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Large part of this work is motivated by a question raised by Demeter and Thiele

in [14] on establishing Lp estimates for a two-dimensional bilinear operator of

paraproduct type, called the twisted paraproduct. It is given by

T (F,G)(x, y) :=
∑
k∈Z

22k
(∫

R
F (x− s, y)φ(2ks) ds

)(∫
R
G(x, y − t)ψ(2kt) dt

)
,

where φ,ψ are Schwartz functions and ψ̂(ξ) is supported “near” |ξ| = 1. We

confirm this conjecture by proving

∥T (F,G)∥Lr(R2) ≤ Cp,q ∥F∥Lp(R2)∥G∥Lq(R2)

whenever 1 < p, q < ∞ and 1
r
= 1

p
+ 1

q
> 1

2
. As a byproduct of the approach

we develop a rather general technique for verifying multilinear estimates. This

method is subsequently further applied to show Lp bounds for a class of two-

dimensional multilinear forms that generalize (dyadic variants of) both classical

paraproducts and the twisted paraproduct.

The remaining material is related to the one-dimensional Dirac scattering

ix



transform f 7→
[
a(∞, ξ) b(∞, ξ)

b(∞, ξ) a(∞, ξ)

]
, defined by the initial value problem

∂

∂x

[
a(x, ξ) b(x, ξ)

b(x, ξ) a(x, ξ)

]
=

[
a(x, ξ) b(x, ξ)

b(x, ξ) a(x, ξ)

][
0 f(x)e−2πixξ

f(x)e2πixξ 0

]
,

a(−∞, ξ) = 1, b(−∞, ξ) = 0 .

Muscalu, Tao, and Thiele asked in [33] if the analogues of Hausdorff-Young in-

equalities are valid with constants independent of p,

∥(ln |a(∞, ξ)|)1/2∥Lq
ξ(R) ≤ C ∥f∥Lp(R), for 1 ≤ p ≤ 2, 1

p
+ 1

q
= 1 .

We provide positive answer to this question in the case where the exponentials

are replaced by the character function of the “d-adic model” of the real line.

Our main tool for all of the attempted problems, both multilinear and nonlin-

ear in nature, is the Bellman function technique, briefly described as “systematic

induction over scales”.
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CHAPTER 1

Introduction and overview of the results

1.1 Some problems in multilinear harmonic analysis

An object that motivated much of the modern multilinear time-frequency analysis

is the bilinear Hilbert transform,

BHβ(f, g)(x) := p.v.

∫
R
f(x− t) g(x− βt)

dt

t
,

where β is a real parameter and β ̸= 0, 1 to avoid degeneracy. This operator was

introduced by Calderón in the 1960s, and was motivated by the study of Cauchy

integral operator on Lipschitz curves Γ,

(CΓf)(z) := lim
η→0+

∫
Γ

f(ζ)

ζ − (z + iη)
dζ , z ∈ Γ, f ∈ L2(Γ) .

Calderón conjectured that BHβ maps continuously from L2 × L∞ to L2, as this

would have implied L2-boundedness of CΓ; see [21]. Although the latter result

was established by different methods, the former question became interesting in

its own right, and remained unsolved until the late 1990s. Lacey and Thiele

proved its boundedness1 in a pair of breakthrough papers [25], [26]:

∥BHβ(f, g)∥Lr(R) .β,p,q ∥f∥Lp(R)∥g∥Lq(R)

1For two nonnegative quantities A and B, we write A . B if there exists an absolute constant
C ≥ 0 such that A ≤ CB, and we write A .P B if A ≤ CPB holds for some constant CP ≥ 0
depending on a parameter P . Finally, we write A ∼P B if both A .P B and B .P A.
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for 1
r
= 1

p
+ 1

q
, 1 < p, q ≤ ∞, 2

3
< r <∞. Their methods have been successfully

adapted to many similar problems.

Demeter and Thiele investigated a two-dimensional analogue of the bilinear

Hilbert transform in [14]. For any two linear mapsA,B : R2 → R2 they considered

BHA,B(F,G)(x, y) := p.v.

∫
R2

F
(
(x, y)−A(s, t)

)
G
(
(x, y)−B(s, t)

)
K(s, t) ds dt,

where K : R2 \{0, 0} → C is a Calderón-Zygmund kernel, i.e. K̂ is a symbol

satisfying

|∂αK̂(ξ, η)| .α (ξ2 + η2)−|α|/2

for all derivatives ∂α up to some large (unspecified) order. In [14], the bound

∥BHA,B(F,G)∥Lr(R2) .A,B,p,q ∥F∥Lp(R2)∥G∥Lq(R2)

is proven in the range 2 < p, q <∞, 1
r
= 1

p
+ 1
q
> 1

2
, and for most cases depending

on A and B.

Some instances of A,B were handled by an adaptation of the approach from

[25], [26], while some cases lead the authors of [14] to invent a “one-and-a-half-

dimensional” time-frequency analysis. On the other extreme, some instances of

A,B degenerate to the one-dimensional bilinear Hilbert transform or the point-

wise product. Up to the symmetry obtained by considering the adjoints, the only

case of A,B that was left unresolved in [14] is

T (F,G)(x, y) := p.v.

∫
R2

F (x− s, y)G(x, y − t)K(s, t) ds dt . (1.1)

This case was denoted “Case 6” and, as remarked there, it is largely degenerate

but still nontrivial, so the usual wave-packet decompositions showed to be inef-

fective. This operator can be viewed as the simplest example disclosing certain

higher-dimensional phenomena, or more precisely, complications not visible from

2



the perspective of one-dimensional multilinear analysis arising in [25], [26], even

in quite general framework such as the one in [13] or [37].

In Chapter 3 we establish bounds on the bilinear multiplier (1.1). It will be

enough to discuss the special case of the symbol

K̂(ξ, η) =
∑
k∈Z

φ̂(2−kξ) ψ̂(2−kη) ,

i.e. the kernel

K(s, t) =
∑
k∈Z

22kφ(2ks)ψ(2kt) ,

with φ and ψ having absolutely bounded first several Schwartz norms. A standard

technique of “cone decomposition” (see [50]) then addresses general kernels K.

This special case is a two-dimensional bilinear operator of paraproduct2 type that

does not fall into the realm of Calderón-Zygmund theory. We call it the twisted

paraproduct ; the name was suggested by Camil Muscalu. In Chapter 3 we prove

boundedness of this operator in a certain range of Lp spaces:

Theorem 3.1 (restated; also see Section 3.1). Suppose that φ, ψ ∈ C1(R) satisfy

|φ(x)|, | d
dx
φ(x)|, |ψ(x)|, | d

dx
ψ(x)| . (1 + |x|)−3 ,

supp(ψ̂) ⊆ {ξ ∈ R : 1
2
≤|ξ| ≤ 2} .

Bilinear operator

Tc(F,G)(x, y) :=
∑
k∈Z

22k
(∫

R
F (x− s, y)φ(2ks) ds

)(∫
R
G(x, y − t)ψ(2kt) dt

)
satisfies the estimate

∥Tc(F,G)∥Lr(R2) .p,q ∥F∥Lp(R2)∥G∥Lq(R2)

whenever 1 < p, q <∞, 1
r
= 1

p
+ 1

q
> 1

2
.

2The general notion of a paraproduct will be discussed later in this section.
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It is worth mentioning that our main method proves the bound in the region

2 < p, q <∞ only and then we use the result of Bernicot from [1] to extend it to

the case when either p ≤ 2 or q ≤ 2.

Another source of motivation for studying multilinear singular operators (such

as the one above) is from ergodic theory, i.e. the study of general measure pre-

serving systems. The most fundamental ergodic theorem is Birkhoff’s a.e. con-

vergence theorem [3]: If (X,F , µ) is a probability space, T : X → X is a measure

µ preserving transformation, and f ∈ L1(µ), then the limit

lim
N→∞

1

N

N−1∑
n=0

f(T nx)

exists for µ-a.e. x ∈ X. Of the similar spirit is a result by Cotlar [11] with

averages replaces by the (weighted) series:

lim
N→∞

∑
−N≤n≤N, n̸=0

f(T nx)

n

exists for µ-a.e. x ∈ X.

There are many ways to prove Birkhoff’s and Cotlar’s theorems above, but

one possible way is to transfer them from general X to R using Z as a mediator.

This is the simplest instance of transference principles between ergodic theory and

the theory of (linear or multilinear) singular integral operators, called Calderón’s

transference principle; see [7]. If we introduce the variational Vr-norm of a

function θ : (0,∞) → R by

∥θ∥Vr := sup
ε

|θ(ε)|+ sup
ε0<ε1<...<εM

( M∑
j=1

|θ(εj)− θ(εj−1)|r
) 1

r
,

then it is possible to prove the following variational inequalities for 1 < p < ∞,

f ∈ Lp(R), and r > 2:∥∥∥∥∥∥∥1ε
∫ ε

−ε
f(x− t)dt

∥∥∥
Vr

ε

∥∥∥∥
Lp
x(R)

.p ∥f∥Lp(R) ,

4



∥∥∥∥∥∥∥∫
|t|>ε

f(x− t)
dt

t

∥∥∥
Vr

ε

∥∥∥∥
Lp
x(R)

.p ∥f∥Lp(R) .

Such estimates are first discussed by Lépingle [27]. We might recognize the op-

erators on the left as the Hardy-Littlewood averages and the truncated (linear)

Hilbert transform respectively. These inequalities imply pointwise convergence

theorems, but they are actually more quantitative than “soft convergence results”,

and so harder to prove.

Following this analogy, the objects corresponding to the bilinear Hilbert trans-

form (and to the bilinear Hardy-Littlewood averages) would be ergodic averages

and series of the form

lim
N→∞

1

N

N−1∑
n=0

f(T nx)g(Tmnx) , lim
N→∞

∑
−N≤n≤N, n ̸=0

f(T nx)g(Tmnx)

n
,

for a fixed positive integerm. Their a.e. convergence was established by Bourgain

[5] and Demeter [12] respectively. Replacing Tm by another transformation S

leads to a famous conjecture in ergodic theory.

Conjecture 1.1. If (X,F , µ) is a probability space, T, S : X → X are two com-

muting (i.e. ST = TS) measure µ preserving transformations, and f, g ∈ L∞(µ),

then the limit

lim
N→∞

1

N

N−1∑
n=0

f(T nx)g(Snx)

exists for µ-a.e. x ∈ X.

This conjecture is still unsolved and seems to be slightly out of reach of the

current techniques. Convergence of the same averages in the L2-norm sense was

first proved by Conze and Lesigne in [10]. This was further generalized to the

case of several commuting transformations by Tao [46].

When we transfer results from X to R, this leads us to studying “singular

5



bilinear averages”

p.v.

∫
R
F (x− t, y)G(x, y − t)

dt

t
(1.2)

and variational inequalities for them. Unfortunately, even the ordinary Lp bounds

are not known at this moment, leaving another interesting open problem that has

attracted much attention recently, this time in harmonic analysis.

Conjecture 1.2. Bilinear operator (1.2) satisfies∥∥∥ p.v.∫
R
F (x− t, y)G(x, y − t)

dt

t

∥∥∥
Lr
(x,y)

(R2)
.p,q ∥F∥Lp(R2)∥G∥Lq(R2)

for some choice of exponents satisfying 1
r
= 1

p
+ 1

q
, 1 ≤ p, q, r ≤ ∞.

It is easy to notice that this conjectured bound implies boundedness of the

bilinear Hilbert transform, both one-dimensional and two-dimensional, even uni-

formly over the parameters β,A,B and including the case (1.1). It also implies

boundedness of the Carleson operator

(Cf)(x) := sup
η

∣∣∣ ∫
R
f(x− t)eiηt

dt

t

∣∣∣
related to a.e. convergence of the Fourier series.

Operators in [14] can be viewed as harmonic analysis analogues of ergodic

double averages like

1

N2

N−1∑
m,n=0

f(SmT nx)g(S−mT nx) or
1

N2

N−1∑
m,n=0

f(SmT nx)g(Snx) ,

while the twisted paraproduct operator from Theorem 3.1 is relevant for the

averages

1

N2

N−1∑
m,n=0

f(Tmx)g(Snx) =
( 1

N

N−1∑
m=0

f(Tmx)
)( 1

N

N−1∑
n=0

g(Snx)
)
.

However, the latter are immediately seen to converge a.e. by two applications of

Birkhoff’s ergodic theorem. Here we see that corresponding problems for singular

6



integrals are typically harder as they require summability over scales, but some-

times other techniques do not provide any better understanding of convergence.

The Demeter-Thiele program (proposed in [14]) suggests to approach Conjec-

ture 1.1 via harmonic analysis methods, by first examining Conjecture 1.2. For

the latter one it was required to begin by establishing bounds on (1.1). Therefore,

Theorem 3.1 accomplishes the first step of that program.

In Chapter 4 we define a class of two-dimensional multilinear forms that nat-

urally generalize both classical paraproducts and the twisted paraproduct from

Chapter 3. Paraproducts first appeared in the work of Pommerenke [43], who

showed that h′ = f ′g and h(0) = 0 imply ∥h∥H2 . ∥f∥BMOA∥g∥H2 for analytic

functions on the unit disk.3 They were named and used extensively by Bony

[4] in the context of his theory of paradifferential operators. Since then, many

variants have been studied and they have proven to be a useful concept in var-

ious mathematical disciplines. We choose the formulation appearing in [50]. A

multilinear form Λ is called a (classical) model paraproduct if it is given by

Λ(f1, . . . , fn) =
∑

I dyadic interval

|I|1−
n
2

n∏
i=1

⟨
fi, φ

(i)
I

⟩
L2(R)

=
∑

I dyadic interval

|I|1−
n
2

∫
Rn

( n∏
i=1

fi(xi)φ
(i)
I (xi)

)
dx1 . . . dxn ,

where each φ
(i)
I is a smooth bump function adapted to the interval I. We also

assume that for each I at least two of the functions φ
(1)
I , . . . , φ

(n)
I have mean zero.

Classical Calderón-Zygmund theory establishes the estimate

|Λ(f1, . . . , fn)| .n,(pi)

n∏
i=1

∥fi∥Lpi (R)

for the exponents satisfying
∑n

i=1
1
pi

= 1 and 1 < pi < ∞; see [50]. One can

consult [45] for applications and [2], [38] for more recent results and references.

3The author would like to thank Professor John Garnett for correcting the historical reference
on paraproducts.
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Significant conceptual complications that do not seem to have been extensively

studied arise as soon as one proceeds to higher dimensions. Dyadic variant of the

(dualized) twisted paraproduct (trilinear) form attains a similar, “paraproduct-

like” shape:

Λd(F,G,H) =
∑

I×J dyadic square

∫
R4

F (u, y)G(x, v)H(x, y)

φd
I (u)φ

d
I (x)ψ

d
J(v)ψ

d
J(y) dudxdvdy ,

where φd
I := |I|−1/21I and ψd

I := |I|−1/2(1Ileft half
−1Iright half

) can be thought of as

dyadic versions of bump functions.4

In the effort to find a common generalization of the previous two objects, it

turns out convenient to associate the “paraproduct-type forms” to finite bipartite

undirected graphs. Theorem 4.1 is the main result here, proving their Lp esti-

mates in certain ranges of exponents depending on the structure of a particular

multilinear form. This time we prefer to work in the dyadic setting only and do

not discuss continuous analogues. Also, we only deal with functions on R2, for

expositional and notational simplicity.

Theorem 4.1 (restated; also see Section 4.1). Let m,n be positive integers,

E ⊆ {1, . . . ,m} × {1, . . . , n}, S ⊆ {1, . . . ,m}, T ⊆ {1, . . . , n}, and assume that

|S| ≥ 2 or |T | ≥ 2. We can interpret E as a bipartite undirected graph, so that

each (i, j) ∈ E determines an edge, and let di,j be larger size of the two bipartition

classes of the connected component containing that edge. We define a multilinear

form acting on |E| functions by

Λ
(
(Fi,j)(i,j)∈E

)
:=

∑
I×J dyadic square

|I|2−
m+n

2

∫
Rm+n

( ∏
(i,j)∈E

Fi,j(xi, yj)
)

(∏
i∈S

ψd
I (xi)

)(∏
i∈Sc

φd
I (xi)

)(∏
j∈T

ψd
J(yj)

)(∏
j∈T c

φd
J(yj)

)
dx1 . . . dxm dy1 . . . dyn .

4We use the notation 1A for the characteristic function of a set A ⊆ R.
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Then Λ satisfies the estimate

∣∣Λ((Fi,j)(i,j)∈E)∣∣ .m,n,(pi,j)

∏
(i,j)∈E

∥Fi,j∥Lpi,j (R2)

for any choice of exponents such that
∑

(i,j)∈E

1
pi,j

= 1 and di,j <pi,j <∞ for each

(i, j) ∈ E.

There seems to be many other higher-dimensional phenomena worth studying.

Already “singular bilinear averages” (1.2) are not well understood at the time of

writing, and are an object of current research. There is also a reason for caution

because (even more singular) bi-parameter bilinear Hilbert transform

p.v.

∫
R2

F (x− s, y − t)G(x+ s, y + t)
ds

s

dt

t

does not satisfy any Lp estimates, as shown in [31].

1.2 A problem in nonlinear scattering theory

Yet another motivation for research in multilinear analysis comes from the study

of nonlinear differential equations. The following context is taken from [33] or

[48]. Let f : R → C be a compactly supported integrable function. Consider the

generalized eigenproblem for the matrix-valued Dirac operator 5:[
d
dx

−f(x)
f(x) − d

dx

][
u(x, ξ)

v(x, ξ)

]
= πiξ

[
u(x, ξ)

v(x, ξ)

]
, ξ ∈ R .

Since the special case f(x) ≡ 0 has the solution[
u0(x, ξ)

v0(x, ξ)

]
=

[
Aeπixξ

Be−πixξ

]
,

5Since the operator is skew-adjoint, we consider only imaginary eigenvalues and find conve-
nient to write them as πiξ.
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in general it is natural to make the ansatz

u(x, ξ) = a(x, ξ)eπixξ , v(x, ξ) = b(x, ξ)e−πixξ .

This leads to the following initial value problem, written conveniently in the

matrix form:

∂

∂x
G(x, ξ) = G(x, ξ)W (x, ξ), G(−∞, ξ) =

[
1 0

0 1

]
, (1.3)

where

G(x, ξ) =

[
a(x, ξ) b(x, ξ)

b(x, ξ) a(x, ξ)

]
, W (x, ξ) =

[
0 f(x)e−2πixξ

f(x)e2πixξ 0

]
.

The problem (1.3) has a unique solution with absolutely continuous functions

a(·, ξ) and b(·, ξ) that satisfy the differential equation for a.e. x ∈ R and eventually

become constant as x→ −∞ or x→ ∞. The limit

G(∞, ξ) =

[
a(∞, ξ) b(∞, ξ)

b(∞, ξ) a(∞, ξ)

]
= lim

x→∞

[
a(x, ξ) b(x, ξ)

b(x, ξ) a(x, ξ)

]
(1.4)

is a function in ξ ∈ R, called the Dirac scattering transform of f . It is easy to

see that all matrices G(x, ξ) must belong to the classical Lie group

SU(1, 1) :=

{[
a b

b a

]
: a, b ∈ C, |a|2 − |b|2 = 1

}
,

and so ξ 7→ G(∞, ξ) is indeed a function from R to SU(1, 1). In analogy with

the (linear) Fourier transform on R, we also call it the SU(1, 1) nonlinear Fourier

transform of f , the term originating in [48]. We simply write G(ξ), a(ξ), b(ξ) in

place of G(∞, ξ), a(∞, ξ), b(∞, ξ).

Rewriting the system as

a(x, ξ) = 1 +

∫ x

−∞
f(t)e2πitξ b(t, ξ)dt

b(x, ξ) =

∫ x

−∞
f(t)e2πitξ a(t, ξ)dt

10



and using Picard’s iteration, we arrive at the following multilinear expansions :

a(ξ) = 1 +
∞∑
n=1

∫
{x1>x2>...>x2n−1>x2n}

f(x1)f(x2) . . . f(x2n−1)f(x2n)

e2πi(x1−x2+...+x2n−1−x2n)ξ dx1dx2 . . . dx2n−1dx2n

= 1 +
1

2
|f̂(ξ)|2 +O

(
∥f∥4L1(R)

)
, for ∥f∥L1(R) “small”,

b(ξ) =
∞∑
n=1

∫
{x1>x2>...>x2n−2>x2n−1}

f(x1)f(x2) . . . f(x2n−2)f(x2n−1)

e2πi(x1−x2+...−x2n−2+x2n−1)ξ dx1dx2 . . . dx2n−2dx2n−1

= f̂(ξ) + O
(
∥f∥3L1(R)

)
, for ∥f∥L1(R) “small”,

where

f̂(ξ) :=

∫
R
f(x)e2πixξdx .

This motivates the heuristic approximation

G(ξ) ≈

[
1 + 1

2
|f̂(ξ)|2 f̂(ξ)

f̂(ξ) 1 + 1
2
|f̂(ξ)|2

]
≈ exp

[
0 f̂(ξ)

f̂(ξ) 0

]

and we can think of ξ 7→ G(∞, ξ) as a nonlinear version of the (linear) Fourier

transform f̂ . The above expansions proved to be extremely useful when f ∈

Lp(R), 1 ≤ p < 2, but there is a reason for caution since even individual sum-

mands can be unbounded for f ∈ L2(R); see [34].

Using elementary contour integration one can show a “nonlinear analogue” of

the Plancherel theorem:

∥(2 ln |a(ξ)|)1/2∥L2
ξ(R) = ∥f∥L2(R) .

The first appearance of this identity (although in discrete setting) dates back to

[51], [52]. From this equality it seems that (ln |a|)1/2 is the appropriate measure

of size for matrices in SU(1, 1), so in the spirit of classical Fourier analysis one

11



can consider nonlinear analogues of Hausdorff-Young inequalities for 1 ≤ p < 2:

∥(ln |a(ξ)|)1/2∥Lq
ξ(R) ≤ Cp ∥f∥Lp(R), (1.5)

where p and q are conjugated exponents, i.e. 1
p
+ 1

q
= 1. Besides the trivial

Riemann-Lebesgue type estimate for p = 1, one can show (1.5) for 1 < p < 2

using the above multilinear expansions, which is first done implicitly in [8], [9]

and formulated explicitly in [48]. These papers also prove the maximal version

of (1.5), i.e. Menshov-Paley-Zygmund type inequality. Even stronger, variational

estimates for 1 ≤ p < 2 are shown recently in [42]. Table 1.1 compares classical

estimates for the Fourier transform with their “nonlinear versions”.

