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Abstract. The first contribution of this paper is the comparison of learned

dictionary based approaches to inpainting and denoising of images in natural

scenes, where emphasis is given on the use of complete and overcomplete dic-
tionary learned by independent component analysis. The second contribution

of the paper relates to the formulation of a problem of denoising an image

corrupted by a salt and pepper type of noise (this problem is equivalent to es-
timating saturated pixel values), as a noiseless inpainting problem, whereupon

noise corrupted pixels are treated as missing pixels. A maximum a posteriori

(MAP) approach to image denoising is not applicable in such a case due to the
fact that variance of the impulsive noise is infinite and the MAP based esti-

mation relies on solving an optimization problem with an inequality constraint

that depends on the variance of the additive noise. Through extensive com-
parative performance analysis of the inpainting task, it is demonstrated that

ICA-learned basis outperforms K-SVD and morphological component analysis
approaches in terms of visual quality. It yielded similar performance as a field

of experts method but with more than two orders of magnitude lower com-

putational complexity. On the same problems, Fourier and wavelet bases as
representatives of fixed bases, exhibited the poorest performance. It is also

demonstrated that noiseless inpainting-based approach to image denoising (es-

timation of the saturated pixel values) greatly outperforms denoising based
on two-dimensional myriad filtering that is a theoretically optimal solution for

this class of additive impulsive noise.

1. Introduction. This paper presents comparative performance analysis of several
approaches to dictionary learning, with an emphasis on complete and overcomplete
dictionary learned by independent component analysis (ICA), motivated by practi-
cal problems in the inpainting of natural images as well as in denoising of natural
images corrupted by a salt and pepper noise. The inpainting refers to the recovery
of lost or corrupted parts of images that occurs, as an example, in image or video
restoration in reverting deterioration, removing selected elements or filling in miss-
ing pixels [5], [14]. Salt and pepper type of impulsive noise refers to the situation
when corrupted pixels take either maximum or minimum gray values. Median and
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816 Marko Filipović and Ivica Kopriva

myriad nonlinear filtering approach to denoising works well when a small number of
pixels is corrupted but at high noise densities, when the window size has to be in-
creased, it leads to blurring [2]. This paper proposes an inpainting-based approach
for denoising an image corrupted by a salt and pepper noise that adds up to the
estimation of the saturated pixel values, whereupon saturated pixels are treated as
missing pixels [48], [36]. This virtually converts an image denoising problem into
the noiseless inpainting problem. Thus, inpainting and denoising are unified within
the same common denominator referring to learning a basis that provides a sparse
representation of an image. Therefore, it is expected that the proposed denoising
method will enable a high quality of the restored image even when a large amount
of pixels is saturated i.e. missing. A maximum a posteriori (MAP) approach to
image denoising is not applicable in such cases due to the fact that the variance
of the impulsive noise is infinite. The MAP based estimation relies on solving an
optimization problem with an inequality constraint that depends on the variance of
the additive noise (please see discussion related to eq. (2)), [15], [34]. As opposed
to the approach to the estimation of the saturated pixel values proposed in [48],
the method proposed herein is aimed for gray scale images and does not rely on
any specific assumption such as correlation between the color channels as it has
been used in [48]. As opposed to the approach proposed in [36], which estimates
saturated pixel values through sparse reconstruction in fixed basis, the approach
proposed herein solves the related inpainting problem in a learned basis. As it is
demonstrated in section 3 that yields significantly better quality of reconstructed
images than when related inpainting problem is solved in fixed bases.

The inpainting problem is casted into the following mathematical framework.
The vectorized (column-wise) image x ∈ Rn is to be reconstructed from the vector
of known pixels y ∈ Rl, where l < n. It is assumed that the unknown image x
can be represented by k � n significant coefficients over the known m-dimensional
basis1 D ∈ Rn×m : x ≈ Dc, ‖c‖0 = k and m ≥ n. Here, ‖c‖0 stands for the
`0-quasi-norm that counts the number of the nonzero coefficients of the vector c.
The vector of known pixels y is related to the unknown vectorized image x through
y = Mx, where M ∈ Rl×n has a special structure determined by the layout of the
missing pixels. Thus, the following relation describes the inpainting problem:

(1) y = Mx = MDc = Φc

Hence, the solution of the inpainting problem is obtained as the sparse solution of
the underdetermined system of linear equations (1). Once the estimate of c, denoted
as ĉ , is obtained, the estimate of x is obtained from: x̂ = Dĉ2. In the noiseless
scenario, underdetermined system of linear equations (1) has a unique solution if
the number of known pixels l satisfies: l ≥ 2k, see [45] for a review of this and
related results. Theoretical results defining conditions under which the problem (1)
is solvable are discussed in slightly more details in section 2. There, the nonlinear

1Throughout the paper we will use the term “basis” for matrix D both when m = n and m > n.

