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Poles as the only true resonant-state signals extracted from a worldwide collection of partial-wave
amplitudes using only one, well controlled pole-extraction method
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Each and every energy-dependent partial-wave analysis is parametrizing the pole positions in a procedure
defined by the way the continuous energy dependence is implemented. These pole positions are, henceforth,
inherently model dependent. To reduce this model dependence, we use only one, coupled-channel, unitary, fully
analytic method based on the isobar approximation to extract the pole positions from each available member
of the worldwide collection of partial-wave amplitudes, which are understood as nothing more but a good
energy-dependent representation of genuine experimental numbers assembled in a form of partial-wave data. In
that way, the model dependence related to the different assumptions on the analytic form of the partial-wave
amplitudes is avoided, and the true confidence limit for the existence of a particular resonant state, at least in one
model, is established. The way the method works and first results are demonstrated for the S11 partial wave.
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I. INTRODUCTION

When resonances are associated with the eigenstates of the
complete Hamiltonian for which there are only asymptotically
outgoing waves, their identification with scattering theory
poles is unquestionable. This statement is elucidated in detail
in Ref. [1]. Consequently, in order to get the full information
about physical systems and resonant states under observation,
we must be entirely focused into analyzing and interpreting
the scattering matrix singularities of the Mandelstam analytic
function [2] obtained from experiments. While the value of
the scattering amplitude on the positive energy cut defines the
physical amplitude in the s or u channel depending on whether
we approach the physical axes from above or below, the simple
poles which are situated on the physical axes in a subthreshold
region are related to the bound states. As it is believed that
there is no fundamental difference between a bound state and
a resonance, other than the matter of stability, when simple
poles of the coupled channel amplitude occur on unphysical
sheets in the complex energy plane, they are to be associated
with resonant states [3].

The fact that we are trying to extract the value of a
quantity lying in the complex energy plane while performing
experiments only on the physical axes, is the essence of all
problems, and the origin of many misunderstandings occurring
in the literature. Namely, each pole is not only squatting in an
experimentally inapproachable domain, but is simultaneously
governing each and every process between all allowed few-
body channels. However, we usually measure observables only
in one channel at a time. If the single-channel observables are
measured, we obtain the single-channel scattering amplitude,
and we only get the pole positions in one channel. Never-
theless, due to the Mandelstam hypothesis, these poles are
affecting all channels, so we have to treat them all and not just
the measured one. Consequently, the underlying theory, which
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is to be used to find the scattering matrix amplitude, must be a
coupled-channel one, and of course analytic and unitary. And
this is not the end. Once we have found the coupled-channel
scattering matrix amplitude, we have to find and quantify all
its poles. Unfortunately, this is not a simple task, so each
partial-wave analysis, even in a multichannel case, has its own
way of parametrizing this inaccessible quantity. The result is
that the model dependencies are introduced.

This brings us to various ways on how the complex energy
plane poles are up to the present moment parametrized in the
literature. First attempts are done with single-channel partial-
wave amplitudes, and the oldest and most frequently met way
is the concept of Breit-Wigner parameters.

The initial attempts to use the Breit-Wigner function
with constant parameters to represent the scattering matrix
amplitudes on the physical axes immediately revealed the fact
that this function is too simple. More terms were needed.
One had to introduce the energy-dependent background, and
one had to do it in a unitary way. Unfortunately, for quite
some time it has been known, but not commonly accepted,
that a unitary addition of background terms influences the
peak position of the scattering matrix absolute value on
the real axes in spite of the fact that the pole position is
not changed. Peak position is an interplay of Breit-Wigner
parameters and background terms. And the peak position is
the quantity which is usually extracted from experiments.
Consequently, when Breit-Wigner parameters defined in such
a manner are chosen to represent the pole position, they
must be background dependent, and the only case when the
Breit-Wigner parameters do exactly correspond to the pole
position is when we have accidently guessed the correct form
of the energy-dependent background. If the background is
wrong, Breit-Wigner parameters are not the pole parameters,
but something else. And that is the reason why Breit-Wigner
terms in general are not the pole positions, and are inherently
model dependent.

There are basically two ways to account for the background
contributions. The first one, to unitary add energy-dependent
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background terms to the constant-parameter Breit-Wigner
function, is described afore. The second one is to allow the
Breit-Wigner parameters to become energy dependent. That
is predominantly done by modeling the Breit-Wigner width
[4–9].

There is a number of ways to introduce energy-dependent
Breit-Wigner width. In Ref. [4] energy-dependent width is a
part of the resonant term of the theoretical function which is
associated with the T matrix near the resonance. In Refs. [5,6]
energy-dependent width is related to the resonant part of the
S matrix. In a method proposed in Ref. [7] and applied in
Refs. [8,9] width is defined from the function consisting of a
background term and Breit-Wigner shape term.

One well known method for treating the nearby channel
openings is the Flatté formula. The Flatté method, introduced
in 1976 [10], is recognizing the fact that the partial-wave T
matrix feels the presence of new channel openings, and it is
taking it into account effectively. Flatté proposes to modify
the traditional Breit-Wigner form by assuming that the width
becomes proportional to the phase space. The amplitude poles
are then again represented as the singularities of the modified
Breit-Wigner function.

The fact that the Breit-Wigner terms in general are not
the pole positions, and are inherently model dependent,
was timidly mentioned by several authors (see for instance
Ref. [11]). That was first strongly pointed out by Höhler in
Refs. [12,13], where the definition of “local Breit-Wigner
fit” and the concept of “searching for the pole position”
using speed plot technique were introduced. Höhler clearly
distinguished between Breit-Wigner parameters (which should
in the absence of a better way be obtained by locally
fitting partial-wave amplitudes with a Breit-Wigner function
plus some background terms) and pole parameters which
should be obtained, as he recommended, by the speed plot
technique. He has always been pointing out that Breit-Wigner
parameters are model dependent, and he continuously objected
to compare them directly. His last warning was published not
so long ago [14]. However, due to unclear historical reasons,
the practice of directly comparing Breit-Wigner parameters
coming from different origins continued in the Particle
Data Group (PDG) compilations. Breit-Wigner parameters,
extracted with different background parametrizations, are still
directly compared [15], averages are made, and error analysis
is performed neglecting the fact that they may be in fact
completely differently defined parameters. This practice should
be abolished.

There is a long history of efforts to avoid the concept of
Breit-Wigner parameters and to look directly for the genuine
pole positions.

The first, and most frequently met method, is the speed-plot
technique introduced by Höhler [12] for the single channel
scattering amplitudes. It is based on the idea already mentioned
in Ref. [3] that the pole position should be found by expanding
the scattering amplitude in the vicinity of the pole, and the
speed-plot technique is recommending to retain the first term
only. This method is in principle acceptable if we are dealing
with isolated poles far away from any nearby thresholds, but
may fail otherwise. There is a number of cases where the
methods cannot be applied at all, and the best example was

the inability to use it to obtain the well known S11 (1535)
resonance. The limitations of the method have been discussed
by Ceci et al. [16] where it has been shown that speed-plot
technique is only the N = 1 term of a more general but
demanding “regularization” method based on finding the Nth
derivative of the scattering amplitude, and using it in a local,
three-parameter fit to the partial-wave data [17].

