
  

  

Abstract — Underwater exploration is experiencing an ever 
increasing usage of both autonomous and remotely operated 
robotic vehicles. Vehicles are typically equipped with several 
sensors depending on the mission type being carried out. 
Integration of all these systems together, as well as obtaining 
data from them presents a significant challenge. This article 
describes a software architecture which represents all entities 
in the system as equivalent modules, while hiding their specifics 
from the user. Each module in the system is fully defined only 
by the data it produces and the commands it accepts. Modules 
are coupled together using a communication interface which 
again hides the underlying protocol from the user, and is based 
solely on message exchange. This architecture allows quick 
reconfiguration of the vehicle, easy integration of various 
sensor systems and provides the application developers with a 
higher level of abstraction.  

I. INTRODUCTION 

OFTWARE interfaces are a common way of improving 
potential for code reuse, simplifying cooperation 

between multiple programmers on the same project and 
making code more readable. Classes used in object oriented 
programming have the benefit of grouping data together 
with the methods that utilize it. At the same time, classes 
improve the security of the code because they can prevent 
illegal operations on data. When designing classes that will 
be used in the system, the public methods define how its 
functionality will be exposed. For good modularity, the 
public functions should all have the same level of 
abstraction [1]. Class interchangeability is achieved using 
interfaces. Interfaces specify the methods a class should 
implement without providing any implementation details. A 
class which implements an interface guarantees that it can be 
used in a context where such an interface is required. The 
class can implement more than one interface, and the 
interface that is used depends on the context [2]. Code that 
relies on interfaces instead of classes is more flexible 
because it relies only on data that is passed to an operation 
and received as its result. The improved modularity of the 
code reduces the effort needed to integrate different pieces 
of code and enables utilization of various programming 
languages in the same project. The higher level of 
abstraction allows developers to focus on solving problems 
at a higher level without worrying about low level problems 
such as pointers or protecting critical data. 
 Quality of Experience (QoE) measures how satisfied a 

 
 

user is while using a system. Unlike Quality of Service 
(QoS), which measures the technical aspects of the system 
such as network throughput, availability and speed, QoE 
involves more psychological measurements. A typical QoE 
measurement will involve statistics such as the number of 
users that try the system out and continue to use it, time 
needed to perform a particular task and the number of 
mistakes the user makes before completing the task. A 
system with a high QoS does not necessarily have a high 
QoE, but QoS is a necessary prerequisite for QoE. 
Usefulness and usability [3, 4] are additional requirements 
for good QoE. Usefulness implies the potential of a resource 
to provide useful data and/or services. Usability shows the 
resource’s actual ability to provide it. The measures of 
usefulness and usability are typically used in web design, 
but most of the principles can be applied to 
hardware/software architectures. In the context of 
hardware/software architectures, QoE implies ease of 
hardware deployment, reconfigurability and expandability. 
Usefulness is the architecture’s capability to incorporate an 
array of sensors and acquire data from them. Usability is the 
flexibility of data presentation, capability for custom 
processing and a measure of the effort required to 
reconfigure the system. 
 This article describes the requirements for improving the 
QoE for integration of multiple sensors on underwater 
vehicles and development of underwater vehicle control 
systems. 

II. PROBLEM STATEMENT 

A typical underwater mission includes multiple sensors 
installed on a single vehicle or multiple cooperative 
vehicles. Multiple sensors allow the vehicle operators to 
obtain a better quality of data as well as to perform multiple 
tasks in one dive. Vehicles may be used in missions that 
require different sets of sensors. Bottom mapping may 
require additional sonars to be installed; monitoring marine 
habitats may require additional cameras or chemical sensors. 
Sensors installed on the vehicle are typically made by 
different manufacturers and therefore need different 
software packages for data acquisition. Before all sensor 
datasets can be fused together, they need to be transformed 
into a standard format so they can be processed together. In 
case timekeeping systems on different sensors are out of 
sync, special care needs to be taken in order to properly 
synchronize different logs. 
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Synchronizing different logs can be solved by developing 
a central logging application, deployed either on a computer 
installed onboard an autonomous vehicle or a computer 
connected to the control panel of a remotely operated 
vehicle. The central logging application can use its own 
timekeeping system, eliminating the need for log 
synchronization. By performing additional calculations and 
conversions, data can immediately be standardized. The 
disadvantage of this approach is apparent in case a piece of 
equipment is installed on a vehicle for the first time. Before 
it can be used with the vehicle, the logging application needs 
to be expanded to accept data from the new sensor. This 
makes transferring sensors between vehicles time 
consuming and reduces the vehicle’s reconfigurability. 