When m = n the basis is critically sampled or complete while for m > n the basis is overcomplete
and is also referred to as a frame, [28], [29].

2The approach to the inpainting proposed in this paper presumes a learning of the basis D

using patches collected from the training images. In the actual inpainting phase, the learned basis

D is used to recover the original image x. Formally, if I ∈ R
√

n×
√
n is an image patch, then x

denotes vectorized version of the image patch I.
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signal reconstruction algorithm used for the solution of the inpainting problem (1)
is discussed in more details as well.

Choice of Φ in (1) is crucial for the success of inpainting. Because Φ = MD
the choice of Φ is dictated by the choice of the matrix M and the basis matrix
D, whereas the matrix M has special structure defined by the layout of missing
pixels, that is also observed in [23], [24]. Thus, it is the basis matrix D that
governs the quality of the image reconstruction, whereas the basis which enables
representation of the signal vector x with k � n coefficients is of special interest.
Such basis can be either selected from a specified set of linear transforms (such
as Fourier or wavelet transforms), or learned from a set of training signals. A
representative example for the first case is the paper [14], where images are modeled
as a combination of piecewise smooth (“cartoon”) and texture part, wherein the
cartoon part is sparsely represented by wavelet-like transforms, and the texture
part is sparsely represented by local DCT or related transforms. On the other
hand, better results are obtained by using bases learned from a training set by
using K-SVD like algorithms [1], introduced and discussed later in this paper. Our
approach to basis learning is example-based : we select a set of training images,
randomly extract large number of patches from each image in the training set,
and learn a basis that yields sparse representation of the selected patches3. Basis
learning is accomplished using the fast independent component analysis (FastICA)
algorithm, [27], with the tanh nonlinearity. The FastICA algorithm is chosen due to
two reasons: (1) it has information-theoretic interpretation that enables to cast the
basis learning problem within a probabilistic framework4; (2) use of the FastICA
enables to learn an overcomplete basis, which is not the case with the ICA-based
approach to basis learning presented in [31]5. Since the level of sparseness achieved
by basis D is of crucial importance for the quality of the solution of the inpainting
problem, it is more important that nonlinear function used in the ICA learning rule
yields code that is sparse than statistically independent6.

According to [43] three major approaches to inpainting rely on: physical simula-
tion, where images are generated via simulation of the underlying physical process,
random fields, and function spaces. One group includes partial differential equations
based methods [5], [6]. The other group is within Bayesian framework relying of

3It should be noted that in [15] the basis (i.e. the “dictionary”) is trained directly on the cor-

rupted image, which gives better results since the learned basis is better adapted to the image and
the inpainting problem (since training takes into account the pattern of missing pixels). However,

that approach is much slower compared to the training set-based approach.
4For example, it is described in the section 3.2 that choice of the tanh nonlinearity corresponds

to the probability density function of the code in the linear mixture model (1), which is sparse. To
be more specific, choice of the tanh(5c) nonlinearity induces code with the Laplacian distributions,

please see the Figure 3, that is commonly used to model sparse distributions of speech and audio
signals in general.

5Incapability to learn an overcomplete basis or frame was a formal objection for not using the

ICA for basis learning. This, in part, was motivation for development of fields of experts approach
to basis learning, [40]. However, it has been shown in the early work in [25] how to estimate an

overcomplete basis of independent components from an image data using the concept of quasi-
orthogonality. Therefore, in section 3 we discuss how FastICA can be used to learn both complete
and overcomplete basis.

6Results presented in [7] are not related to the performance of the inpainting problem in

the ICA-learned basis. They state that statistical independence of the code obtained by the ICA
algorithm under linear model of the natural image is not significantly smaller than the one obtained

by second order statistical methods. What is important for the quality of image reconstruction is,

however, sparseness and not statistical independence of the code.
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statistical models of image priors, [40], [42]. Basically all approaches are connected
with fundamental problem of image modeling. The approach presented here is most
similar to the inpainting algorithm proposed in [34].

The rest of the paper is organized as follows. Section (2) relates inpainting
problem to the underlying problem of solving underdetermined system of linear
equations with sparseness constraints. Section 3 elaborates on the ICA-based ap-
proach to the learning of a complete and overcomplete bases. The K-SVD approach
to basis learning is also briefly described there. Results of comparative performance
analysis between ICA- and K-SVD learned bases, morphological component anal-
ysis (MCA) that relies on a union of fixed bases7, fields of experts approach [40],
[41] that belongs to the class of Markov random field models of images, as well
as Fourier and wavelet bases, are presented in section 4. The comparative analy-
sis has been performed on the problem of inpainting of natural images in several
scenarios related to different structures of the missing pixels. It is demonstrated
that ICA-learned basis outperforms other bases in terms of reconstruction quality,
measured through peak-signal-to-noise-ratio and structural similarity index, [46],
[47]. It is additionally demonstrated in section 4 how inpainting can be used for
denoising purpose when image is corrupted by the salt and pepper type of additive
impulsive noise, i.e. how to estimate the values of the saturated pixels, whereupon
saturated pixels are treated as missing pixels. There, it is demonstrated that the
inpainting-based approach to image denoising greatly outperforms the one based
on 2D myriad filtering which is a theoretically optimal solution within the filtering
framework, [21], [2]. The conclusion is presented in section 5.