In the early 1950s the time delay technique is introduced
into scattering theory by several authors [18–21] in a way that
they obtained an expression for the time delay in a collision.
Time delay, or in another words the time lapse between
asymptotic states, can be directly related with phase shift of
the T matrix. For further details on interrelation between speed
plot and time delay see Ref. [22].

The N/D method is a technique in which the dispersion
relations are used to construct the amplitudes in the physical
region using the knowledge of the left-hand cut singularities.
The idea is to represent the partial-wave amplitude as a ratio
of two functions. The numerator is represented with a function
N (s) which is analytic in the s-plane only on the left-hand cut,
and the function D(s) that is analytic on the right-hand cut
only. The poles of the scattering amplitude are identified with
the zeros of the D(s), and the problem of extra zeros is often
difficult to be solved. The method had been introduced a long
time ago by [23], and since then it has been mostly used in
meson physics, typically for cases when the knowledge about
the left-hand cut is available [24,25].

All enlisted methods are good for the pole search within
certain approximations, but yet we have to point out that the
proper procedure to look for the scattering matrix poles is the
full analytic continuation of scattering matrix amplitudes into
the complex energy plane within a given model.

In coupled-channel calculations the importance of the
pole search has recently been fully recognized. Some groups
have offered more or less detailed concepts of their analytic
continuation procedures [26,27], while others have reported
that the complexity of the analytic continuation of all Feyn-
man amplitudes of their model is beyond their reach [28].
Therefore, they had to rely on speed-plot technique entirely.
In most cases, the analytic continuation procedure is rather
cumbersome.

The VPI/GWU collaboration clearly distinguishes the dif-
ference between Breit-Wigner parameters and pole positions,
and states that poles and zeros have been found by continuing
into the complex energy plane. Unfortunately, they fail to
provide any details of their procedure. The EBAC collabora-
tion also makes an analytic extrapolation of their amplitudes,
and has recently presented a more detailed elaboration of
their procedures [27]. Other groups have extracted their pole
positions using single-channel techniques such as speed-plot
and time delay [28–31]. Recognizing the importance of a direct
analytic extrapolation, Dubna-Mainz-Taipei collaboration has
recently performed the full analytic continuation, and in
Ref. [17] offered the reliable pole positions of their model.

In spite of all these efforts, the question of systematic
uncertainties still remains unanswered because each model,
in addition to slightly different input, has its own particular
analytic form. So we wonder how stable the reported pole
positions actually are.
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In order to get a more reliable answer to this questions,
we have decided to use only one method to extract pole
positions from all published partial-waves analyses, and
inspect the result with the aim to distinguish which part
of the disagreement in pole positions is coming from the
different analytic structure, and which is coming from the
insufficient input. And to do so we have chosen the T matrix
Carnagie-Melon-Berkeley (CMB) model upgraded in Zagreb
[8]. In other words, we take all sets of partial-wave amplitudes,
treat them as nothing else but a good, energy-dependent
representations of all analyzed experimental data, and extract
the poles which are needed by the CMB method. In this
manner all uncertainties originating from different analytic
properties of different models are avoided, and the only
remaining errors are the quality of the input and the precision
of CMB method itself. Let us clarify this statement. Even when
practically all analyzed PWA (with the exception of KH80) use
GWU amplitudes to describe πN elastic channel, their PWA
solutions do differ in spite of reporting the similar quality of fit
to the input data (similar reduced χ2). And now, these similar,
but still different solutions through analytic continuations
generate corresponding sets of poles. It is important to realize
that these poles, even for the identical set of input amplitudes,
should not necessarily coincide, because the models used for
analytic continuation are intrinsically different in their analytic
form. So, in addition to the issue of slightly different input
(elastic channel is identical, but other channels are not), the
error of unknown analyticity is superimposed to it. Just to
illustrate how important this statement is, let us quote the
findings of a very recent work of Zagreb and Jülich group
given in Ref. [32]. In this reference it has been shown that
the amplitudes of one model (Jülich model) can be identically
reproduced using a model with the different analytic structure
(Zagreb CMB), and that there is no way to guess what is
the correct analytic structure of the analyzed subpart part of
amplitudes if only one channel (elastic in this case) is analyzed.
Converted to the hypothesis of our paper we claim that even
identical input could result with a different set of poles if
different models to analyze it are used. So, the idea of using
only one model (Zagreb CMB) to extract the set of poles from
different PWA treating them as partial-wave data boils down
to testing the internal agreement of input data set. In this way,
by using only one method, the difference between poles of
various solutions is attributed only to the under-determinacy
of input data and not to the analytic structure of the models in
question. Simply, different poles obtained in this way quantify
the difference in PWA solutions with respect to the similar
input, and disregard the different analytic form used to obtain
them. Therefore, averaging and error analysis of pole positions
is sensible and can be safely carried out. To answer the question
of a correct choice of analytic form is a more complex problem
and will be addressed elsewhere. Here we just give an answer
on how internally consistent the “world collection” of PWA is
on the level of input.

We shall also compare the obtained poles with the poles
of each individual publication and draw certain conclusions
about features of individual methods as well.

The general idea of this article is to recommend the
possibility on how to, in a maximally model independent

way, simultaneously find all scattering matrix poles from the
worldwide collection of partial-wave amplitudes. We present
the way of eliminating most systematic errors in analytic
extrapolation by using only one, well defined procedure to
extract pole positions for published partial-wave amplitudes
and understanding them as nothing more but a very confident
energy-dependent representation of all experimental data.

To avoid congesting the reader with unnecessary infor-
mation, in this paper we will illustrate how this method
works for the S11 partial wave only. We show that N(1535)
and N(1650) S11 resonant states are unambiguously seen
in all analyzed PWA data, while the performed pole-search
procedure strongly suggest the existence of at least one more
pole position in the vicinity of 1800 MeV. Therefore, all
published PWA are consistent with the new S11(1846) state
needed in photo-production channel [29,33]. We demonstrate
that the existence of the fourth S11 state around 2100 Mev is not
excluded by any PWA, and is actually favored for the hadronic
Dubna-Mainz-Taipei amplitudes [29,30]. We compare the
obtained results with the results published in literature, and
make a final conclusion on the actual position of partial-wave
poles.

However, the issue also arises how strongly the recom-
mended pole-extraction procedure (CMB model) depends
upon its own model assumptions. Namely, CMB model has
a number of assumptions, and it is very important to know
how stable the pole positions are if CMB model choices are
strongly modified. We have tested this problem extensively,
and for the answer to this question we refer the reader to a
companion paper [34].

