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Abstract—Morphological features of the aortic outflow ultra-
sound images are used in clinical practice for diagnosis of cardio-
vascular diseases. While feature extraction can be done manually,
it is very time consuming. Segmentation is an important step in
image interpretation, analysis, and quantification of the objects
within a scene. In this work, we propose a novel method for
the automatic segmentation of aortic outflow profiles based on
a segmentation technique that incorporates a prior knowledge
about the object shape in the form of the shape boundary model.
The proposed model-based method utilizes a series of image
analysis steps including image registration and a modification
of the RANSAC algorithm to deal with noise and other artifacts
in the image acquisition process. The experimental validation
is done on a set of 67 patients and is compared to manual
segmentation by an expert cardiologist. The proposed method
has shown high correlation with results obtained by the expert
cardiologist.

I. INTRODUCTION

The Continuous Wave Doppler signal represents the time-
change of velocities along a scan line in a 2-D ultrasound
imaging plane. The signal generated by the blood outflow from
the heart into aorta, acquired by Continuous Wave Doppler,
is known as the aortic outflow profile (see Figure 1). In
this study, we are interested in detecting the shape of the
aortic outflow profile, since morphological characteristics of
the aortic outflow profile can be used in clinical practice for
the assesment of cardiovascular diseases. To be able to find
a correlation between the aortic outflow profile morphology
and the myocardial function, segmentation of the profile is
necessary. Following the segmentation, the quantification of
morphological characteristics is possible. While the segmen-
tation can be done manually, it is usually time consuming. In
this manuscript, we propose a novel method for automatic seg-
mentation of aortic outflow profiles based on a segmentation
technique that incorporates a prior knowledge about the object
shape in the form of shape boundary model. The proposed
method utilizes (1) region-based thresholding to find the rough
shape boundary, (2) boundary modeling and model fitting, and
(3) a modified version of the RANSAC algorithm to deal with
possible inaccuracies of the previous steps.

Tschirren et al. [1] and Bermejo et al. [2] have worked on
blood velocity profiles. Tschirren et al. analyses brachial artery

blood flow and therefore does not deal with the problems such
as valve click (described later), while Bermejo et al. utilize a
manual segmentation of the blood flow in their study. Our
previous work [3], [4], described a solution to the problem of
aortic outflow segmentation using an anatomical atlas. Atlas
construction and image registration are computationally inten-
sive operations which include a complex spatial transform and
optimization procedure. Therefore, in this paper, we investigate
a different approach which is inherently less computationally
intensive. The approach is based on boundary modeling in the
form of a (truncated) harmonic decomposition, similar to the
Fourier or Sine transform [5], [6], [7]. Due to various artifacts
and excessive noise, the model fitting using linear regression
[8] is heavily affected by the large number of outliers. To deal
with this, a random sample consensus [9] is used to select the
best fit of the model on the given data. In the rest of the paper,
we first describe the problems which make ultrasound image
segmentation a challenging problem, and then we proceed with
the methodology and problem solution explanation.

The methodology proposed herein is evaluated on aortic
outflow images from of 13 healthy volunteers and 54 patients
with aortic stenosis. Images were acquired with a clinical
echocardiographic scanner (Vivid 7, GE Healthcare) using an
apical 5-chamber view and Continuous Wave Doppler mode.
Images were digitally stored in ’raw’ Dicom format, containing
the spectral Doppler information in proprietary tags. Using
an Echopac workstation (GE Healthcare), the ’raw’ Dicom
images were converted into Hierarchical Data Format (HDF).
From the HDF image the aortic outflow profile was extracted.
The aortic outflow profile image reflects the time-change of
aortic velocities, with the x-axis representing time and y-axis
the velocities.

II. PROBLEM SPECIFICATION

Segmentation of ultrasound images is difficult due to prob-
lems such as image noise, various acquisition artifacts, and
poor contrast. Some of these problems are depicted in Figure 1.
The object within the white ellipsoid in the Figure 1(a) is the
object that needs to be segmented. This object represents the
motion along the scanning line when the heart valves are open



i.e. when the blood flows form the heart into the aorta. Notice
that the region of interest is usually the largest bright region
within image, however, this is not always the case, as we can
see in the Figure 1(d).