2. Preliminaries. Methods for finding sparse solution of problem (1) are briefly
discussed in this section. What is known is vector y ∈ Rl and matrix Φ ∈ Rl×m

which is overcomplete, i.e. l < m . The aim is to find the sparsest solution of this
underdetermined linear system; this is motivated by supposed sparsity of the vector
of coefficients c ∈ Rm . Sparsity of a vector c ∈ Rm is usually measured by its
`0-quasi-norm, denoted by ‖c‖0 and defined as ‖c‖0 = |{i : ci 6= 0}|, i.e. as the
number of its nonzero coefficients. This leads to the following formulation of the
problem:

arg min
c
‖c‖0 subject to Φc = y

A more practical formulation, one that allows some noise or error, is

(2) arg min
c
‖c‖0 subject to ‖Φc− y‖2 ≤ ε

where ε represents an error tolerance that depends on the noise variance. Related
formulations are

arg min
c
{‖Φc− y‖22 + λ‖c‖0}

and

7The MCA models an image as a combination of piecewise smooth (“cartoon”) and texture
parts. The image decomposition part and the filling-in part are integrated using a union of fixed

bases consisting of one adapted for cartoon and the other adapted for texture part. Inpainting is
solved by combining sparse representation of each part. As opposed to that, the ICA-based basis

learning approach, although limited to small areas of missing pixels, solves the inpainting problem

by learning a single basis only.
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arg min
c
‖Φc− y‖22 subject to ‖c‖0 ≤ s

where parameters λ and s depend on error tolerance ε. The difficulty with this
formulation is its complexity, which is exponential in m (since (2) is combinatorial
optimization problem). This makes solving (2) computationally intractable8. How-
ever, computationally a more feasible approach is found by intuitively replacing `0
with its continuous approximation, like `p-quasi-norm, defined as

‖x‖p =

(∑
i

|xi|p
)1/p

For 0 < p < 1 , this is not a convex function. Algorithms minimizing `p-norm, for
p < 1, include [11], [12], [19], [22]. These approaches were shown to outperform
`1-norm minimization in practice. In [37] authors approximated `0-norm of x by
‖x‖0 ≈ m− Fσ(x) , where Fσ(x) =

∑
i fσ(xi) and

(3) fσ(x) = exp

(
−s2

2σ2

)
is an approximation of the indicator function of the set {0} . The smaller the
parameter σ , the better approximation of `0 we get; the trade-off is that the larger
σ is, the smoother function we get, which therefore is easier to optimize. Note
that minimizing this approximation of `0 is equivalent to maximizing Fσ . The
idea is to maximize Fσ for larger values of parameter σ by only a few iterations
of gradient ascent, and use this approximation as the initial point to maximize
Fσ for smaller values of the parameter σ . After each iteration the computed
approximation of the solution c needs to be projected onto the constraining set
Φc = y . This simple approach seems to work very well in practice and outperforms
more commonly used `1-norm minimization in terms of accuracy and computational
efficiency. It is up to two orders of magnitude faster than the methods based
on `1-norm minimization. Due to these reasons, this method has been used in
implementation of inpainting and denoising algorithms in comparative performance
analysis presented in section Results. The condition that guarantees uniqueness of
the solution of the problem (2) is given in terms of mutual coherence of the matrix
Φ , denoted as µ (Φ) , which is defined as the maximal absolute normalized inner
product between the columns of Φ . The main result [10] states that, if a solution
c0 of (2) satisfies ‖c0‖0 < (1 + 1/µ (Φ))) /2 , then every other solution is close to c0.
Mutual coherence is theoretically a worst-case property and gives very pessimistic
bounds on the sparsity of the solution. However, it is computed easily and can
be used for rough prediction of the degree of sparsity of c necessary to guarantee
that the solution of (2) is recovered up to a small error. Thus, according to Figure
1, which shows that on a given training sample the ICA-learned basis has smaller
mutual coherence than K-SVD learned basis, ICA-learned basis would require less
degree of sparsity of c than K-SVD learned basis. This is important in the light of

8Some of the heuristic approaches that try to directly solve the problem (2) are greedy algo-
rithms like orthogonal matching pursuit (OMP) and iterative hard thresholding approaches [8].

