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Abstract:  
In the paper the model of Lorenz's equations is realized in Matlab/Simulink as an electrical circuit 
built using models available in SimPowerSystems Library. The simulations were carried out using five 
numerical methods available in Matlab/Simulink as solver option and varying the values of initial 
conditions for each numerical method in order to determine the biggest acceptable integration step 
regarding the values of initial conditions. Obtained impact of initial conditions increases with the 
increasing order of numerical method. 
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1 Introduction 
Lorenz's equations are comprehended as the 
inception of analysis of chaotic systems and, 
hence, investigated in detail since then [1]. 
 The Lorenz's equations are good starting 
point for the analysis of chaos, because 
apparently simple equations reveal complex 
behavior including sensitivity to initial 
conditions and chaotic behavior in general. 
 Lorenz's equations describe a simple 
mathematical model of atmospheric 
instabilities: 
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where parameter values σ = 10, ρ  = 28, and 

b = 8/3 are typical for chaotic steady-state [2, 
3], and will be used in rest of the paper. 
 Nonlinear systems with chaotic behavior 
are usual in everyday world of electrical 
engineering. Characteristic examples are the 
ferroresonant circuit [4] and the DC/DC 
converter [5]. In order to bring the chaotic 
systems closer to electrical engineers it is 
helpful to present Lorenz's equations using 
equivalent electrical circuit as a simulation 

model [3] or physical model of Lorenz's 
system [6]. 
 Here will be used a simulation model 
realized in Matlab/Simulink that presents 
Lorenz's system as an electrical circuit built 
using models available in SimPowerSystems 
Library, Fig. 1, where variables x, y  and z are 
presented as capacitor voltages uC1, uC2 and 
uC3, respectively [3]. Thereby, all components 
are assumed to be ideal, e.g. the capacitance 
has no losses. Mathematical operations like 
addition and multiplication could be realized 
using electronic circuits with operational 
amplifiers. 
 One of the peculiarities of chaotic system is 
the sensitivity to initial conditions [7]. In the 
paper the sensitivity will be investigated as 
impact of initial conditions on the biggest 
acceptable integration step used for solving the 
equations. 
 
2 Step of integration and initial 

conditions 
The error of the solution of Lorenz's equations 
depends on the type of numerical method and 
on the step of integration [8]. 
 Values calculated numerically for each 
moment t0 can be comprehended as initial 
values for the following interval, t > t0. 
Different methods and step of integration cause 
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Figure 1. Lorenz's equations as a model of electrical circuit built using SimPowerSystems Library 

 

 

different calculated values in each moment t0, 
i.e. they cause different initial values for the 
following interval, t > t0. This kind of 
comprehension of impact of numerical 
methods on chaotic steady-state will be 
analyzed in the rest of the paper. 
 For a chosen numerical method the 
increasing of integration step decreases the 
duration of calculation as well as the memory 
needs. However, too big integration step 
causes erroneous solution that could be 
unacceptable for particular application, i.e. it 
could be technically unacceptable. 
 For a chaotic steady-state the solution is 
ambiguous and as a criterion for a technically 
acceptable error will be used attractor, i.e. 
solution will be comprehended as correct if the 
steady-state solution tends to an attractor. 
 Simulation will be carried out for following 
numerical methods available in 
Matlab/Simulink as solver option [9]: 

- Euler's method (ode1) 
- Heun's method (ode2) 
- Bogacki-Shanpine's method (ode3) 
- Runge-Kutta's method (ode4) 
- Dormand-Prince's method (ode5) 

 The step of integration will be varied with 
step of 0,010 for each of numerical methods, in 
order to identify for which value the error 
becomes technically unacceptable. 

 Furthermore, the solutions will be obtained 
for values of initial conditions varied with step 
5 V within the range -50 V < uCj(0)< 50 V for 
each capacitance, j = 1, 2, 3. The chosen range 
of initial conditions corresponds roughly to the 
range of possible instantaneous values of 
capacitance voltages in steady-states. 
 For each set of parameter values the 
behaviour of the electrical circuit is simulated 
for 100 seconds long, and it is assumed that 
solution has reached to its steady-state values 
after 100 seconds at the latest. 