The low velocity rejection region depends on the machine
settings (clutter filter), and can significantly vary in size (see
Figure 1(b)) depending on the user’s settings. This velocity
rejection region may present a problem for a region based
approach to image segmentation since it may arbitrarily vary
around zero and occlude the low velocities of the object
of interest. To quantify the time-change of the velocities,
or simply to discard the negative velocities, the line that
represents the zero velocity needs to be identified. This will
be the object’s lower boundary. Similarly, the upper object
border is bound by the instantaneous maximal velocity of the
blood flow. However, the artifacts, similar to the ones indicated
by the ellipsoids in the Figure 1(c), introduce additional
difficulties in detecting the object upper boundary. To ease
this problem, we first detect the velocity line above which
there is no significant information, somewhat alike the zero
velocity line. In many cases, this approach will discard artifacts
such as aliasing, but the valve clicks will surely remain. The
valve clicks represent a portion of the signal concatenated
to the end or the beginning of the region of interest which
arise at valve opening and closing. This obviously distorts
the information about blood outflow velocities, since in many
cases the maximal velocity recorded by Doppler ultrasound
does not represent the maximal blood outflow velocity but
rather the maximal valve velocity. Therefore we should also
discard the valve clicks from the object.

As noticed earlier, the objects within the region of interest
vary in brightness and contrast, sometimes even within the
same image. A constant threshold level would obviously lead
to an object with many holes (at least in some cases) and a
noisy border.

III. METHOD

The outline of the proposed method is shown below:
1) determine zero-velocity line (lower signal boundary)
2) determine maximal-velocity line (upper signal bound-

ary)
3) apply median filter for image noise reduction
4) extract individual heart beats
5) register individual heart beat images by correlation
6) average registered heart beat images
7) select threshold value
8) perform image thresholding to obtain initial segmenta-

tion result
9) fit velocity profile model using the RANSAC algorithm

to improve segmentation result

A. Lower and upper signal boundary

To detect the lower and upper signal boundary, the image is
projected onto the y-axis. Afterwards, the image projection
is smoothed, divided by 2, and plotted together with the

image projection, as shown in Figure 2. Now, the low velocity
region is easily recognized as the part of the signal for which
the smoothed projection is higher than the original signal.
The zero-velocity line is defined as the medial part of this
region. The maximal-velocity line is detected as the rise of
the smoothed projection by 10% from the end of the signal.

Fig. 2. The projection of the image onto the y-axis (solid line) and smoothed
signal divided by 2 (dotted line). x-axis is in pixels, y-axis shows the sum of
intensities.

The smoothing of the projection of the image onto the y-
axis is done using the convolution between the original signal
and the Gaussian filter of size N=10.

B. Noise reduction

Since we primarily expect speckle noise in the images, two
median filters were introduced. This is done just after the
zero-velocity line detection, to avoid the low velocity region
blurring in cases when this region is rather thin. The mask
of the first median filter is 3-by-3, while the second mask
dependents on the size of the original image. In the case the
image size is M-by-N, the mask will have the size (M-by-
N)/100. The result is rounded to integer.

Fig. 3. An example of the detected period. Both axis are in pixels.

C. Heart beat extraction and averaging

For additional noise reduction, the fact that cardiac signals
are periodic is used. First, the period of the signal is detected.
This is done by a multi-resolution approach. At a lower
resolution, the correlation is done between the first part of



(a) Dashed ellipsoid indicates problem with the
poor contrast

(b) Dashed ellipsoid indicates the low velocity
region

(c) Dashed ellipsoid indicates artifacts (referred
by cardiologist as aliasing and valve clicks)

(d) Dashed ellipsoid indicates largest bright re-
gion

Fig. 1. The figure depicts the issues with the region-based approach of the aortic profile detection and segmentation, such as poor contrast (a), large low
velocity region (b), various artifacts (c), and other bright region apart from region of interest (d).

the image, and the next part of the same size. This is repeated
by iteratively adding pixel columns to the images. The period
is detected at the point where the maximal image correlation
is achieved. The same procedure is repeated at a higher
resolution, to detect the period more accurately. The example
of the detected period is depicted in the Figure 3.

After the cardiac period is detected, the image of each heart
beat is extracted and the average heart beat image is calculated.

D. Threshold selection

The threshold is selected as the average intensity (denoted
by A) from the average beat image. Image thresholding is
performed using the selected threshold value to obtain a rough
initial segmentation result. Figure 4 shows the result for a
representative image.

E. Model fitting

After thresholding the object boundary is visible. The border
represents the envelope of the signal, but not the maximal
velocity of the blood outflow since some of the signals
still contains the valve clicks. However, working with the
envelope of the signal, rather than the whole image, we may
significantly improve the execution time. Furthermore, this is
not the desired signal, since the interval of interest is much
smaller than the average beat. The beginning and the end of the
interval of interest is depicted by two white circles in Figure
4 (denoted with x0 and xend). To detect the region of interest
within the average beat, the algorithm searches for the part

Fig. 4. Point selection for the approximation algorithm.

of the envelope higher than the average, and focuses to the
part of the signal that has the longest duration. This region is
enlarged until the envelope stops falling. This is used just as an
approximation of the beginning and the end of the signal. The
real beginning and the and of the signal are randomly selected,
within the implementation of the RANSAC algorithm, from
an uniform distribution around that value. The interval for the
uniform distribution was selected as 10% of the interval of
interest for the signal beginning and 30% for the signal end.