II. FORMALISM

The CMB model is isobar, coupled-channel, analytic,
and unitary model, where the T matrix in a given channel
is assumed to be a sum over the contributions from a
number of intermediate particles (resonance and background
contributions). The coupling of the channel asymptotic states
to these intermediate particles determines the imaginary part
of the channel function, and is represented effectively with a
separable function. The real part of the channel function is
calculated by the dispersion relation technique, thus ensuring
analyticity. Besides the known resonance contributions, the
background contributions are included via additional terms
with poles below the πN threshold. Due to the clear analytic
and separable structure of the model, finding the pole positions
in CMB model is trimmed down to the generalization of
the dispersion integral for the channel propagator from real
axes to the full complex energy plane, and this is a very well
defined procedure. In practice, we instead use a very stable and
numerically much faster analytic continuation method based
on the Pietarienen expansion [41] in order to extrapolate the
real valued channel propagator into the complex energy plane.

A. Formulas

Our current partial-wave analysis [8] is based on the
manifestly unitary, multichannel CMB approach of Ref. [7].
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The most prominent property of this approach is analyticity of
partial waves with respect to Mandelstam s variable. In every
discussion of partial-wave poles, analyticity plays a crucial
role since the poles are situated in a complex plane, away
from physical region, and our measuring abilities are restricted
to the real energy axis only. To gain any knowledge about
the nature of partial-wave singularities would be impossible
if partial waves were not analytic. Therefore, the ability to
calculate pole positions is not just a benefit of the CMB model’s
analyticity but also a necessity for resonance extraction. In this
approach, the resonance itself is considered to exist if there is
an associated partial-wave pole in the “unphysical” sheet.

We use the multichannel T matrix related to the scattering
matrix S as

Sab(s) = δab + 2 i Tab(s),

where δab is Kronecker δ symbol. The T-matrix element is in
the CMB model given as

T JL
ab (s) =

NJL∑
i,j=1

f JL
a (s)

√
ρa(s)γ JL

ai GJL
ij (s)γ JL

jb

√
ρb(s)f JL

b (s),

(1)

where a(b) represents the outgoing (incoming) channel. In our
analyses we use a, b = πN, ηN, π2N . The initial and final
channel b(a) couple through intermediate particles labeled
i and j . The factors γia are energy-independent parameters
occurring graphically at the vertex between channel a and
intermediate particle i and are determined by fitting procedure.
Also occurring at each initial or final vertex is form factor
f JL

a (s):

f JL
a (s) =

⎛
⎝ qa

Q1a +
√

Q2
2a + q2

a

⎞
⎠

L

(2)

and phase-space factor ρa(s):

ρa(s) = qa(s)√
s

, (3)

where s = W 2 is a Mandelstam variable, and qa(s) is the
meson momentum for any of the three channels given as

qa(s) =
√

[s − (m + ma)2][s − (m − ma)2]

2
√

s
. (4)

Furthermore, L is the angular momentum in channel a, and
Q1a , Q2a are constants. The factor f JL

a (s) provides appropriate
threshold behavior on the right-hand cut, and also produces a
left-hand branch cut in the s plane. Parameters Q1a and Q2a

are chosen to determine the branch point and strength of the
left-hand branch cut. In our analyses they have been taken to
be the same, and are fixed to the mass of the channel meson a.

GJL
ij is a dressed propagator for partial wave JL and

particles i and j , and may be written in terms of a diagonal bare
propagator G0JL

ij and a self-energy matrix �JL
kl using Dyson

equation

GJL
ij (s) = G0JL

ij (s) +
NJL∑
k,l=1

G0JL
ik (s)�JL

kl (s)GJL
ij (s). (5)

The bare propagator

G0JL
ij (s) = eiδij

si − s
(6)

has a pole at the real value si . The sign ei = ±1 must be
chosen to be positive for poles above the elastic threshold
which correspond to resonance.

The nonresonant background is described by a meromor-
phic function, in most of the cases consisting of two terms
of the form (6) with pole positions below πN threshold. For
that case, the signs of the terms are opposite. The positive
sign correspond to the repulsive and the negative sign to the
attractive potential. In principle, the number of poles can be
increased arbitrarily (see the next subsection on background
representation), but in reality the number is never larger than
three.

�JL
kl is the self-energy term for the particle propagator

�JL
kl (s) =

∑
a

γ JL
ka 	JL

a (s)γ JL
la . (7)

The 	JL
a (s) are called “channel propagators.” They are

constructed in an approximation that treats each channel as
containing only two particles. We require that T JL

ab have, in all
channels, correct unitarity and analyticity properties consistent
with a quasi-two-body approximation.

The imaginary part of 	JL
a (s) is the effective phase-space

factor for channel a:

Im 	JL
a (s) = [

f JL
a (s)

]2
ρa(s). (8)

The channel propagator is evaluated on the real axes only

Im 	(x) = [q(x)]2L+1

√
x

{
Q1 +

√
Q2

2 + [q(x)]2
}2L

, (9)

where by x we stress the fact that values are on the real
axes. The real part of 	JL

a (x) is calculated using a subtracted
dispersion relation

Re 	(x) = x − xa

π
P

∫ ∞

xa

Im 	(x ′) dx ′

(x ′ − x)(x ′ − xa)
, (10)

where xa = (m + ma)2. For better understanding, the structure
of the channel-intermediate particle form factor is given in
Fig. 1.

channel resonance
form factor

channel resonance
mixing matrix

bare particle
propagator

FIG. 1. (Color online) Parametrization of channel-intermediate
particle vertex in CMB model.
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We give a matrix form of the final T matrix as defined in
Eq. (1):

T̂ (s) =
√

Im	̂(s)γ̂ T Ĝ0(s)

I − [γ̂ 	̂(s)γ̂ T]Ĝ0(s)
γ̂

√
Im	̂(s).

(11)

B. General idea

In this paper we propose to use a method based on
coupled-channel formalism, apply it to all partial-wave data
and partial-wave amplitudes available “on the market,” and
simultaneously analyze the underlying analytic structure. We
have decided to use only one model to extract pole positions
from all published partial-waves analyses in order to evade
the model assumptions of each approach, and compare the
results on the same footing. And we have chosen the T-matrix
Carnagie-Melon-Berkeley (CMB) model. In other words, we
take all sets of partial-wave amplitudes, accept them as nothing
else but good representations of all analyzed experimental data,
and extract the poles which are required by the CMB method.
In this manner, all errors due to different analytic continuations
of different models are avoided, and the only remaining error
is the precision of CMB method itself (see Ref. [34]). Of
course, we shall compare the obtained poles with the poles
of each individual publication, and draw certain conclusions
about features of individual methods as well.

C. Data base

We start with a collection of data in which one part is
fully available in the literature [12,26,35], and numeric values
for the second part are provided by the authors (private
communication Refs. [30,31,36–38]).

We have analyzed the following PWA amplitudes:

(i) Karlsruhe-Helsinki (KH80) [12] πN elastic.
As the influence of inelastic channels is in KH80
formalism introduced through forward and fixed cms
scattering dispersion relations, KH80 does not offer
any inelastic channel amplitudes to be fitted. However,
as we know that inelastic channels are extremely
important in CMB formalism to ensure the stability
of solutions (see following chapter and Ref. [39]), we
have decided to constrain elastic KH80 amplitudes with
πN → ηN WI08 amplitudes which fairly correctly de-
pict the world agreement of the ηN channel amplitudes
at lower energies (see Fig. 3).