Fourier transform Scattering transform

Riemann-Lebesgue est.
∥∥f̂ ∥∥

L∞ ≤ ∥f∥L1

∥∥(2 ln|a(ξ)|) 1
2

∥∥
L∞
ξ

≤ ∥f∥L1

Hausdorff-Young ineq.
∥∥f̂ ∥∥

Lq ≤ ∥f∥Lp

∥∥(ln|a(ξ)|) 1
2

∥∥
Lq
ξ

.p ∥f∥Lp

1<p<2, 1/p+1/q=1

Plancherel identity
∥∥f̂ ∥∥

L2 = ∥f∥L2

∥∥(2 ln|a(ξ)|) 1
2

∥∥
L2
ξ

= ∥f∥L2

Menshov-Paley-Zygmund
∥∥∥sup

x

∣∣ x∫
−∞

f(t)e2πitξdt
∣∣∥∥∥

Lqξ

.∥f∥Lp

∥∥∥ sup
x

(
ln|a(x, ξ)|

)1
2

∥∥∥
Lq
ξ

.p ∥f∥Lp

1≤p<2, 1/p+1/q=1

Strong Carleson est.
∥∥∥sup

x

∣∣ x∫
−∞

f(t)e2πitξdt
∣∣∥∥∥

L2ξ

.∥f∥L2

∥∥∥ sup
x

(
ln|a(x, ξ)|

)1
2

∥∥∥
L2
ξ

. ∥f∥L2

(conjectured)

Table 1.1: Analogy between the linear Fourier transform and the Dirac scattering

transform.

However, the truncation method from [8], [9] or [42] gives constants Cp in (1.5)

that blow up as p → 2−. For that reason Muscalu, Tao, and Thiele raised the

following conjecture in [33].

Conjecture 1.3. There exists a universal constant C > 0 such that for any pair

of conjugated exponents 1 ≤ p ≤ 2 and 2 ≤ q ≤ ∞ and every function f as above
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one has

∥(ln |a(ξ)|)1/2∥Lq
ξ(R) ≤ C ∥f∥Lp(R).

It is interesting to notice that, although we have (1.5) in the endpoint case

p = 2, we still cannot conclude uniformity of Cp for neighboring values of p.

Such anomalies are not possible for linear operators due to the Riesz-Thorin

interpolation theorem. However, our transformation f 7→ (ln |a(·)|)1/2 is not

linear, and no standard interpolation result can be applied directly to prove the

conjecture.

We support Conjecture 1.3 by instead proving the case when the exponentials

are replaced by the character function of the d-adic model of the real line. A

rigorous statement is the following theorem, the main result of Chapter 5.

Theorem 5.1 (restated; also see Section 5.1). Suppose that in the definition of

W (x, ξ) the exponentials e2πixξ are replaced with

Ed(x, ξ) := e(2πi/d)
∑

n∈Z xnξ−1−n

for base d expansions x =
∑

n∈Z xnd
n, ξ =

∑
n∈Z ξnd

n. Then

∥(ln |a(ξ)|)1/2∥Lq
ξ(R) .d ∥f∥Lp(R)

whenever 1 ≤ p ≤ 2, 1
p
+ 1

q
= 1.

It is important to emphasize that the implicit constant depends only on d and

not on p, q.

Let us remark that our qualitative assumption on f is crucial in order to

be able to define the scattering transform properly. If f is merely in Lp(R)

for 1 ≤ p < 2 (but without compact support), then from maximal inequalities

in [8], [9] it follows that the limit in (1.4) exists for a.e. ξ ∈ R, but this is a

rather nontrivial result. However, for f ∈ L2(R) that is still an open problem,
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commonly known as the nonlinear Carleson theorem; see Table 1.1 again. Its

Cantor group model variant is proven in [33]. One can still extend the definition

of the scattering transform to L2(R) using density arguments, as in [48].

1.3 A few words on the techniques

After discussing the problems and the results, let us say something about the

methods we develop and apply. Exposition of these tools is quite general and

somewhat informal in this section. One should refer to the following chapters for

a rigorous treatment.

The most important feature of all problems we attempt in this work is the

finite group structure, either explicit in the problem statement, or implicit in the

approach. This structure can be set up by replacing the real line with its dyadic

(a.k.a. Walsh) model or more general d-adic (a.k.a. Cantor group) model, having

different binary operation, different topology, different character function, etc;

see Section 5.1. However, we often only utilize the fact that in these models it

is most convenient to work with dyadic step functions instead of smooth bump

functions; that the Haar system is the “ideal” wavelet basis and there is no need

for more subtle wavelet constructions as in [28], [29]; etc. In all of the treated

topics these finite group models are variants of the corresponding better-known

continuous models. Sometimes the result can be easily transferred from the finite

group version to the continuous version (as in Chapter 3), but sometimes we

cannot count on that. In the latter cases we hope that the proof in the dyadic or

d-adic model lights the way on how to approach the (typically harder) continuous

analogue. It has been a very fruitful practice in time-frequency analysis to first

prove the corresponding (carefully formulated) problem in a finite characteristic,

most often in the dyadic case, and then work on the technicalities required for
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the continuous case; compare [49] with [25] and [26], or [35] with [36].

Our main tool is the Bellman function technique, but we understand the term

quite loosely, so that it can be used interchangeably with “telescoping over scales”

or even simply “induction over scales”. The very basic idea is that, if we want to

control a multiscale quantity
∑N−1

n=0 An, it is enough to construct a controllable

quantity Bn that satisfies |An| ≤ Bn+1 − Bn, since then we have∣∣∣∣N−1∑
n=0

An

∣∣∣∣ ≤ BN − B0 .

Sometimes even the special case An = 0 is interesting if already the monotonicity

B0 ≤ B1 ≤ . . . ≤ BN−1 ≤ BN yields worthwhile information. Furthermore, the

above quantities are often sums over d-adic intervals (or squares),

An = d−n
∑

|I|=d−n

AI , Bn = d−n
∑

|I|=d−n

BI ,

which reduces the construction to a single interval (or a square) and its d (or d2)

children, and thus hopefully just to a finitary computation.

Bellman function methods are first successfully applied in probability and

functional analysis by Burkholder [6], who used them to compute Lp norms of

martingale transforms. The first application to a problem in harmonic analysis

is due to Nazarov, Treil, and Volberg in [41]. They also popularized the term

“Bellman function”, developed the idea into a systematic theory in a series of

papers beginning with [39], and explained connections with Bellman’s original

work in optimal control theory, [40]. Very often Bellman functions provide a sim-

pler alternative to “stopping time arguments”, especially when reproving classical

results. We make a compromise between the two perspectives and benefit from

both of them, as our approach reveals its full power when applied locally, i.e. to

a single tree of dyadic intervals or squares.
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In Chapter 2 we develop a particular instance of the technique that is suited

for proving Lp estimates for two-dimensional multilinear forms having a certain

paraproduct-type flavor. Dyadic variant of the twisted paraproduct also falls

into that category, allowing its treatment in Chapter 3. Then it turns out very

convenient to use the square function introduced by Calderón and generalized

by Jones, Seeger, and Wright in [22]. That way we transfer the result to the

continuous case, thus finally settling boundedness of (1.1). Chapter 4 is a rather

general realization of the technique from Chapter 2.

Chapter 5 deals with d-adic version of Conjecture 1.3. The method of the proof

is simply a monotonicity argument over scales, which is typically a privilege of

finite group models. The main idea is taken from the “local proof” of the Cantor

group model Plancherel theorem given in [33]. A new contribution is the con-

struction of the modified “swapping function” βd that satisfies a certain Lp → Lq

estimate uniformly in 1 ≤ p ≤ 2, 1
p
+ 1

q
= 1 and thus allows us to construct a

Bellman function B independent of p. In the proof we use linear Hausdorff-Young

inequalities on Z/dZ, as a substitute for some cancellation identities from [33].

The scheme of dependencies between chapters is given in Figure 1.1.

Chapter 3

Chapter 2

22eeeeeeeeeeee

,,YYYYY
YYYYYY

Y

Chapter 1

,,YYYYYY

22eeeeee
Chapter 4

Chapter 5

Figure 1.1: Chapter dependencies.
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CHAPTER 2

Bellman functions and multilinear estimates

2.1 The general multilinear setting

In this chapter we set up the Bellman function machinery appropriate for prov-

ing certain estimates for multilinear operators acting on higher-dimensional func-

tions. Our primary motivation is the twisted paraproduct operator introduced

in Chapter 3, but as we will see, the same technique can be used for establishing

boundedness of a larger class of multilinear operators.

The main difference between our setup and the Bellman function theory de-

veloped in [39], [40], [41] and the subsequent papers by the same authors and their

collaborators is that we do not insist on optimality conditions and our approach

can only be used to establish positive results about boundedness of operators.

This simplifies the theory, since otherwise the corresponding Bellman functions

in the sense of optimal control theory would necessarily have to be “infinite-

dimensional”, i.e. would not depend on finitely many scalar parameters.

For conceptual and notational simplicity we will only work with functions

on R2, but all results and examples easily generalize to higher dimensions. On

the other hand, dimension 2 already leads to certain complications that do not

seem to have been extensively studied prior to this work. Informally, we say

that functions appear in a certain “twisted”, “entwined”, or “entangled” way

in definitions of some multilinear operators — again the simplest and the most
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representative example being the twisted paraproduct.

In all of the following, functions are assumed to be nonnegative, measurable,

bounded, and compactly supported. The general case can always be deduced

by splitting into positive/negative, real/imaginary parts, and invoking density

arguments.

Let D denote the family of all dyadic intervals, i.e.

D :=
{[
2kl, 2k(l + 1)

)
⊆ R : k, l ∈ Z

}
.

For each dyadic interval I, we denote its left and right halves by Ileft and Iright

respectively. Let C denote the collection of all dyadic squares, i.e.

C :=
{
I × J ⊆ R2 : I, J ∈ D, |I| = |J |

}
.

We write |Q| for the Lebesgue measure of Q ∈ C. Every dyadic square Q par-

titions into four congruent dyadic squares that are called children of Q, and

conversely, Q is said to be their parent.

Q = I × J =

Ileft × Jright Iright × Jright

Ileft × Jleft Iright × Jleft

Figure 2.1: A “parent square” divided into four “children squares”.

Consequently, each function F defined on a dyadic square Q can be decomposed

into four restrictions of F to children of Q.
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Our method requires working with structured families of dyadic squares called

convex trees. A tree is a collection T of dyadic squares in R2 such that there exists

QT ∈ T , called the root of T , satisfying Q ⊆ QT for every Q ∈ T . A tree T is

said to be convex if whenever Q1 ⊆ Q2 ⊆ Q3, and Q1, Q3 ∈ T , then also Q2 ∈ T .

We will only be working with finite convex trees. Informally, convex trees “do

not skip any scales”. A leaf of T is a square that is not contained in T , but its

parent is. The family of leaves of T will be denoted L(T ). Notice that for every

finite convex tree T squares in L(T ) partition the root QT .

Figure 2.2: A finite convex tree (left) and the partition of its root into leaves

(right).

For a function f on a dyadic interval I we denote

[f ]I = [f(x)]x∈I :=
1

|I|

∫
I

f(x) dx ,

⟨f⟩I = ⟨f(x)⟩x∈I :=
1

|I|

(∫
Ileft

f(x) dx−
∫
Iright

f(x) dx
)
.

We prefer to emphasize the variable in which the average is taken, as for instance

in [F (x, y)]x∈I and ⟨F (x, y)⟩x∈I we deal with functions of more than one variable.

We simply write [F (x, y)]x and ⟨F (x, y)⟩x if the interval I is a generic one or is
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understood. Notational shortcuts such as

⟨Φ(x, x′, y)⟩x,x′,y =
⟨⟨⟨

Φ(x, x′, y)
⟩
x∈I

⟩
x′∈I

⟩
y∈J ,[

Φ(x1, x2, . . .)
]
xi∈I for 1≤i≤n =

[
. . .
[[
Φ(x1, x2, . . .)

]
x1∈I

]
x2∈I

. . .
]
xn∈I

are also allowed. Finally, for a dyadic square Q = I × J and a function F on it

we denote

[F ]Q :=
1

|Q|

∫
Q

F (x, y) dxdy =
[
F (x, y)

]
x∈I, y∈J .

Let us now turn to multilinear (and multi-sublinear) operators we want to

study. A broad class of interesting objects can be reduced to

ΛT (F1, . . . , Fl) :=
∑
Q∈T

|Q| AQ(F1, . . . , Fl) , (2.1)

where T is a finite convex tree of dyadic squares and A = AQ(F1, . . . , Fl)

is a “scale-invariant” quantity depending on several two-dimensional functions

F1, . . . , Fl and a square Q ∈ T . (A rigorous definition of paraproduct-type terms

will be given in Section 2.2.) Several illustrative examples (used later in the text)

are

AI×J(F ) := 3
[
[F (x, y)]x∈I⟨F (x, y)⟩2x∈I

]
y∈J ,

AI×J(F,G) :=
⟨
[F (x, y)]2x∈I

⟩
y∈J

⟨
[G(x, y)]x∈I

⟩
y∈J , (2.2)

AI×J(F,G,H) :=
⟨[
F (u, y)G(x, v)H(x, y)

]
x,u∈I

⟩
y,v∈J . (2.3)

Sometimes we want to deal with sums over infinite collections of squares Q,

but this extension is immediate if we do not allow any constants to depend on T .

A special instance is when T is replaced by the collection of all dyadic squares

C, but in certain applications this specialization is not general enough.

Let B = BQ(F1, . . . , Fl) be another “scale-invariant” quantity depending on

functions F1, . . . , Fl and a dyadic square Q. We define the first order difference
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of B, denoted �B, as the following quantity:

�BI×J(F1, . . . , Fl) :=
1

4
BIleft×Jleft(F1, . . . , Fl) +

1

4
BIleft×Jright(F1, . . . , Fl)

+
1

4
BIright×Jleft(F1, . . . , Fl) +

1

4
BIright×Jright(F1, . . . , Fl)

−BI×J(F1, . . . , Fl) .

For instance,

BI×J(F ) :=
[
[F (x, y)]3x∈I

]
y∈J (2.4)

leads to

�BI×J(F ) =
1

4

[
[F (x, y)]3x∈Ileft

]
y∈Jleft

+
1

4

[
[F (x, y)]3x∈Ileft

]
y∈Jright

+
1

4

[
[F (x, y)]3x∈Iright

]
y∈Jleft

+
1

4

[
[F (x, y)]3x∈Iright

]
y∈Jright

−
[
[F (x, y)]3x∈I

]
y∈J

=
1

2

[
[F (x, y)]3x∈Ileft

]
y∈J +

1

2

[
[F (x, y)]3x∈Iright

]
y∈J −

[
[F (x, y)]3x∈I

]
y∈J

= 3
[
[F (x, y)]x∈I⟨F (x, y)⟩2x∈I

]
y∈J . (2.5)

Above we used obvious identities

[f(x)]x∈I = 1
2

(
[f(x)]x∈Ileft+ [f(x)]x∈Iright

)
,

⟨f(x)⟩x∈I = 1
2

(
[f(x)]x∈Ileft− [f(x)]x∈Iright

)
,

[f(x)]x∈Ileft = [f(x)]x∈I + ⟨f(x)⟩x∈I ,

[f(x)]x∈Iright= [f(x)]x∈I − ⟨f(x)⟩x∈I ,


(2.6)

and 1
2
(A+B)3 + 1

2
(A−B)3 − A3 = 3AB2 .

We provide more examples in the following two tables. Table 2.1 contains

examples where all functions have (x, y) as their argument and in those cases we

omit writing the variables x, y. Therefore, F stands for F (x, y), etc. In Table 2.2

we give a couple of examples with several different variables involved, and thus

those variables have to be explicitly denoted. Some entries in these tables would
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require rather lengthy computation. Much more convenient way of obtaining

such identities is using Theorem 2.2 from the next section.

B �B[
[F ]2x

]
y

[
⟨F ⟩2x

]
y[

[F ]3x
]
y

3
[
[F ]x⟨F ⟩2x

]
y

[F ]3x,y 3 [F ]x,y
(
[⟨F ⟩x]2y + ⟨[F ]x⟩2y + ⟨F ⟩2x,y

)
+ 6 [⟨F ⟩x]y ⟨[F ]x⟩y ⟨F ⟩x,y[

[F ]2x
]
y
[G]x,y

[
⟨F ⟩2x

]
y
[G]x,y +

⟨
[F ]2x

⟩
y
⟨[G]x⟩y +

⟨
⟨F ⟩2x

⟩
y
⟨[G]x⟩y

+2 [[F ]x⟨F ⟩x]y [⟨G⟩x]y + 2 ⟨[F ]x⟨F ⟩x⟩y ⟨G⟩x,y

[F ]2x,y[G]x,y
(
[⟨F ⟩x]2y+⟨[F ]x⟩2y+⟨F ⟩2x,y

)
[G]x,y

+2
(
[F ]x,y [⟨F ⟩x]y+⟨F ⟩x,y ⟨[F ]x⟩y

)
[⟨G⟩x]y

+2
(
[F ]x,y ⟨[F ]x⟩y+⟨F ⟩x,y [⟨F ⟩x]y

)
⟨[G]x⟩y

+2
(
[F ]x,y⟨F ⟩x,y+⟨[F ]x⟩y [⟨F ⟩x]y

)
⟨G⟩x,y

Table 2.1: A sample table of first order differences.

B �B[
[F (u, y)H(x, y)]2y

]
x,u

[
⟨F (u, y)H(x, y)⟩2y

]
x,u

+
⟨
[F (u, y)H(x, y)]2y

⟩
x,u

+
⟨
⟨F (u, y)H(x, y)⟩2y

⟩
x,u[

[F (u, y)F (u, v)]2u
]
y,v

[
⟨F (u, y)F (u, v)⟩2u

]
y,v

+
⟨
[F (u, y)F (u, v)]2u

⟩
y,v

+
⟨
⟨F (u, y)F (u, v)⟩2u

⟩
y,v

Table 2.2: More complicated examples of first order differences.

Let us now suppose that we have found a quantity B such that A ≤ �B, i.e.

more precisely

AQ(F1, . . . , Fl) ≤ �BQ(F1, . . . , Fl) , (2.7)
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for all squares Q ∈ T and all nonnegative functions F1, . . . , Fl. By fixing an

l-tuple of functions and applying (2.7) to an arbitrary Q ∈ T , we get

AQ(F1, . . . , Fl) ≤ 1

4

∑
Q̃ is a child of Q

BQ̃(F1, . . . , Fl) − BQ(F1, . . . , Fl) .

Multiplying by |Q| and summing over Q ∈ T we obtain

ΛT (F1, . . . , Fl) ≤
∑

Q∈L(T )

|Q| BQ(F1, . . . , Fl)− |QT | BQT (F1, . . . , Fl) (2.8)

for ΛT as in (2.1). To verify (2.8), one only has to note that each term

|Q| BQ(F1, . . . , Fl) for Q ∈ T \ {QT }

appears exactly once with a positive sign and exactly once with a negative sign

and thus all terms but those appearing in (2.8) cancel themselves. Here is where

we crucially use the tree structure — a general collection of squares would not

work.

The expression B can be called a Bellman function for ΛT . It is certainly

not unique and other properties required of B in the actual problem will further

narrow the choice. Usefulness of (2.8) is in the fact that it reduces controlling1

a multi-scale quantity ΛT to controlling two single-scale expressions: one on the

level of the “finest scales” L(T ) and another one on the level of the “roughest

scale” QT .

Let us illustrate this with an example that is an immediate consequence of

Table 2.1. More important examples are given in Section 2.3. Define

Ξ(F,G) :=
∑

I×J∈C++

|I × J |
⟨
[F (x, y)]2x∈I

⟩
y∈J ⟨[G(x, y)]x∈I⟩y∈J ,

1If we want to control |ΛT |, then we also need to find B with−A ≤ �B, or better immediately
choose B satisfying |A| ≤ �B.
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where C++ is a collection of all dyadic squares in the first quadrant of R2. This

is a particular, quadratic, and dyadic case of one of the forms appearing in [14]

and can be handled using the theory of maximal truncated singular integrals.

Instead, we present a simple Bellman function proof of 2

Ξ(F,G) .
∫ ∞

0

∫ ∞

0

(
F (x, y)3 +G(x, y)3

)
dx dy ,

for nonnegative functions F and G.

To keep arguments finite, we also introduce

C++
N :=

{
I × J ∈ C : I, J ⊆ [0, 2N), |I| = |J | ≥ 2−N

}
,

for any positive integer N . Define B = BI×J(F,G) by the formula:

B :=
1

3

[
[F ]3x

]
y
+

1

3
[F ]3x,y +

[
[F ]2x

]
y
[G]x,y + [F ]2x,y[G]x,y + 2[F ]x,y[G]

2
x,y +

4

3
[G]3x,y .

Using the entries from Table 2.1, rearranging and grouping the terms, and trans-

forming some terms with the aid of (2.6), we arrive at the expression:

�B =
⟨
[F (x, y)]2x∈I

⟩
y∈J ⟨[G(x, y)]x∈I⟩y∈J

+ [F (x, y)]x∈I, y∈J

(⟨[
F (x, y) +G(x, y)

]
x∈I

⟩2
y∈J + ⟨[G(x, y)]x∈I⟩2y∈J

)
+ [G(x, y)]x∈I, y∈J

⟨[
F (x, y) + 2G(x, y)

]
x∈I

⟩2
y∈J

+
1

2

[
[F (x, y)]x∈I

⟨
F (x, y) + [G(x, v)]v∈Jleft

⟩2
x∈I

]
y∈Jleft

+
1

2

[
[F (x, y)]x∈I

⟨
F (x, y) + [G(x, v)]v∈Jright

⟩2
x∈I

]
y∈Jright

+
1

2

[
G(x, y)

]
x∈I, y∈Jleft

[⟨
F (x, y) + 2[G(x, v)]v∈Jleft

⟩2
x∈I

]
y∈Jleft

+
1

2

[
G(x, y)

]
x∈I, y∈Jright

[⟨
F (x, y) + 2[G(x, v)]v∈Jright

⟩2
x∈I

]
y∈Jright

2Note that Ξ is not always nonnegative and that for illustration we only bound it from
above.
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+
1

2

[
F (x, y)

]
x∈I, y∈Jleft

[⟨
F (x, y) +G(x, y)

⟩
x∈I

]2
y∈Jleft

+
1

2

[
F (x, y)

]
x∈I, y∈Jright

[⟨
F (x, y) +G(x, y)

⟩
x∈I

]2
y∈Jright

+
1

2

[
⟨F (x, y)⟩x∈I

]2
y∈Jleft

[
G(x, y)

]
x∈I, y∈Jleft

+
1

2

[
⟨F (x, y)⟩x∈I

]2
y∈Jright

[
G(x, y)

]
x∈I, y∈Jright

.