The goal of the system described in this article is to 
improve the reconfigurability of the vehicle and raise the 
quality of experience (QoE) of its operators without 
imposing restrictions on the functionalities of the sensors. 

III. SYSTEM ARCHITECTURE 

The system described in this article is designed to be 
modular, loosely coupled and message based. The primary 
goal while designing the system is to shift the focus sensor 
specifics to sensor data. Loose coupling is achieved because 
each entity in the system is completely described by the data 
it provides (variables) and the data it accepts (commands). 
Modularity of the software is designed to closely resemble 
the modularity of the entity’s hardware. By modular 
software we mean that it is easily expandable with new 
sensors, control panels or additional processing. Loose 
coupling means that the system is robust because a failure in 
one of the modules does not necessarily prevent other 
modules from functioning properly. Since all 
communication in the system is based on messages, and a 
message can be read by several modules, it is easy to send 
the same data to multiple modules at once.  

An example system is shown in figure 1. There are three 
basic types of modules in the system: 

 
Figure 1: Architecture of system for vehicle system integration 

 

driver modules (represented by solid black boxes), 
supporting blocks (represented by dotted boxes) and user 
interfaces (represented by dashed lines). All modules in the 
system are connected by a communication medium. The 
communication medium can be implemented using any 
technology and is used as a logical bus. Communication 
medium must implement operations specified by the 
communication interface abstract class. 

IV. COMMUNICATION MEDIUM AND INTERFACE 

The communication interface is a purely abstract class, 
meaning it has no implementations of any communication 
operations. The communication medium represents the mean 
through which the communication interfaces communicate 
with each other. In case of a P2P communication system, the 
medium will represent the network connecting all nodes 
together, while the appropriate communication interfaces 
will take care of routing messages from source to 
destination(s). In case of a publish/subscribe system, the 
communication medium will include a repository for 
messages, while communication interfaces will handle 
registration for incoming messages and publishing of 
outgoing messages. The developer of the system does not 
need to take care of the recipient of a message, and each 
module can forget about a message as soon as it is passed to 
the communication interface. The recipient is responsible for 
receiving the message and handling it. 

In the system, communication between communication 
interfaces and the communication medium is carried out 
using standardized messages which are best suited for the 
medium in use. Mediums using textual communication 
protocols may use XML or similar markup languages to pass 
messages, while lower level protocols might use arrays of 
bytes. Communication between modules and communication 
interfaces is done using appropriate programming functions 
specified in communication interface abstract class. 

The communication interface can have two modes of 
operation: active and passive. In case of a passive 
communication interface, the module utilizing it must poll 
the interface for incoming data when it is ready to process it 
and pass outgoing data to the interface. In case the interface 
is active, the module only needs to register event handling 
functions for incoming and outgoing data. The active 
interface will poll the module for outgoing data when ready 
to transmit it and will pass incoming data to the module 
when it is received. Data can be exchanged between the 
communication interface and the module in three formats: 
byte array, named datamap and XML text. When sending 
data, the interface will accept any of the three formats. 
When receiving data from the communication interface, the 
developer of the module must specify which format the 
module will accept. The developer has no control over the 
actual format used to transmit messages since this format is 
determined by the type of communication medium. 



  

 
Figure 2: Usage of two communication mediums 

 

In case two connection mediums must be used in the 
system, a bridge between them should be deployed. Figure 2 
shows an example of a system using two communication 
mediums. 

 

The first communication medium may represent a device 
specific bus that is used on the underwater vehicle, and the 
second one may represent a local area network connecting 
the vehicle’s console with computers processing data. 
Corresponding modules are connected to their respective 
communication mediums in the same manner as in figure 1. 
Additionally, an interconnection module is added that is 
connected to both mediums. Since the data formats the two 
communication interfaces provide is compatible, the 
interconnection block only needs to forward data between 
them. If additional data processing is needed anyway, it can 
be implemented inside the interconnection block. 

V. DRIVER MODULES 

Driver modules are software abstractions of respective 
pieces of hardware. Example of a driver module is shown in 
figure 3. 

 

 
Figure 3: Driver module 

 

 Each driver performs marshalling of the data that is sent 
from the device towards the communication interface and 
unmarshalling of the data received from the communication 
interface. Umarshalled data received from the 
communication interface will include commands for turning 
various features of the hardware on and off, i.e. thruster 
power, fin settings and sensor adjustments. Data that is 
being marshaled prior to sending to the communication 
interface will include hardware status and raw data. 