(ii) VPI/GWU πN elastic and πN → ηN .
We have used single energy solutions (GWU-SES) [35]
and energy-dependent solutions (WI08) [26,35].

(iii) Giessen [31] πN elastic and πN → ηN .
(iv) EBAC. We have used two sets of PW solutions. Single-

channel fit solution (πN elastic fitted)—EBAC07 [36],
and two channel fit solution (πN elastic and πN → ηN

fitted)—EBAC08 [37] with the πN → ηN normaliza-
tion adjusted in accordance with Döring and Diaz [40].

(v) Jülich [38] πN elastic and πN → ηN .

(vi) Dubna-Mainz-Taipei (DMT) [29,30] πN elastic and
πN → ηN .

D. Fitting procedure

We have used three-channel CMB formalism with πN

and ηN physical channels, and the third, effective two-body
channel to account for unitarity. We start with a minimal
number of bare poles, and increase their number as long as the
quality of the fit, measured by the lowest reduced χ2 value,
could not be improved. In addition, a visual resemblance of
the fitting curve to the data set in totality was used as a rule of
thumb, that is, we rejected those solutions that had a tendency
to accommodate for the rapidly varying data points, regardless
of the χ2 value. When the optimal number of poles is reached,
we claim that we have found all partial-wave pole solutions
given by the chosen data set. As our criteria (minimal reduced
χ2 value and visual resemblance) are not extremely rigid, we
have to differentiate between the two categories of poles: those
which are seen with almost complete certainty, and those which
are only consistent with the chosen set of data. The poles whose
addition significantly improve the reduced χ2 value fall into
the first category, those which improve the reduced χ2 value
only marginally fall into the second one. It is interesting to
note that in the latter case a number of almost equivalent,
indistinguishable solutions for the questionable pole may be
found.

III. RESULTS AND DISCUSSION

The intention of this article is to use only one method,
Zagreb realization of CMB model, to extract pole positions
from a “world collection” of partial-wave data and partial-wave
amplitudes. As a test case, we do it for the S11 partial wave only.
We use a three-channel model, with two measured channels
πN , ηN , and the third channel π2N , which effectively
represents all other inelastic channels, and “takes care of ”
unitarity.

We extract pole positions from all available PWA and make
a comprehensive analysis. We analyze the number of poles
needed for a given partial wave and we discuss the importance
of inelastic channels.

A. Methodology

The main feature of the CMB multiresonance, multichannel
model is good control over determining the number of bare
poles, and deducing the importance of number of fitted
channels.

1. Importance of inelastic channels

The elastic πN scattering channel is the best measured and
the most confident channel, so in all cases it is the pillar of
the obtained partial-wave amplitudes. Most of the information
about the energy-dependent structure of all solutions is coming
from this channel, and it is expected that corrections are
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coming from other channels. Therefore, it is carrying the
heaviest weight for obtaining final results.

At this point we are bound to address one specific point in
more detail.

In Ref. [39] we have discussed the continuum ambiguity
problem in coupled-channel formalisms. Namely, once the
inelastic channels are opened, it turns out that the differential
cross sections themselves are not sufficient to determine
the scattering amplitude. Let us illustrate why. If differen-
tial cross section dσ/d� is given by |F |2, then the new
function F̃ = ei	F gives exactly the same cross section. It
should be remarked that this phase uncertainty has nothing
to do with the nonobservable phase of wave functions in
quantum mechanics. The asymptotic wave functions at large
distances from the scattering center may be written as �(x) ≈
ei·k·x + F (θ ) ei·r·

r
, r → ∞, so the phase of scattering amplitude

is the relative phase of the incident and scattered wave.
This phase has observable consequences in situations where
multiple scattering occurs, and the continuum ambiguity is
created. In the elastic region the unitarity relates real and
imaginary parts of each partial wave, and the consequence
is a constraint which effectively removes this “continuum”
ambiguity, and leaves potentially only a discreet one. The
partial wave must lie on the unitary circle. However, as soon
as the inelastic threshold opens, unitarity provides only an
inequality: |1 + 2 i Fl|2 � 1 =⇒ ImFl = |Fl|2 + Il , where
Il = 1

4 (1 − e− 4 Im δl ). Therefore, each partial wave must lie
upon or inside its unitary circle, and not on it. A whole family
of functions 	 of limited magnitude but of infinite variety
of functional forms, which satisfy the required conditions,
does exist. However, in spite that they contain a continuum
infinity of points, they are limited in extent. Thus, the islands
of ambiguity are created.

In Ref. [39] we have shown that including inelastic channels
into the analysis is a natural way for eliminating continuum
ambiguities. We have concluded that, by fitting only elastic
channel, some of the resonant states which dominantly couple
to inelastic channels might remain unrevealed, and we had to
fit as many channels as possible. In the present paper we apply
the following strategy: we shall first fit elastic channel only,
and show the poles we reveal. Then, we shall repeat the fit by
fitting two channel processes, πN elastic and πN → ηN data
when available, and see how the number of poles, and their
quantitative values change.

The problem we are facing is the low quality input for the
ηN channel, because πN → ηN partial waves are in principle
not well known. Anyway, as a final result, we have to accept
the solution for which both channels are reasonably well fitted
despite the low quality of the ηN channel data.

2. Determining the optimal number of poles

In CMB formalism the number of poles is a starting
parameter. That in practice means that when fitting we start
with a minimal set of poles: one resonant and two for the
background. Then we increase the number of resonant poles
until the satisfactory fit is achieved, that is, until the quality
of the fit, measured by the reduced χ2 value, could not be

improved. In addition, a visual resemblance of the fitting curve
to the data set as a whole is used as a rule of thumb: we reject
all those solutions which have a tendency to accommodate for
the rapidly varying data points regardless of the χ2 value.

In such a way we estimate the number of bare poles needed
by our model, what in most cases corresponds to the number
of resonant states. Observe that this is not so for dynamic
resonances, that is, for the dressed resonant states which do not
have a corresponding bare pole. Therefore, what we compare
is not the number of bare poles, but the number of dressed
ones. (For a more extensive discussion on dynamic resonant
states in Zagreb CMB model see Ref. [16].)

B. Fits

We first fit πN elastic channel only. In accordance with
the afore considerations, we first want to determine which
resonances are well determined only by this channel, and later
on we want to see how much the inclusion of ηN channel will
modify the obtained result.

1. πN elastic channel only

We show the result of the fit in Table I. The quality of the
fit is shown in Fig. 2.

2. πN elastic and πN → ηN data

As we have already mentioned, πN → ηN data are rather
old and vague, so the corresponding partial waves are poorly
determined. Anyway, each analyzed PWA solution of our
world collection, with the exception of KH80, does offer some
results for that channel, and we have consistently used it in the
two channels fit. The only exception, KH80 amplitudes, do
not have a corresponding ηN channel. We have been tempted
to omit KH80 amplitudes from the coupled-channel analysis,
but due to its extremely good analytical constraints, we have
decided to keep it in some form. Instead of KH80 ηN channel,
we have used the WI08 VPI/GWU solution believing that the
S11 ηN channel amplitudes are confidently well known in the
energy range s � 3 GeV2 (Tlab � 800 MeV), and in that range
the WI08 VPI/GWU solution is a good numeric representation
of a “world collection average.”