Since we have assumed F,G ≥ 0, each row but the first one is nonnegative,

so �B ≥ A, where A = AI×J(F,G) is defined by (2.2). Inequality (2.8) with

T = C++
N then gives∑

I×J∈C++
N

|I × J |
⟨
[F (x, y)]2x

⟩
y
⟨[G(x, y)]x⟩y ≤

∑
I,J⊆[0,2N )

|I|=|J |=2−N−1

|I × J | BI×J(F,G) .

Observe that for nonnegative f by Jensen’s inequality for powers we have

[f(x)]x∈I ≤ [f(x)2]
1/2
x∈I ≤ [f(x)3]

1/3
x∈I ,

which easily implies

BI×J(F,G) ≤ 6
(
[F (x, y)3]x∈I, y∈J + [G(x, y)3]x∈I, y∈J

)
.

We have obtained∑
I×J∈C++

N

|I × J |
⟨
[F (x, y)]2x

⟩
y
⟨[G(x, y)]x⟩y ≤ 6

∫ 2N

0

∫ 2N

0

(
F (x, y)3 +G(x, y)3

)
dx dy ,

and it remains to let N → ∞.

2.2 First order difference formula for paraproduct-type

terms

In the previous example we see that the main effort of finding an appropriate

Bellman function B relevant for bounding ΛT =
∑

Q∈T |Q| AQ consist of the

following steps:
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• Deciding which terms B1, . . . ,BM will appear in the Bellman function.

• Computing �Bi for each of these terms Bi.

• Assembling B as a linear combination of these terms, B=α1B1+. . .+αMBM .

In the mentioned example, we did not give any motivation for the first step and

we did not give any hints on how to easily perform the second one. Fortunately,

there is a special type of terms Bi for which a simple rule for determining �Bi

applies. Moreover, the inverse procedure of finding the needed terms Bi from

their first order differences is even more straightforward.

Definition 2.1. A paraproduct-type term is a formal finite product consisting

of finitely many two-dimensional functions F , G, H, F1, F2, . . . in finitely many

variables u, v, x, y, x1, x2, . . . , with finitely many inserted brackets of two types,

[·] and ⟨·⟩, each with a variable in its subscript, and satisfying the following set

of rules:

• The brackets are either nested or enclose disjoint factors of the product, i.e.

the string is a “meaningful algebraic expression”.

• Each bracket is subscripted with a single variable taking values in either I

or J and every pair of nested brackets has different subscript variables.

• Each argument variable of any of the functions also appears in a subscript

of some bracket enclosing it.

An averaging paraproduct-type term is a paraproduct-type term containing only

brackets of type [·]. Linear combinations of paraproduct-type terms are called

paraproduct-type expressions.
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We also regard B ≡ 0 to be a (trivial) averaging paraproduct-type term. All

terms in Tables 2.1 and 2.2 are paraproduct-type terms, but only the terms in

the left columns are averaging. Note that formally our definition does not allow

appearance of any nonlinear operations, but powers can be interpreted simply as

abbreviations for products of repeating factors. Thus, for example (2.4) is just a

shorter form of [
[F (x, y)]x∈I [F (x, y)]x∈I [F (x, y)]x∈I

]
y∈J

. (2.9)

Theorem 2.2. Let B be an averaging paraproduct-type term. Then �B is equal

to the sum of all non-averaging paraproduct-type terms obtained by replacing some

brackets of type [·] with brackets of type ⟨·⟩ in any possible way such that:

• The number of replacements corresponding to variables in I is even.

• The number of replacements corresponding to variables in J is even.

• At least two replacements are made, i.e. the derived terms are not averaging.

In particular, if B contains m brackets corresponding to variables in I and n

brackets corresponding to variables in J , then �B will consist of 2m+n−2 − 1

(possibly repeating) terms.

For instance, take (2.4) and first rewrite it as (2.9). There are 3 brackets

corresponding to variables in I and 1 bracket corresponding to a variable in J ,

giving us only 23+1−2 − 1 = 3 possibilities. All 3 of these terms are equal and we

arrive at (2.5). As another example, take the last entry in Table 2.1, and rewrite

it as

[[F (x, y)]x∈I ]y∈J [[F (x, y)]x∈I ]y∈J [[G(x, y)]x∈I ]y∈J .

There are 3 brackets corresponding to variables in I and 3 brackets corresponding

to variables in J , leaving us with 23+3−2 − 1 = 15 choices. We see that the result
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in Table 2.1 also has 3 + 2 · 2 + 2 · 2 + 2 · 2 = 15 terms. Easy combinatorial

reasoning recovers all of them.

Proof of Theorem 2.2. The first step is to realize that every averaging para-

product-type term can be written in the following standard form:

B =
[
Φ(x1, . . . , xm, y1, . . . , yn)

]
x1,...,xm∈I, y1,...,yn∈J

.

Here Φ(x1, . . . , xm, y1, . . . , yn) depends on functions F1, . . . , Fl. To achieve that

reduction, one has to rename all duplicate variables, i.e. those variables x that ap-

pear in the original term in the subscript of more than one bracket [·]x. After that

is done, one has to gradually “move” all terms inside the brackets, concentrating

on one bracket at a time. For example, (2.9) can be rewritten as

[
F (x1, y)F (x2, y)F (x3, y)︸ ︷︷ ︸

Φ(x1,x2,x3,y)

]
x1,x2,x3∈I, y∈J

.

After this simplification, the main statement can be formulated as3

�B =
∑

S⊆{1,...,m}, T⊆{1,...,n}
|S|,|T | even, (S,T )̸=(∅,∅)

[⟨
Φ(x1, . . . , xm, y1, . . . , yn)

⟩
xi∈I for i∈S
yj∈J for j∈T

]
xi∈I for i∈Sc

yj∈J for j∈T c

,

which can in turn be rewritten (using the definition of �B) as

1

4

[
Φ(x1, . . . , xm, y1, . . . , yn)

]
x1,...,xm∈Ileft, y1,...,yn∈Jleft

+
1

4

[
Φ(x1, . . . , xm, y1, . . . , yn)

]
x1,...,xm∈Ileft, y1,...,yn∈Jright

+
1

4

[
Φ(x1, . . . , xm, y1, . . . , yn)

]
x1,...,xm∈Iright, y1,...,yn∈Jleft

(2.10)

+
1

4

[
Φ(x1, . . . , xm, y1, . . . , yn)

]
x1,...,xm∈Iright, y1,...,yn∈Jright

=
∑

S⊆{1,...,m}, T⊆{1,...,n}
|S|,|T | even

[⟨
Φ(x1, . . . , xm, y1, . . . , yn)

⟩
xi∈I for i∈S
yj∈J for j∈T

]
xi∈I for i∈Sc

yj∈J for j∈T c

.

3Here Sc := {1, . . . ,m} \ S and T c := {1, . . . , n} \ T .
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For the purpose of the proof, we denote (for a dyadic interval I)

ϑI(x) :=


1, for x ∈ Ileft,

−1, for x ∈ Iright,

0, for x ̸∈ I

and immediately observe that

⟨f(x)⟩x∈I = [f(x)ϑI(x)]x∈I ,

[f(x)]x∈Ileft =
[
f(x)

(
1 + ϑI(x)

)]
x∈I ,

[f(x)]x∈Iright =
[
f(x)

(
1− ϑI(x)

)]
x∈I .

 (2.11)

We start from an obvious algebraic identity( m∏
i=1

(
1 + αϑI(xi)

))( n∏
j=1

(
1 + β ϑJ(yj)

))
=

∑
S⊆{1,...,m}
T⊆{1,...,n}

α|S|β|T |
(∏
i∈S

ϑI(xi)
)(∏

j∈T

ϑJ(yj)
)

(2.12)

proved simply by multiplying out the product on the left hand side. Choosing

four particular values for the parameters α,β:

(α, β) ∈
{
(1, 1), (1,−1), (−1, 1), (−1,−1)

}
,

we get

1

4

( m∏
i=1

(
1+ϑI(xi)

))( n∏
j=1

(
1+ϑJ(yj)

))
+

1

4

( m∏
i=1

(
1+ϑI(xi)

))( n∏
j=1

(
1−ϑJ(yj)

))
+

1

4

( m∏
i=1

(
1−ϑI(xi)

))( n∏
j=1

(
1+ϑJ(yj)

))
+

1

4

( m∏
i=1

(
1−ϑI(xi)

))( n∏
j=1

(
1−ϑJ(yj)

))
=

∑
S⊆{1,...,m}, T⊆{1,...,n}

|S|,|T | even

(∏
i∈S

ϑI(xi)
)(∏

j∈T

ϑJ(yj)
)
.

Multiplying this equality by Φ(x1, . . . , xm, y1, . . . , yn), averaging over x1, . . . , xm ∈

I and y1, . . . , yn ∈ J , and using (2.11) gives the desired Identity (2.10).
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Let us state a part of the presented proof as a separate lemma. We will need

it in Sections 4.2 and 4.4.

Lemma 2.3. We add up all expressions of the form(
. . .
((

Ψ(x1, x2, . . . , xm)
)
x1∈I

)
x2∈I

. . .
)
xm∈I

where an even number of parentheses (·) is replaced with brackets of type ⟨·⟩ and

the remaining parentheses (·) are replaced with brackets of type [·]. (Possible

repeating terms are added multiple times.) The resulting sum is equal to

1

2

[
Ψ(x1, x2, . . . , xm)

]
x1,x2,...,xm∈Ileft

+
1

2

[
Ψ(x1, x2, . . . , xm)

]
x1,x2,...,xm∈Iright

.

In particular, if Ψ(x1, x2, . . . , xm) ≥ 0, then the sum in question will also be

nonnegative.

Proof. We are using the notation from the proof of Theorem 2.2 and Identity

2.12 with (α, β) = (±1, 0). The sum in question is

∑
S⊆{1,...,m}

|S| even

[⟨
Ψ(x1, x2, . . . , xm)

⟩
xi∈I for i∈S

]
xi∈I for i∈Sc

=
∑

S⊆{1,...,m}
|S| even

[
Ψ(x1, x2, . . . , xm)

∏
i∈S

ϑI(xi)
]
x1,x2,...,xm∈I

=
1

2

[
Ψ(x1, x2, . . . , xm)

m∏
i=1

(
1+ϑI(xi)

)]
x1,x2,...,xm∈I

+
1

2

[
Ψ(x1, x2, . . . , xm)

m∏
i=1

(
1−ϑI(xi)

)]
x1,x2,...,xm∈I

=
1

2

[
Ψ(x1, x2, . . . , xm)

]
x1,x2,...,xm∈Ileft

+
1

2

[
Ψ(x1, x2, . . . , xm)

]
x1,x2,...,xm∈Iright

.
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2.3 Two examples

Examples in this section are relevant to the twisted paraproduct mentioned in

Chapter 1. We find it convenient to prove the key estimates here and use them

as separate results in Section 3.2.

One of the main objects studied in the next chapter can be written in terms

of averages as

Λd(F,G,H) =
∑
I×J∈C

|I × J |
⟨[
F (u, y)G(x, v)H(x, y)

]
x,u∈I

⟩
y,v∈J . (2.13)

Proposition 2.4. Trilinear form Λd satisfies the estimate

|Λd(F,G,H)| . ∥F∥L4(R2)∥G∥L2(R2)∥H∥L4(R2) .

Besides this type-(4, 2, 4) estimate, one could similarly obtain type-(2, 4, 4)

estimate, and then use multilinear interpolation. However, Λd is actually bounded

in a larger range and the latter proof will require additional ideas and will span

over most of the next chapter.

Proof of Proposition 2.4. Note that

Λd(F,G,H) =
∑
I×J∈C

|I × J | AI×J(F,G,H) ,

with A = AI×J(F,G,H) defined in (2.3). For a positive integer N we denote

CN := {I × J ∈ C : I, J ⊆ [−2N , 2N), |I| = |J | ≥ 2−N} .

Observe that CN consists of 4 finite convex trees, and that CN exhaust C as

N → ∞.

This time, let us build the Bellman function B = BI×J(F,G,H) systemati-

cally. We are searching for B such that �B ≥ |A|, but also

|BI×J(F,G,H)| . [F (x, y)4]x,y + [G(x, y)2]x,y + [H(x, y)4]x,y . (2.14)
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We rewrite AI×J(F,G,H) as

[
⟨F (u, y)H(x, y)⟩y⟨G(x, v)⟩v

]
x,u

and realize (using |AB| ≤ 1
2
A2 + 1

2
B2) that it is dominated by

[
⟨F (u, y)H(x, y)⟩2y

]
x,u

and
[
⟨G(x, v)⟩2v

]
x
.

The second term is simply �
([
[G(x, v)]2v

]
x

)
, so we “add”

[
[G(x, v)]2v

]
x
to our

Bellman function. From Theorem 2.2 we know that the first term appears in

�
[
[F (u, y)H(x, y)]2y

]
x,u

and we use the same theorem to compute the actual ex-

pression, see Table 2.2. Now we see that one has to dominate the remaining two

terms in the same table entry:

⟨
[F (u, y)H(x, y)]2y

⟩
x,u

and
⟨
⟨F (u, y)H(x, y)⟩2y

⟩
x,u
.

We can rewrite them respectively as

⟨
[F (u, y)H(x, y)F (u, v)H(x, v)]y,v

⟩
x,u

=
[
⟨F (u, y)F (u, v)⟩u⟨H(x, y)H(x, v)⟩x

]
y,v

and

⟨
F (u, y)H(x, y)F (u, v)H(x, v)

⟩
y,v,x,u

=
⟨
⟨F (u, y)F (u, v)⟩u⟨H(x, y)H(x, v)⟩x

⟩
y,v

Both of these terms are controlled by

[
⟨F (u, y)F (u, v)⟩2u

]
y,v

and
[
⟨H(x, y)H(x, v)⟩2x

]
y,v
.

The first of the above two terms appears in �
[
[F (u, y)F (u, v)]2u

]
y,v
, so Theorem

2.2 applies again and provides the answer in Table 2.2. (The term with H is

32



completely analogous.) The procedure stops at this point, because the remaining

terms in the same table entry add up to a nonnegative expression by Lemma 2.3.

⟨
[F (u, y)F (u, v)]2u

⟩
y,v

+
⟨
⟨F (u, y)F (u, v)⟩2u

⟩
y,v

=
⟨[
F (u, y)F (u, v)F (x, y)F (x, v)

]
x,u

⟩
y,v

+
⟨
F (u, y)F (u, v)F (x, y)F (x, v)

⟩
x,u,y,v

=
[
⟨F (u, y)F (x, y)⟩2y

]
x,u

+
⟨
⟨F (u, y)F (x, y)⟩2y

⟩
x,u

=
1

2

[
⟨F (u, y)F (x, y)⟩2y∈J

]
x,u∈Ileft

+
1

2

[
⟨F (u, y)F (x, y)⟩2y∈J

]
x,u∈Iright

≥ 0

The above reasoning can be graphically represented in the form of a tree

diagram, see Figure 2.3.

⟨[
F (u, y)G(x, v)H(x, y)

]
x,u

⟩
y,v

[
⟨F (u, y)H(x, y)⟩y⟨G(x, v)⟩v

]
x,u

vvnnn
nnn

nnn
nnn

((PP
PPP

PPP
PPP

P

[
⟨F (u, y)H(x, y)⟩2y

]
x,u

���
�
�

++XXXXXXXXXXX

[
⟨G(x, v)⟩2v

]
x

⟨
[F (u, y)H(x, y)]2y

⟩
x,u

⟨
⟨F (u, y)H(x, y)⟩2y

⟩
x,u

[
⟨F (u, y)F (u, v)⟩u⟨H(x, y)H(x, v)⟩x

]
y,v

�� ++XXXX
XXXXX

XXXXX
XXXXX

XXX

⟨
⟨F (u, y)F (u, v)⟩u⟨H(x, y)H(x, v)⟩x

⟩
y,v

ssfffff
fffff

fffff
fffff

ff

��[
⟨F (u, y)F (u, v)⟩2u

]
y,v

[
⟨H(x, y)H(x, v)⟩2x

]
y,v

Figure 2.3: Bellman function tree for type-(4, 2, 4) estimate for Λd.

If one decides to choose the coefficients carefully, the resulting Bellman function
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is

B :=
1

2

[
[G(x, v)]2v

]
x
+

1

2

[
[F (u, y)H(x, y)]2y

]
x,u

+
1

2

[
[F (u, y)F (u, v)]2u

]
y,v

+
1

2

[
[H(x, y)H(x, v)]2x

]
y,v

(2.15)

and its first order difference is

�B =
1

2

[
⟨G(x, v)⟩2v

]
x
+

1

2

[
⟨F (u, y)H(x, y)⟩2y

]
x,u

+
1

8

[⟨
F (x, y)F (x, v) +H(x, y)H(x, v)

⟩2
x

]
y,v∈Jleft

+
1

8

[⟨
F (x, y)F (x, v) +H(x, y)H(x, v)

⟩2
x

]
y,v∈Jright

+
1

4

[
⟨F (x, y)F (x, v)⟩2x∈I + ⟨H(x, y)H(x, v)⟩2x∈I

]
y∈Jleft, v∈Jright

+
1

4

[
⟨F (u, y)F (x, y)⟩2y∈J

]
x,u∈Ileft

+
1

4

[
⟨F (u, y)F (x, y)⟩2y∈J

]
x,u∈Iright

+
1

4

[
⟨H(u, y)H(x, y)⟩2y∈J

]
x,u∈Ileft

+
1

4

[
⟨H(u, y)H(x, y)⟩2y∈J

]
x,u∈Iright

≥
∣∣∣[⟨G(x, v)⟩v⟨F (u, y)H(x, y)⟩y

]
x,u

∣∣∣ = |A| .

Also note that B clearly satisfies (2.14), for instance[
[F (u, y)H(x, y)]2y

]
x,u

≤
[
[F (u, y)2H(x, y)2]y

]
x,u

≤ 1

2

[
F (u, y)4

]
u,y

+
1

2

[
H(x, y)4

]
x,y
.

Applying the general Inequality (2.8) to the four trees that make CN and then

using (2.14) gives∑
I×J∈CN

|I × J | |AI×J(F,G,H)| ≤
∑

I,J⊆[0,2N )

|I|=|J |=2−N−1

|I × J | BI×J(F,G,H)

.
∫ 2N

−2N

∫ 2N

−2N

(
F (x, y)4 +G(x, y)2 +H(x, y)4

)
dx dy .

Since N was arbitrary, we have established

|Λd(F,G,H)| . ∥F∥4L4(R2) + ∥G∥2L2(R2) + ∥H∥4L4(R2) .
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To prove the desired inequality, it remains to use the “homogeneity trick”, i.e.

replace F,G,H respectively with F
∥F∥L4

, G
∥G∥L2

, H
∥H∥L4

.

Before we start the next example, let us introduce one notion from additive

combinatorics, primarily for notational convenience, but also to emphasize the

(somewhat surprising) connection. For any dyadic square Q = I × J we first

define the Gowers box inner-product of four functions F1, F2, F3, F4 as

[F1, F2, F3, F4] (Q) :=
1

|Q|2

∫
I

∫
I

∫
J

∫
J

F1(u, v)F2(x, v)F3(u, y)F4(x, y)dudxdvdy

=
[
F1(u, v)F2(x, v)F3(u, y)F4(x, y)

]
u,x∈I, v,y∈J .

Then for any function F we introduce the two-dimensional Gowers box norm as4

∥F∥ (Q) := [F, F, F, F ]
1/4

(Q).

It plays an important role in a paper by Shkredov [44], while its appearance in

an expository paper by Tao [47] is the one we find most inspiring in this context.

Gowers box norms (even higher-dimensional ones) arise from the work of Gowers

[16], [17] and are more systematically studied and applied in [18] and by Green

and Tao in [20]. All these norms can be viewed as particular instances of averaging

paraproduct-type terms, this time for functions in RN , containing precisely two

variables in each dimension.5

It is easy to prove the box Cauchy-Schwarz inequality, as stated in [47], [18],

or [20]:

[F1, F2, F3, F4] (Q) ≤ ∥F1∥ (Q)∥F2∥ (Q)∥F3∥ (Q)∥F4∥ (Q) . (2.16)

4We borrow a comment from [47]: If F (x, y) restricted to Q is discretized and viewed as a
matrix, then ∥F∥ (Q) can be recognized as its (properly normalized) Schatten 4-norm, i.e. ℓ4

norm of the sequence of its singular values. This comment gives yet one more immediate proof
of Inequality (2.17) below.

5The author would like to thank Professor Terence Tao for pointing out the analogy between
averaging paraproduct-type terms and higher-dimensional Gowers box norms.
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To see (2.16), one has to write [F1, F2, F3, F4] (Q) as[
[F1(u, v)F2(x, v)]v[F3(u, y)F4(x, y)]y

]
u,x
,

and apply the ordinary Cauchy-Schwarz inequality in (u, x) ∈ I × I. Then one

rewrites the result as[
[F1(u, v)F1(u, y)]u[F2(x, v)F2(x, y)]x

] 1
2

v,y

[
[F3(u, v)F3(u, y)]u[F4(x, v)F4(x, y)]x

] 1
2

v,y

and applies the Cauchy-Schwarz inequality again, this time in (v, y) ∈ J×J . From

here it is also easily seen that ∥ ·∥ (Q) is really a norm on functions supported on

Q. On the other hand, a straightforward application of the (ordinary) Cauchy-

Schwarz inequality yields

∥F∥ (Q) ≤
( 1

|Q|

∫
Q

F (x, y)2 dxdy
)1/2

=
[
F (x, y)2

]1/2
x∈I, y∈J . (2.17)

An alternative way to verify (2.17) is to notice that it is a special case of the

strong (1
2
, 1
2
, 1
2
, 1
2
) estimate for the quadrilinear form

(F1, F2, F3, F4) 7→ |Q|2[F1, F2, F3, F4] (Q) .

