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Abstract—The image similarity measure is very important
to determine the correspondence between images in order to
quantify the accuracy of image registration. The selection of
the image similarity measure requires a trade-off between speed
and performance. In the current state of the art, fast similarity
measures are unable to cope with complex relationships between
image intensity values. Currently, the most popular image sim-
ilarity measures are based on information theory because of
their property to find predictable relationship between image
intensity values. In this paper, we present a novel image similarity
measure and compare it to others such as mean square difference,
correlation, correlation coefficient, joint entropy, mutual infor-
mation, and normalized mutual information. The experiments
have shown that the proposed similarity measure is capable of
describing complex relationship between image intensity values
while offering a favorable speed-performance trade-off as com-
pared to other known similarity measures.

I. INTRODUCTION

An similarity measure is a measure of correspondence
between two images. If the similarity measure is maximal, the
images are considered to be correctly aligned. Various image
registration techniques utilize an image similarity measure
to find the correct alignment of two images, for example:
multiview, multitemporal or multimodal image registration [1].
The similarity measure may be used for image stitching or
mosaicing (multiview), motion detection or object tracking
(multitemporal), or for information fusion (multimodal). Con-
sidering the problem of aligning two images, the simplest idea
is to use the Eucledian distance between images. This idea
can be easily extended to different correlation measures which
are able to determine the similarity between images with an
affine relationship between pixel intensities. However, the as-
sumption of affine relationship between image intensity values
does not always hold, especially in the case of multimodal
image registration where different sensors are used for image
acquisition of the same object, resulting in a complex rela-
tionship between pixel intensities. Perhaps for this reason, the
most popular similarity measures are those that measure the
statistical relationship between pixel intensities, also known
as information theoretic similarity measures [2], [3], [4], [5].
A well known example of the information theoretic similarity
measures is the mutual information. The mutual information
measures how much information one gains about an image

given the other image. In this way, the mutual information does
not assume any functional relationship between the images, but
only a predictable relationship between images [6].

In this paper, we propose a novel image similarity measure
and compare its properties to those of other similarity mea-
sures. We aim to show that the proposed similarity measure
is able to determine the correspondence among images with
a functional, rather than just an affine, relationship between
their pixel intensities, and this in a relatively short processing
time.

II. SIMILARITY MEASURES

The problem of defining the correspondence between im-
ages can be framed as a problem of defining a distance
measure. The notation used throughout the paper denotes S(x)
and T (x) as the source and target image, respectively, where x
stands for the coordinates vector of the image. The deformed
source image, or the output image (of the registration process)
is denoted as O(x), which can be written as:

O(x) = S(T (x)) (1)

if the geometric transformation of the underlying space of
image S is denoted with T . The vector x is defined on the set
DX defined as either T ∩O [7] or T ∪O [8].

The images O and T can be observed as statistical vec-
tors. Considering the elementary problem of measuring the
(dis)similarity between two vectors, the simplest idea is to
use a distance measure, for example:

D = E[(O(x)− T (x))2] (2)

= E[O(x)2 − 2 ·O(x)T (x) + T (x)2] (3)

= E[O(x)2]− 2 · E[O(x)T (x)] + E[T (x)2] (4)

where E[.] denotes the expectation operator over the set DX . If
the E[O(x)2] and E[T (x)2] from the equation 4 are constant,
the negative of the distance measure D will have qualitatively
the same behavior as the correlation between two vectors:

C = E[O(x)T (x)] (5)

which has a geometric interpretation as the angle between two
vectors. For images, the assumption E[O(x)2] = E[T (x)2] =



const. holds only for small rigid transformations when the
overlapping image regions are approximately the same or for
the fixed image frame (i.e. DX = T ∪O).

It was shown that the correlation performs well if the
images differ only by simple noise (Gaussian [6] or in some
case Rician [7]). Various modifications and normalization
techniques have been introduced to cope with various noise
types or relationships between image pixel values [7], [8], [9].
For example, the correlation coefficient (CC) performs well for
an affine relationship between pixel values:

CC(T,O) =
E[(T (x)− µT )(O(x)− µO)]

σT · σO
(6)

where µO and µT denotes the image average, and σT and σO
the image standard deviation.