We show the result of the fit in Table II. The quality of the
fit is shown in Fig. 3.

All obtained pole positions are shown in Fig. 4.

C. Individual comparison

1. Preliminary considerations

As it has been generally accepted, T-matrix pole positions
are the most recommendable singularities to be compared with
QCD. However, obtaining them definitely means going into
the complex energy plane while having at ones disposal only
the physical T-matrix values (values for the real energy). This
analytic continuation, however, has to be a model-dependent
procedure by definition, because there is no a priori rule how
to choose the analytic functional form which is to represent
a measurable subset out of all possible T-matrix values.
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TABLE I. World collection of poles for the single-channel fit, three and four resonant case.

Analyses Fitted Number Bare poles Dressed poles

channel of Ws1 Ws2 Ws3 Ws4

(
ReW

−2ImW

) (
ReW

−2ImW

) (
ReW

−2ImW

) (
ReW

−2ImW

)
χ 2

R

resonances (MeV) (MeV)

KH80 πN → πN 3 1516 1638 1880 –

(
1513
71

) (
1661
148

) (
1903
90

)
– 0.209

4 1488 1656 1713 2266

(
1513
113

) (
1670
194

) (
1833
703

) (
2263
138

)
0.206

WI08 πN → πN 3 1481 1657 3767 –

(
1492
89

) (
1646
95

) (
2684
822

)
– 0.043

4 1513 1624 1686 2517

(
1495
105

) (
1647
81

) (
1658
255

) (
2396
139

)
0.012

GWU-SES πN → πN 3 1514 1645 2919 –

(
1500
106

) (
1646
119

) (
2598
210

)
– 2.252

4 1517 1650 1928 3768

(
1505
97

) (
1651
119

) (
1944
74

) (
2633
345

)
2.116

Giessen πN → πN 3 1464 1616 1731 –

(
1484
82

) (
1641
65

) (
1861
811

)
– 0.062

4 1474 1635 1718 2674

(
1482
82

) (
1642
65

) (
1851
456

) (
2249
287

)
0.061

Juelich πN → πN 3 1518 1656 2177 –

(
1528
95

) (
1653
110

) (
2335
372

)
– 0.046

4 1511 1636 1719 2241

(
1516
121

) (
1654
118

) (
1665
411

) (
2335
403

)
0.018

EBAC07 πN → πN 3 1466 1641 2518 –

(
1498
123

) (
1641
89

) (
2215
767

)
– 0.028

4 1483 1643 1702 2237

(
1502
139

) (
1638
81

) (
1700
408

) (
1862
691

)
0.012

EBAC08 πN → πN 3 1515 1673 1826 –

(
1483
123

) (
1662
80

) (
1873
219

)
– 0.029

4 1512 1667 1980 3784

(
1492
114

) (
1661
81

) (
1804
1113

) (
2189
637

)
0.027

DMT πN → πN 3 1495 1643 2047 –

(
1486
81

) (
1640
103

) (
2080
100

)
– 0.246

4 1507 1647 1850 2100

(
1508
139

) (
1643
134

) (
1892
203

) (
2100
212

)
0.083

Averages 3

(
1498(16)

96(20)

) (
1649(9)
101(25)

) (
2194(324)
424(324)

)
–

4

(
1502(12)
114(20)

) (
1651(11)
109(42)

) (
1793(108)
453(325)

) (
2253(224)
356(212)

)

Therefore, the reader has to be fully aware that the pole
positions we find, and the pole positions given by the original
publications have to be different by definition, and the reason is
that each investigated world collection solution has its own way
how to analytically continue the measurable physical T-matrix
values. However, comparing the number of needed poles, their
distribution and genesis (genuine or dynamic) obtained by
our approach with those from original publication is certainly
justified. It is also a convenient way to establish whether a
certain pole is only a result of a poor knowledge of measured
process, or indeed is a genuine singularity needed by the data,
but still not yet well established. So, hereafter, we analyze
qualitative features of the partial-wave singularity structure,
and intentionally avoid to compare their numeric values.

2. KH80

The KH80 amplitudes are essentially single-channel partial
wave data with some information about inelastic channels
introduced through forward dispersion relations, and ana-
lyticity strictly imposed on the level of fitting procedure
using Pietarinen expansion [41]. As no assumption on the
analytic functional form about partial-wave amplitudes has
been done, search for resonance parameters is a separately
defined procedure. Breit-Wigner parameters are obtained as a
local fit in the resonance region with background contribution
unitary added on the level of S matrices, and poles are extracted
using single-channel pole position extraction methods (speed
plot and Argand diagram). Original publication reported two
poles.
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FIG. 2. (Color online) Agreement of 3R and 4R CMB curves with “world input” for single-channel fit.

In our approach we concur the existence of first two poles,
and we find them strongly dominated by the elastic channel.

The third N(2090) pole is in our fit definitely needed. The
fourth pole is allowed by our fit in both, single- and coupled-
channel constellation (improvement of the reduced χ2

R), but its
quantitative constraint will need more inelastic channels than
only ηN . In each configuration numerical values of third and
fourth pole are not yet sufficiently well constrained.

3. GWU-SES and WI08

While the original publication gets the pole positions by
analytically continuing energy-dependent solution into the
complex energy plane, an obvious advantage of our approach is
that we can obtain the pole positions independently from both,
single energy (GWU-SES) and energy-dependent (WI08)
VPI/GWU solutions. We have to remember that VPI/GWU
pole positions are extracted from the analytic form determined
by their Chew-Mandelstam K-matrix approach, which is fitted
directly to the data, and not to their single channel solutions.
Consequently, the pole positions ”corresponding” to their
single energy solutions are by them not yet discussed. In
this paper we may use the same formalism for both, single
energy and energy-dependent solutions, and treat them as an
independent input. Hence, we get two sets of solutions.

The general conclusion for both VPI/GWU solutions is
the same, and it is very similar to the findings for the
KH80 input: we confirm the existence of first two poles,
and find them strongly dominated by the elastic channel.

The third N(2090) pole is in our fit definitely needed. The
fourth pole is allowed by our fit in both, single and two
channels constellation (improvement of the reduced χ2

R), but
its quantitative constraint will need more inelastic channels
that ηN .

It is very interesting to compare WI08 with GWU-SES.
In spite of the fact that the WI08 solution is seemingly very
smooth above the second peak, definitely much smoother than
the GWU-SES solution, our model still requires the third and
fourth pole almost in a same way for both solutions. The need
for a third and fourth pole for the smooth WI08 solution came
as a surprise for us. Quantitatively, all pole positions are similar
for both solutions: quite well defined for the first two poles,
dominantly determined with the elastic channel. Inclusion of
inelastic ηN channel data modifies first two pole positions
only slightly. However third and fourth pole positions remain
strongly influenced.