Since (1
2
, 1
2
, 1
2
, 1
2
) is in the convex hull of (1, 0, 0, 1) and (0, 1, 1, 0), we can use

complex interpolation, and it is enough to verify strong type estimates for the

latter points, which is trivial.

Note that we have already encountered expressions of that type. For example,

the right hand side of (2.15) can now be written as

1

2
[1, G,1, G] (Q) +

1

2
[F,H, F,H] (Q) +

1

2
[F, F, F, F ] (Q) +

1

2
[H,H,H,H] (Q) ,

where 1 is the constant function.

Let us now provide another elegant example of our Bellman function machin-

ery. For any finite convex tree T we introduce a quadrilinear form

ΘT (F1, F2, F3, F4) :=
∑

I×J∈T

|I × J |
⟨[
F1(u, v)F2(x, v)F3(u, y)F4(x, y)

]
u,x∈I

⟩
v,y∈J .
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In the next chapter, we will need the following inequality.

Proposition 2.5. Quadrilinear form ΘT satisfies the estimate

∣∣ΘT (F1, F2, F3, F4)
∣∣ . |QT |

4∏
j=1

max
Q∈L(T )

∥Fj∥ (Q) .

Proof of Proposition 2.5. Denote

A = AI×J(F1, F2, F3, F4) :=
⟨[
F1(u, v)F2(x, v)F3(u, y)F4(x, y)

]
u,x∈I

⟩
v,y∈J

and define the Bellman function B = BQ(F1, F2, F3, F4) by the formula

B :=
1

2
[F1, F2, F1, F2] (Q) +

1

2
[F3, F4, F3, F4] (Q) +

1

2

4∑
j=1

[Fj, Fj, Fj, Fj] (Q) .

This choice can be justified similarly as in the previous example and we summarize

the reasoning in the form of another tree diagram, see Figure 2.4, where we omit

writing treatment of the right (analogous) branch.

[
⟨F1(u, v)F2(x, v)⟩v⟨F3(u, y)F4(x, y)⟩y

]
u,x

wwppp
ppp

ppp
pp

''NN
NNN

NNN
NNN

[
⟨F1(u, y)F2(x, y)⟩2y

]
u,x

���
�
�

++WWWWWWWWWW

[
⟨F3(u, y)F4(x, y)⟩2y

]
u,x

⟨
[F1(u, y)F2(x, y)]

2
y

⟩
u,x

�� ++WWWW
WWWWW

WWWWW
WWWWW

⟨
⟨F1(u, y)F2(x, y)⟩2y

⟩
u,x

ssggggg
ggggg

ggggg
gggg

��[
⟨F1(x, v)F1(x, y)⟩2x

]
v,y

[
⟨F2(x, v)F2(x, y)⟩2x

]
v,y

Figure 2.4: Bellman function tree for ΘT .

Using Theorem 2.2 or Table 2.2 and rearranging the terms with the help of (2.6),
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we get

�B =
1

2

[
⟨F1(u, y)F2(x, y)⟩2y

]
x,u

+
1

2

[
⟨F3(u, y)F4(x, y)⟩2y

]
x,u

+
1

8

[⟨
F1(x, y)F1(x, v) + F2(x, y)F2(x, v)

⟩2
x

]
y,v∈Jleft

+
1

8

[⟨
F1(x, y)F1(x, v) + F2(x, y)F2(x, v)

⟩2
x

]
y,v∈Jright

+
1

8

[⟨
F3(x, y)F3(x, v) + F4(x, y)F4(x, v)

⟩2
x

]
y,v∈Jleft

+
1

8

[⟨
F3(x, y)F3(x, v) + F4(x, y)F4(x, v)

⟩2
x

]
y,v∈Jright

+
1

4

4∑
j=1

[
⟨Fj(x, y)Fj(x, v)⟩2x∈I

]
y∈Jleft, v∈Jright

+
1

4

4∑
j=1

([
⟨Fj(u, y)Fj(x, y)⟩2y∈J

]
x,u∈Ileft

+
[
⟨F (u, y)F (x, y)⟩2y∈J

]
x,u∈Iright

)
.

All rows are nonnegative, so

�B ≥
∣∣∣[⟨F1(u, v)F2(x, v)⟩v⟨F3(u, y)F4(x, y)⟩y

]
u,x

∣∣∣ = |A|

and an immediate consequence of (2.16) is

BQ(F1, F2, F3, F4) .
4∑
j=1

∥Fj∥4 (Q) . (2.18)

The main Inequality (2.8) combined with (2.18) and the fact that L(T ) partitions

QT gives ∣∣ΘT (F1, F2, F3, F4)
∣∣ . |QT |

4∑
j=1

max
Q∈L(T )

∥Fj∥4 (Q) .

The same homogeneity trick as before completes the proof.
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CHAPTER 3

Boundedness of the twisted paraproduct

3.1 Formulation of the result

Let us denote dyadic martingale averages and differences by

Ekf :=
∑

|I|=2−k

(
1
|I|

∫
I
f
)
1I , ∆kf := Ek+1f − Ekf ,

for every k ∈ Z, where the sum is taken over dyadic intervals I ⊆ R of length 2−k.

When we apply an operator in only one variable of a two-dimensional function,

we mark it with that variable in the superscript. For instance,

(E(1)
k F )(x, y) :=

(
EkF (·, y)

)
(x) .

The dyadic twisted paraproduct is defined as

Td(F,G) :=
∑
k∈Z

(E(1)
k F )(∆

(2)
k G) . (3.1)

In the continuous case, let Pφ denote the Fourier multiplier with symbol φ̂, i.e.

Pφf := f ∗ φ .

Take two functions φ, ψ ∈ C1(R) satisfying

|φ(x)|, | d
dx
φ(x)|, |ψ(x)|, | d

dx
ψ(x)| . (1 + |x|)−3, (3.2)

and

supp(ψ̂) ⊆ {ξ ∈ R : 1
2
≤|ξ| ≤ 2} .
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For every k ∈ Z denote φk(x) := 2kφ(2kx) and ψk(x) := 2kψ(2kx). The associ-

ated continuous twisted paraproduct is defined as

Tc(F,G) :=
∑
k∈Z

(P(1)
φk
F )(P

(2)
ψk
G) . (3.3)

We are interested in strong-type estimates

∥T (F,G)∥Lpq/(p+q)(R2) .p,q ∥F∥Lp(R2)∥G∥Lq(R2) , (3.4)

and weak-type estimates

α
∣∣{(x, y) ∈ R2 : |T (F,G)(x, y)| > α

}∣∣(p+q)/pq .p,q ∥F∥Lp(R2)∥G∥Lq(R2) (3.5)

for (3.1) and (3.3). The exponent pq
p+q

is mandated by scaling invariance. When

p = ∞ or q = ∞, we interpret it as q or p respectively.

The main result of the chapter establishes (3.4) and (3.5) in certain ranges of

(p, q).

Theorem 3.1. (a) Operators Td and Tc satisfy the strong bound (3.4) if

1 < p, q <∞, 1
p
+ 1

q
> 1

2
.

(b) Additionally, operators Td and Tc satisfy the weak bound (3.5) when

p = 1, 1 ≤ q <∞ or q = 1, 1 ≤ p <∞ .

(c) The weak estimate (3.5) fails for p = ∞ or q = ∞ .

The name twisted paraproduct is indicative because there is a “twist” in the

variables in which the convolutions (or the martingale projections) are performed,

as opposed to the case of the ordinary paraproduct. No bounds on (3.1) or (3.3)

were known prior to this work. A conditional result was shown by Bernicot in
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[1], assuming boundedness in some range and expanding the range towards lower

exponents using a fiber-wise Calderón-Zygmund decomposition. We repeat his

argument in the dyadic setting in Section 3.4, for the purpose of extending the

boundedness region established in Section 3.3.

B( ), _
2
1 C( )_

2
1 , _

2
1

1
2
_,1

4
_ )(E

D( )_
2
1 ,

0

0,1
2
_ )(A

_
4
1

_1
 q

 p
1_

1

0
10

Figure 3.1: The range of exponents for the twisted paraproduct operator.

Figure 3.1 depicts the range of exponents in Theorem 3.1. The shaded region

satisfies the strong estimate, while for two solid sides of the unit square we only

establish the weak estimates. The two dashed sides of the square represent ex-

ponents for which we show that even the weak estimate fails. The white triangle

in the lower left corner is the region we do not discuss.

The proof of Theorem 3.1 is organized as follows. Section 3.3 proves estimates

for Td in the interior of triangle ABC. In Section 3.4 the rest of bounds for Td

are obtained. Section 3.5 establishes bounds for Tc by relating Tc to Td. Finally,

in Section 3.6 we discuss the counterexamples. Recall that in Section 2.3 we gave

a simpler proof for points D and E only.
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Before going into the proofs, we make several simple observations about Td.

Note that Theorem 3.1 also gives estimates for a family of shifted operators

(F,G) 7→
∑
k∈Z

(E(1)
k+k0

F )(∆
(2)
k G)

uniformly in k0 ∈ Z, because the last sum can be rewritten as

D(2−k0 ,1) Td
(
D(2k0 ,1)F, D(2k0 ,1)G

)
.

Here D(a,1) denotes the non-isotropic dilation (D(a,1)F )(x, y) := F (a−1x, y).

If F and G are compactly supported, then one can write

Td(F,G) = FG−
∑
k∈Z

(∆
(1)
k F )(E(2)

k+1G) . (3.6)

Combining this with the previous remark and the fact that the pointwise product

FG satisfies Hölder’s inequality, we see that the set of estimates for Td(F,G) is

indeed symmetric under interchanging p and q, F and G. We use this fact to

shorten some of the exposition below.

Furthermore, Theorem 3.1 implies bounds on more general dyadic operators

of the following type:∥∥∥∑
k∈Z

ck(E(1)
k F )(∆

(2)
k G)

∥∥∥
Lpq/(p+q)

.p,q ∥F∥Lp∥G∥Lq , (3.7)

for any numbers ck such that |ck| ≤ 1. Here we restrict ourselves to the interior

range 1 < p, q <∞, 1
p
+ 1

q
> 1

2
. One simply uses the known bound for Td(F, G̃)

with G̃ :=
∑

k∈Z ck∆
(2)
k G, and the dyadic Littlewood-Paley inequality in the

second variable. Note that the flexibility of having coefficients ck is implicit

in the definition of Tc, and indeed we will repeat a continuous variant of this

argument in Section 3.5.
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3.2 A single tree estimate

This short section serves only to make a connection with the theory developed in

Chapter 2, and to retrieve the key result from Section 2.3.

For any dyadic interval I, denote the Haar scaling function φd
I := |I|−1/21I and

the Haar wavelet ψd
I := |I|−1/2(1Ileft−1Iright). Martingale averages and differences

can be alternatively written in the Haar basis:

(Ekf)(x) =
∑

|I|=2−k

(∫
R f(u)φ

d
I (u)du

)
φd
I (x) ,

(∆kf)(x) =
∑

|I|=2−k

(∫
R f(u)ψ

d
I (u)du

)
ψd
I (x) .

Consequently, Td can be rewritten as the sum over the collection of all dyadic

squares:

Td(F,G)(x, y) =
∑
I×J∈C

∫
R2

F (u, y)G(x, v) φd
I (u)φ

d
I (x)ψ

d
J(v)ψ

d
J(y) du dv .

It will be more convenient to work with the dualized trilinear form

Λd(F,G,H) :=

∫
R2

Td(F,G)(x, y)H(x, y) dx dy

and notice that it can be written in terms of averages introduced in the previous

chapter:

Λd(F,G,H) =
∑
I×J∈C

∫
R4

F (u, y)G(x, v)H(x, y)φd
I (u)φ

d
I (x)ψ

d
J(v)ψ

d
J(y) dudxdvdy

=
∑
I×J∈C

|I × J |
⟨[
F (u, y)G(x, v)H(x, y)

]
u,x∈I

⟩
v,y∈J .

We have justified (2.13) and thus Proposition 2.4 establishes the estimate for Td

corresponding to point E in Figure 3.1. Point D is then handled by symmetry

following from (3.6).
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For the purpose of proving estimates in a larger range we will have to work lo-

cally, rather than immediately trying to bound expressions over all dyadic squares.

For any finite convex tree T we introduce a local version of the trilinear form:

ΛT (F,G,H) :=
∑

I×J∈T

∫
R4

F (u, y)G(x, v)H(x, y)φd
I (u)φ

d
I (x)ψ

d
J(v)ψ

d
J(y) dudxdvdy

and a more symmetric quadrilinear form:

ΘT (F1, F2, F3, F4) :=
∑

I×J∈T

∫
R4

F1(u, v)F2(x, v)F3(u, y)F4(x, y)

φd
I (u)φ

d
I (x)ψ

d
J(v)ψ

d
J(y) dudxdvdy

=
∑

I×J∈T

|I × J |
⟨[
F1(u, v)F2(x, v)F3(u, y)F4(x, y)

]
u,x∈I

⟩
v,y∈J ,

which was already mentioned in Section 2.3. Observe that ΛT (F,G,H) can be

recognized as ΘT (1, G, F,H), where 1 is the unit constant function on R2.

Here is a key local estimate, which will be “integrated” to a global one in the

next section.

Proposition 3.2 (Single tree estimate). For any finite convex tree T we have∣∣ΛT (F,G,H)
∣∣ . |QT |

(
max
Q∈L(T )

∥F∥ (Q)

)(
max
Q∈L(T )

∥G∥ (Q)

)(
max
Q∈L(T )

∥H∥ (Q)

)
.

It is an immediate consequence of Proposition 2.5 with F1 = 1, F2 = G,

F3 = F , F4 = H.

3.3 Proving the estimate in the local L2 case

In this section we show the bound

|Λd(F,G,H)| .p,q,r ∥F∥Lp∥G∥Lq∥H∥Lr (3.8)

for 1
p
+ 1

q
+ 1

r
= 1, 2 < p, q, r < ∞. By duality we get (3.4) for Td in the range

2 < p, q < ∞, 1
p
+ 1

q
> 1

2
. The following material became somewhat standard
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over the time, and indeed we are closely following the ideas from [49], actually in

a much simpler setting.

Let us fix bounded, compactly supported, measurable functions F,G,H ≥ 0,

none of them being identically 0. To make all arguments finite, in this section

we restrict ourselves to considering only dyadic squares Q satisfying |Q| ≥ 2−2N

for some (large) fixed positive integer N . Since our bounds will be independent

of N , letting N → ∞ handles the whole collection C.

We organize the family of dyadic squares in the following way. For any k ∈ Z

we define the collection

PF
k :=

{
Q : 2k ≤ sup

Q′⊇Q
∥F∥ (Q′) < 2k+1

}
,

and let MF
k denote the family of maximal squares in PF

k with respect to the set

inclusion. Collections PG
k , MG

k , PH
k , MH

k are defined analogously. Furthermore,

for any triple of integers k1, k2, k3 we set

Pk1,k2,k3 := PF
k1
∩ PG

k2
∩ PH

k3

and let Mk1,k2,k3 denote the family of maximal squares in Pk1,k2,k3 .

For each Q ∈ Mk1,k2,k3 note that

TQ :=
{
Q̃ ∈ Pk1,k2,k3 : Q̃ ⊆ Q

}
is a convex tree with root Q and that for different Q the corresponding trees TQ

occupy disjoint regions in R2. These trees decompose the collection Pk1,k2,k3 , for

each individual choice of k1, k2, k3.

We apply Proposition 3.2 to each of the trees TQ. Consider any leaf Q̃ ∈

L(TQ), and denote its parent by Q′. From Q′ ∈ TQ ⊆ Pk1,k2,k3 we get

1
2
∥F∥ (Q̃) ≤ ∥F∥ (Q′) < 2k1+1 ,
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thus ∥F∥ (Q̃) . 2k1 , and similarly ∥G∥ (Q̃) . 2k2 , ∥H∥ (Q̃) . 2k3 , so “single

tree estimate” implies ∣∣ΛTQ(F,G,H)
∣∣ . 2k1+k2+k3 |Q| .

We split Λd into a sum of ΛTQ over all k1, k2, k3 ∈ Z and all Q ∈ Mk1,k2,k3 . In

order to finish the proof of (3.8), it remains to show∑
k1,k2,k3∈Z

2k1+k2+k3
∑

Q∈Mk1,k2,k3

|Q| .p,q,r ∥F∥Lp∥G∥Lq∥H∥Lr . (3.9)

The trick from [49] is to observe that for any fixed triple k1, k2, k3 ∈ Z, squares

in MF
k1

cover squares in Mk1,k2,k3 , and the latter are disjoint. The same is true

for MG
k2

and MH
k3
. Thus, it suffices to prove∑

k1,k2,k3∈Z

2k1+k2+k3 min
( ∑
Q∈MF

k1

|Q|,
∑

Q∈MG
k2

|Q|,
∑

Q∈MH
k3

|Q|
)

.p,q,r ∥F∥Lp∥G∥Lq∥H∥Lr . (3.10)

Consider the following version of the dyadic maximal function

M2F := sup
Q∈C

( 1

|Q|

∫
Q

|F |2
)1/2

1Q .

For each Q ∈ MF
k , from (2.17) and ∥F∥ (Q) ≥ 2k we have Q ⊆ {M2F ≥ 2k}, so

by disjointness ∑
Q∈MF

k

|Q| ≤ |{M2F ≥ 2k}| .

Also note that ∑
k∈Z

2pk|{M2F ≥ 2k}| ∼p ∥M2F∥pLp .p ∥F∥pLp ,

because M2 is bounded on Lp(R2) for 2 < p <∞. Therefore∑
k∈Z

2pk
∑

Q∈MF
k

|Q| .p ∥F∥pLp , (3.11)
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and completely analogously we get∑
k∈Z

2qk
∑

Q∈MG
k

|Q| .q ∥G∥qLq ,
∑
k∈Z

2rk
∑

Q∈MH
k

|Q| .r ∥H∥rLr .

A purely algebraic “integration lemma” stated and proved in [49] deduces (3.10)

from these three estimates. The idea is to split the sum in (3.10) into three parts,

depending on which of the numbers

2pk1

∥F∥pLp

,
2qk2

∥G∥qLq

,
2rk3

∥H∥rLr

is the largest. For instance, the part of the sum over

S1 := {(k1, k2, k3) ∈ Z3 : 2pk1
∥F∥p

Lp
≥ 2qk2

∥G∥q
Lq
, 2pk1

∥F∥p
Lp

≥ 2rk3
∥H∥rLr

}

is controlled as∑
k1∈Z

2pk1

∥F∥pLp

( ∑
Q∈MF

k1

|Q|
) ∑

k2,k3∈Z
(k1,k2,k3)∈S1

(
2qk2/∥G∥qLq

2pk1/∥F∥pLp

) 1
q
(
2rk3/∥H∥rLr

2pk1/∥F∥pLp

) 1
r

.p,q,r 1 ,

which follows from (3.11) and by summing two convergent geometric series with

their largest terms at most 1 and ratios equal to 1
2
.

3.4 Extending the range of exponents

Extension of the main estimate to the range p ≤ 2 or q ≤ 2 follows from the

conditional result of Bernicot in [1]. Here we repeat his argument in the dyadic

case, where it is a bit simpler. His idea is to use one-dimensional Calderón-

Zygmund decomposition in each fiber F (·, y) or G(x, ·).

We start with an estimate obtained in the previous section1:

∥Td(F,G)∥Lpq/(p+q),∞ ≤ ∥Td(F,G)∥Lpq/(p+q) .p,q ∥F∥Lp∥G∥Lq , (3.12)

1Here ∥F∥Lp,∞ := supα>0 α |{|F | > α}|1/p denotes the weak Lp norm.
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for some 2 < p, q <∞, 1
p
+ 1

q
> 1

2
. If we prove the weak estimate

∥Td(F,G)∥Lp/(p+1),∞ .p,q ∥F∥Lp∥G∥L1 , (3.13)

then Td will be bounded in the whole range of Theorem 3.1, by real interpolation

of multilinear operators, as stated for instance in [19] or [50]. We first cover the

part p > 2, q ≤ 2, then use (3.6) for p ≤ 2, q > 2, and finally repeat the argument

to tackle the case p, q ≤ 2.

By homogeneity we may assume ∥F∥Lp = ∥G∥L1 = 1. For each x ∈ R denote

by Jx the collection of all maximal dyadic intervals J with the property

1

|J |

∫
J

|G(x, y)| dy > 1 .

Furthermore, set

E :=
∪
x∈R

∪
J∈Jx

({x} × J) .

If G is a dyadic step function, i.e. a finite linear combination of characteristic

functions of dyadic squares, then the set E is simply a finite union of dyadic

rectangles. Using disjointness of J ∈ Jx

|E| =
∫
R

∑
J∈Jx

|J | dx ≤
∫
R

( ∑
J∈Jx

∫
J

|G(x, y)| dy
)
dx ≤ 1 . (3.14)

Next, we define “the good part” of G by

G̃(x, y) :=

 1
|J |

∫
J
G(x, v)dv, for y ∈ J ∈ Jx,

G(x, y), for (x, y) ̸∈ E.

By the construction of Jx we have ∥G̃∥L∞ ≤ 2, and from ∥G̃∥L1 ≤ 1 we also get

∥G̃∥Lq ≤ 2, so using the known Estimate (3.12) we obtain

∣∣{(x, y) : |Td(F, G̃)(x, y)| > 1
}∣∣ .p,q 1 . (3.15)

48



As the last ingredient, we show that(∫
R

(
G(x, v)−G̃(x, v)

)
ψd
J ′(v)dv

)
ψd
J ′(y) = 0 (3.16)

for every J ′ ∈ D, whenever (x, y) ̸∈ E. Since G(x, ·) − G̃(x, ·) is supported on∪
J∈Jx

J , this in turn will follow from(∫
R

(
G(x, v)−G̃(x, v)

)
ψd
J ′(v)1J(v) dv

)
ψd
J ′(y) = 0 (3.17)

for every J ∈ Jx. In order to verify (3.17) it is enough to consider J ∩ J ′ ̸= ∅

and y ∈ J ′, and since y ̸∈ J , we conclude that J is strictly contained in J ′. In

this case ψd
J ′(v)1J(v) = ±|J ′|−1/21J(v), so we only have to observe

∫
J

(
G(x, v)−

G̃(x, v)
)
dv = 0, by the definition of G̃.

