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Abstract

For geostatistical mapping, normal distribution is the base for matrices operations. Such me-
thods, as the first step, perform normal transformation wherever it is possible. Also, it helps if
the original data transformed in indicators and selected in classes approximately follow Gaussian
distribution. Examples are presented where (a) classes are of the same size and (b) classes are
narrower around median value. In both cases, normal distributed classes of original data (reser-
voir thickness) are transformed in indicators (0 and 1) and mapped with indicator kriging (IK)
and sequential indicator simulations (SIS).

Keywords: geological variables, normal distribution, indicator kriging, sequential indicator si-
mulations, sandstone reservoirs, Upper Pannonian, Lower Pontian.
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1 Introduction

There is an assumption that many geological variables follow normal distribution, but often there
are no cases with real measurements. Many of such variables have left or right tails or corres-
pond to Poisson or binomial distribution. For many statistical analyses, especially for geostatis-
tical mapping (e.g. de Wijs 1951; Journel and Huijbregts 1978; Hohn 1988; Isaak and Srivastava
1989; Deutsch and Journel 1997), normal distribution is mathematical base for the proper use of
descriptive statistics, which includes variance, mean, mod, median etc. Variogram, which is a
basis for kriging mapping, is derived from the variance. That means that normal distribution is
also condition for a variogram as a representative tool. Many of geostatistical methods, as the
first step, perform normal transformation of data wherever it is possible. Normal distribution is
also helpful in indicator methods where one more transformation is applied, i.e. indicator trans-
formation based on class values. Although normal distribution of the original dataset before indi-
cator transformation is not necessary, it is very helpful if the frequency of their classes division
follows such distribution, because set of those classes also has statistical properties. It is impor-
tant because in indicator methods only 3rd order stationarity is assumed and any other statistical
property is valuable for results reliability.

Examples of indicator data classes selection for some geological variable observed in hydrocar-
bon reservoirs are presented. Different cases can be observed - (a) when classes are of the same
size and (b) when classes are narrower around median value. In both cases, classes that support
normal distribution were selected, after which original data was transformed in indicators (0 and
1). Case study for the thickness variable of Upper Pannonian and Lower Pontian sandstone re-
servoirs is presented. These values were mapped by using Indicator Kriging (IK) and Sequential
Indicator Simulation (SIS). In this case, before indicator transformation, original dataset was
transformed into classes, so that their frequency approximately follows normal distribution. Sim-
ilar example, but only with porosity variable can be found in Novak Zelenika et al. 2010.

2 Input data

Input data for mapping was acquired from 23 wells for Upper Pannonian “Beta” reservoir (Ta-
ble 1) and from 19 wells for Lower Pontian “T” reservoir (Table 2). Input variable was total
thickness.
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Table 1: Input well data of the “Beta” reservoir

, Total
Well Reservoir thickness (m)

; 135?5 Table 2: Input well data of the “T” reservoir
3 23.0 , Total
n 55 5 Well Reservoir thickness (m)
5 9.0 1 T 13.0
6 10.0 2 T 12.0
= 35 3 T 12.0
3 4.0 4 T 13.0
9 20.5 5 T RS
10 20.0 6 T 12.0
11 . 14.5 7 T 11.0
12 3 22.0 8 T 9.5
13 13.5 9 T+U 20.0
15 11.5 11 T+U 3.0
16 18.5 12 T 13.5
17 85 13 T+U+V 25.0
18 9.0 14 T 6.0
19 8.5 15 T 9.0
20 10.0 16 T 10.0
> 70 18 T 8.0
>3 18.0 19 T 6.0

3 Indicator Transformation

Base for Indicator Kriging mapping is indicator transformation of the input data. That means that
the thickness values should be transformed into 0 and 1 based on certain cutoff. Sometimes the
hardest part is to decide how many cutoffs are enough. The best way for that is to group the data
into several classes so that they approximately follow normal distribution pattern. Based on the
class’s distribution cutoff values were chosen. Figure 1 represent normally distributed classes
applied as cutoffs for indicator transformation both for “Beta” and “T” reservoirs.

Number of samples
Number of samples

W( HWH H m =

0.03.0 3170 7190 91150 151210 21.1-23.0 5.19.0 9.1-13.0 13.1-17.0 17.1:21.0 21.1-25.0

Thickness classes Thickness classes

Figure 1: “Beta” (left) and “T” (right) reservoir classes for thickness
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There are 6 cutoffs for the indicator transformation of thickness in the “T” and “Beta” reservoirs.
Cutoff values for the “T” reservoir were 5, 9, 13, 17, 21 and 25 m and for the “Beta” reservoir 3,
7,9, 15,21 and 23 m (Figure 1).

4 Indicator Kriging and Sequential Indicator Simulations mapping

Based on cutoff values, indicator transformation was performed and thickness variable was
mapped by Indicator Kriging (IK) and Sequential Indicator Simulations (SIS) techniques. Ob-
tained maps are probability maps. IK shows the probability that the variable is smaller than cer-
tain cutoff value (Figures 2 and 3). SIS maps also show probabilities but the mapped variable is
higher than certain cutoff (Figures 4 and 5). Mapping was performed in WinGslib software

(Deutsch and Journel 1997).
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Figure 2: IK maps of the “T” reservoir thickness
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Figure 3: IK maps of the “Beta” reservoir thickness
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Figure 4: SIS maps of the “T” reservoir thickness
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Figure 5: SIS maps of the “Beta” reservoir thickness

5 Conclusion

Most important in mapping by IK and SIS is the definition of the cutoff values. This could be the
hardest part because it depends largely on experience. With too many classes of the mapped va-
riable, time needed for mapping drastically increases. Such approach also asks for large number
of point data - more than 30. On contrary, employing just a few cutoffs (less than 5) can result in
the loss of some important geological features of the mapped variable. In any case, definition of
classes that approximately follow normal distribution is useful, because it makes possible to cal-
culate the descriptive statistics of such data and improve interpretation of indicator maps that are
based only on 3™ order stationarity (i.e. only statistical feature of the data are variograms. Nei-
ther mean nor variance of original dataset are representative. Due to indicator transformation
input data are significantly altered as well as their statistics).
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