transitions. The fuzziness of 
the scheme is based on fuzzy tokens and fuzzy transitions. 

The fuzzy reasoning procedures at the semantic level are 
based on the dynamical properties of the FPN defined by firing 
the enabled transitions. The definitions of an enabled transition 
and firing are given in [18]. Fuzzy tokens give the dynamic to 
the FPNs [17] by its moving from place to place and changing 
its fuzzy values. Fig. 2 shows the generic form of a chunk of 
knowledge and illustrates the firing of the enabled transitions. 
For example, if the initial value of the fuzzy token at the input 
place pi is obtained by the function fM and it is denoted as conf1 
and the fuzzy value assigned to transition tk is determined by 
the function fT and denoted tconf, after firing the enabled 
transition tk, the new confidence value of the token in the 

output place pj is conf2 = conf1  tconf.  

The transition tk is enabled if there is a fuzzy token in the 
input place and if its value conf1 is greater than the firing 

threshold . 

 
a) Before firing; conf1   b) After firing; conf2 = conf1  tconf 

Figure 2.  Firing an enabled transition. 

III. FUZZY MULTI-REASONING 

The automatic reasoning procedures defined at the semantic 
level are inheritance, recognition and intersection search. The 
inheritance is a form of reasoning that allows an agent to infer 
the properties of a concept of interest on the basis of the 
properties that are locally attached to the concept as well as the 
properties of its ancestors in the hierarchical structures of the 
knowledge-base. The formal definition and the algorithm of the 
fuzzy inheritance procedure are given in [17]. 

Recognition is the dual of the inheritance problem – the 
input is a set of properties (associated with a confidence value 
of each property) of an unknown concept and the output of the 
recognition procedure are concepts with confidence values that 
match the unknown concept. The recognition algorithm is 
formally described in [17], [19]. 

The intersection search allows relationships to be found 
between two concepts by “spreading activities” from the places 
(called patriarch nodes) that correspond to the concepts and 
searching the concepts, i.e., the places (called intersection 
nodes) where the activities meet [20]. 

In this section we describe in detail the fuzzy pre-
initialization and initialization that are essential for the fuzzy 
multi-inheritance procedure. A similar algorithm can be applied 
for multi-recognition and intersection search. 

A. Fuzzy Pre-initialization Algorithm for Multi-inheritance 

INPUT: A concept of interest ci and a value l of the linguistic 

variable L. Select single- or multi-reasoning. 

OUTPUT: Pairs of concepts and corresponding confidence 

values for the initialization of the reasoning procedure. 

STEP 1: Checking if the concept of interest ci is stored at the 

associative level (ci  C
A
). 

1.1) Based on associative retrieval with the query ci find all 

the locations xj , j = 1, 2, … , m, and form a list of 

corresponding addresses aj, j = 1, 2, … , m, of the 

locations. 

1.2) IF the address list is empty (i.e., the concept ci is not 

found at the associative level; ci  C
A
) THEN send the 

message “ci is an unknown concept” and STOP the pre-

initialization procedure. 

STEP 2: Checking if the concept of interest ci is present at the 

semantic level (ci  C
S
). 

2.1) Use a forward connection to transfer the concept of 

interest ci from the associative level to the semantic level. 

2.2) IF ci  C
S
 AND a single-reasoning is selected THEN the 

corresponding fuzzy-confidence value of the concept of 

interest is conf = 1 and initialize reasoning procedure with 

(ci , 1) as defined in the Section III. B and STOP the pre-

initialization procedure. 

2.3) IF ci  C
S
 AND a single-reasoning is selected THEN 

send the message “pre-initialization for the ci isn‟t 

possible for single-reasoning” and STOP the pre-

initialization procedure. 

2.4) IF (ci  C
S
 OR ci  C

S
) AND multi-reasoning is selected 

THEN use backward connections to transfer the ci back to 

the associative level. 

STEP 3: Finding similar concepts to the concept of interest ci at 

the associative level. 

3.1) For every address aj , j = 1, 2, … , m, from the address list 

obtained in STEP 1.1 create n-dimensional spheres at the 

associative level with a radius r and centres aj , j = 1, 2, … 

, m. Note that r is defined by means of the value l of the 

linguistic variable L (see TABLE I) in such a way that its 

pj 
tk pi pj 

tk pi 

tconf tconf 

conf2 
  conf1 
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upper boundary (dmax) of an interval of the Hamming 

distances [dmin, dmax] is taken as r. 

3.2) For all n-dimensional spheres find locations xk, k = 1, 2, 

… , q, where the concepts ck are stored, with the 

corresponding addresses ak that satisfy the following 

relation: 

O(r, aj) = {ak│d(aj , ak) ≤ r}, j = 1, 2, … , m and k = 1, 2, 

… , q, where d is the Hamming distance. 