4. DMT amplitudes

DMT collaboration has originally looked for the pole po-
sitions using the speed-plot technique. They have established
the existence of three poles, N(1535), N(1650), and a third pole
corresponding to N(2090) (see Ref. [30]). However, triggered
by their old research of photo-production channels in which
they had established the strong probability for the existence of
new S-wave resonant state in the vicinity of 1846 MeV [29,33],
they have recently repeated the analysis and confirmed the
existence of this new state at 1880 MeV [17].
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TABLE II. World collection of poles for the two channels fit, three and four resonant case.

Analysis Number Bare poles Dressed poles χ2
R

(Fitted channels) of
Ws1 Ws2 Ws3 Ws4

(
ReW

−2ImW

) (
ReW

−2ImW

) (
ReW

−2ImW

) (
ReW

−2ImW

)
resonances

(MeV) (MeV)

KH80 WI08 3 1517 1637 1865 –

(
1511
113

) (
1670
163

) (
1923
328

)
– 0.391

(πN → πN ) (πN → ηN ) 4 1504 1610 1751 2045

(
1492
122

) (
1650
163

) (
1892
235

) (
1951
555

)
0.307

WI08 3 1514 1626 1722 –

(
1499
114

) (
1652
102

) (
1718
449

)
– 0.127

(πN → πN ) (πN → ηN ) 4 1513 1630 1701 2611

(
1495
113

) (
1651
87

) (
1697
204

) (
2422
241

)
0.031

GWU-SES WI08 3 1519 1662 3190 –

(
1503
172

) (
1642
127

) (
2618
270

)
– 2.451

(πN → πN ) (πN → ηN ) 4 1512 1643 1743 2827

(
1503
97

) (
1659
111

) (
1756
210

) (
2569
173

)
2.011

Giessen 3 1515 1636 1720 –

(
1472
176

) (
1650
81

) (
1692
191

)
– 0.437

(πN → πN ) (πN → ηN ) 4 1509 1632 1728 2202

(
1471
212

) (
1640
73

) (
1738
263

) (
2215
246

)
0.351

Juelich 3 1514 1601 1725 –

(
1521
212

) (
1649
127

) (
1643
644

)
– 0.198

(πN → πN ) (πN → ηN ) 4 1513 1566 1663 2048

(
1514
142

) (
1633
141

) (
1645
112

) (
2197
977

)
0.074

EBAC08 3 1518 1670 1883 –

(
1526
179

) (
1665
126

) (
1927
347

)
– 0.651

(πN → πN ) (πN → ηN ) 4 1495 1618 1693 1888

(
1493
174

) (
1672
87

) (
1696
122

) (
1911
107

)
0.216

DMT 3 1516 1657 2169 –

(
1551
160

) (
1638
158

) (
2378
1070

)
– 1.186

(πN → πN ) (πN → ηN ) 4 1476 1606 1705 2104

(
1546
151

) (
1640
158

) (
1790
396

) (
2171
445

)
1.047

Averages 3

(
1512(25)
161(36)

) (
1652(12)
126(29)

) (
1986(373)
471(301)

)
–

4

(
1502(23)
144(39)

) (
1649(13)
117(37)

) (
1745(80)
220(95)

) (
2191(241)
392(301)

)

It is interesting to note that our procedure for DMT
amplitudes also indicates the existence of four poles. As seen
in Fig. 2, our three-resonant fits do miss some structure in
elastic partial waves at higher energies requiring the increase in
the number of parameters. Repeated fits with four resonances
rectify this problem and at the same time show a significant
improvement in the reduced χ2. So, our fits concur with their
latest findings that the DMT S11 solution really contains four
poles [17].

5. EBAC amplitudes

EBAC has produced three sets of partial wave amplitudes:
the first, single channel set where only πN elastic data
have been fitted (EBAC07) [36], and two additional sets of
amplitudes where data from more than one channel was used
to constrain the fit; in this particular case πN and ηN channels.
The unpublished set [42] in a way supersedes the former
2008 analysis [37] where unpleasantly large change of πN

elastic partial waves was needed to accommodate for the

second channel. We have analyzed both sets of amplitudes
wondering whether a significant change in poles between the
two is found. However, as no numeric data for the unpublished
set is available to us, we have attempted to “read off” the data
directly from the graph, and that has introduced uncontrollable
numeric instabilities. Therefore, we have decided to omit the
EBAC10 preliminary data from our analysis until the final
results are published.

The EBAC group has in all three analyses used two bare
poles, situated relatively high in energy (M � 1.8 GeV), and
reported two dressed poles corresponding roughly to N(1535)
and N(1650). Third and fourth pole have not been found. Just as
a preview, we can state that our analysis finds all three solutions
very similar. For all three sets we confirm the existence of the
first two poles, and they are strongly constrained by the πN

elastic channel alone. However, our fits indicate that significant
improvement reduced χ2 is achieved if the third and fourth
poles are allowed. These poles are needed by the fit, but still
poorly determined by only two inelastic channels.

035204-9



M. HADŽIMEHMEDOVIĆ et al. PHYSICAL REVIEW C 84, 035204 (2011)

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

DATA SET

1000 1500 2000 2500
W [MeV]

0.2
0.4
0.6
0.8

4R

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

3R

1000 1500 2000 2500
W [MeV]

0.2
0.4
0.6
0.8

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

0.2
0.4
0.6
0.8

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

0.2
0.4
0.6
0.8

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

0.2
0.4
0.6
0.8

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

0.2
0.4
0.6
0.8

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

0.2
0.4
0.6
0.8

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

1000 1500 2000 2500
W [MeV]

-0.2
0

0.2
0.4

πΝ
−−

>π
Ν

πΝ
−−

>π
Ν

KH80 KH80

WI08WI08πΝ
−−

>η
Ν

πΝ
−−

>η
Ν

WI08

GWU-SES GIESSEN

EBAC08

DMT

JUELICH

WI08

WI08WI08

πΝ
−−

>π
Ν

πΝ
−−

>η
Ν

πΝ
−−

>π
Ν

πΝ
−−

>η
Ν

DMT

EBAC08

GIESSENGWU-SES

WI08 WI08

GIESSEN

GIESSEN

EBAC08

EBAC08

DMT DMT

JUELICH

JUELICH

JUELICH

Re T Im T Re T Im T

FIG. 3. (Color online) Agreement of 3R and 4R CMB curves with “world input” for two-channel fit.

6. Jülich amplitudes

Similarly to many, Jülich group fits their model to
VPI/GWU data (to energy-dependent WI08 set [35]), and
very much like WI08, obtains a very smooth behavior above
1800 MeV. The only difference with respect to WI08 is a
different behavior of high energy tail: while the real part of
Jülich amplitudes falls with energy and the imaginary part
raises, in case of WI08 amplitudes the result is just the opposite.
Therefore, a difference between the two should not be found

in cross section measurements, but only possibly in some
polarization ones. They also report two S11 poles.

Consequently, we expect that our results for pole positions
of Jülich amplitudes show a very similar behavior to WI08,
and that is fulfilled.