The envelope of the outflow profile within the interval
of interest can be modeled using a set of sine functions.
The idea behind this approach is that the valve clicks, that
may exist within this interval and occlude the information
about the blood outflow velocities, have higher frequency than



the frequency allowed by the model proposed below. In this
way the valve clicks will be treated as the outliers from the
proposed model which the RANSAC algorithm has to deal
with. If we pick just one point from the envelope within the
region of interest (let’s denote it (x, y)), an approximation of
a signal can be written as:

y =

M∑
i

ai · sin(
iπ(x− x0)

l
) (1)

where l is the length of the signal, i.e. l = xend − x0, and M
is the number of sine functions used for signal approximation.
We selected M = 4. From the region of interest N points are
selected and used to model the envelope (denoted as white
”X” in Figure 4). Notice that with N = 5 points selected,
the equation system is overdetermined and can be written in
matrix form as:
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We used the notation x = [x1..xN ]T and y = [y1..yN ]T for
the coordinates of the samples from the envelope (Figure 4),
and a = [a1..aM ]T to denote the vector of the amplitudes of
each sine component used to model the envelope. If Equation
2 is written in the more compact form:

S · a = y (3)

it is easy to notice that the solution of Equation 3 can be given
as the mean squared error approximation. So the vector of the
amplitudes of the sine components (vector a) used to model
the envelope is calculated as:

a = S+ · y (4)

where S+ stands for a Moore-Penrose pseudoinverse of a
matrix S [10], [11].

While in the best case scenario, the approximation of the
signal removes the noise from the signal, it may still happen
that, due to the selection of the points, the approximation
may not be so good. The approximation depends on just M
selected points from the signal and some of the selected points
may be selected from the part of the envelope belonging to
the valve click. This part of the envelope bears no significant
information of the blood outflow, but may significantly change
the proposed approximation. Therefore, these points should
be considered as outliers. To deal with outliers a modified
version of the RANSAC algorithm was implemented. Apart
from the randomly selected points from the region of interest
and search for the best consensus of the signal approximation,
the random selection of the beginning and ending point was
also implemented. This was done since it was noticed that the
quality of the approximation is heavily dependent on these two
points, which are impossible to determine exactly without use
of expert knowledge.

IV. EVALUATION AND RESULTS

To evaluate the proposed method 67 images of outflow ve-
locity profiles are used. 13 out of 67 images belong to healthy
volunteers, while the rest (54 images) belonged to patients with
severe aortic stenosis. The images range in resolution from 96-
by-1486 to 128-by-2890, with 8-bit encoding of the intensity
levels. The proposed segmentation is compared to manual
segmentation done by an expert cardiologist. The results are
evaluated in the following way: a) by measuring the segmen-
tation error defined as in Equation 5 and b) by measuring
the correlation between delineated border of automated and
manual segmentation.

The segmentation error is defined by:

E =
A1 −A2

A
(5)

where A1 is the area of the manually segmented region, A2 is
the area of the region segmented using the proposed method
for aortic outflow segmentation, and the area A is defined
as A = A1 ∪ A2. For qualitative evaluation, an example of
an aortic outflow profile segmentation is presented in Figure
5. In the left figure, the manual segmentation is depicted
with a dashed line, and on the right figure the dashed line
represents the result of the simple thresholding technique
described earlier (see Section III-D). In both figures, the solid
line shows the result of the proposed method.

Fig. 5. The comparison of the manual and the proposed segmentation (left)
and the comparison of the proposed segmentation and simple thresholding
(right). All axis are in pixels. See text for details.

Notice how in Figure 5 manual and automated segmentation
results correlate well, while the method manages to deal with
noise and outliers. This is generally the case, since the average
correlation is 89.87%. An average error (calculated as in
Equation 5) is 20.25%. To quantify how well the segmentation
method tracks the perceptual border of an object, we measured
the average intensity standard deviation along the delineated
border. The average intensity standard deviation along the
delineated border is 27.95 for the proposed segmentation, and
15.52 for the manual segmentation. This equals to 10.96%, or
6.08% respectively, since each image has the maximum value
of 255.

V. CONCLUSION AND FUTURE WORK

In this paper, a model-based approach for Doppler velocity
profile segmentation has been proposed. It incorporates a
preprocessing step, envelope detection and model fitting which



deals with outliers using a version of the RANSAC algorithm.
The proposed method was evaluated on the 67 outflow velocity
profiles from a combined set of healthy volunteers and patients
with aortic stenosis. The results showed a high correlation
(89.87%) with manual segmentation and an average error of
20.25%. We believe that the method shows promising results
since the results presented here may be additionally improved
if the heart beat period is more accurately detected. This can
be achieved either by manual indication of the period, either
by working directly with DICOM files which contain also the
ECG signal.
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