STEP 4: Determining the initial confidence values for the 

reasoning procedure at the semantic level. 

4.1) All concepts ck that are obtained in STEP 3.2. together 

with the corresponding distances d(aj , ak), j = 1, 2, … , m 

and k = 1, 2, … , q, are transferred by means of forward 

connections to the semantic level. 

4.2) Only for ck  C
S
 based on the value of d(aj , ak) select the 

initial confidence value confk as follows: 

In TABLE I find the row with an interval for which  

d(aj , ak)  [dmin, dmax] is satisfied. Take the initial 

confidence value that lies in the same row of TABLE I. 

4.3) Use the s ≤ q pairs (ck , confk) to initialize the multi-

reasoning procedure defined in Section III. B. 

B. Initialization of Multi-inheritance  

The pre-initialization algorithm generates the list of pairs 
(ck, confk), k = 1, 2, … , s that is the input to the initialization 
procedure for multi-reasoning. 

For each concept ck  C
S
, k = 1, 2, …, s (i.e., initialized 

concept) from the above list of pairs, by using the inverse 

function 
-1

 (see Section II. B), find the corresponding place pj: 

-1
: ck  pj, 

where jp  P, j ≤ n, where n is the number of places (i.e., the 

cardinality of the set C
S
). 

For jp  corresponding to ck define the initial marking 

k
0 = ( 1, 2, ... , n), where for k = 1, 2, ... , s, 

i = jifor

jifor

0

1
, i = 1, 2, … , n  

Define the initial distribution of tokens 
k
0Ω = ( , , ... 

{(pj, confk)}, ... , , ), i.e., a token m with the initial value 
confk (obtained by fM: m → confk ) is put at the place pj. 

Note that every pair (ck, confk), k = 1, 2, … , s defines one 

initial distribution of tokens 
k
0Ω  and the multi-inheritance 

procedure is performed in parallel for each 
k
0Ω . 

For example, the next step for the multi-inheritance 
procedure is the construction of s  1 inheritance trees, or for 
the multi-recognition procedure the construction s  1 
recognition trees [17]. 

IV. AN EXAMPLE 

Let us suppose that N'-space is created as a subspace of N-
space; N=2

n
; n = 100. The N'-space is defined by the following 

parameters: n = 100, N' =10
6
, p = 10

-4
. Based on selected 

values of p and n, the radius rp= 31 is determined [14]. 

Some of the concepts used in this simple example are 
depicted in TABLE II and Fig. 3. This example is only used for 
illustrative purposes. 

In general, the associative connections between concepts 
can be obtained by psychological experiments, as described in 
[21] or by an expert. The concepts from the example were 
stored at the associative level by means of the concept-storing 
algorithm presented in [22]. A partial list of addresses of the 
locations where concepts used in the example are stored at the 
associative level (obtained by the program simulator described 
in [23]) is depicted in TABLE II. 

TABLE II.  PARTIAL LIST OF ADDRESSES OF LOCATIONS 

WHERE CONCEPTS USED IN THE EXAMPLE ARE STORED AT THE 

ASSOCIATIVE LEVEL 

Location CA Concepts ai 

Store address ai (100 bit 

vector, represented as hex 

number) 

x1 c1 raven a1 D091E7E12082E9D2A1E218F84 

x2 c2 bird a2 E8D467F026D26BD2FBB950E3C 

x3 c3 pigeon a3 D086D23140880BF677C3A8714 

x4 c4 scarecrow a4 59BA65AB6498E76229DC78C15 

x5 c5 mammal a5 D1B10DA70C3843E52B24C9A40 

x6 c6 witch a6 8DEFA4A14BE24B96A1E7529D4 

x7 c7 crow a7 E065W0A4E9C65B96346718116 

x8 c8 straw a8 E7DB36E123A9319E72A3FC388 

x9 c9 mouse a9 B8A8154D6CE76EB5C5225DEE1 

x10 c10 corn a10 B232A21AE074F1AB14E649DDC 

x11 c11 egg a11 40038E8842ECEF8B72AE28EA4 

 
For example, from TABLE II the Hamming distance 

between the addresses where the concepts “raven” (a1) and 
“bird” (a2) are stored is d(a1 , a2) = 31. It means that they are 
“extremely” similar (see TABLE I).  

An example of the fuzzy initialization for multi-reasoning 
procedures is presented as follows: 

INPUT: A concept of interest ci = “raven”, l = “considerably”. 
Select multi-reasoning. 

STEP 1: Checking if the “raven”  C
A
. 