Driver modules convert device specific commands and 
data to a standardized format. This has the benefit of 
allowing devices made by various manufacturers to be easily 
integrated and swapped. All device driver modules of the 
same type must send a defined group of datasets for 
maximum interchangeability. The module using the data 
from a sensor can only assume that those datasets exist, 
while additional datasets can be used only after verifying 
they are present. Additional datasets may be sent if the 
device provides additional data. For example, every attitude 
sensor must send yaw, pitch and roll values. It may also send 
temperature, drift, accelerations in x, y, and z directions. The 
module that receives this data will rely on yaw, pitch and 
roll data. The additional datasets may be included in 
calculations the receiving module performs, but the 
developer should check if they are provided. If they are not 
provided, the developer can either make calculations without 
them, or provide default values that do not impair 
calculation to be used when no real data is available. 

VI. SUPPORTING MODULES 

Supporting modules contain calculations that perform 
conversions of data, filtering, corrections or sensor fusion. 
These additional processing operations are kept separate 
from sensors in order to make the system more modular. If 
the processing needs data from several sensors, integrating 
data processing with them would mean coupling the two 
sensors firmly together, impairing the modularity of the 
system. In cases where a module needs data from only one 
sensor, it is still beneficial to separate sensor driver and 
processing for greater code flexibility. With the processing 
code in a separate supporting module, the developer has the 
choice of using the supporting module with any sensor, to 
combine it with other processing modules or to not use it at 
all, reading only raw sensor data. 
 



  

 
Figure 4: System with support modules  

 

Similarly to driver modules, supporting modules perform 
unmarshalling of the data that is to be processed and 
marshalling of the processed data. Unmarshalled data is 
converted into the format suitable for processing and is 
either processed by the code directly in the module or is 
passed to an external application such as MATLAB.  

 

Figure 4 shows an example of a system with supporting 
modules and different possible data flows. In this example, 
the driver module for a compass installed on a robotic 
vehicle provides heading data. Since the compass is prone to 
magnetic deviation, and is affected by vehicle motion, two 
modules that correct those errors have been added into the 
system. The raw heading data is marshaled, sent into the 
system, and can be used by listening for the corresponding 
message, indicated by the solid arrow. The motion 
correction module listens for the message and performs 
processing by stabilizing the reading depending on the 
movement of the vehicle. For simplicity, messages 
providing data about vehicle motion are not shown. The 
message containing the corrected data is indicated by the 
dashed arrow. The deviation correction module listens for 
the message providing smoothed data from motion 
correction module and corrects the heading using deviation 
data, obtained from a unit such as GPS (message not 
shown). Corrected data is indicated by the dotted arrow. 
Messages containing raw data and motion smoothed data are 
not consumed because two modules read them. All three 
messages are available to any modules that are eventually 
added to the system. The developer or the operator may 
choose to use raw data and filter it in some new module, to 
use partially or fully filtered data. 

VII. USER INTERFACE MODULES 

User interface modules are designed to be deployed on 
computers which are used to operate or monitor the system. 
Typically the user interface modules will have a graphical 
user interface (GUI) to display sensor data and vehicle status 
and accept inputs from the user. Interfaces may also have 
support for other input methods such as joysticks or 
keyboards and logging functionality. Unmarshalled data 
received from the communication interface is analyzed and 
converted to the appropriate format to be read by the GUI. A 
diagram of the user interface module is shown in figure 5. 
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Figure 5: UI module 

 
 

User interfaces have an XML document parser which is 
used to load user settings for them. Inside the XML 
document, the user can specify variables to display, 
variables to be read from the GUI or from human interface 
devices (e.g. joystick) and the indicators used to display 
variables. The XML document can be written manually or 
automatically generated using a tool for designing user 
interfaces. When designing the GUI, user selects one of the 
available GUI elements and specifies its parameters and the 
variable or variables the GUI element is bound to. If a 
variable is defined as output, the value of the variable is sent 
to the GUI element which displays it. If a variable is defined 
as input, its value is read from the corresponding GUI 
element. Input of values can be done from keyboard and 
joystick as well. Joystick and keyboard support can be 
handled by the same UI module that handles the GUI 
functionality, or can be handled by a separate module.  

Multiple user interface modules may be attached to the 
system and configured for each user individually. This way, 
the pilot of the vehicle can configure his display to show 
navigation data such as maps, obstacles, speed and heading, 
while other experts observing the same mission can 
configure their displays to display data relevant to them. 