We haven’t used them in the inpainting stage since the obtained results were inferior. OMP was
used as a part of the K-SVD algorithm for basis learning, see text for details.
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the fact that natural images are not exactly sparse, but coefficients of image patches
in chosen basis decay slowly, see Figure 2.

Figure 1. Comparison of t-coherence of ICA and K-SVD learned
bases as a function of t. For a given t, 0 ≤ t < 1 , t-coherence of a
matrix is defined as the mean value of all absolute normalized inner
products between different columns of the matrix that are above or
equal to t. For t → 1, t-coherence approaches a mutual coherence
measure which is defined as maximal absolute normalized inner
product between the columns of a matrix.

3. Basis learning algorithms. We now briefly review important work done in
the bases learning domain and present the ICA-based approach to basis learning.
In [38], the method has been derived that yields an overcomplete dictionary trained
on the patches of natural images by maximizing sparseness based cost function.
Similar results were presented in [4] using ICA, and in [31], [32] using probabilistic
methods. In a deterministic setting, with data matrix X of size n×T with columns
that represent the training set for the signals of interest, the dictionary learning
problem is stated as

(4) arg min
D,C

‖X −DC‖2 subject to ‖ci‖0 ≤ K

where ci denotes columns of the coefficients matrix C , and K is a bound on the
sparsity of representation. The usual method for solving (4) is alternating minimiza-
tion: first, D is fixed and C is approximated by some of the algorithms reviewed in
the previous section. This stage is called sparse coding. In the next step, C is fixed
and D is updated. This alternating minimization is repeated until convergence to
a local minimum (it is also possible that algorithm gets stuck to a saddle point
of the problem). The MOD [16] algorithm follows this approach. The dictionary

Inverse Problems and Imaging Volume 5, No. 4 (2011), 815–841
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Figure 2. Coefficients in different bases of patch chosen randomly
from natural image. Coefficients were normalized for comparison
purpose. Without normalization coefficients in K-SVD and DCT
bases are much larger in absolute value (up to three orders of mag-
nitude) than those in ICA basis.

update step in MOD is calculated as Dk+1 = XC†k , where subscript denotes it-

eration number and C† is pseudoinverse of C . Calculating the pseudoinverse for
each iteration of the algorithm makes MOD slow. K-SVD algorithm, reviewed in
subsection 3.1, fixed this partially. It should be noted that the dictionary learning
problem could be stated more generally than in (4), by using some other measures
of representation error and sparsity of coefficients. In the two following subsections,
we discuss ICA- and K-SVD-based approaches for approximating the local solution
of the problem (4).

3.1. K-SVD algorithm. The K-SVD algorithm is generalization of the K-means
clustering approach to basis learning with sparseness constraints when number of
clusters (that corresponds to the level of sparseness K) is greater than 1. Hence,
philosophy in basis learning by the K-SVD algorithm reflects the knowledge that
clustering yields the most efficient signal representation, i.e. representing the signal
by one coefficient only. Its development was inspired in part by computational
inefficiency of the MOD basis learning algorithms [16], [17], [44]. The K-SVD
algorithm starts with the formulation (4). The improvement upon the MOD is
in the dictionary update stage. Contrary to the MOD, the K-SVD updates D
column by column. The objective function in (4) can be written as

Inverse Problems and Imaging Volume 5, No. 4 (2011), 815–841
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‖X −DC‖2F =

∥∥∥∥∥∥
X −∑

j 6=k

djc
j

− dkck
∥∥∥∥∥∥
2

F

where dj denote columns of D , and cj denote rows of C . We denote by ωk a set
of indices i for which cj(i) 6= 0 , and by Ωk a matrix of size N × |ωk| with ones
at positions (ωk(i), i) and zeros elsewhere. If we define the error matrix Ek by

Ek = X −
∑
j 6=k djc

j , then K-SVD minimizes
∥∥EkΩk − dkckΩk

∥∥2
F

with respect to

dk and ck . Therefore, updated dk and ck are first, scaled, left and right singular
vectors of the restricted matrix ERk = EkΩk , respectively. By restricting Ek and
ck in this way, updated ck is forced to have the same or smaller support than the
previous one. Provided that sparse coding stage is solved exactly, this guarantees
convergence to a local minimum of objective function in (4) on the constraints set.
Since it is solved only approximately, convergence is not guaranteed. However,
it seems that convergence occurs in practice. Usually, algorithm used in sparse
coding stage of the K-SVD is the OMP, for the following reasons: first, it natu-
rally finds an approximation with fixed number of nonzero coefficients, which fits
into the dictionary learning framework (4), and second, it is fast, especially when
compared to convex relaxation methods. We discuss details related to the K-SVD
algorithm, such as choice of parameter K , in the Results section. Since, it has
been demonstrated in [1] that the K-SVD outperforms the MOD algorithm, in the
Result section the MOD is not included in the comparative performance analysis
between the bases learning algorithms.