Equation (3.16) immediately gives Td(F,G−G̃)(x, y) = 0 for (x, y) ̸∈ E, so

{
(x, y) : |Td(F,G)(x, y)| > 1

}
⊆ E ∪

{
(x, y) : |Td(F, G̃)(x, y)| > 1

}
,

and then from (3.14) and (3.15)

∣∣{(x, y) : |Td(F,G)(x, y)| > 1
}∣∣ .p,q 1 .

This establishes (3.13) by dyadic scaling.

3.5 Transition to the continuous case

Now we turn to the task of proving strong estimates for Tc in the range from part

(a) of Theorem 3.1:

∥Tc(F,G)∥Lpq/(p+q) .p,q ∥F∥Lp∥G∥Lq

for 1 < p, q < ∞, 1
p
+ 1

q
> 1

2
. In order to get the boundary weak estimates, one

can later proceed as in [1].
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Let φ and ψ be as in the introduction. If
∫
R φ = 0, then Tc(F,G) is dominated

by (∑
k∈Z

|P(1)
φk
F |2
)1/2(∑

k∈Z

|P(2)
ψk
G|2
)1/2

,

and it is enough to use bounds for the two square functions. Otherwise, we have

0 < |
∫
R φ| . 1 , so let us normalize

∫
R φ = 1.

A tool that comes in very handy here is the square function introduced by

Calderón and generalized by Jones, Seeger, and Wright in [22]. It effectively

compares convolutions to martingale averages, allowing us to do the transition

easily.

Proposition 3.3 (from [22]). Let φ be a function satisfying (3.2) and
∫
R φ = 1.

The square function

SJSW,φf :=
(∑
k∈Z

∣∣Pφk
f − Ekf

∣∣2)1/2
is bounded from Lp(R) to Lp(R) for 1 < p <∞, with the constant depending only

on p.

Let ϕ be a nonnegative C∞ function such that ϕ̂(ξ) = 1 for |ξ| ≤ 2−0.6, and

ϕ̂(ξ) = 0 for |ξ| ≥ 2−0.4. We regard it as fixed, so we do not keep track of

dependence of constants on ϕ. For any a ∈ R define ϕa, ϑa, ρa by

ϕ̂a(ξ) := ϕ̂(2−aξ) ,

ϑ̂a(ξ) := ϕ̂(2−a−1ξ)− ϕ̂(2−aξ) = ϕ̂a+1(ξ)− ϕ̂a(ξ) ,

ρ̂a(ξ) := ϕ̂(2−a−0.6ξ)− ϕ̂(2−a−0.5ξ) ,

so that in particular

ϑ̂a = 1 on supp(ρ̂a) , (3.18)∑20
i=−20 ρ̂k+0.1i = 1 on supp(ψ̂k) , (3.19)∑20
i=−20 ρ̂k+0.1i = 0 on supp(ψ̂k′) if |k′ − k| ≥ 10 . (3.20)
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We first use Proposition 3.3 to obtain bounds for a special case of our contin-

uous twisted paraproduct:

Tφ,ϑ,b(F,G) :=
∑
k∈Z

(P(1)
φk
F )(P

(2)
ϑk+b

G) , (3.21)

where b ∈ R is a fixed parameter. The constants can depend on b, as later b

will take only finitely many concrete values. Since we have already established

estimates for (3.1), it is enough to bound their difference:

∥∥Tφ,ϑ,b(F,G)− Td(F,G)
∥∥
Lpq/(p+q) .p,q,b ∥F∥Lp∥G∥Lq . (3.22)

We introduce a mixed-type operator

Taux,b(F,G) :=
∑
k∈Z

(E(1)
k F )(P

(2)
ϑk+b

G) .

Using the Cauchy-Schwarz inequality in k ∈ Z, one gets

∣∣Tφ,ϑ,b(F,G)− Taux,b(F,G)
∣∣ ≤ (∑

k∈Z

∣∣P(1)
φk
F − E(1)

k F
∣∣2)1/2(∑

k∈Z

∣∣P(2)
ϑk+b

G
∣∣2)1/2.

The first term on the right hand side is S(1)
JSW,φF , while the second one is the

ordinary square function in the second variable, as
∫
R ϑb = 0. Next, one can

rewrite Taux,b and Td as

Taux,b(F,G) = FG−
∑
k∈Z

(∆
(1)
k F )(P

(2)
ϕk+1+b

G) ,

Td(F,G) = FG−
∑
k∈Z

(∆
(1)
k F )(E(2)

k+1G) .

Subtracting and using the Cauchy-Schwarz inequality in k ∈ Z, this time we

obtain

∣∣Taux,b(F,G)− Td(F,G)
∣∣ ≤ (∑

k∈Z

∣∣∆(1)
k F

∣∣2)1/2(∑
k∈Z

∣∣P(2)
ϕk+b

G− E(2)
k G

∣∣2)1/2 .
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The first term on the right hand side is just the dyadic square function in the

first variable, while the second term is S(2)
JSW,ϕb

G. The Estimate (3.22) now follows

from Proposition 3.3 and bounds on the two common square functions.

Actually, we need a “sparser” paraproduct than the one in (3.21):

T 10Z
φ,ρ,b,l(F,G) :=

∑
j∈Z

(P(1)
φ10j+l

F )(P(2)
ρ10j+l+b

G) , (3.23)

for l = 0, 1, . . . , 9. To see that (3.23) is bounded too, we define

G̃b,l :=
∑
j∈Z

P(2)
ρ10j+l+b

G .

Notice that because of (3.18) we have

P
(2)
ϑk+b

G̃b,l =

 P
(2)
ρ10j+l+bG, for k = 10j + l ∈ 10Z+ l,

0, for k ∈ Z, k ̸∈ 10Z+ l

and the Littlewood-Paley inequality gives

∥G̃b,l∥Lq .q,b,l ∥G∥Lq .

It remains to write

T 10Z
φ,ρ,b,l(F,G) = Tφ,ϑ,b(F, G̃b,l)

and use boundedness of (3.21).

Finally, we tackle the original operator (3.3). The following computation is

possible because of (3.19) and (3.20).

∑
k∈Z

φ̂k(ξ)ψ̂k(η) =
9∑
l=0

∑
j∈Z

φ̂10j+l(ξ)ψ̂10j+l(η)

=
9∑
l=0

20∑
i=−20

∑
j∈Z

φ̂10j+l(ξ)ρ̂10j+l+0.1i(η)ψ̂10j+l(η)

=
9∑
l=0

20∑
i=−20

∑
j∈Z

φ̂10j+l(ξ)ρ̂10j+l+0.1i(η)Ψ̂l(η)
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Above we have set Ψl :=
∑

m∈Z ψ10m+l. This “symbol identity” leads us to

Tc(F,G) =
9∑
l=0

20∑
i=−20

T 10Z
φ, ρ, 0.1i, l(F,P

(2)
Ψl
G) . (3.24)

Since ψ̂ has a compact support and |ψ̂(η)|, | d
dη
ψ̂(η)| . 1 by (3.2), scaling gives

|Ψ̂l(η)| . 1,
∣∣ d
dη
Ψ̂l(η)

∣∣ . |η|−1, and thus the Hörmander-Mikhlin multiplier

theorem (in one variable) implies∥∥P(2)
Ψl
G
∥∥
Lq .q,l ∥G∥Lq .

It remains to use (3.24) and boundedness of (3.23).

3.6 Endpoint counterexamples

We give the arguments in the dyadic setting, the continuous case being similar.

First we show that Td does not map boundedly

L∞(R2)× Lq(R2) → Lq,∞(R2)

for 1 ≤ q <∞. Take G to be

G(x, y) := 1[0,2−n)(x)
n∑
k=1

Rk(y) ,

for some positive integer n, where Rk denotes the k-th Rademacher function2 on

[0, 1), i.e.

Rk :=
∑

J⊆[0,1), |J |=2−k+1

(1Jleft − 1Jright) .

Recall Khintchine’s inequality, which can be formulated as:∥∥∥ n∑
k=1

ckRk

∥∥∥
Lq

∼q

( n∑
k=1

|ck|2
)1/2

, for 0 < q <∞ ,

2Linear combinations of Rademacher functions
∑

k ckRk(t) are dyadic analogues of lacunary

trigonometric series
∑

k cke
i2kt.
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giving us ∥G∥Lq ∼q 2−n/qn1/2. Observe that

(∆
(2)
k G)(x, y) = 1[0,2−n)(x)Rk+1(y), for k = 0, 1, . . . , n−1 .

We choose F supported in the unit square [0, 1)2 and defined by

F (x, y) :=

 2Rj(y)−Rj+1(y), for x ∈ [2−j, 2−j+1), j = 1, . . . , n−1,

Rn(y), for x ∈ [0, 2−n+1).

Note that ∥F∥L∞ ≤ 3 and (E(1)
k F )(x, y) = Rk+1(y) for x ∈ [0, 2−n), k =

0, 1, . . . , n−1. Since the output function is now simply Td(F,G) = n1[0,2−n)×[0,1),

we have
∥Td(F,G)∥Lq,∞

∥F∥L∞∥G∥Lq

&q
2−n/qn

2−n/qn1/2
= n1/2 ,

which shows unboundedness.

The remaining estimate ∥Td(F,G)∥L∞ . ∥F∥L∞∥G∥L∞ is even easier to dis-

prove. For a positive integer n, take

F (x, y) :=

 1, for x ∈
∪n−1
j=0 [2

−2j−1, 2−2j), y ∈ [0, 1),

0, otherwise

and G(x, y) := F (y, x). It is easy to see that |Td(F,G)(x, y)| ∼ n on the square

(x, y) ∈ [0, 2−2n)2.
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CHAPTER 4

Two-dimensional paraproduct-type

multilinear forms

4.1 Generalized paraproducts

This chapter is devoted to a study of a somewhat general class of multilinear forms

that generalizes ordinary paraproducts as well as the twisted paraproduct from

Chapter 3. This time we confine ourselves to bounding only dyadic model sums

using the machinery from Chapter 2, because the simple transference trick used

in Section 3.5 (from the dyadic to the continuous model) is no longer available.

Some continuous results can still be obtained by averaging over translated and

dilated dyadic grids, but we do not discuss those ideas here. Furthermore, the

“fiber-wise” Calderón-Zygmund decomposition from [1] does not apply either (as

it did in Section 3.4), so there does not seem to be a pre-existing result allowing

any extension of the exponent range. Thus, Theorem 4.1 below does not include

Theorem 3.1. On the other hand, the generalization presented in this chapter

requires more involved combinatorial reasoning.

Let m,n be positive integers and choose

E ⊆ {1, . . . ,m} × {1, . . . , n}, S ⊆ {1, . . . ,m}, T ⊆ {1, . . . , n} .

It will be convenient to represent E as the set of edges of a simple bipartite

undirected graph with vertices {x1, . . . , xm} and {y1, . . . , yn}, where xi and yj
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are connected by an edge if and only if (i, j) ∈ E. Also, we regard elements

of S and T as “selected” vertices from these two vertex-sets respectively. We

additionally require

|S| ≥ 2 or |T | ≥ 2 .

y

y

x

x

x

y

x

TS

E

.

.

.

.

.

.

n

2

1

m

3

2

1

Figure 4.1: Graph interpretation of a triple (E, S, T ). Selected vertices are circled.

To each such triple (E, S, T ) we associate a multilinear form Λ = ΛE,S,T acting

on |E| functions by

Λ
(
(Fi,j)(i,j)∈E

)
:=

∑
I×J∈C

|I|2−
m+n

2

∫
Rm+n

( ∏
(i,j)∈E

Fi,j(xi, yj)
)

(∏
i∈S

ψd
I (xi)

)(∏
i∈Sc

φd
I (xi)

)(∏
j∈T

ψd
J(yj)

)(∏
j∈T c

φd
J(yj)

)
dx1 . . . dxm dy1 . . . dyn .

As before, C denotes the collection of all dyadic squares in R2 and

φd
I := |I|−1/21I , ψd

I := |I|−1/2(1Ileft − 1Iright) .

To make sure that the above summand is well-defined for each I×J ∈ C and that

all of the succeeding arguments are finitary, we suppose that Fi,j are measurable,

bounded, and compactly supported functions.1 Since this is only a qualitative

assumption, any quantitative bounds can be extended by density arguments. The

1Absolute convergence of the series
∑

I×J∈C will be a part of Theorem 4.1.
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normalization |I|2−(m+n)/2 is chosen so that Λ is invariant under simultaneous

dyadic dilations of all functions:

Λ
(
(D2lFi,j)(i,j)∈E

)
= 22l Λ

(
(Fi,j)(i,j)∈E

)
,

where l ∈ Z and (D2lF )(x, y) := F (2−lx, 2−ly).

We can describe the structure of Λ in words:

• Every edge (xi, yj) contributes with a function Fi,j.

• Each vertex, xi or yj, carries a “dyadic bump function” (either φd or ψd).

• Selected vertices carry “dyadic bump functions” of mean zero (i.e. ψd).

• At least one bipartition class, {x1, . . . , xm} or {y1, . . . , yn}, contains at least

two selected vertices.

The last condition is an analogue of the standard cancellation condition for clas-

sical paraproducts, see Section 1.1.

The form Λ can be rewritten using the notation from Chapter 2 as

Λ
(
(Fi,j)(i,j)∈E

)
=
∑
Q∈C

|Q| AQ

(
(Fi,j)(i,j)∈E

)
,

with

AI×J
(
(Fi,j)(i,j)∈E

)
=
[⟨ ∏

(i,j)∈E

Fi,j(xi, yj)
⟩
xi∈I for i∈S
yj∈J for j∈T

]
xi∈I for i∈Sc

yj∈J for j∈T c

.

The latter formulation also justifies the factor |I|2−(m+n)/2 in the definition of Λ.

Let di,j denote larger size of the two bipartition classes of the connected com-

ponent containing an edge (xi, yj). In more details, the graph described above

splits into connected components, i.e. maximal connected subgraphs. Suppose
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that there are k components that contain at least one edge and list their vertex-

sets as

X1 ∪ Y1, X2 ∪ Y2, . . . , Xk ∪ Yk ,

where Xl ⊆ {x1, . . . , xm} and Yl ⊆ {y1, . . . , yn} for l = 1, . . . , k. We define di,j to

be

di,j = d(l) := max{|Xl|, |Yl|
}

if xi ∈ Xl, yj ∈ Yl for some l ∈ {1, 2, . . . , k}. Since di,j depends on the compo-

nent only, we sometimes prefer to write it as d(l). Vertices in {x1, . . . , xm}\ (X1∪

. . .∪Xk) and {y1, . . . , yn} \ (Y1 ∪ . . .∪ Yk) are isolated, i.e. no edge is incident to

any of them. For notational convenience we also denote

Xl :=
{
i ∈ {1, . . . ,m} : xi ∈ Xl

}
,

Yl :=
{
j ∈ {1, . . . , n} : yj ∈ Yl

}
,

for l = 1, . . . , k.

Connected components are useful because the associated form factorizes ac-

cording to the splitting.

3

3 2

2

1

1
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X
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x

x
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y
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y

3

2

3

2

11

Figure 4.2: An example of a bipartite graph and its splitting.

An illustrative example is given in Figure 4.2 and it has

m = 7, n = 6, E =
{
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 4), (4, 4), (4, 5), (5, 6)

}
,

S = ∅, T = {1, 4}, d1,1=d1,2=d1,3=d2,1=d2,2=3, d3,4=d4,4=d4,5=2, d5,6=1.
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The splitting into connected components is

X1 = {1, 2}, Y1 = {1, 2, 3}, X2 = {3, 4}, Y2 = {4, 5}, X3 = {5}, Y3 = {6}.

The form we associate to this graph is

Λ =
∑
Q∈C

|Q| A(1)
Q A(2)

Q A(3)
Q ,

where

A(1) =
[⟨
F1,1(x1, y1)F1,2(x1, y2)F1,3(x1, y3)F2,1(x2, y1)F2,2(x2, y2)

⟩
y1

]
x1,x2,y2,y3

,

A(2) =
[⟨
F3,4(x3, y4)F4,4(x4, y4)F4,5(x4, y5)

⟩
y4

]
x3,x4,y5

,

A(3) =
[
F5,6(x5, y6)

]
x5,y6

.

Now we state the main result.

Theorem 4.1. Let (E, S, T ) and (di,j)(i,j)∈E be as above. (Recall that we assume

|S| ≥ 2 or |T | ≥ 2.) The associated form Λ satisfies the estimate∣∣Λ((Fi,j)(i,j)∈E)∣∣ .m,n,(pi,j)

∏
(i,j)∈E

∥Fi,j∥Lpi,j (R2)

whenever the exponents (pi,j)(i,j)∈E are such that
∑

(i,j)∈E

1
pi,j

= 1 and di,j<pi,j<∞

for each (i, j) ∈ E. Moreover, the series defining Λ converges absolutely.

Before the proof, let us comment on a couple of already familiar particular

instances.

Classical paraproducts.

m = n, E =
{
(i, i) : i ∈ {1, . . . , n}

}
, |S| ≥ 2, T = ∅, di,i = 1.

This special case leads to ordinary two-dimensional dyadic paraproducts2

Λ(F1, . . . , Fn) =
∑
I×J∈C

|I|2−n
(∏
i∈S

⟨
Fi, ψ

d
I⊗φd

J

⟩
L2(R2)

)(∏
i∈Sc

⟨
Fi, φ

d
I⊗φd

J

⟩
L2(R2)

)
2Here ⟨ · , · ⟩L2(R2) denotes the standard inner product on L2(R2).
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Figure 4.3: Bipartite graph corresponding to a classical paraproduct.

and Theorem 4.1 yields the inequality

|Λ(F1, . . . , Fn)| .n,(pi)

n∏
i=1

∥Fi∥Lpi (R2)

for
∑n

i=1
1
pi
= 1, 1 < pi <∞.

Twisted paraproduct.

m = n = 2, E =
{
(1, 2), (2, 1), (2, 2)

}
, S = ∅, T = {1, 2}, di,j = 2.

y

y

x

x

2

1

2

1

Figure 4.4: Bipartite graph corresponding to the twisted paraproduct.

This case is exactly the dyadic variant of the twisted paraproduct (2.13) and

Theorem 4.1 claims Estimate (3.8) in the range 1
p
+ 1

q
+ 1

r
= 1, 2 < p, q, r < ∞

only.

The next two sections are devoted to the proof of Theorem 4.1. Note that

isolated vertices contribute to the form Λ in a trivial way. If xi is a non-selected

isolated vertex, then no functions Fi,j will have xi as a variable, so the contribution

of xi is only in the factor

|I|−
1
2

∫
R
φd
I (xi) dxi = 1 .
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On the other hand, if xi is a selected isolated vertex, then that factor will be

|I|−
1
2

∫
R
ψd
I (xi) dxi = 0 ,

so consequently Λ ≡ 0. The same reasoning holds for isolated vertices yj. There-

fore, from now on we assume that the associated bipartite graph has no isolated

vertices.

In addition, we may suppose that all the functions Fi,j are nonnegative, since

otherwise they can be split into positive and negative (real and imaginary) parts

and one uses multilinearity of the form.

4.2 A single tree estimate

The main step towards the proof of Theorem 4.1 is an estimate for a single tree,

similar to Proposition 3.2. We retain the notation and all assumptions from the

previous section.

As in Chapter 3, we need to introduce a local version of Λ. For a finite convex

tree of dyadic squares T we define

ΛT
(
(Fi,j)(i,j)∈E

)
:=
∑
Q∈T

|Q|
∣∣AQ

(
(Fi,j)(i,j)∈E

)∣∣ .
Notice an absolute value in the definition, which makes ΛT only multi-sublinear.

Proposition 4.2 (Single tree estimate). For any finite convex tree T with root

QT and leaves L(T ) we have3

ΛT
(
(Fi,j)(i,j)∈E

)
.m,n |QT |

∏
(i,j)∈E

max
Q∈T ∪L(T )

[
F
di,j
i,j

]1/di,j
Q

. (4.1)

3Indeed, it is easy to see that the maximum in (4.1) must be attained at some leaf, so it can
be replaced by maxQ∈L(T ). We do not use this fact as it does not simplify any arguments in
Section 4.3.
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Note that the implicit constant is independent of the tree T and the functions

Fi,j. We can allow it to depend on the graph, because for each pair (m,n) there

are only finitely many choices for (E, S, T ). Moreover, di,j are determined by

the graph. By homogeneity of Estimate (4.1) and its invariance under dyadic

dilations we can normalize the tree and the functions by |QT | = 1 and

max
Q∈T ∪L(T )

[
F
di,j
i,j

]1/di,j
Q

= 1 for every (i, j) ∈ E . (4.2)

Thus, our task is to prove

ΛT
(
(Fi,j)(i,j)∈E

)
.m,n 1 . (4.3)

4.2.1 Proof of Proposition 4.2 for complete bipartite graphs

Most of our effort will be spent in this special case, when E = {1, . . . ,m} ×

{1, . . . , n}. In particular, there is only one connected component and di,j =

max{m,n}. Later we will reduce the general case to this one.

We begin with a simple estimate for functions on a single square.

Lemma 4.3. For nonnegative functions Gi,j on a dyadic square I × J the fol-

lowing inequality holds,[ ∏
1≤i≤m
1≤j≤n

Gi,j(xi, yj)

]
x1,...,xm∈I
y1,...,yn∈J

≤
∏

1≤i≤m
1≤j≤n

[
G

max{m,n}
i,j

]1/max{m,n}

I×J
.

Proof of Lemma 4.3. Because of the obvious symmetry, we can assume m ≥ n.

With two applications of (generalized) Hölder’s inequality for n and m functions

respectively, we estimate the left hand side as[ m∏
i=1

[ n∏
j=1

Gi,j(xi, yj)
]
xi

]
y1,...,yn

≤
[ m∏
i=1

n∏
j=1

[
Gi,j(xi, yj)

n
]1/n
xi

]
y1,...,yn

=
n∏
j=1

[ m∏
i=1

[
Gi,j(x, y)

n
]1/n
x

]
y
≤

n∏
j=1

m∏
i=1

[[
Gi,j(x, y)

n
]m/n
x

]1/m
y

.
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By Jensen’s inequality for the power function with exponent m
n
≥ 1 we have

[
Gi,j(x, y)

n
]m/n
x

≤
[
Gi,j(x, y)

m
]
x
,

so [[
Gi,j(x, y)

n
]m/n
x

]1/m
y

≤
[
Gi,j(x, y)

m
]1/m
x,y

,

which completes the proof.