Another approach is to characterize the relationship between
T and O in an information theoretic way, by utilizing the joint
probability density function (PDF) pTO = p(T,O). The joint
PDF allows us to describe any type of functional (or only
statistical) relationship between images and any noise that may
exists in the image acquisition process. Historically, the first
idea to use the joint entropy H(T,O) as an image similarity
measure was presented by Hill et al. [10]:

H(T,O) = −E[log pTO(x, y)] (7)

Since the joint entropy is defined only on the overlapping
region of images T and O (i.e. T ∩O), the change in overlap
may affect the measured entropy. The solution to this problem
was proposed by Collignon et al. [11] and Viola [6], in the
form of mutual information (MI):

MI(T,O) = E[log
pTO(x, y)

pT (x)pO(y)
] (8)

= H(T ) +H(O)−H(T,O) (9)

Later, Studholme et al. [12] proposed the normalized mutual
information (NMI) and showed that this measure, in some
cases, performs even better than original MI measure:

MI(T,O) =
H(T ) +H(O)

H(T,O)
(10)

The latter three similarity measures (H, MI, NMI) are
very popular for multimodal image registration due to the
property of the joint PDF to describe any type of relationship
between images. However, for reliable calculation/estimation
of the joint PDF region DX has to contain a statistically
significant number of pixels. Additionally, when compared
to the measures defined earlier, they are usually slower to
claculate. Therefore, we will briefly discuss the computational
complexities of D, C and CC and compare them to H, MI and
NMI.

If we use the notation N = card(DX), where card(DX)
denotes the cardinality of the set DX , the computational
complexity of the CC, C and D is O(N). Similarly, Maes
[13], reported complexity of MI as O(N), while Roche [14]
reported the complexity of O(nx ∗ ny), with nx and ny the
number of gray levels (or bins) within each image. This

difference is relates to whether the histogram or entropy
calculation consumes more time. Notice that for the histogram
calculation, the algorithm requires all pixel values in the region
DX and the computational complexity is therefore linearly
dependent on the number of pixels in the region DX . However,
for the entropy calculation the algorithm has to pass through
all bins of the joint histogram (or number of gray value pairs
in the images), adding a nonlinear factor to computational
complexity. If the number of bins of the histogram is selected
to be much smaller than the number of pixels within the
image, the MI computational complexity can be approximated
by O(N). Notice that the latter discussion holds not only for
MI, but also for H and NMI as well.

Here, we propose a novel exponential correlation (EC)
similarity measure of the form:

EC = E[(eO(x)−µO − 1)(eT (x)−µT − 1)]2 (11)

where µO and µT denote the image average. To motivate the
form of the proposed EC similarity measure, let us asume the
numerator of the Equation 6 (the CC similarity measure) to
be the first factor (i = j = 1) of the bivariate polynomial of
the form:

E[
∞∑
i=1

∞∑
j=1

aij · (T (x)− µT )i(O(x)− µO)j ] (12)

With the selection aij = 1
i! ·

1
j! , we can rearrange the Equation

12 to the form:

E[

∞∑
i=1

1

i!
(T (x)− µT )i

∞∑
j=1

1

j!
(O(x)− µO)j ] = (13)

= E[(eO(x)−µO − 1)(eT (x)−µT − 1)] (14)

Here, we aim to show that the proposed EC similarity
measure from the Equation 11 is able to determine the corre-
spondence among images with complex relationships between
the pixel values much better than D, C, or CC. Additionally,
we will show that the proposed EC measure can be calculated
faster than H, MI, or NMI.

III. EXPERIMENTS AND RESULTS

In this section we compare the accuracy and the execution
time of the different similarity measures.

The image database was constructed using the first 200
images returned by a Google search for 512 × 512 images.
After manual discarding the multiple copies of the same image
(e.g. several instances of Lena etc.) the testing set was reduced
to 167 images. Finally, all images were converted to gray scale.
A few example images from the test set are shown in Figure
1.