3.2. ICA for complete and overcomplete basis. In comparison with the prob-
abilistic framework to basis learning in [31], that in part is also based on the use of
ICA , the use of ICA proposed here is motivated by two reasons: a) it extends the
probabilistic framework to learn the overcomplete basis. This is achieved through
the use of the FastICA algorithm, [27], that works in sequential mode; b) in regard
to the probabilistic framework to basis learning presented in ref. [31], the adopted
ICA approach is more flexible. This is due to the fact that proper selection of the
nonlinear functions (that are related to parameterized form of the probability den-
sity functions of the code) enables basis learning that is tied with a code with the
prespecified level of sparseness without affecting the structure of the basis learning
equation (by ICA the basis inverse is actually learned). As opposed to that, in the
Bayesian paradigm to the basis learning presented in [31], the structure of the basis
learning equation depends on the choice of what was previously imposed on the
probability density function of the code.

We suppose that the linear model x = Dc is valid, where x and c are random
vectors (we interpret columns of the data matrix X, denoted as xi, as realizations
of x ), and D is the basis matrix we want to estimate. For now we consider only the
complete case (D is a n×n square matrix, and x and c are n-dimensional). Hence,
the basis D is what in blind source separation is referred to as a mixing matrix,
[26]. Extraction of the code matrix C (also referred to as a source matrix in blind
source separation) can be performed by means of the ICA algorithms. Herein, we
are interested in the ICA algorithm that: a) can be casted into the probabilistic
framework tied with the linear generative model as in [31]; b) can be extended for

Inverse Problems and Imaging Volume 5, No. 4 (2011), 815–841
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learning the overcomplete basis9. In this regard, assuming the linear generative
model x = Dc , the minimization of the mutual information I(c) is used:

(5) I(c) =

n∑
i=1

H(ci)−H(x)− log
∣∣detD−1

∣∣
where H(ci) stands for the differential entropy of the code and H(x) stands for
the joint entropy of data. The ICA algorithms that maximize information flow
through nonlinear network (Infomax algorithm) [3], maximize likelihood (ML) of
the ICA model x = Dc [39], or minimize mutual information between components
of c = D−1x [18], are equivalent in a sense that all minimize I(c) and yield the
same learning equation for D−1:

(6) D−1(k + 1)← D−1(k) + η
[
I − φ (c(k)) c(k)T

]
D−1(k)

where φ represents the score function defined as

(7) φi = − 1

pi

dpi
dci

and pi stands for the probability density function of the code ci . Hence, by proper
selection of the pi, the code ci with a distribution with the prespecified level of
sparseness can be generated. This virtually learns the basis D that efficiently rep-
resents data x. For this purpose it is useful to represent the density function pi
in (7) by generalized Gaussian density, which is parameterized by one parameter β
[13], [49]:

pi(ci) =
βi

2σiΓ (1/βi)
exp

(
− 1

βi

∣∣∣∣ ciσi
∣∣∣∣βi
)

where βi is a Gaussian exponent, Γ stands for the Gamma function and σi represents
the variance of ci. Inserting above equation in (7) yields the score function in a
parameterized form

φi(ci) = sgn(ci) |ci|βi−1

Hence, the selection of the generalized Gaussian exponent βi enables modeling of
some pre-specified density function. Super-Gaussian (i.e. sparse) densities are mod-
eled by choosing βi < 2 . This enables learning the basis matrix D that gives sparse
representation for xi. Due to its capability to learn the overcomplete basis, the
FastICA algorithm was selected herein for the basis learning purpose. It also has
the information-theoretic interpretation, but, as opposed to ML algorithm (6), it

9To avoid misunderstandings regarding the possible application of sparse component analysis

(SCA) [9], [20] for the basis learning problem, we discuss the main differences between the SCA
and ICA from the basis learning standpoint. The SCA methods are focused on the solution of

the underdetermined blind source separation (uBSS) problems that are characterized by having
more sources than sensors. To solve the uBSS problem the SCA methods first estimate the
basis matrix by means of clustering and afterwards estimate sources through the solution of the
underdetermined system of linear equations. The basis learning problem that is based on the
linear generative model reverses this sequence by focusing on the generation of the code (sources

in the BSS terminology) that is sparse and obtaining, virtually, the associated basis matrix as a
byproduct. Hence the SCA methods are not applicable to the basis learning problem.