In the following discussion, all constructions and (implicit) constants are un-

derstood to depend on m and n, but not on the tree T or the functions Fi,j.

We introduce the notion of a selective (m,n)-partition as a (2m + 2n)-tuple of

integers

p = (a1, . . . , am; b1, . . . , bn; α1, . . . , αm; β1, . . . , βn) (4.4)

satisfying:

• 0 ≤ αi ≤ ai for i = 1, . . . ,m and 0 ≤ βj ≤ bj for j = 1, . . . , n,

• a1 + . . .+ am = m and b1 + . . .+ bn = n,

• α1 + . . .+ αm and β1 + . . .+ βn are even,

• α1 + . . .+ αm ̸= 0 or β1 + . . .+ βn ̸= 0.

The set of all selective (m,n)-partitions will be denoted Ωm,n. To every p ∈ Ωm,n

we associate a paraproduct-type term A(p) = A(p)
I×J
(
(Fi,j)(i,j)∈E

)
by

A(p)
I×J :=

[⟨ ∏
1≤i≤m
1≤j≤n

∏
1≤µ≤ai
1≤ν≤bj

Fi,j(x
(µ)
i , y

(ν)
j )

⟩
x
(µ)
i ∈I for all (i,µ)

such that 1≤µ≤αi

y
(ν)
j ∈J for all (j,ν)

such that 1≤ν≤βj

]
x
(µ)
i ∈I for all (i,µ)

such that αi+1≤µ≤ai
y
(ν)
j ∈J for all (j,ν)

such that βj+1≤ν≤bj

.

Pairs (i, j) with ai = 0 or bj = 0 do not exist in the above product as we interpret

(sub)products over empty ranges to be identically 1. In words, we average the
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product of mn terms of the pattern Fi,j(xi, yj) that contains precisely ai copies

of xi and bj copies of yj. Averages of type ⟨·⟩xi are taken over αi of the xi’s

(i.e. these xi’s are “selected”), while averages of type [·]xi are taken over ai−αi

remaining ones. Similarly for yj’s. For instance, to

p = (2, 0; 2, 0, 1; 0, 0; 1, 0, 1) ∈ Ω2,3

we associate

A(p)
I×J =

[⟨
F1,1(x1, y1)F1,1(x1, y

′
1)F1,3(x1, y3)

F1,1(x
′
1, y1)F1,1(x

′
1, y

′
1)F1,3(x

′
1, y3)

⟩
y1,y3∈J

]
x1,x′1∈I, y′1∈J

.

For p ∈ Ωm,n given by (4.4) we define the composition type of p to be the

vector of first m+ n components,

comp(p) := (a1, . . . , am; b1, . . . , bn) ,

and the partition type of p (and A(p)) to be an (m+ n)-tuple

part(p) := (a∗1, . . . , a
∗
m; b

∗
1, . . . , b

∗
n) ,

where a∗1, . . . , a
∗
m is the decreasing rearrangement4 of a1, . . . , am and b∗1, . . . , b

∗
n is

the decreasing rearrangement of b1, . . . , bn. The set of all these partition types

will be denoted Ω∗
m,n. Note that Ω∗

m,n has p#(m)p#(n) elements, where p#(n)

denotes the number of distinct order-independent positive integer partitions of

n, i.e. the number of Young diagrams with n boxes. Actually, we only use that

|Ωm,n| and |Ω∗
m,n| are finite numbers depending solely on m,n.

Finally, we define a strict total order relation ≺ on Ω∗
m,n simply as the re-

striction of the inverse of the lexicographical order on (m + n)-tuples of inte-

4This means: a∗1 ≥ . . . ≥ a∗m and a∗1, . . . , a
∗
m is a permutation of the multiset a1, . . . , am.

64



gers.5 Since every finite totally ordered set is isomorphic to an initial segment

of positive integers, we have a natural rank (i.e. order) function, ord: Ω∗
m,n →

{1, 2, . . . , p#(m)p#(n)}. We simply write ord(p) for ord
(
part(p)

)
. For example,

the total order on Ω∗
2,3 and its rank function are

(2, 0; 3, 0, 0)≺(2, 0; 2, 1, 0)≺(2, 0; 1, 1, 1)≺(1, 1; 3, 0, 0)≺(1, 1; 2, 1, 0)≺(1, 1; 1, 1, 1) .
ord = 1 ord = 2 ord = 3 ord = 4 ord = 5 ord = 6

Our goal is to dominate all terms A(p) by �B for some averaging paraproduct-

type expression B = BQ
(
(Fi,j)(i,j)∈E

)
that is controlled in the sense

max
Q∈T ∪L(T )

∣∣BQ((Fi,j)(i,j)∈E)∣∣ .m,n 1 . (4.5)

This expression B will be the desired Bellman function. The goal will be achieved

by mathematical induction on ord(p) and for this we will need the following

crucial reduction lemma.

Lemma 4.4. For any p ∈ Ωm,n there exists an averaging paraproduct-type term

B(p) = B(p)
Q

(
(Fi,j)(i,j)∈E

)
satisfying (4.5) and such that for any 0 < δ < 1 we have

the estimate

|A(p)| ≤ �B(p) + Cm,n δ
−1

∑
p̃∈Ωm,n

ord(p̃)<ord(p)

|A(p̃)| + Cm,n δ
∑

p̃∈Ωm,n

ord(p̃)≥ord(p)

|A(p̃)|

with some constant Cm,n > 0.

Proof of Lemma 4.4. We distinguish two cases depending on positions of selected

vertices, i.e. on the last m+ n coordinates in (4.4).

5Lexicographical order on partitions of a single positive integer extends the common domi-
nance order, which is only a partial order. Even though the latter one is already strong enough
for intended purpose, we prefer to have linear order to avoid invoking well-founded induction in
the proof. For the same reason we decide to order pairs of partitions totally (for two numbers
m and n), although we will only need to compare partitions of a single number.
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Case 1. αi ̸= 0 for at least two indices i ∈ {1, . . . ,m} or βj ̸= 0 for at least two

indices j ∈ {1, . . . , n}.

By symmetry we may assume that α1, α2 ≥ 1 and a1 ≥ a2. In this case we

simply take B(p) ≡ 0. Using |⟨f(y)⟩y| ≤ [|f(y)|]y and |AB| ≤ 1
2δ
A2 + δ

2
B2 we

estimate:

|A(p)| ≤
[ ∣∣∣⟨ ∏

1≤j≤n
1≤ν≤bj

F1,j(x1, y
(ν)
j )
⟩
x1

⟨ ∏
1≤j≤n
1≤ν≤bj

F2,j(x2, y
(ν)
j )
⟩
x2

∣∣∣
∏

(i,µ) ̸=(1,1),(2,1)

[ ∏
1≤j≤n
1≤ν≤bj

Fi,j(x
(µ)
i , y

(ν)
j )
]
x
(µ)
i

]
all y

(ν)
j

≤ 1

2δ

[⟨ ∏
1≤j≤n
1≤ν≤bj

F1,j(x1, y
(ν)
j )
⟩2
x1

∏
(i,µ)̸=(1,1),(2,1)

[ ∏
1≤j≤n
1≤ν≤bj

Fi,j(x
(µ)
i , y

(ν)
j )
]
x
(µ)
i

]
all y

(ν)
j

+
δ

2

[⟨ ∏
1≤j≤n
1≤ν≤bj

F2,j(x2, y
(ν)
j )
⟩2
x2

∏
(i,µ)̸=(1,1),(2,1)

[ ∏
1≤j≤n
1≤ν≤bj

Fi,j(x
(µ)
i , y

(ν)
j )
]
x
(µ)
i

]
all y

(ν)
j

=
1

2

(
δ−1A(p̃) + δA(p)

)
.

Here p̃, p ∈ Ωm,n are defined as follows. If p is given by a (2m+2n)-tuple (4.4),

then p̃ and p will have coordinates:

ãi =


a1 + 1, for i = 1,

a2 − 1, for i = 2,

ai, for i ̸= 1, 2,

ai =


a1 − 1, for i = 1,

a2 + 1, for i = 2,

ai, for i ̸= 1, 2,

α̃i =

{
2, for i = 1,

0, for i ̸= 1,
αi =

{
2, for i = 2,

0, for i ̸= 2,

b̃j = bj = bj, β̃j = βj = 0 for every j .

Observe that a1 appears to the left from a2 in the list a∗1 ≥ . . . ≥ a∗m. Therefore

simultaneously increasing a1 by 1 and decreasing a2 by 1 we produce a lexico-

graphically larger partition of m, so we conclude ord(p̃) < ord(p). On the other
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hand, both ord(p) < ord(p) and ord(p) ≥ ord(p) are possible, where in the

former case we use δ < δ−1.

Case 2. αi ̸= 0 for at most one index i ∈ {1, . . . ,m} and βj ̸= 0 for at most one

index j ∈ {1, . . . , n}.

Without loss of generality we assume αi = 0 for i ̸= 1 and βj = 0 for j ̸= 1.

Note that α1 and β1 are even and at least one of them is nonzero, say α1 ≥ 2.

Since

|A(p)| ≤
[⟨ ∏

1≤j≤n
1≤ν≤bj

F1,j(x1, y
(ν)
j )
⟩2
x1

∏
(i,µ) ̸=(1,1),(1,2)

[ ∏
1≤j≤n
1≤ν≤bj

Fi,j(x
(µ)
i , y

(ν)
j )
]
x
(µ)
i

]
all y

(ν)
j

,

we can also assume α1 = 2, β1 = 0. Consider

B(p)
I×J :=

[ ∏
1≤i≤m
1≤j≤n

∏
1≤µ≤ai
1≤ν≤bj

Fi,j(x
(µ)
i , y

(ν)
j )
]
x
(µ)
i ∈I for all (i,µ)

y
(ν)
j ∈J for all (j,ν)

.

Indeed, B(p) depends only on q = comp(p). Observe that Lemma 4.3 and Nor-

malization (4.2) guarantee Condition (4.5). Theorem 2.2 gives the equality

�B(p) =
∑

p′∈Ωm,n

comp(p′)=q

(
q

p′

)
A(p′) , (4.6)

where (
q

p′

)
:=

m∏
i=1

(
ai
α′
i

) n∏
j=1

(
bj
β′
j

)
.

Note that 1 ≤
(
q
p′

)
.m,n 1. Let us split the summation set

Ωm,n,q :=
{
p′ ∈ Ωm,n : comp(p′) = q

}
into three parts,

Ω(1)
m,n,q :=

{
p′ ∈ Ωm,n,q : α′

i ̸= 0 for exactly one i and β′
j = 0 for every j

}
,

Ω(2)
m,n,q :=

{
p′ ∈ Ωm,n,q : β′

j ̸= 0 for exactly one j
}
,
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Ω(3)
m,n,q :=

{
p′ ∈ Ωm,n,q : α′

i ̸= 0 for at least two i and β′
j = 0 for every j

}
∪
{
p′ ∈ Ωm,n,q : β′

j ̸= 0 for at least two j
}
.

First, observe that p ∈ Ω
(1)
m,n,q and that

A(p′) =

[⟨ ∏
1≤j≤n
1≤ν≤bj

Fi0,j(xi0 , y
(ν)
j )
⟩2σ
xi0

∏
(i,µ) such that
i̸=i0 or µ>2σ

[ ∏
1≤j≤n
1≤ν≤bj

Fi,j(x
(µ)
i , y

(ν)
j )
]
x
(µ)
i

]
all y

(ν)
j

≥ 0

for every p′ ∈ Ω
(1)
m,n,q, where i0 is chosen such that α′

i0
= 2σ ̸= 0. In particular,

0 ≤ A(p) ≤
∑

p′∈Ω(1)
m,n,q

(
q

p′

)
A(p′) . (4.7)

Next, Lemma 2.3 applied to

Ψ = Ψ
(
(x

(µ)
i )1≤i≤m, 1≤µ≤ai

)
=

n∑
j0=1

⌊bj0/2⌋∑
τ=1

(
bj0
2τ

)⟨ ∏
1≤i≤m
1≤µ≤ai

Fi,j0(x
(µ)
i , yj0)

⟩2τ
yj0

∏
(j,ν) such that
j ̸=j0 or ν>2τ

[ ∏
1≤i≤m
1≤µ≤ai

Fi,j(x
(µ)
i , y

(ν)
j )
]
y
(ν)
j

≥ 0

(where β′
j0
= 2τ ̸= 0) yields

∑
p′∈Ω(2)

m,n,q

(
q

p′

)
A(p′) ≥ 0 . (4.8)

Finally, each A(p′) for p′ ∈ Ω
(3)
m,n,q can be controlled as in Case 1 to obtain

|A(p′)| ≤ δ−1
∑

p̃∈Ωm,n

ord(p̃)<ord(p)

|A(p̃)| + δ
∑

p̃∈Ωm,n

ord(p̃)≥ord(p)

|A(p̃)| . (4.9)

Combining (4.6)–(4.9) proves the stated inequality.

Figure 4.5 depicts partition types in Ω∗
2,4 and ways of controlling A(p) as in

Case 1 of the previous proof. Different kinds of arrows represent different possi-

bilities for various p ∈ Ω2,4 with the same part(p). Labels δ and δ−1 represent
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δ, δ−1

//_____
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•
•
•
•
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ww

δ
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•
•
•
•
•

(1, 1; 2, 2, 0, 0)
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δ, δ−1

��

•
•
•
•
•

(2, 0; 2, 2, 0, 0)

δ, δ−1

��

•
•
•
•
•

(1, 1; 3, 1, 0, 0)
δ, δ−1
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δ−1

��

δ

XX•
•
•
•
•

(2, 0; 3, 1, 0, 0)

δ−1

��

δ

FF •
•
•
•
•

(1, 1; 4, 0, 0, 0)
δ, δ−1

//_____ (2, 0; 4, 0, 0, 0)

Figure 4.5: Recursive control of partition types in Ω∗
2,4.

coefficients in the “reduction inequality” for A(p). It is important that always at

least one arrow (the one marked by δ−1) points to a partition type with smaller

rank, i.e. points downwards or to the right in the picture.

Lemma 4.5. There exists a “universal” averaging paraproduct-type expression

B(m,n) = B(m,n)
I×J

(
(Fi,j)(i,j)∈E

)
satisfying (4.5) and∑

p∈Ωm,n

|A(p)| ≤ �B(m,n) .

Proof of Lemma 4.5. We prove the following claim by mathematical induction

on κ ∈ {0, 1, 2, . . . , p#(m)p#(n)}: For every 0 < ε < 1 there exists an averaging

paraproduct-type expression B(κ,ε) satisfying

max
Q∈T ∪L(T )

∣∣B(κ,ε)
Q

(
(Fi,j)(i,j)∈E

)∣∣ .m,n,ε 1

and ∑
p∈Ωm,n

ord(p)≤κ

|A(p)| ≤ �B(κ,ε) + ε
∑

p∈Ωm,n

ord(p)>κ

|A(p)| .
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The bound we need to prove is a special instance for κ = p#(m)p#(n) and any

ε, since then the sum on the right disappears. On the other hand, the sum on

the left is 0 for κ = 0, so the inequality (trivially) holds with B(κ,ε) ≡ 0. We take

κ = 0 as the induction basis.

In the induction step we suppose that the claim holds for some 0 ≤ κ ≤

p#(m)p#(n)−1. To prove the claim for κ + 1 we take arbitrary 0 < ε < 1.

Let Cm,n be the constant from Lemma 4.4. Induction hypothesis applied with

ε′ =
(

ε
4Cm,n|Ωm,n|

)2
gives B(κ,ε′) such that∑

p∈Ωm,n

ord(p)≤κ

|A(p)| ≤ �B(κ,ε′) +
(

ε
4Cm,n|Ωm,n|

)2 ∑
p∈Ωm,n

ord(p)>κ

|A(p)| . (4.10)

Lemma 4.4 applied to each p ∈ Ωm,n, ord(p) ≤ κ+ 1, and δ = ε
4Cm,n|Ωm,n| yields∑

p∈Ωm,n

ord(p)≤κ+1

|A(p)| ≤
∑

p∈Ωm,n

ord(p)≤κ+1

�B(p) +
4C2

m,n|Ωm,n|2

ε

∑
p∈Ωm,n

ord(p)≤κ

|A(p)| + ε
4

∑
p∈Ωm,n

|A(p)| ,

which combined with (4.10) leads to∑
p∈Ωm,n

ord(p)≤κ+1

|A(p)| ≤
∑

p∈Ωm,n

ord(p)≤κ+1

�B(p) +
4C2

m,n|Ωm,n|2

ε
�B(κ,ε′) + ε

2

∑
p∈Ωm,n

|A(p)| .

It remains to split
∑

p∈Ωm,n
according to ord(p) ≤ κ + 1 or ord(p) > κ + 1,

move the former summands to the left hand side, and multiply the inequality

by 2. We set

B(κ+1, ε) = 2
∑

p∈Ωm,n

ord(p)≤κ+1

B(p) +
8C2

m,n|Ωm,n|2

ε
B(κ,ε′) .

Let us finally complete the proof of Proposition 4.2 in this special case. Even

though the general term A of Λ is not necessarily among A(p), p ∈ Ωm,n, it
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can still be easily dominated by two of these terms. Without loss of generality

suppose |S| ≥ 2 and take i1, i2 ∈ S, i1 ̸= i2.

|A| ≤
[ ∣∣∣⟨ ∏

1≤j≤n

Fi1,j(xi1 , yj)
⟩
xi1

⟨ ∏
1≤j≤n

Fi2,j(xi2 , yj)
⟩
xi2

∣∣∣∏
i̸=i1,i2

[ ∏
1≤j≤n

Fi,j(xi, yj)
]
xi

]
y1,...,yn

≤ 1

2

[⟨ ∏
1≤j≤n

Fi1,j(xi1 , yj)
⟩2
xi1

∏
i ̸=i1,i2

[ ∏
1≤j≤n

Fi,j(xi, yj)
]
xi

]
y1,...,yn

+
1

2

[⟨ ∏
1≤j≤n

Fi2,j(xi2 , yj)
⟩2
xi2

∏
i ̸=i1,i2

[ ∏
1≤j≤n

Fi,j(xi, yj)
]
xi

]
y1,...,yn

=
1

2
A(p̃) +

1

2
A(p)

Above p̃, p ∈ Ωm,n are given by their components:

ãi =


2, for i = i1,

0, for i = i2,

1, for i ̸= i1, i2,

ai =


0, for i = i1,

2, for i = i2,

1, for i ̸= i1, i2,

α̃i =

{
2, for i = i1,

0, for i ̸= i1,
αi =

{
2, for i = i2,

0, for i ̸= i2,

b̃j = bj = 1, β̃j = βj = 0 for every j .

Lemma 4.5, Bound (4.5), and the general Bellman function Estimate (2.8) estab-

lish (4.3).

4.2.2 Proof of Proposition 4.2 in full generality

Let us now consider a general triple (E, S, T ). By taking Fi,j ≡ 1 whenever

(i, j) ̸∈ E and “completing” each component of the graph, we can assume

E = (X1 × Y1) ∪ . . . ∪ (Xk × Yk) .

Note that the completed graph still has the same characteristic quantities di,j

and that functions Fi,j identically equal to 1 do not contribute to either of the
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sides in (4.1). The associated form splits as

ΛT
(
(Fi,j)(i,j)∈E

)
:=
∑
Q∈T

|Q|
k∏
l=1

∣∣A(l)
Q

(
(Fi,j)(i,j)∈Xl×Yl

)∣∣ ,
with

A(l)
I×J =

[⟨ ∏
i∈Xl
j∈Yl

Fi,j(xi, yj)
⟩
xi∈I for i∈S∩Xl

yj∈J for j∈T∩Yl

]
xi∈I for i∈Sc∩Xl

yj∈J for j∈T c∩Yl

.

We distinguish two cases with respect to the distribution of selected vertices

in the graph. Recall once again that |S| ≥ 2 or |T | ≥ 2, which guarantees that

the following two cases cover all possibilities, although they are not disjoint.

Case 1. |S ∩ Xl0 | ≥ 2 or |T ∩ Yl0 | ≥ 2 for some index l0 ∈ {1, . . . , k}.

In words, some connected component contains two selected vertices in one of

its bipartition classes. From the previously proven case of Proposition 4.2 applied

to the complete bipartite graph with vertex-sets Xl0 ,Yl0 we have the estimate

∑
Q∈T

|Q|
∣∣A(l0)

Q

(
(Fi,j)(i,j)∈Xl0

×Yl0

)∣∣ .m,n |QT |
∏
i∈Xl0
j∈Yl0

max
Q∈T ∪L(T )

[
F d(l0)

i,j

]1/d(l0)
Q

= 1 .

Applying Lemma 4.3 to the functions (Fi,j)i∈Xl, j∈Yl
we get

∣∣A(l)
Q

(
(Fi,j)(i,j)∈Xl×Yl

)∣∣ ≤ [ ∏
i∈Xl
j∈Yl

Fi,j(xi, yj)
]
xi∈I for i∈Xl

yj∈J for j∈Yl

≤
∏
i∈Xl
j∈Yl

[
F d(l)

i,j

]1/d(l)
Q

≤ 1

for each Q = I × J ∈ T and each l ̸= l0. This establishes (4.3).

Case 2. S ∩Xl1 ̸= ∅ ≠ S ∩Xl2 or T ∩Yl1 ̸= ∅ ̸= T ∩Yl2 for two different indices

l1, l2 ∈ {1, . . . , k}.

In words, there exist two connected components each containing at least one

selected x-vertex or each containing at least one selected y-vertex. Without loss

of generality suppose S ∩ X1 ̸= 0 and S ∩ X2 ̸= 0. Using Lemma 4.3 we can
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estimate the general term as

|A| = |A(1)||A(2)||A(3)| . . . |A(k)| ≤ |A(1)||A(2)| ≤ 1

2

(
A(1)

)2
+

1

2

(
A(2)

)2
.

By symmetry it is enough to handle (A(1))2 and by renaming vertices we may

assume X1 = {1, . . . ,m1}, Y1 = {1, . . . , n1}, and 1 ∈ S.