 

 

3 Results of simulation 
 Figures 2 shows examples of correct and 
erroneous solution obtained with Bogacki-
Shanpine's method (ode 3) and Runge-Kutta's 
method (ode4) using different values of 
integration step and initial conditions uCm(0), 
m = 1, 2, 3. Namely, figures 2b) and 2d) show 
solutions that do not tend to the attractor and 
therefore are not acceptable. The erroneous 
solutions, as those shown on Figs. 2b) and 2d), 
were not calculated to the end of simulation 
time because the calculation stops earlier with 
the error message of too high values of 
equation variables. 
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a) Bogacki-Shanpine's method (ode3); uC1(0) = uC2(0) = uC3(0) = - 10 V; integration step 0,080 
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b) Bogacki-Shanpine's method (ode3); uC1(0) = uC2(0) = uC3(0) = - 10 V; integration step 0,090 
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c) Runge-Kutta's method (ode4); uC1(0) = uC2(0) = uC3(0) = 5 V; integration step 0,140 
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d) Runge-Kutta's method (ode4); uC1(0) = uC2(0) = uC3(0) = 5 V; integration step 0,150 

 
Figure 2. Examples of obtained solutions 

 
 

 Biggest integration steps as results of 
simulation can be presented as a 3-dimensional 
matrix BISi,j,k with dimension 21x21x21 for 
each numerical method (i, j, k = 1, 2, 3, ..., 20, 
21). Each element of matrix BISi,j,k presents the 
value of biggest integration step that does not 
cause erroneous solution for initial conditions: 

1

2

3

(0) 50 V 5 ( 1) V

(0) 50 V 5 ( 1) V (2)

(0) 50 V 5 ( 1) V

C

C

C

u i

u j

u k

= − + ⋅ −

= − + ⋅ −

= − + ⋅ −

 
 Hence, five 3-dimensional matrices BISi,j,k 
comprise 5x(21x21x21)=46305 values of the 
biggest acceptable integration step for five 
used numerical methods. 
 Figures 3 show some of these results 
presented as colour coded squares where tones 
of grey were employed to represent different 
values of the biggest integration steps. The 
figures unveil the impact of initial conditions 
on the biggest acceptable integration step. 
 On Figures 2 colour coded squares for 
i = j = 11 are crossed because they should be 
neglected. Namely, for corresponding values 
of initial conditions 

1 2(0) 0V, (0) 0VC Cu u= = the solutions are 

equal to zero constantly from the beginning of 
calculation, i.e. for these initial conditions 
there is no non-zero solution, and therefore 
there is no impact of numerical method and 
integration step. 

 Table 1. shows the range of biggest 
integration steps that do not cause erroneous 
solution for each used numerical method 
depending on the value of initial conditions 
within the range, (2). Thereby, the lower bound 
is the sufficient one for obtaining the correct 
solution independent on the values of initial 
conditions within the range. 
  
 
Table 1: Range of biggest acceptable 
integration step for the range of initial 
conditions, (2) 
Numerical 
method 

Integration step 

ode1 between 0,004 and 0,030 
ode2 between 0,020 and 0,080 
ode3 between 0,030 and 0,160 
ode4 between 0,050 and 0,200 
ode5 between 0,040 and 0,230 
 
 
 Using Euler's method (ode1) for some 
values of initial condition the solution is 
erroneous even for the smallest assumed 
integration step of 0,010. In these cases, 
additional simulations were carried out 
varying the step of integration with step of 
0,001. 
 Results of simulation presented in Table 1 
show that the range of the biggest integration 
step, i.e. impact of initial conditions, increases 
with the increasing order of numerical method. 
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a) BISi,j,6 for Euler's method (ode1) 

 
b) BISi,j,11 for Heun's method (ode2) 

 
c) BISi,j,21 for Dormand-Prince's method (ode5) 

 
Figure 3. Examples of impact of initial conditions on the biggest acceptable integration step  
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 Thereby, the lower bound of the range 
(0,040 - 0,004 = 0,036) does not change 
significantly as the upper bound (0,230 - 0,030 
= 0,200). As it was mentioned, the lower 
bound is the sufficient one and it must be used 
as the integration step in order to avoid the 
impact of initial conditions on the correctness 
of solution for values of initial conditions 
within the range, (2). 

 

 

5 Conclusion 
Model of Lorenz's equations is realized in 
Matlab/Simulink as an electrical circuit built 
using models available in SimPowerSystems 
Library. 
 For a chosen numerical method the 
increasing of integration step decreases the 
duration of calculation as well as the memory 
needs. However, too big integration step 
causes erroneous solution that could be 
technically unacceptable. 
 In order to determine biggest acceptable 
integration step regarding the values of initial 
conditions, the simulation was carried out 
varying the values of initial conditions for five 
numerical methods available in 
Matlab/Simulink as solver option. 
 There is a significant impact of initial 
conditions on the biggest acceptable 
integration step. The impact of initial 
conditions increases with the increasing of 
order of numerical method. 
 Future work will include the analysis of 
impact of initial conditions on technically 
acceptable solutions in a case of numerical 
methods with variable step of integration. 
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