Inverse Problems and Imaging Volume 5, No. 4 (2011), 815–841
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employs fixed-point instead of gradient-based minimization of the contrast function
that approximates negentropy of the code

(8) J(ci) ∝ [〈{G(ci)}〉 − 〈{G(ν)}〉]2

where G is some non-quadratic function, 〈·〉 denotes mathematical expectation,
and ν represents standardized Gaussian random variable. The approximation (8) is
related to mutual information I(c), derived for the assumed model x = Dc i.e. c =
D−1x, when G(ci) = − log pi is substituted in marginal entropies in (5). Hence, the
contrast function (8) is related to contrast functions used by ML [39], information
maximization [3], and minimum mutual information [18] ICA algorithms. Thus,
by the virtue of same logic as in (6) and (7), nonlinear function in the FastICA
algorithm can be also chosen to generate sparse distribution of the code ci. In the
experiments reported in section 4 we have used the tanh function that is associated
with G(ci) = (1/a) log cosh aci . Such a choice for G approximates density function
of the type

pi ∼
(

1

cosh aci

)1/a

that models sparse or super-Gaussian distributions10. See Figure 3 for the compar-
ison between the generalized Gaussian and this density.

The FastICA algorithm was extended to overcomplete case in [25] using the con-
cept of quasi-orthogonality. Here, the basis matrix D has more columns than rows,
and the idea is to make its columns as orthogonal as possible. In the sequential
mode of the FastICA, basis vectors are estimated one at a time. After every iter-
ation, the basis vector is orthogonalized with respect to previously estimated basis
vectors using the Gram-Schmidt orthogonalization. This idea can be extended to
overcomplete case as follows

(9) di ← di − α
i−1∑
j=1

(
dTi dj

)
dj

where 0 < α < 1 is a parameter (α = 1 corresponds to the ordinary orthogonal-
ization) and is usually chosen heuristically. We discuss our choice of α in section
4.

4. Results. This section presents numerical results related to the comparative per-
formance analysis of the basis learning methods on the problems of inpainting and
denoising of natural images. All reported numerical simulations were done in MAT-
LAB 7.7 on a 3 GHz Dual-Core Windows XP PC with 2GB memory. The section
is organized as follows. In subsection 4.1 we describe the basis learning procedure.
Subsection 4.2 describes parameter selection of sparse recovery algorithms used for
the inpainting. There, the inpainting methods used in the comparative perfor-
mance analysis are described as well. Subsection 4.3 presents comparative results
of denoising of natural images corrupted by the salt and pepper noise.

10Experimental results reported in section 4 were obtained with scale parameter a = 5. Other
choices (a = 1 and a = 10) were tried, but this one gave best results.
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Figure 3. Comparison of the probability density function (pdf)
induced by using tanh nonlinearity with the scale parameter α =
5 in the FastICA algorithm, and generalized Gaussian pdf with
parameter β = 1, which models Laplacian pdf.

4.1. Bases learning. Six images of natural scenes, shown in Figure 4, were used
as the training set for learning the basis matrix. Images were taken from a publicly
available database11 and converted to grayscale. Training images were of the size
576 × 768 pixels. We randomly extracted 18000 patches of the size 16 × 16 pixels
from six training images (3000 patches per training image) and organized them as
columns of the 256× 18000 data matrix X. Mean value was subtracted from every
patch: this is a very important preprocessing step. Then, the ICA and the K-SVD
were used for basis learning. In many papers in the literature smaller patches were
used, and hence also smaller number of atoms in the K-SVD training stage. For
example, in [15] the authors used patches of the size 8 × 8 pixels, and the number
of atoms in the training stage was 6, whereas in the inpainting experiments in [34]
(although they worked with color images) patches of the size 9× 9 pixels were used
and the number of atoms in the training stage was 20. Therefore, for comparison,
below we also present results obtained using smaller patches, of the size 8×8 pixels,
and smaller number of atoms in the K-SVD training stage, namely 4. It should be
noted that one of the seminal papers [38] also used patches of size 16× 16 pixels, as
well as recent papers [33] and [35] (in [35], few patch sizes were used for comparison).
Another important point is that the same patch sizes are used for both bases, which
allows fair comparison between them.

11A. Olmos, F. A. A. Kingdom, McGill calibrated color image database, 2004., http:

//pirsquared.org/research/mcgilldb/
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Figure 4. Six images from the training set used for bases learning.
Images were randomly selected from11.