If m1 = n1 = 1, then by a simple computation using Theorem 2.2,

(A(1))2 = [⟨F1,1(x1, y1)⟩x1 ]2y1 or ⟨F1,1(x1, y1)⟩2x1,y1

≤ [⟨F1,1(x1, y1)⟩x1 ]2y1 + ⟨F1,1(x1, y1)⟩2x1,y1 + ⟨[F1,1(x1, y1)]x1⟩2y1

= �
(
[F1,1(x1, y1)]

2
x1,y1︸ ︷︷ ︸

B

)
.

We separate this special case because now d(1) = 1 (as for classical paraproducts),

so the normalization (4.2) does not control averages of higher powers of F1,1.

However, the first power is enough here:

max
Q∈T ∪L(T )

BQ(F1,1) =
(

max
Q∈T ∪L(T )

[F1,1]Q

)2
= 1 .

On the other hand, the condition d(1) ≥ 2 is ensured if m1 = 1, n1 ≥ 2, so

then we bound (A(1))2 as

(A(1))2 ≤
[ ∣∣∣⟨ ∏

1≤j≤n1

F1,j(x1, yj)
⟩
x1

∣∣∣ ]2
y1,...,yn1

≤
[⟨ ∏

1≤j≤n1

F1,j(x1, yj)
⟩2
x1

]
y1,...,yn1

.

We can recognize the last row as A(p̃) for p̃ ∈ Ω2,n1 given by

ã1 = α̃1 = 2, ã2 = α̃2 = 0,

b̃j = 1, β̃j = 0 for 1 ≤ j ≤ n1 .

Thus, (A(1))2 ≤ A(p̃) ≤ �B(2,n1), where B(2,n1) is from Lemma 4.5.
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If m1 ≥ 2, then one can write with the help of the Cauchy-Schwarz inequality

and Lemma 4.3 once again:

(A(1))2 ≤
[ ∣∣∣⟨ ∏

1≤j≤n1

F1,j(x1, yj)
⟩
x1

∣∣∣ [ ∏
1≤j≤n1

F2,j(x2, yj)
]
x2∏

3≤i≤m1

[ ∏
1≤j≤n1

Fi,j(xi, yj)
]
xi

]2
y1,...,yn1

≤
[⟨ ∏

1≤j≤n1

F1,j(x1, yj)
⟩2
x1

∏
3≤i≤m1

[ ∏
1≤j≤n1

Fi,j(xi, yj)
]
xi

]
y1,...,yn1︸ ︷︷ ︸

A(p)≤�B(m1,n1)

×
[[ ∏

1≤j≤n1

F2,j(x2, yj)
]2
x2

∏
3≤i≤m1

[ ∏
1≤j≤n1

Fi,j(xi, yj)
]
xi

]
y1,...,yn1︸ ︷︷ ︸

≤1

,

where p ∈ Ωm1,n1 has coordinates

ai =


2, for i = 1,

0, for i = 2,

1, for 3 ≤ i ≤ m1,

αi =

{
2, for i = 1,

0, for 2 ≤ i ≤ m1,

bj = 1, βj = 0 for 1 ≤ j ≤ n1 .

and B(m1,n1) is from Lemma 4.5.

In all three possibilities above the proof is finished by invoking the general

Estimate (2.8).

4.3 Completing the proof of Theorem 4.1

To establish the global estimate we adapt the approach by Thiele from [49].

Proof of Theorem 4.1. Fix a positive integer N and consider only squares with

sidelength at least 2−N ,

CN :=
{
Q = I × J ∈ C : |I| = |J | ≥ 2−N

}
.
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We prove the bound∑
Q∈CN

|Q|
∣∣AQ

(
(Fi,j)(i,j)∈E

)∣∣ .m,n,(pi,j)

∏
(i,j)∈E

∥Fi,j∥Lpi,j (R2) , (4.11)

with the implicit constant independent of N , so that it implies the result for the

whole collection C. Using homogeneity, this time we normalize

∥Fi,j∥Lpi,j (R2) = 1 for every (i, j) ∈ E .

For each |E|-tuple of integers k = (ki,j)(i,j)∈E ∈ Z|E| we denote

Pk :=

{
Q ∈ CN : 2ki,j ≤ sup

Q′∈CN
Q′⊇Q

[
F
di,j
i,j

]1/di,j
Q′ < 2ki,j+1 for every (i, j) ∈ E

}
.

Note that squares in Pk satisfy |Q| ≤ 2−pi,j(ki,j−1) for any (i, j) ∈ E, which limits

their size from above. To verify this, we take Q ∈ Pk and choose Q′ ⊇ Q such

that
[
F
di,j
i,j

]1/di,j
Q′ > 2ki,j−1. By the monotonicity of normalized Lp norms

2ki,j−1 <
[
F
di,j
i,j

]1/di,j
Q′ ≤

[
F
pi,j
i,j

]1/pi,j
Q′ = |Q′|−1/pi,j∥Fi,j∥Lpi,j (Q′) ≤ |Q′|−1/pi,j

and thus |Q| ≤ |Q′| ≤ 2−pi,j(ki,j−1).

Define Mk to be the collection of maximal squares in Pk with respect to the

set inclusion. For each Q ∈ Mk the family

TQ :=
{
Q̃ ∈ Pk : Q̃ ⊆ Q

}
is a finite convex6 tree with root Q and for different squares Q ∈ Mk the cor-

responding trees cover disjoint regions in the plane. For each Q̃ ∈ TQ by the

construction of Pk we have
[
F
di,j
i,j

]1/di,j
Q̃

< 2ki,j+1. Also, if Q̃ ∈ L(TQ) and Q is the

parent of Q̃, then

[
F
di,j
i,j

]1/di,j
Q̃

≤ 4
[
F
di,j
i,j

]1/di,j
Q

< 2ki,j+3 .

6Convexity of TQ follows from monotonicity of Q̃ 7→ supQ′∈CN , Q′⊇Q̃.
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Therefore, Proposition 4.2 gives

ΛTQ
(
(Fi,j)(i,j)∈E

)
.m,n |Q| 2

∑
(i,j)∈E ki,j .

We decompose7 and estimate,∑
Q∈CN

|Q|
∣∣AQ

(
(Fi,j)(i,j)∈E

)∣∣ =
∑

k∈Z|E|

∑
Q∈Mk

ΛTQ
(
(Fi,j)(i,j)∈E

)
.m,n

∑
k∈Z|E|

2
∑

(i,j)∈E ki,j
( ∑
Q∈Mk

|Q|
)
. (4.12)

For any d ≥ 1 it is a classical result8 that “power d variant” of the dyadic

maximal function

(MdF )(x, y) := sup
Q∈C

s.t. (x,y)∈Q

[
|F |d

]1/d
Q

is bounded on Lp(R2) whenever d < p ≤ ∞. We have Z|E| =
∪

(i0,j0)∈E K(i0,j0),

where the subsets K(i0,j0) are defined by

K(i0,j0) :=
{
k = (ki,j)(i,j)∈E : pi0,j0ki0,j0 ≥ pi,jki,j for every (i, j) ∈ E

}
.

Observe that for (x, y) ∈ Q ∈ Pk we have by the definition of Pk,

(Mdi0,j0
Fi0,j0)(x, y) ≥ sup

Q′⊇Q
Q′∈CN

[
F
di0,j0
i0,j0

]1/di0,j0
Q′ ≥ 2ki0,j0 ,

so ∪
Q∈Pk

Q ⊆
{
(x, y) ∈ R2 : (Mdi0,j0

Fi0,j0)(x, y) ≥ 2ki0,j0
}
.

This together with disjointness of Mk gives∑
Q∈Mk

|Q| =
∣∣∣ ∪
Q∈Mk

Q
∣∣∣ = ∣∣∣ ∪

Q∈Pk

Q
∣∣∣ ≤ ∣∣{Mdi0,j0

Fi0,j0 ≥ 2ki0,j0
}∣∣ (4.13)

7Here we use that for each Q̃ ∈ CN \
∪

k∈Z|E| Pk at least one of the functions constantly

vanishes on Q̃, so the corresponding summand is equal to 0.

8One simply writes MdF =
(
M1|F |d

)1/d
, where M1 is the standard dyadic maximal function.
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for any choice of (i0, j0) ∈ E.

Combining (4.12) and (4.13) allows the final computation:

∑
Q∈CN

|Q|
∣∣AQ

(
(Fi,j)(i,j)∈E

)∣∣
.m,n

∑
(i0,j0)∈E

∑
k∈K(i0,j0)

2
∑

(i,j)∈E ki,j
∣∣{Mdi0,j0

Fi0,j0 ≥ 2ki0,j0
}∣∣

=
∑

(i0,j0)∈E

∑
ki0,j0∈Z

2pi0,j0ki0,j0
∣∣{Mdi0,j0

Fi0,j0 ≥ 2ki0,j0
}∣∣

∏
(i,j)∈E

(i,j)̸=(i0,j0)

∑
ki,j∈Z

ki,j ≤ pi0,j0ki0,j0/pi,j

2 ki,j − pi0,j0ki0,j0/pi,j

.|E|
∑

(i0,j0)∈E

∑
ki0,j0∈Z

2pi0,j0ki0,j0
∣∣{Mdi0,j0

Fi0,j0 ≥ 2ki0,j0
}∣∣

.(pi,j)

∑
(i0,j0)∈E

∥Mdi0,j0
Fi0,j0∥

pi0,j0
L
pi0,j0 (R2)

.(di,j), (pi,j)

∑
(i0,j0)∈E

∥Fi0,j0∥
pi0,j0
L
pi0,j0 (R2)

.|E| 1 ,

which is exactly (4.11). We used
∑

(i,j)∈E
1
pi,j

= 1 and added up |E|−1 geometric

series with initial terms in (1
2
, 1] and common ratios equal to 1

2
.

4.4 An example that illustrates the proof

In this short section we a take the example from Figure 4.2 and show how steps

from Section 4.2 should be performed in a concrete case. These steps gradually

reduce the general term of Λ to the “simpler” ones and the procedure is presented

as recursive rather than inductive, i.e. we only care about paraproduct-type terms

relevant for dominating Λ. We keep assuming Fi,j ≥ 0 and Normalization (4.2).

In order to deal with more symmetric situation, we “complete” the graph by
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introducing F2,3 ≡ 1 and F3,5 ≡ 1. Since |T | = 2, we decide to rewrite

A(1) =
[⟨
F1,1(x1, y1)F2,1(x2, y1)

⟩
y1

[
F1,2(x1, y2)F2,2(x2, y2)

]
y2[

F1,3(x1, y3)F2,3(x2, y3)
]
y3

]
x1,x2

,

A(2) =
[⟨
F3,4(x3, y4)F4,4(x4, y4)

⟩
y4

[
F3,5(x3, y5)F4,5(x4, y5)

]
y5

]
x3,x4

and start by estimating the general term as in Subsection 4.2.2, Case 2,

|A| = |A(1)| |A(2)| |A(3)| ≤ 1

2

(
A(1)

)2
+

1

2

(
A(2)

)2
≤ 1

2

[⟨
F1,1(x1, y1)F2,1(x2, y1)

⟩2
y1

[
F1,3(x1, y3)F2,3(x2, y3)

]
y3

]
x1,x2︸ ︷︷ ︸

A(4)

×
[[
F1,2(x1, y2)F2,2(x2, y2)

]2
y2

[
F1,3(x1, y3)F2,3(x2, y3)

]
y3

]
x1,x2︸ ︷︷ ︸

≤1

+
1

2

[⟨
F3,4(x3, y4)F4,4(x4, y4)

⟩2
y4

]
x3,x4︸ ︷︷ ︸

A(5)

×
[[
F3,5(x3, y5)F4,5(x4, y5)

]2
y5

]
x3,x4︸ ︷︷ ︸

≤1

.

Let us proceed with A(4) since A(5) was already handled in Section 2.3. Following

the approach from the proof of Lemma 4.4, Case 2, we define

B(4) =
[[
F1,1(x1, y1)F2,1(x2, y1)

]2
y1

[
F1,3(x1, y3)F2,3(x2, y3)

]
y3

]
x1,x2

=
[[
F1,1(x1, y1)F1,1(x1, y

′
1)F1,3(x1, y3)

]
x1[

F2,1(x2, y1)F2,1(x2, y
′
1)F2,3(x2, y3)

]
x2

]
y1,y′1,y3

.

By Theorem 2.2 every term in �B(4) is either A(4), or

A(6) =
[⟨
F1,1(x1, y1)F2,1(x2, y1)

⟩
y1

[
F1,1(x1, y1)F2,1(x2, y1)

]
y1⟨

F1,3(x1, y3)F2,3(x2, y3)
⟩
y3

]
x1,x2

,
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or is of the form

A(7) =
(⟨
F1,1(x1, y1)F1,1(x1, y

′
1)F1,3(x1, y3)

⟩
x1⟨

F2,1(x2, y1)F2,1(x2, y
′
1)F2,3(x2, y3)

⟩
x2

)
y1,y′1,y3

,

where parentheses (·) are understood as either [·] or ⟨·⟩ for each of the variables

y1, y
′
1, y3 independently. We dominate A(6), A(7) as in the proof of Lemma 4.4,

Case 1.

|A(6)| ≤ 1

2δ

[⟨
F1,1(x1, y1)F2,1(x2, y1)

⟩2
y1

[
F1,1(x1, y1)F2,1(x2, y1)

]
y1

]
x1,x2︸ ︷︷ ︸

A(8)

+
δ

2

[⟨
F1,3(x1, y3)F2,3(x2, y3)

⟩2
y3

[
F1,1(x1, y1)F2,1(x2, y1)

]
y1

]
x1,x2︸ ︷︷ ︸

A(9)

|A(7)| ≤ 1

2

[⟨
F1,1(x1, y1)F1,1(x1, y

′
1)F1,3(x1, y3)

⟩2
x1

]
y1,y′1,y3︸ ︷︷ ︸

A(10)

+
1

2

[⟨
F2,1(x2, y1)F2,1(x2, y

′
1)F2,3(x2, y3)

⟩2
x2

]
y1,y′1,y3︸ ︷︷ ︸

A(11)

Since A(9) is analogous to A(4), the algorithm loops (with a small “weight” δ)

and we continue with A(8) only. Also, by symmetry, we can consider A(10) and

disregard A(11).

To control A(8) we define

B(8) =
[[
F1,1(x1, y1)F2,1(x2, y1)

]3
y1

]
x1,x2

=
[[
F1,1(x1, y1)F1,1(x1, y

′
1)F1,1(x1, y

′′
1)
]
x1[

F2,1(x2, y1)F2,1(x2, y
′
1)F2,1(x2, y

′′
1)
]
x2

]
y1,y′1,y

′′
1

.

Every term in �B(8) different from A(8) is of the shape

A(12) =
(⟨
F1,1(x1, y1)F1,1(x1, y

′
1)F1,1(x1, y

′′
1)
⟩
x1⟨

F2,1(x2, y1)F2,1(x2, y
′
1)F2,1(x2, y

′′
1)
⟩
x2

)
y1,y′1,y

′′
1
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and is estimated as

|A(12)| ≤ 1

2

[⟨
F1,1(x1, y1)F1,1(x1, y

′
1)F1,1(x1, y

′′
1)
⟩2
x1

]
y1,y′1,y

′′
1︸ ︷︷ ︸

A(13)

+
1

2

[⟨
F2,1(x2, y1)F2,1(x2, y

′
1)F2,1(x2, y

′′
1)
⟩2
x2

]
y1,y′1,y

′′
1

.

Finally, A(13) corresponds to a partition with the smallest rank. We introduce

B(13) =
[[
F1,1(x1, y1)F1,1(x1, y

′
1)F1,1(x1, y

′′
1)
]2
x1

]
y1,y′1,y

′′
1

=
[[
F1,1(x1, y1)F1,1(x

′
1, y1)

]3
y1

]
x1,x′1

and observe that by Theorem 2.2 each term in �B(13) different from A(13) is of

the form (⟨
F1,1(x1, y1)F1,1(x

′
1, y1)

⟩2
y1

[
F1,1(x1, y1)F1,1(x

′
1, y1)

]
y1

)
x1,x′1

.

Sum of these terms is nonnegative by Lemma 2.3 and can be discarded as it only

increases �B(13).

On the other hand, to deal with A(10) we define

B(10) =
[[
F1,1(x1, y1)F1,1(x1, y

′
1)F1,3(x1, y3)

]2
x1

]
y1,y′1,y3

=
[[
F1,1(x1, y1)F1,1(x

′
1, y1)

]2
y1

[
F1,3(x1, y3)F1,3(x

′
1, y3)

]
y3

]
x1,x′1

.

Every term in �B(10) other than A(10) takes either the shape(⟨
F1,1(x1, y1)F1,1(x

′
1, y1)

⟩2
y1

[
F1,3(x1, y3)F1,3(x

′
1, y3)

]
y3

)
x1,x′1

,

or the shape(⟨
F1,1(x1, y1)F1,1(x

′
1, y1)

⟩
y1

[
F1,1(x1, y1)F1,1(x

′
1, y1)

]
y1⟨

F1,3(x1, y3)F1,3(x
′
1, y3)

⟩
y3

)
x1,x′1

.
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Sum of the former terms is nonnegative by Lemma 2.3, while the latter ones are

treated similarly as A(6).

A concrete Bellman function B satisfying |A| ≤ �B and (4.5) under Normal-

ization (4.2) can be assembled from all averaging paraproduct-type terms that

appear in the proof, including the omitted ones. Estimate (2.8) gives (4.3) once

again.

We close this chapter by a comment on the setup from Section 4.1. Even

though it is possible to associate multilinear forms to general undirected graphs,

the machinery from Chapter 2 cannot be applied to forms arising from graphs

that are not bipartite. For instance, a multilinear form associated to a triangle,

i.e. a cycle of length 3, could be

Λ̃(F,G,H) :=
∑

I,J,K∈D
|I|=|J |=|K|
c(I,J,K)=0

|I|1/2
∫
R3

F (x, y)G(y, z)H(z, x)ψd
I (x)ψ

d
J(y)ψ

d
K(z) dx dy dz ,

where c(I, J,K) = 0 is some constraint, making the sum effectively indexed by

only two of the intervals. Such forms seem to share many characteristics with

“singular bilinear averages” (1.2), for which no Lp bounds are known at the time

of writing.
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CHAPTER 5

Uniform constants in Hausdorff-Young

inequalities for the Cantor group model of the

scattering transform

5.1 Statement of the main result

Fix an integer d ≥ 2 and denote Zd := Z/dZ. For any x, ξ ∈ [0,∞) that can be

written uniquely1 in base d number system as x =
∑

n∈Z xnd
n and ξ =

∑
n∈Z ξnd

n,

we define

Ed(x, ξ) := e(2πi/d)
∑

n∈Z xnξ−1−n .

Then the L∞ function Ed : [0,∞)× [0,∞) → S1 is called the Cantor group char-

acter function. To justify the name, we identify [0,∞) with a subgroup Ad of the

infinite group product ZZ
d given by

Ad :=
{
(xn)n∈Z : xn ∈ Zd for every n ∈ Z, and there exists

n0 ∈ Z such that xn = 0 for every n ≥ n0

}
,

via the identification Ad → [0,∞), (xn)n∈Z 7→
∑

n∈Z xnd
n. Then Ed(·, ·) realizes

duality between Ad and its dual group Âd
∼= Ad.

1Because of ambiguous base d representation of some reals, the function Ed is not well-
defined on a set of measure zero. The same comment applies to the later identification of Ad

with [0,∞).
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For a compactly supported integrable function f : [0,∞) → C and ξ ∈ [0,∞)

consider the initial value problem on [0,∞):

∂

∂x
G(x, ξ) = G(x, ξ)W (x, ξ), G(0, ξ) =

[
1 0

0 1

]
,

where

G(x, ξ) =

[
a(x, ξ) b(x, ξ)

b(x, ξ) a(x, ξ)

]
, W (x, ξ) =

[
0 f(x)Ed(x, ξ)

f(x)Ed(x, ξ) 0

]
.

The limit

G(ξ) =

[
a(ξ) b(ξ)

b(ξ) a(ξ)

]
:= lim

x→∞

[
a(x, ξ) b(x, ξ)

b(x, ξ) a(x, ξ)

]
defines a function ξ 7→ G(ξ) from [0,∞) to SU(1, 1), which we call the Cantor

group model Dirac scattering transform of f . Dependence on d is not notationally

emphasized but is understood. If for some interval I ⊆ [0,∞) we replace f by

f1I , then we will denote the corresponding G, a, b respectively by GI , aI , bI .

Our main result on this topic is the following theorem.

Theorem 5.1. For every integer d ≥ 2 there exists a constant Cd > 0 such

that for any pair of conjugated exponents 1 ≤ p ≤ 2 and 2 ≤ q ≤ ∞ and every

compactly supported integrable function f one has

∥(ln |a(ξ)|)1/2∥Lq
ξ(R) ≤ Cd∥f∥Lp(R) .

In the following exposition we need a couple of simple facts proven in [33].

Lemma 5.2 (from [33]). If I and ω are two d-adic intervals2 with |I||ω| = 1,

then ξ 7→ |aI(ξ)| and ξ 7→ |bI(ξ)| are constant functions on ω.

2These are intervals of the form
[
dkl, dk(l + 1)

)
for some k, l ∈ Z, l ≥ 0.
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We will be working in the phase space Ad × Âd, which is identified with

[0,∞) × [0,∞). Tiles and multitiles are rectangles of the form I × ω for two

d-adic intervals I, ω satisfying |I||ω| = 1 and |I||ω| = d respectively. Every

multitile I × ω can be partitioned into d tiles by subdividing either I or ω into

d congruent d-adic intervals. Lemma 5.2 motivates us to define GP , aP , bP for

any tile P = I ×ω simply as GI(ξω), aI(ξω), bI(ξω), where ξω is the left endpoint

of ω.

..

.

...

Qd 1_

0

10 _

1
1d

Q

Q
PPP

Figure 5.1: A multitile partitioned in two ways.

Lemma 5.3 (from [33]). Suppose that a multitile is divided horizontally into tiles

P0, . . . , Pd−1 and vertically into tiles Q0, . . . , Qd−1, as in Figure 5.1. Then[
aQk

bQk

bQk
aQk

]
=

d−1∏
j=0

[
aPj

bPj
e−2πijk/d

bPj
e2πijk/d aPj

]

for k = 0, 1, . . . , d−1. (The matrix product has to be taken in ascending order.)