The accuracy of the image similarity measure is calculated
from the correspondence between two aligned images. For
this, image registration is utilized. The other set of images for
registration is constructed by applying various degradations
to the images from the test set. In this way, various changes
in the image acquisition process are simulated, assuming the
same scene has been imaged. By utilizing the same registration



Fig. 1. A few example images from the test set.

process and changing only the image similarity measure, the
registration accuracy will reflect the accuracy of the image
similarity measure.

A. Image degradation simulation

During the image acquisition process various factors may
affect the quality or change the look of the image. For example,
a change in the position of the light source or a change of
the sensor type, may significantly change the intensity values
within the image. In many image registration applications
(e.g. medical image registration) we require that the image
similarity measure recognizes the images as similar, regardless
of different acquisition conditions, or various changes of image
pixel intensity values. Therefore, each image from the set is
degraded by random intensity distortion, contrast change, and
additive noise. The images degraded in this way are used in
the image registration process to test the registration accuracy
between the degraded image and the original.

Image degradation effects are implemented in the following
way:

1) A uniformly distributed Gaussian noise is added to the
image. The amplitude of the added noise is randomly
selected from the range [0,Amax].

2) The image is degraded by contrast inhomogeneity mod-
eling. The contrast inhomogeneity within an image is
modeled via:

I ′(x, y) =
I(x, y)

∆I(x, y)
(15)

where ∆I(x, y) is bell-like function defined as:

∆I(x, y) = k · ((x− xc)2 + (y − yc)2) (16)

with (xc, yc) being the coordinates of the point around
which the bell-like curve is positioned and k is constant.
The center of the inhomogeniety (xc, yc) is randomly
selected within the image range, while the factor k is
randomly selected from the range [0.00005, 0.0005].

3) To further model a complex relationship between im-
age pixel intensities, a nonlinear intensity distortion is
implemented. The distortion is implemented as n-th
order polynomial, where both order and roots of the
polynomial are randomly selected. The order of the poly-
nomial is selected between values 2 and 6, and roots are
selected between Amin and Amax, where A stands for
the intensity level (amplitude). The polynomial is always
shifted so that both domain and codomain are [Amin,
Amax] to effectively deform the image intensities.

A few examples of the degraded images can be found in
Figure 2.

Fig. 2. Images from the Figure 1 after degradation.

B. Accuracy and precision test

Each image was registered to its degraded version using
a different similarity measure. This experiment was indepen-
dently repeated for image registration utilizing rigid (transla-
tion) and non-rigid (scaling) transformation.

For the translation, the similarity measure is calculated for
a shift of ± 100 pixels, with a step of one pixel (to avoid
interpolation artifact described by Pluim et al. [15]). For the
scaling, the scaling factor is calculated for the interval [0.5,2],
with a step size of 0.1. In all experiments the similarity
measure is calculated in the overlapping image region only, i.e.
the set DX is defined as T∩O, and both translation and scaling
are done in the y-axis direction only. The exhaustive search
for the maximum, instead of implementing an optimization
algorithm, is done to be sure that the global maximum and
the correct alignment is achieved.

For the rigid registration (in our case translation only) an
accurate registration is achieved for a shift of zero pixels
between the original and the degraded image. Therefore, in
this case the registration error will be measured in pixels as a
misalignment between two images (see Figure 3).

Fig. 3. Similarity measure graph for a translation of ±100 pixels. An
incorrect position of the global maximum leads to incorrect registration
between original and degraded image. The error is measured in pixels as
indicated in on the graph.

The average registration error and standard deviation for
rigid registration are show in Figure 4, where circles represents
the average error and the lines denotes the distance of one



standard deviation from the mean error. The exact numbers
are given in Table I. We can notice that the first column
(average) reflects the accuracy of the similarity measure,
showing a larger bias for some similarity measures (e.g. CC).
The second column (standard deviation) reflects the image
similarity measure precision, showing that some measures are
much more precise than others (e.g. NMI vs. C).

Fig. 4. Average and standard deviation of a registration error (y-axis). The
registration utilizes rigid transformation for various types of image similarity
measures (x-axis).