The most prominent feature of our analysis of WI08
amplitudes—that in spite of smooth high-energy behavior we
need more than two poles to fit the input—is confirmed for
Jülich amplitudes as well. It is completely clear that we need
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FIG. 4. (Color online) Poles of a world collection of PWA.

at least three poles to satisfactorily reproduce the amplitude
shape, and their amplitudes are in our analysis consistent with
four S11 poles. Very similar as before, the third and fourth poles
are rather undetermined with only two channel constraints.
We have discussed the possibility of finding extra poles in
Jülich amplitudes with Döring in Zagreb last fall [40], and this
possibility has not been entirely ruled out even in analytical
continuation Jülich method. They have simply not looked for
the pole in that energy range. However, even while this pole
might be around 1800 MeV, it must be rather far in the complex
energy plane.

7. Giessen amplitudes

Giessen group also fits GWU-SES data in πN elastic
channel, and gets a reasonable agreement with the input. The
main difference with respect to world collection amplitudes
again lies in the ηN channel data. Most results for this channel
more or less agree within the N(1535) dominance range, but
significantly deviate in the higher energy region.

The Giessen model assumes K-matrix Born approximation
where the real part of the Green function is neglected
and the analyticity is manifestly violated. Consequently, the
comparison of poles obtained in our fit with poles of these

amplitudes is more questionable, as the main assumption for
the correct analytic continuation—that is the analyticity of the
model—is not preserved for both models.

8. Discussion

We have shown that all members of the partial wave world
collection, in spite of the fact that some of them have assumed
only two S-wave resonant states, are consistent with at least
three T-matrix poles. We have also demonstrated that there is
a strong statistical indication that the fourth pole is present in
each of the world collection member, despite the fact that no
one has seen it up to now.

However, the last, and the most farfetched conclusion
should be taken with a grain of salt. There are basically two
alternative ways on how the additional poles could be observed
when Zagreb CMB model is applied to the collection of PWA
amplitudes. The first one is that Zagreb background is not so
complex as the background in most other calculations. Many
of those models work in the hadron exchange framework that
delivers a very structured and elaborate background, while the
Zagreb CMB model models the background with subthreshold
resonances. The systematic appearance of additional third and
fourth poles might rather reflect the insufficient properties
of the Zagreb CMB background, which cannot fully match
properties of the background provided in hadron exchange.
Then, additional poles might be systematically needed in
the present fit to simulate structures of the analyzed models
that cannot be matched otherwise. We did investigate such
a possibility in Ref. [34], but came to a conclusion that
a wide class of nontrivial nonresonant backgrounds can be
safely simulated with Zagreb background treatment, and any
observed new structures indeed are realistic poles described
by new bare parameters lying in the physical region. So, in
spite of the fact that it can not be entirely excluded, this
option is in our opinion not very likely. There is also a second
way on how new poles can be generated in an artificial way.
It is of course interesting to note that additional poles at
higher energy are required in many or maybe most fits to
the considered models—after all, those models, even if many
of them use hadron exchange, are still different. However,
practically all models rely on the GWU phase shifts in the
elastic πN sector as input. Thus, if there is a structure in
the original GWU analysis that survives in all these analyses,
and which cannot be reproduced by the background terms
of the Zagreb model, additional third and fourth poles might
be required in the analysis of all these other approaches. In
other words, a statistical significance may be seen that is
not there, but simply comes from the fact that all analyzed
models except KH80 rely indirectly on the GWU analysis.
The question then, however, remains why is KH80 consistent
with four resonances too.

D. Primary result: Averages

As the main aim of the paper is to use one method in order
to eliminate systematic uncertainties in pole extraction, we
summarize our primary results.
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1. πN elastic channel only

All pole positions and their averages are shown in Figs. 5
and 6.

Three resonant case: As the number of accepted S11

resonances in PDG [15] is three, we first stopped our fit at
three bare poles.

By inspecting 3R solutions in Table I and Fig. 5 we observe:

(i) First two poles N(1535) and N(1650) are extremely well
determined in all PWA.

(ii) We find their average value to be

N (1535) S11 =
(

1498 ± 16
96 ± 20

)
,

N (1650) S11 =
(

1649 ± 9
101 ± 25

)
.

(iii) All PWA do need a third pole, but its position is
extremely ill-defined; KH80, Giessen, and EBAC08
prefer the values between 1700 and 2000 MeV, while
the rest have the values above 2000 MeV.

(iv) The resulting average value is poor

N (2090) S11 =
(

2194 ± 324
424 ± 324

)
.

This separation in two preferred ranges of the third
pole among different PWA permits us to speculate whether
the fitting rules allow for the existence of the fourth
pole.

Four resonant case: We have repeated the fit with four-bare
poles, and results are collected in Table I as 4R solutions. We
show the result in Fig. 6.

By inspecting 4R solutions in Table I and Fig. 6 we observe:

(i) We have found that all other PWA if not required, then
are at least consistent with the four S11 poles, even the
EBAC amplitudes which are based on only two bare
poles input.
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FIG. 5. (Color online) World collection of poles for the three
resonance single-channel fit.
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FIG. 6. (Color online) “World collection” of poles for the four
resonance single-channel fit.

(ii) The reduced χ2 is either improved, or at least stays the
same for all solutions; that justifies the inclusion of the
fourth pole.

(iii) First two poles N(1535) and N(1650) are again very
well determined in all PWA.

(iv) We find their average value to be

N (1535) S11 =
(

1502 ± 12
114 ± 20

)
,

N (1650) S11 =
(

1651 ± 11
109 ± 42

)
.

(v) Contrary to our expectations, and in spite of the fact that
the reduced χ2 is improved practically everywhere, the
scatter in the third and fourth pole remain.

(vi) The resulting average value for the third and fourth pole
is poor

N (xxxx) S11 =
(

1793 ± 108
453 ± 327

)
,

N (2090) S11 =
(

2253 ± 224
356 ± 212

)
.

The existence of the fourth pole is not convincing.

Due to the fact that the third and fourth pole poorly couple to
the elastic channel that is only used at this instant, we conclude
that fitting other channels is inevitable if the improvement on
the third and fourth pole parameters is to be achieved.

2. πN elastic and πN → ηN data

The poor determination of the third and fourth pole for the
single channel fit confirms our former findings that inelastic
channels are essential for fully constraining all resonant states
(scattering matrix poles) (see Ref. [39]). The problem with
stability of minimization solutions lies in the fact that the
ηN channel data are old, scarce, and unreliable (for instance
Brown data at higher energies, see discussion in Ref. [8]), so
ηN channel partial waves are imprecise. Even when being of
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FIG. 7. (Color online) World collection of poles for the three
resonance, two channels fit.

lower quality, the ηN channel data still represent a valuable
constraining condition, because the general trends of ηN

channel are to be simultaneously reproduced together with the
details of elastic channel, and that is by no means simple.
The results of the fit are given in Table II and Figs. 7
and 8.

Three resonant case: As the number of accepted S11

resonances in PDG [15] is three, we first stopped our fit at
three bare poles. We show the result in Fig. 7.

By inspecting 3R solutions in Table II and Fig. 7 we
observe:

(i) First two poles N(1535) and N(1650) are extremely well
determined in all PWA.

(ii) We find their average value to be

N (1535) S11 =
(

1512 ± 25
161 ± 36

)
,

N (1650) S11 =
(

1652 ± 12
126 ± 29

)
.