5.2 Proof of Theorem 5.1

This section proves the main theorem assuming that the following proposition

holds. This way, the main technical construction is postponed until the next

section.
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Proposition 5.4. There exist a constant Cd > 0 and a function βd : [0,∞) →

[0,∞) such that for every
[
a b

b a

]
∈ SU(1, 1)

C−1
d (ln |a|)1/2 ≤ βd(|b|) ≤ Cd(ln |a|)1/2 , (5.1)

and whenever matrices
[
aj bj
bj aj

]
,
[
Ak Bk

Bk Ak

]
∈ SU(1, 1), j, k = 0, 1, . . . , d−1 satisfy

[
Ak Bk

Bk Ak

]
=

d−1∏
j=0

[
aj bj e

−2πijk/d

bj e
2πijk/d aj

]
, (5.2)

then for any pair of conjugated exponents 1 < p ≤ 2 and 2 ≤ q <∞ one has(1
d

d−1∑
k=0

βd(|Bk|)q
) 1

q ≤
( d−1∑
j=0

βd(|bj|)p
) 1

p
. (5.3)

This proposition is proven in the next section, by giving an explicit construc-

tion of βd. The construction might seem a bit tedious, but we have to satisfy

(5.3) with the exact constant at most 1, since we will be repeatedly applying that

inequality in the proof of Theorem 5.1. Iterating an inequality with a constant

C > 1 would not yield an estimate independent of the number of scales.

A consequence of Lemma 5.3 and (5.3) is that for P0, . . . , Pd−1, Q0, . . . , Qd−1

as above we get (1
d

d−1∑
k=0

βd(|bQk
|)q
) 1

q ≤
( d−1∑
j=0

βd(|bPj
|)p
) 1

p
. (5.4)

Proof of Theorem 5.1 assuming Proposition 5.4. We can consider 1 < p ≤ 2, as

for p = 1 the estimate is an immediate consequence of Gronwall’s inequality. Fix

a positive integer N (large enough) so that f is supported in [0, dN). In all of the

following we consider only those tiles I × ω that are subsets of [0, dN)× [0, dN).

For any n ∈ Z, −N ≤ n ≤ N consider the following quantity:

Bn :=

( ∑
|I|=dn

(
d−n

∑
|ω|=d−n

βd(|bI×ω|)q
) p

q

) 1
p

.
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In words, we consider all tiles P of type dn × d−n, then we take normalized ℓq-

norm of the numbers βd(|bP |) for all tiles in the same column, and finally we take

ℓp-norm of those numbers over all columns.

The quantity B is our “Bellman function”, but in this case an appropriate

name would be a monovariant (a common term in combinatorial game theory),

because we only need its monotonicity over scales and do not require that it

dominates any extra terms. Let us prove that Bn is decreasing in n.

Bpn+1 =
∑

|I|=dn+1

(
d−n

∑
|ω|=d−n

d−1
∑
ω′⊆ω

|ω′|=d−n−1

βd(|bI×ω′|)q
) p

q

using (5.4) for the multitile I × ω

≤
∑

|I|=dn+1

(
d−n

∑
|ω|=d−n

(∑
I′⊆I

|I′|=dn

βd(|bI′×ω|)p
) q

p

) p
q

using Minkowski’s inequality, since q/p ≥ 1

≤
∑

|I|=dn+1

∑
I′⊆I

|I′|=dn

(
d−n

∑
|ω|=d−n

βd(|bI′×ω|)q
) p

q
= Bpn

Furthermore, when n = −N we have:

B−N =
( ∑

|I|=d−N

(dN)
p
q βd(|bI×[0,dN )|)p

) 1
p ≤ Cd(d

N)
1
q

( ∑
|I|=d−N

(ln |aI(0)|)
p
2

) 1
p

≤ Cd(d
N)

1
q

( ∑
|I|=d−N

∥f1I∥pL1

) 1
p ≤ Cd∥f∥Lp .

Here we have applied the trivial L1–L∞ estimate, a.k.a. the nonlinear Riemann-

Lebesgue estimate, a consequence of Gronwall’s lemma, (ln |aI(0)|)1/2 ≤ ∥f1I∥L1

and Hölder’s inequality ∥f1I∥L1 ≤ ∥f1I∥Lp∥1I∥Lq . On the other hand, for n = N
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we have:

BN =
(
d−N

∑
|ω|=d−N

βd(|b[0,dN )×ω|)q
) 1

q ≥ C−1
d

(
d−N

∑
|ω|=d−N

(ln |a(ξω)|)
q
2

) 1
q

= C−1
d

(∫ dN

0

(ln |a(ξ)|)
q
2 dξ

) 1
q
.

Above ξω denotes the left endpoint of ω and we have used that ξ 7→ |a(ξ)| is

constant on intervals of length d−N , by Lemma 5.2. From the monotonicity of

(Bn) we conclude:

(∫ dN

0

(ln |a(ξ)|)
q
2 dξ

) 1
q ≤ CdBN ≤ CdB−N ≤ C2

d∥f∥Lp ,

and by taking limN→∞ we deduce the theorem.

5.3 The swapping inequality

This technical section is devoted to the proof of Proposition 5.4. An arbitrary

function on Zd can be presented as a complex d-tuple (z0, z1, . . . , zd−1). Its Fourier

transform is the d-tuple (Z0, Z1, . . . , Zd−1) given by

Zk :=
d−1∑
j=0

zj e
2πijk/d .

Lemma 5.5. For a pair of conjugated exponents 1 < p ≤ 2 and 2 ≤ q < ∞ and

(zj), (Zk) as above, one has

(1
d

d−1∑
k=0

|Zk|q
) 1

q ≤
( d−1∑
j=0

|zj|p
) 1

p
.

Lemma 5.5 is a particular consequence of the general theory of the Fourier

transform on locally compact abelian groups (see [15]). Indeed, one observes that

the (non-stated) case p = 1 is trivial from the triangle inequality, while for p = 2
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we indeed have an equality that follows from orthonormality of group characters.

Intermediate cases are deduced by interpolating these two endpoint ones using

the Riesz-Thorin theorem, since the transformation (zj) 7→ (Zk) is linear.

For any integer d ≥ 2 let td be the unique solution of the equation

te−t = (2d)−5
√
1 + arsinh t

that lies in [0, 1]. One can easily see

2−5d−5 < td < 2−4d−5 , (5.5)

and indeed td = (2d)−5 + 3
2
(2d)−10 + O(d−15) as d → ∞, but we do not need

bounds on td that are more precise than (5.5).

Now we define βd : [0,∞) → [0,∞) by the formula

βd(t) :=


te−t, for t ≤ td ,

(2d)−5
√
1 + arsinh t, for t > td .

1td

t e-t

H2dL-5�!!!!!!!!!!!!!!!!!!!!!!1 + arsinh t

t

Figure 5.2: Graph of βd. Not drawn to scale.
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Using only basic calculus, one can easily establish the following properties of βd:

2−6d−5
√

ln(1 + t2) ≤ βd(t) ≤ 2
√
ln(1 + t2) , (5.6)

βd(t) ≤ te−t, for 0 ≤ t ≤ 1 , (5.7)

βd(t) ≤ (2d)−5
√
1 + arsinh t, for any t ≥ 0 . (5.8)

Since (5.6) is exactly (5.1), it is enough to verify (5.3).

By performing matrix multiplication in (5.2), one can write Bk explicitly as

a sum of 2d−1 terms of the form

a0 . . . aj1−1bj1aj1+1 . . . aj2−1bj2aj2+1 . . . aj3−1bj3aj3+1 . . .

. . . aj2r−1bj2raj2r+1 . . . aj2r+1−1bj2r+1aj2r+1+1 . . . ad−1 · e(2πik/d)(j1−j2+j3−...−j2r+j2r+1)

where the summation is taken over all integers 0 ≤ r ≤ ⌊d−1
2
⌋ and over all possible

choices of indices 0 ≤ j1 < j2 < . . . < j2r+1 ≤ d−1. In particular, observe that

each term contains an odd number of b’s. Terms that contain exactly one of the

b’s could be called linear terms, and so the “linear part” of Bk is

B′
k :=

d−1∑
j=0

a0a1 . . . aj−1bjaj+1 . . . ad−1 e
2πijk/d, for k = 0, 1, . . . , d−1.

Other terms in Bk are called nonlinear terms. Observe that Lemma 5.5 gives(1
d

d−1∑
k=0

|B′
k|q
) 1

q ≤
( d−1∑
j=0

|b′j|p
) 1

p
, (5.9)

where b′j := a0 . . . aj−1bjaj+1 . . . ad−1. In the case when some |bm| is “large” and

all other |bj|, j ̸= m are “small” we find the following variant more useful:

B′′
k :=

m−1∑
j=0

c0 . . . cj−1bjcj+1 . . . cm−1amcm+1 . . . cd−1 e
2πijk/d

+ c0 . . . cm−1bmcm+1 . . . cd−1 e
2πimk/d

+
d−1∑

j=m+1

c0 . . . cm−1amcm+1 . . . cj−1bjcj+1 . . . cd−1 e
2πijk/d ,
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where we have denoted cj := aj/|aj|. This time Lemma 5.5 implies(1
d

d−1∑
k=0

|B′′
k |q
) 1

q ≤
(
|bm|p + |am|p

∑
j ̸=m

|bj|p
) 1

p
. (5.10)

The proof strategy is to compare Bk to B′
k or B′′

k by estimating nonlinear

terms, and then use inequalities (5.9) or (5.10). As we will soon see, βd is carefully

chosen so that it compensates for the perturbation caused by nonlinear terms.

Choose indices m,m∗ ∈ {0, . . . , d−1} such that |bm| is the largest among the

numbers |bj|, and |bm∗ | is the largest among the numbers |bj|; j ̸= m, i.e. the

second largest among |bj|. We distinguish the following three cases.

Case 1. |bj| ≤ td for every j.

Recall that |aj|2 − |bj|2 = 1, which implies |aj| ≤ 1 + |bj| ≤ 1 + td. We begin

with a rough estimate obtained using (5.5):

|Bk| ≤
d−1∑
j=0

|bj|
(∏
l ̸=j

(|al|+ |bl|)
)

≤ dtd(1 + 2td)
d−1 ≤ 2−3d−4,

which guarantees |Bk| ≤ 1, and thus βd(|Bk|) ≤ |Bk|e−|Bk| by (5.7). Therefore it

is enough to prove(1
d

d−1∑
k=0

|Bk|qe−q|Bk|
) 1

q ≤
( d−1∑
j=0

|bj|pe−p|bj |
) 1

p
.

Lemma 5.6.(1
d

d−1∑
k=0

|Bk|qe−q|Bk|
) 1

q ≤
(1
d

d−1∑
k=0

|B′
k|qe−q|B

′
k|
) 1

q
+ 2−3d−2|bm∗|2 (5.11)

(1
d

d−1∑
k=0

|B′
k|qe−q|B

′
k|
) 1

q ≤ ∥b′∥ℓp e−∥b′∥ℓp (5.12)

∥b′∥ℓp e−∥b′∥ℓp ≤
( d−1∑
j=0

|bj|pe−p|bj |
) 1

p − 2−3d−2|bm∗|2 (5.13)

Here we have denoted ∥b′∥ℓp :=
(∑d−1

j=0 |b′j|p
)1/p

.
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The desired inequality is obtained simply by adding the three estimates above.

Proof of Lemma 5.6. We start by showing (5.11). Since Bk − B′
k contains only

nonlinear terms and these have at least 3 b’s, we have the following error estimate:

|Bk −B′
k| ≤

∑
j1<j2<j3

|bj1 ||bj2 ||bj3 |
( ∏
l ̸=j1,j2,j3

(|al|+ |bl|)
)

≤ d3|bm||bm∗ |2(1 + 2td)
d−3 ≤ 2−3d−2|bm∗ |2.

(For d = 2 this difference is 0.) By the mean value theorem for te−t:∣∣∣|Bk|e−|Bk| − |B′
k|e−|B′

k|
∣∣∣ ≤ 2−3d−2|bm∗ |2,

and it remains to use Minkowski’s inequality.

In order to prove (5.12) we consider the function φ(t) := te−qt
1/q

, which is

increasing and concave on [0, 1] since:

φ′(t) = e−qt
1/q

(1− t1/q) > 0, φ′′(t) =
1

q
e−qt

1/q

t1/q−1(−1− q + qt1/q) < 0,

for 0 < t < 1. Now (5.12) follows using Jensen’s inequality and (5.9):

1

d

d−1∑
k=0

φ(|B′
k|q) ≤ φ

(1
d

d−1∑
k=0

|B′
k|q
)
≤ φ

(( d−1∑
j=0

|b′j|p
) q

p

)
.

To show (5.13), we observe that |b′j| ≥ |bj|, and thus it suffices to prove

( d−1∑
j=0

|bj|pe−p|bj |
) 1

p −
( d−1∑
j=0

|b′j|pe−p ∥b∥ℓp
) 1

p ≥ 2−3d−2|bm∗|2. (5.14)

From the mean value theorem we obtain

e−p|bj | − e−p ∥b∥ℓp ≥ p e−p ∥b∥ℓp
(
∥b∥ℓp − |bj|

)
,

and using e−p ∥b∥ℓp ≥ e−pd|bm| ≥ 1
2
we come to the inequality

|bj|pe−p|bj | − |b′j|pe−p ∥b∥ℓp ≥ 1

2
|bj|p

(
p ∥b∥ℓp − p |bj| −

∏
l ̸=j

|al|p + 1
)
. (5.15)
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Another application of the mean value theorem, this time for the function t1/p,

gives

p ∥b∥ℓp − p|bj| ≥ d−1|bm|1−p
(∑

l ̸=j

|bl|p
)
.

On the other hand, we estimate:

∏
l ̸=j

|al|p − 1 ≤
∏
l ̸=j

|al|2 − 1 =
∏
l ̸=j

(1 + |bl|2)− 1 ≤ e
∑

l̸=j |bl|2 − 1

≤ e2
−8d−9

∑
l ̸=j

|bl|2 ≤ 2
(∑

l ̸=j

|bl|p
) 2

p ≤ 2d |bm|2−p
(∑

l ̸=j

|bl|p
)
,

to conclude for every j ̸= m:

p ∥b∥ℓp − p |bj| −
∏
l ̸=j

|al|p + 1 ≥ 0,

and for j = m:

p ∥b∥ℓp − p |bm| −
∏
l ̸=m

|al|p + 1 ≥ 2−1d−1|bm|1−p|bm∗|p .

Now by summing (5.15) over all j = 0, . . . , d−1 we get

d−1∑
j=0

|bj|pe−p|bj | −
d−1∑
j=0

|b′j|pe−p ∥b∥ℓp ≥ 2−2d−1|bm||bm∗|p,

and then finally obtain (using the mean value theorem for t1/p):

( d−1∑
j=0

|bj|pe−p|bj |
) 1

p −
( d−1∑
j=0

|b′j|pe−p ∥b∥ℓp
) 1

p

≥ 1

p
(d|bm|p)

1
p
−12−2d−1|bm||bm∗ |p ≥ 2−3d−2|bm|2−p|bm∗|p ≥ 2−3d−2|bm∗|2 .

This is exactly (5.14), which completes the proof of Lemma 5.6.
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Case 2. |bm| > td, but |bj| ≤ td for every j ̸= m.

By (5.8) it is enough to prove

(2d)−5
(1
d

d−1∑
k=0

(1 + arsinh |Bk|)q/2
) 1

q

≤
(
(2d)−5p(1 + arsinh |bm|)p/2 +

∑
j ̸=m

|bj|pe−p|bj |
) 1

p
,

and because e−|bm∗ | ≥ e−td ≥ 1
2
, it suffices to show

(1
d

d−1∑
k=0

(1 + arsinh |Bk|)q/2
) p

q ≤ (1 + arsinh |bm|)p/2 + 24pd5p|bm∗ |p . (5.16)

Lemma 5.7.(1
d

d−1∑
k=0

(1 + arsinh |Bk|)q/2
) p

q ≤
(
1 + arsinh

(1
d

d−1∑
k=0

|Bk|q
) 1

q

) p
2

(5.17)

(
1 + arsinh

(1
d

d−1∑
k=0

|Bk|q
) 1

q

) p
2

≤
(
1 + arsinh |bm|

)p/2
+

1

|am|

((1
d

d−1∑
k=0

|Bk|q
) 1

q − |bm|
)

(5.18)

(1
d

d−1∑
k=0

|Bk|q
) 1

q ≤
(
|bm|p+|am|p

∑
j ̸=m

|bj|p
) 1

p
+ 24p−1d5p|am||bm∗|p (5.19)

(
|bm|p+|am|p

∑
j ̸=m

|bj|p
) 1

p ≤ |bm|+ 24p−1d5p|am||bm∗ |p (5.20)

Estimate (5.16) follows by successively substituting left hand side of each In-

equality (5.18)–(5.20) into the preceding one. Also, we may assume (1
d

∑
k |Bk|q)

1
q

≥ |bm| in (5.18), since otherwise the desired Estimate (5.16) trivially follows from

(5.17).

Proof of Lemma 5.7. In order to prove (5.17), we consider the function

ψ(t) :=
(
1 + arsinh(t2/q)

) q
2
.
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One can calculate:

ψ′(t) = t2/q−1(1 + t4/q)−
1
2

(
1 + arsinh(t2/q)

) q
2
−1

,

ψ′′(t) = − 1

2q
t2/q−2(1 + t4/q)−

3
2

(
1 + arsinh(t2/q)

) q
2
−2

·
(
2
(
(q−2)+q t4/q

)
arsinh(t2/q) + (q−2)

(
(1+t4/q)

1
2 −t2/q

)2
+ (q−2) + 4t4/q

)
,

and conclude (using q ≥ 2) that ψ is increasing and concave on [0,∞). Jensen’s

inequality and elementary inequalities between power means (see [30]) give (5.17):

1

d

d−1∑
k=0

ψ(|Bk|q/2) ≤ ψ
(1
d

d−1∑
k=0

|Bk|q/2
)
≤ ψ

((1
d

d−1∑
k=0

|Bk|q
) 1

2

)
.

A couple of applications of the mean value theorem, for (1 + t)p/2 and for

arsinh t, together with 1 ≤ p ≤ 2,
√
1 + |bm|2 = |am|, yield (5.18).

For (5.19) we first estimate the perturbation due to nonlinear terms:

|Bk −B′
k| ≤

∑
j1<j2<j3

|bj1 ||bj2 ||bj3|
( ∏
l ̸=j1,j2,j3

(|al|+ |bl|)
)

≤ d3(1 + 2td)
d−3(|am|+ |bm|)|bm∗ |2 ≤ 4d3|am||bm∗ |2 ,

and furthermore compare:

|B′
k −B′′

k | ≤ |bm|
(∏
l ̸=m

|al| − 1
)
+
∑
j ̸=m

|am||bj|
( ∏
l ̸=m,j

|al| − 1
)

≤ d|am|
(∏
l ̸=m

|al| − 1
)
≤ d|am|

(
e

1
2

∑
l ̸=m|bl|2 − 1

)
≤ d2|am||bm∗ |2 ,

where in the last line we used ex−1 ≤ exx for x ≥ 0. These two estimates can be

combined, so that Minkowski’s inequality, together with (5.10), 5d3 ≤ 24p−1d5p,

and |bm∗|2 ≤ |bm∗|p, gives (5.19).

To deduce the last Estimate (5.20), we use the mean value theorem for t1/p,
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and |am|
|bm| ≤ 1 + 1

|bm| ≤
2
td
≤ 26d5.(

|bm|p+|am|p
∑
j ̸=m

|bj|p
) 1

p − |bm| ≤ (|bm|p)
1
p
−1|am|p

∑
j ̸=m

|bj|p

≤ d|am|p|bm∗ |p

|bm|p−1
≤ 26p−6d5p−4|am||bm∗ |p ≤ 24p−1d5p|am||bm∗ |p .

This proves Lemma 5.7.

Case 3. |bm| > td and |bm∗ | > td.

Observe that it suffices to prove

βd(|Bk|)2 ≤
d−1∑
j=0

βd(|bj|)2,

for every k = 0, . . . , d − 1, because then by elementary inequalities for ℓp norms

(see [30]) we have

(1
d

d−1∑
k=0

βd(|Bk|)q
) 1

q ≤ max
0≤k≤d−1

βd(|Bk|) ≤
( d−1∑
j=0

βd(|bj|)2
) 1

2 ≤
( d−1∑
j=0

βd(|bj|)p
) 1

p
.

The rest of the proof is a simple observation taken for instance from [33] or

[48], but we include it for completeness. Split the set of indices {0, . . . , d−1} into

Jbig := {j : |bj| > td} and Jsmall := {j : |bj| ≤ td},

so in this case |Jbig| ≥ 2. Since the spectral norm of any
[
a b

b a

]
∈ SU(1, 1) is equal

to |a|+ |b|, using submultiplicativity of operator norms and (5.2) we deduce

|Ak|+ |Bk| ≤
d−1∏
j=0

(|aj|+ |bj|),

which can, after taking logarithms, be written as

arsinh |Bk| ≤
d−1∑
j=0

arsinh |bj|.
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By (5.8) one always has

βd(|Bk|)2 ≤ (2d)−10(1 + arsinh |Bk|) ,

and thus we estimate:

βd(|Bk|)2 ≤ (2d)−10
(
1 +

∑
j∈Jbig

arsinh |bj|+ |Jsmall| arsinh td
)

≤ (2d)−10
∑
j∈Jbig

(1 + arsinh |bj|) =
∑
j∈Jbig

βd(|bj|)2 ≤
d−1∑
j=0

βd(|bj|)2 .

In the above calculation we used d arsinh td ≤ dtd ≤ 1 and |Jbig| ≥ 2.

This concludes the last case and therefore Proposition 5.4 is established.

Let us conclude this topic with a somewhat deterring remark about the cor-

responding result in the real case. While the estimate of Theorem 5.1 is indepen-

dent of p, the proof makes it seriously dependent on d. It is not clear if the latter

dependence can be avoided, but if so, it would require genuinely new methods.

Suppose for a moment that we can construct β = βd as in Proposition 5.4 that

does not depend on d. If we take d → ∞ in (5.3), we will recover an analogue

of Conjecture 1.3 on the group Z (as stated in [48]), and by an easy transfer-

ence principle the actual Conjecture 1.3 (on R) would also follow. Therefore,

uniformization of the constants in d turns out to be an even harder problem than

the original one.
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