MATLAB implementations of the FastICA algorithm, available at12, and the
K-SVD, available at13, were used. As discussed in section 3.2, tanh nonlinearity
in the FastICA algorithm has been used because it yields components with sparse
(super-Gaussian) distributions. Sparse coding stage in the K-SVD was done using
the OMP algorithm with 40 nonzero coefficients of a solution. Smaller number of
nonzero coefficients would speed up the K-SVD algorithm and possibly find sparser
representation, but simulations showed that this doesn’t yield a better performance.
Namely, if the training set doesn’t allow such a sparse representation, which seems
to be the case with the real signals such as natural images, then this model is not
appropriate. Therefore, this number was chosen heuristically to obtain sparsity, but
only at a reasonable, realistic level. For comparison, we have also tried running the
K-SVD algorithm with 4 nonzero coefficients of a solution, see later text. It is ex-
pected that better performance can be obtained by using some other reconstruction
algorithm, but the reason for choosing the OMP is its speed. Basis learning with the
K-SVD algorithm took around 5 hours for 100 iterations, while basis learning for the
complete case with the FastICA took around 3 hours. It should be noted that the
K-SVD is much faster when using smaller number of atoms, but with larger number
of atoms better performance was obtained. Figure 5 shows basis vectors learned
by the FastICA and K-SVD algorithms with the patches of the size 16× 16 pixels.
The FastICA and K-SVD were also used for learning overcomplete basis. Sequential
version of the FastICA algorithm was modified to perform quasi-orthogonalization
after every step, as explained in Section 3. Parameter α in (9) was set to 0.5. The
K-SVD takes the number of basis vectors directly as a parameter.

12The FastICA package for MATLAB, http://www.cis.hut.fi/projects/ica/fastica/

index.shtml
13The KSVD-Box MATLAB toolbox, http://www.cs.technion.ac.il/~ronrubin/software.

html
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Figure 5. 256 matricized basis vectors of the size 16 × 16 pixels
learned by ICA, (a), and K-SVD, (b), algorithms. Basis vectors
are columns of the learned basis matrix.

4.2. Inpainting. We have used freely available MATLAB implementation of the
Smoothed `0 (SL0) algorithm14 for image reconstruction, i.e. inpainting. Justifi-
cation of this choice was already discussed in Section 2. The parameter σ in (3)
was chosen as suggested by the authors: we randomly selected an image patch and
computed its coefficients in the learned basis by applying a direct transformation.
Then the absolute values of these coefficients were sorted in descending order and
the smallest 80 percent of them were interpreted as noise (see discussion in Section
2). Parameter σ was selected to be few times larger than the standard deviation of
the vector of these smallest coefficients. In this way, since natural image patches
are not exactly sparse signals, smallest coefficients in selected basis were interpreted
as a noise/error. We have also experimented with the other values of σ and found
that this choice yields best results. In our simulations the SL0 algorithm worked
better and was much faster than other approaches, especially those using `1 mini-
mization. For example, we have also tested the `1ls algorithm for the problem (4)
(MATLAB implementation is available at15). On average, reconstruction using the
`1ls took 10 to 15 minutes per image, while the SL0 took about 30 seconds per
image only. The OMP performed worse (in terms of the measures of the quality of
reconstructed images, see below) than the SL0 and the `1ls, with a computational
complexity of the order of few minutes. For every patch, before the reconstruction,
mean value of the observed pixels in the patch was subtracted from the vector of
the observed pixels and added back after the reconstruction. Thus, DC compo-
nent was artificially added in the reconstruction yielding better results than when
the DC component was a part of the basis. To prevent border effects, reconstruc-
tion was done with two rows, i.e. columns, of adjacent patches overlapping. After
reconstruction, overlapping regions were averaged.

14http://ee.sharif.ir/~SLzero/
15http://www.stanford.edu/~boyd/l1_ls/
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For measuring the quality of the reconstructed images, we have used structural
similarity index (SSIM) [46], [47] and peak signal-to-noise ratio (PSNR). We have
noted that PSNR can give higher values (that should correspond to higher image
quality) despite obvious visual quality degradation. That is in line with the objec-
tion already pointed out in [46] that high PSNR value does not always correspond
with the high quality of visual perception. It was demonstrated that the SSIM is
the metric that better corresponds to subjective quality of visual perception. The
SSIM index is computed locally on image patches, within a sliding window that
moves pixel-by-pixel across the image; local SSIM measures the similarity of local
patch brightness values, contrasts and structures. For more details, we refer the
interested reader to the paper [47]. Global SSIM is computed as an average of the
SSIM values across the image. It has values between −1 and 1, achieving maximum
value 1 if and only if the images being compared are equal. MATLAB code for
computing the SSIM index is available at16. For comparison, we have also used the
MCA and the Fields of experts (FoE) [41] methods for image inpainting. MATLAB
implementation of the MCA is available as a part of the MCALab package17. Dic-
tionaries used in the MCA were curvelets for the cartoon part and two-dimensional
cosine packets for the texture part (see Introduction for a brief explanation of the
MCA). Parameters of the MCA were the same as in the Barbara image inpainting
example that is available as a part of the MCALab package. Namely, window width
for the cosine packets was 32 pixels, and coarsest scale for the curvelets was 2.
The hard thresholding was used with linear decrease schedule, and the number of
iterations was 300. MATLAB implementation of the FoE method is available at18.
Default values of the parameters were used.