µerr σerr

D 6.1377 77.7563

C 2.8743 83.9921

CC 11.1557 70.8353

EC 2.0539 40.7180

H -2.7246 41.5632

MI -1.0240 28.7559

NMI -0.8683 28.2774

TABLE I
AVERAGE AND STANDARD DEVIATION OF THE REGISTRATION ERROR.

THE REGISTRATION UTILIZES A RIGID TRANSFORMATION FOR VARIOUS
TYPES OF IMAGE SIMILARITY MEASURES.

For a non-rigid registration (in our case scaling only) the
accurate registration is achieved for a scaling factor of one. In
this case the registration error is measured as a unitless value,
and calculated as:

ErrS = log2(1 + ε) (17)

where ε is the absolute error from the accurate registration
result (for scaling this should be equal to one). The logarithm
is introduced to assure that the scaling error is symmetrical, i.e.
it gives the same error for shrinking and stretching the image
by the same factor. Also it gives no error if the images are
scaled by the same factor. The average registration error and
standard deviation for non-rigid registrations are graphically
illustrated in Figure 5 using circles and lines, while the exact
numbers are listed in Table II.

Fig. 5. Average and standard deviation of the registration error (y-axis).
The registration utilizes a non-rigid transformation for various types of image
similarity measures (x-axis).

µerr σerr

D -0.2077 0.7327

C -0.1068 0.7285

CC -0.0147 0.6908

EC 0.0322 0.3890

H -0.0287 0.2384

MI -0.1999 0.4517

NMI -0.1823 0.4139

TABLE II
AVERAGE AND STANDARD DEVIATION OF THE REGISTRATION ERROR.
THE REGISTRATION UTILIZES A NON-RIGID TRANSFORMATION FOR

VARIOUS TYPES OF IMAGE SIMILARITY MEASURES.

Since the registration procedure is the same for all image
similarity measures, the registration error reflects the ability of
a similarity measure to recognize images as similar regardless
of image degradation effects performed over the image.

From the presented results we notice that in the case of
rigid registration, all measures have approximately the same
error and all but CC and D have a bias of less than three
pixels. However, it is interesting to notice that the standard
deviation of the error for EC is lower than D, C, CC and even
H, which means that the use of EC as a similarity measure
is more reliable. Still, MI and NMI have an even lower error
standard deviation. In the case of non-rigid registration, CC,
H and EC have the smallest average error, while H and EC
have the smallest standard deviation of the error.

C. Speed test

To evaluate the execution time of the similarity measures,
the Matlab Profiler was used. The average execution time from
200 function calls is used to compare the performance of the
similarity measures. All algorithms were implemented on a
standard quad-core PC without parallelization.

The results of the experiment are shown in Figure 6, which
presents the average execution time of the different image
similarity measures. In Table III the exact numbers for the



average execution time, calculated for 200 function calls, are
given. From the data we can notice that EC is faster than H,
MI and NMI, and almost as fast as CC, but slower than C and
D.

Fig. 6. Comparison of the average execution time of 200 function calls of
various image similarity measures.

T ime

D 4.020

C 2.030

CC 15.721

EC 16.199

H 54.373

MI 55.647

NMI 54.572

TABLE III
EXECUTION TIME (IN MILISECONDS) FOR EACH SIMILARITY MEASURE.

IV. DISCUSSION AND CONCLUSION

The experiments have shown that the proposed EC image
similarity measure performs almost as good as the information
theory based similarity measures (H, MI, NMI) for rigid
registration, and even outperforms MI and NMI in the case of
non-rigid registration. From the presented data one can also
notice that the EC outperforms D, C and CC for both rigid and
non-rigid registration. Finally, from Section III-C it is evident
that although the EC similarity measure is slower than D, C,
and CC it is still faster than H, MI, and NMI. The strength of
the EC measure is also that it does not require a statistically
significant number of pixels for calculation, as opposed to
information theoretic image similarity measures. This means
that EC can be calculated for even smaller regions where H,
MI and NMI do not produce good results. The proposed EC
measure inherits calculation speed from the measures such as
D, C, and CC while being able to cope with complex intensity
relations as done by the information theoretic image similarity
measures. From this, we may conclude that the proposed EC

similarity measure offers a favorable speed-performance trade-
off as compared to other similarity measures described in the
paper.
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