1.1) Based on associative retrieval with a query “raven” the 
location x1 is found, and a list of corresponding addresses 

( 1a ) is formed (see TABLE II). 

STEP 2: Checking if the “raven”  C
S
. 

2.1) Use forward connections to transfer the “raven” from the 
associative level to the semantic level. 

2.4) ci  C
S
 but multi-reasoning is selected so the “raven” is 

transferred back to the associative level. 



                                                                                                                                          1462

STEP 3: Finding similar concepts to the “raven” at the 
associative level. 

3.1) For address 1a , from the address list obtained in STEP 

1.1 an n-dimensional sphere O1 is created with radius 
r = 37 and centre a1. The radius r = 37 is obtained by 
means of the value considerably of the linguistic variable 
L (see TABLE I) in such a way that r is taken as upper 
boundary of the corresponding interval of the Hamming 
distances [35, 37]. 

3.2) From the n-dimensional sphere O1(37, a1) the locations 
x2, x3, x4, x6 are found where the concepts c2 = “bird”, c3 = 
“pigeon”, c4 = “scarecrow” and c6 = “witch” are stored, 
with the corresponding addresses a2, a3, a4, a6 that satisfy 
the following relations: O1(37, a1) = {ak│d(a1 , ak) ≤ 37, 
k = 2, 3, 4, 6 where d is the Hamming distance. Note that 
d(a1, a2) = 31, d(a1, a3) = 34, d(a1, a4) = 37 and d(a1, a6) = 
36. 

STEP 4: Determining the initial confidence values for the 
reasoning procedure at the semantic level. 

4.1)  The pairs (c2 , 31), (c3 , 34), (c4 , 37) and (c6 , 36) are 
transferred by means of forward connections to the 
semantic level. 

4.2) c2, c3, c4  C
S
, c6  C

S
 (see Fig. 3). From TABLE I the 

initial confidence values are determined for c2, c3, c4. 

(For example, for c2 and d (a1, a2) = 31, and d (a1, a2)  
[0, 31] the conf2 is 0.95, see TABLE I).  

4.3) Use three pairs (c2 , 0.95), (c3 , 0.80), and (c4 , 0.65) to 
initialize multi-reasoning procedure. 

OUTPUT: (“bird”, 0.95), (“pigeon”, 0.80), (“scarecrow”, 0.65). 

Here we describe the initialization only for the first pair, 
i.e., (“bird”, 0.95): 

Based on the bijective function : P  C
S
 that maps a set 

of places onto a set of concepts C
S 

(see Fig. 3.):  

: p1  bird; : p2 pigeon; : p3  owl; : p4  scarecrow; 

: p5  nest; … . 

and by using the inverse function 
-1

 the corresponding 

place p1 is obtained: 
-1

: bird  p1. 

For p1 define the initial marking 
2
0 = (1, 0, ... , 0). 

Define the initial distribution of tokens 
2
0Ω = ({(p1, 0.95)}, 

, , ... , , ).  

In a similar way for the pairs (“pigeon”, 0.80), 
(“scarecrow”, 0.65) the initial distributions of tokens are 

obtained 
3
0Ω  = ( , {(p2, 0.80)}, , ... , , ), 

4
0Ω  = ( , , , 

{(p4, 0.65)}, , ... , , ) (see Fig. 3.). The reasoning 

procedure is performed in parallel for each
2
0Ω , 

3
0Ω , 

4
0Ω  (see 

Fig. 3.). 

 

 

Figure 3.  Example of initialization. 
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V. CONCLUSION 

A hierarchical, heterogeneous, knowledge-base model that 
is inspired by biological, neurological and psychological 
studies is proposed in this paper. It consists of an associative 
level and a semantic level. The associative level that is 
implemented by the Kanerva-like SDM has a few orders of 
magnitude larger capacity than the capacity of the semantic 
level. This fact enables a robust initialization that supports 
multi-reasoning procedures at the semantic level: inheritance, 
recognition and intersection search. Multi-reasoning also 
supports the inference procedures for a concept that is not 
defined at the semantic level, parallel reasoning for more than 
one concept that is obtained by forward connections from the 
associative level, and chaining of the associative information 
retrieval and reasoning process by using the intermediate or 
final results of a reasoning process. Such final or intermediate 
results are used for the associative queries for new 
initializations of a reasoning process. The proposed model is 
used for the design of an automatic image-annotation system in 
order to exploit the massive image information and to support 
techniques for analyzing the image content to facilitate 
indexing and retrieval [24]. The proposed model is suitable for 
data mining and intelligent document and web searches. Future 
work will consist of a further experimental validation of the 
proposed model for above-mentioned applications.  
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