VIII. EXAMPLE IMPLEMENTATION 

An example implementation of a modular control system 
was developed at the Faculty of Electrical Engineering and 
Computer Science in the Laboratory for Underwater 
Systems and Technologies. The system is designed for 
controlling an Iver2 AUV over WLAN while on surface. It 
can be used to pilot the AUV into position prior to starting a 
mission, return it from the last mission waypoint to the dock 
or ship to be retrieved or to monitor Iver’s vital statistics 



  

while it is performing a surface mission. Two 
communication mediums are in use: the Mission Oriented 
Operating Suite (MOOS) [5], and a serial interface. 

The driver module for the Iver2 AUV sends messages 
about vehicle’s power system (battery), attitude and position 
(compass, GPS, IRS, depth) and about the current state of 
the mission in progress, if any. The commands that can be 
sent to the driver include thruster/fin settings for direct 
control, course, speed and depth for a semi-automatic 
control and load/start/stop mission for fully automatic 
control. Iver2 has two computers – frontseat and backseat. 
The frontseat computer controls the AUV, while the 
backseat computer is used for additional applications. 

The MOOS system is a publish-subscribe message 
exchange environment. It uses a central server on which all 
clients publish their messages. The clients also subscribe for 
the messages they wish to receive, and the server forwards 
the requested messages to them. The MOOS server is 
deployed on the backseat computer onboard Iver2. Any 
computers that wish to access data from the system must 
connect to Iver’s wireless network. Figure 6 shows the 
physical structure of the system. 

In the system, the physical communication medium 
between backseat and shoreside PCs is the MOOS running 
over Ethernet. Serial interface is used as a communication 
medium between backseat and frontseat PCs. The backseat 
PC runs Iver’s driver module, a support module and an 
interconnection module. The vehicle driver module converts 
data between standard messages that are used in the system 
and NMEA messages used by Iver’s control software on the 
frontseat computer. The support module logs data about the 
AUV and stores it on the disk of the backseat PC. The 
interconnection module connects the MOOS communication 
medium and the serial communication medium. Since the 
connection between backseat and shoreside is broken upon 
diving, it is beneficial to deploy all logging and critical 
processing modules on the backseat computer and leave 
only the control modules on shoreside PCs. In this example 
implementation, only the user interface module is running  

 

 Figure 6: Iver 2 control system – hardware architecture 
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Figure 7: Iver 2 control system - logical architecture 

 

on the shoreside PC. Figure 7 shows the software 
architecture of the system. 

 

The entire system depicted on figure 7 is physically 
located on Iver2, except for the part marked by the dotted 
line. The MOOS communication medium hides the physical 
separation of backseat and shoreside PCs, making the 
system easier to expand. The only weak point of the system 
is the fact that the MOOS server is located on the Iver2 and 
is unavailable to the shoreside PCs during underwater 
missions. 

In the future, it is planned to use a similar system with 
other vehicles owned by the Laboratory. Driver modules 
should be developed for all ROVs, sonars, acoustic modems 
and sensors available, enabling the deployment of a 
versatile, expandable and highly flexible robust system. 

IX. CONCLUSION 

This article has reviewed a control architecture proposal 
that offers a polymorphic view of control systems. Devices 
and protocols can be exchanged without direct intervention 
into the system kernel. This eases software development and 
users can focus on developing modules rather than whole 
systems. With this improvement of the developer’s QoE, 
more time can be invested in testing and research as less is 
needed for software support.  

Passing data encoded in XML is often encountered in web 
architectures but less so in low level control systems. This is 
usually because of efficiency concerns. However, if soft 
real-time operation is enough we find that the additional 
overhead is negligible compared to benefits. Wide range 
support exists for XML, therefore, we can easily interface 
modules written in different programming languages. This 
increases code reuse. 

Increased modularity of the system as well as abstraction 
of all entities makes reconfiguration an easy and quick 
process. This in turn improves the end-user QoE because it 
is easy to quickly remove or add sensors to the system, use a 
different vehicle or to reconfigure the operating console for 
a different type of mission.  

Future work will continue the development and 
optimization of the architecture. Focus will be on creating an 
architecture that would provide support for development of 



  

software solutions from low level control systems up to 
mission control and monitoring systems. The 
reconfigurability of the system will be facilitated by usage of 
XML-based configuration files that will define the 
connections of the entities in the system and allow for quick 
ad-hoc reconfiguration. 
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