(iii) If we compare these numbers with the result of single-
channel, three resonance fit:

N (1535) S11 =
(

1498 ± 16
96 ± 20

)
,

N (1650) S11 =
(

1649 ± 9
101 ± 25

)
,

we see that the difference is within one standard
deviation. Real parts of the resonances are almost
completely reproduced, while the imaginary parts are
slightly shifted downward.

(iv) All PWA do need a third pole, but its position is again
extremely ill-defined.

(v) The resulting average value is poor

N (2090) S11 =
(

1986 ± 373
471 ± 301

)
.

Four resonant case: We have repeated the fit with four-bare
poles, and results are collected in Table II as 4R solutions. We
show the result in Fig. 8.
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FIG. 8. (Color online) World collection of poles for the four
resonance, two channels fit.

By inspecting 4R solutions in Table I and Fig. 8 we observe:

(i) We have found that all PWA if not required, then are at
least consistent with the four S11 poles, even the EBAC
amplitudes which are based on only two bare poles.

(ii) The reduced χ2 is either improved, or stays the same for
all solutions. That justifies the inclusion of the fourth
pole.

(iii) First two poles N(1535) and N(1650) are again ex-
tremely well determined in all PWA.

(iv) We find their average value to be

N (1535) S11 =
(

1502 ± 23
144 ± 39

)
,

N (1650) S11 =

(
1649 ± 13
117 ± 37

)
.

(v) The resulting average value for third and fourth pole
are

N (xxxx) S11 =
(

1745 ± 80
220 ± 95

)
,

N (2090) S11 =
(

2191 ± 241
392 ± 301

)
.

(vi) The scatter in the third pole is significantly reduced,
and the indications for its existence are strong.

(vii) The existence of the fourth pole is strongly indicated,
but still not quite convincing.

(viii) If we compare these numbers with the result of single-
channel, four resonance fit:

N (1535) S11 =
(

1502 ± 12
114 ± 20

)
,

N (1650) S11 =
(

1651 ± 11
109 ± 42

)
,

N (xxxx) S11 =
(

1793 ± 108
453 ± 325

)
,

N (2090) S11 =
(

2253 ± 224
356 ± 212

)
,
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we conclude the ηN channel data have confirmed the
good constraint on N(1535) and N(1650) S11 states,
they have improved the confidence limits for the
existence of the new N(xxxx) S11 state, but they are
definitely insufficient to constrain the fourth S11 pole.

Therefore, other channel partial waves have to be
included.

IV. CONCLUSIONS

We have offered one model, the Zagreb realization of CMB
model, for extracting pole positions from a world collection
of partial-wave amplitudes which we treat as partial-wave
input data, and extracted the results. Using only one method
enables us to make a statistical analysis of partial-wave poles
in a manner that we avoid the systematic error caused by the
different assumptions on the partial-wave analytic function
form. We have in detail explained the idea and presented the
results for the S11 partial wave only.

We have analyzed the single-channel fit (only one channel
data are used to constrain the fit), and in details investigated
what are the consequences of enlarging it to a two-channel one
with the ηN channel. We have concluded that even low quality
data in the second channel are sufficient to notably constrain
the arbitrariness of the poorly determined poles. However, we
also concluded that for the third and fourth S-wave poles, ηN

channel is not sufficient.
We found that the first two S11 poles are extremely well

defined by elastic channel and that the included inelastic ηN

channel introduces only small modifications of the elastic
channel result.

We have shown that all members of the partial-wave world
collection, in spite of the fact that some of them have assumed
only two S-wave resonant states, are consistent with at least
three T-matrix poles. We have also demonstrated that there is
a strong statistical indication that the fourth pole is present in
each of the world collection member, despite the fact that no
one has seen it up to now.

We finally affirm that the results of the four-resonant, double
channel fit should be treated as a final result, and we offer the

world average:

N (1535) S11 =
(

1502 ± 23
144 ± 39

)
,

N (1650) S11 =
(

1649 ± 13
117 ± 37

)
,

N (xxxx) S11 =
(

1745 ± 80
220 ± 95

)
,

N (2090) S11 =
(

2191 ± 241
392 ± 301

)
.

At the end, let us briefly comment on the analyticity issues
often refereed to throughout the text. As we have mentioned
before, we have performed a statistical analysis of partial-wave
poles in a manner that we avoid the systematic error caused
by the different assumptions on the partial-wave analytic
function form. To answer the question of a correct choice of
analytic form is a more complex problem. There are structures
of the amplitude that some of these models have, but the
Zagreb model does not. Among them are the numerically
important circular and short-nucleon cuts below threshold, but
also multiparticle branch points in the complex plane above
threshold. Those are not assumptions but required general
properties of the S matrix. As we have shown in our recent
work [32], the amplitudes of one model (Jülich model) can
be identically reproduced using a model with the different
analytic structure (Zagreb CMB), so there is no way to guess
what is the correct analytic structure of the analyzed subpart
part of amplitudes if only one channel (elastic in this case) is
analyzed. In addition, a very important analysis which should
be mentioned here has also been done in Ref. [43]. In this
reference, an attempt has been done to extend the dynamical
coupled channel model to the KY sector. As adding new
channels should strongly help to put further constraints on
the analytic form of partial-wave amplitudes and the existence
of a third and fourth resonance, such an approach should as
a matter of fact be superior to improving precision in the
πN sector alone (see for instance [39,44]). That work is also
of importance because in addition it contains a proper error
analysis on pole positions extracted directly from data.

These all are extremely important aspects of a pole search
systemization, and this work has to be expanded in the future to
include them into determining the precision of pole locations
as well.
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ibid. 38, 232 (1972).

[11] N. G. Kelkar, M. Nowakowski, K. P. Khemchandani, and Sudhir
R. Jain, Nucl. Phys. A 730, 121 (2004).

035204-14

http://dx.doi.org/10.1098/rspa.1970.0145
http://dx.doi.org/10.1098/rspa.1970.0145
http://dx.doi.org/10.1103/PhysRev.112.1344
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1103/PhysRevD.45.4002
http://dx.doi.org/10.1103/PhysRevD.51.4837
http://dx.doi.org/10.1103/PhysRevD.20.2839
http://dx.doi.org/10.1103/PhysRevC.51.2310
http://dx.doi.org/10.1103/PhysRevC.51.2310
http://dx.doi.org/10.1088/0031-8949/58/1/002
http://dx.doi.org/10.1103/PhysRevC.82.038203
http://dx.doi.org/10.1103/PhysRevC.82.038203
http://dx.doi.org/10.1016/S0370-1573(99)00108-8
http://dx.doi.org/10.1016/S0370-1573(99)00108-8
http://dx.doi.org/10.1016/0370-2693(76)90654-7
http://dx.doi.org/10.1016/0370-2693(72)90387-5
http://dx.doi.org/10.1016/j.nuclphysa.2003.10.018


POLES AS THE ONLY TRUE RESONANT-STATE SIGNALS . . . PHYSICAL REVIEW C 84, 035204 (2011)
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πN Newsletter 7, 94 (1992).
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