Six images shown in Figure 6, also taken from11, were used as the validation set.
These images were reshaped to the size of 512×512 pixels. Since the distribution of
missing pixels was generated randomly, we repeated the inpainting experiment 10
times for every image in the validation set, every time randomly generating missing
pixels distribution. We did not repeat inpainting experiments with the MCA and
FoE 10 times because reconstruction was slow (the MCA took about 50 minutes for
one image, while the FoE took about 5 hours for one image). Table 1 shows detailed
results of inpainting of six natural images in the validation set using: the ICA and
K-SVD learned complete bases and DCT and symmlet 4 wavelet fixed bases. Also
presented are results using the MCA and the FoE. Numbers in the table stand
for mean values and standard deviations of the SSIM metric of the reconstructed
images after 10 runs.

It is clear that the learned bases greatly outperformed fixed bases. It is also
clear that the ICA outperformed the K-SVD, although not by that large margin.
One reason for better performance of the ICA-learned basis is its smaller coherence,
see Figure 1. Table 2 shows the corresponding results in the PSNR metric. It can
be seen that results using both metrics are consistent. For comparison, in Table 3
we also show results obtained by the ICA and K-SVD bases learned on patches of
the size of 8 × 8 pixels, wherein the number of atoms used in the K-SVD training
phase was 4. It can be seen that the comparative performance of the two bases is
similar. The K-SVD basis performed even worse than when using larger patches

16http://www.ece.uwaterloo.ca/~z70wang/research/ssim/
17http://www.greyc.ensicaen.fr/~jfadili/demos/WaveRestore/downloads/mcalab/Home.

html
18http://www.gris.informatik.tu-darmstadt.de/research/visinf/software/index.en.htm
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Figure 6. Images used for validation purpose. Images were ran-
domly selected from11.

Table 1. Inpainting results for the complete bases in terms of
the SSIM metric for the complete bases learned on patches of size
16× 16 pixels.

ICA K-
SVD

DCT Symmlet 4
wavelet

MCA FoE

Fig. 6a 0.907 ±
0.0008

0.905 ±
0.001

0.75 ±
0.0008

0.736 ±
0.0022

0.789 0.92

Fig. 6b 0.76 ±
0.0016

0.749 ±
0.0012

0.55 ±
0.0015

0.503 ±
0.0015

0.682 0.77

Fig. 6c 0.773 ±
0.0007

0.766 ±
0.0011

0.617 ±
0.0011

0.562±0.003 0.644 0.78

Fig. 6d 0.944 ±
0.0005

0.94 ±
0.0004

0.81 ±
0.0007

0.81±0.0017 0.854 0.95

Fig. 6e 0.6 ±
0.002

0.577 ±
0.0015

0.434 ±
0.0015

0.35±0.0022 0.491 0.6

Fig. 6f 0.919 ±
0.0006

0.917 ±
0.0005

0.84 ±
0.0003

0.812 ±
0.0009

0.852 0.92

Mean 0.817 ±
0.001

0.809 ±
0.0009

0.666 ±
0.0008

0.63±0.002 0.719 0.824

and larger number of atoms in the training phase. Figure 7 shows degraded and
reconstructed versions of the two images from the validation set, whereupon 80
percent of pixels were removed randomly from each image in the validation set.
Images reconstructed using fixed basis are not shown because they are inferior.

Inverse Problems and Imaging Volume 5, No. 4 (2011), 815–841



830 Marko Filipović and Ivica Kopriva

Table 2. Inpainting results in terms of the PSNR metric for the
complete bases learned on patches of size 16×16 pixels. The values
are in dB.

ICA K-
SVD

DCT Symmlet 4
wavelet

MCA FoE

Fig. 6a 30.2 ±
0.07

30.2 ±
0.08

25.4 ±
0.02

23.4± 0.1 27.1 30.9

Fig. 6b 24.4 ±
0.04

24.1 ±
0.04

21.6 ±
0.02

19.8± 0.03 23.6 24.7

Fig. 6c 29.7 ±
0.01

29.3 ±
0.02

27.1 ±
0.02

25.6± 0.05 27.6 29.8

Fig. 6d 34.3 ±
0.08

34.4 ±
0.06

28.4 ±
0.05

27± 0.1 30.3 35.5

Fig. 6e 19.5 ±
0.03

18.8 ±
0.03

18.2 ±
0.01

16± 0.01 18.4 19.5

Fig. 6f 33.4 ±
0.09

32.9 ±
0.07

30.5 ±
0.02

28.6± 0.09 30.7 33.1

Mean 28.6 ±
0.05

28.3 ±
0.05

25.2 ±
0.03

23.4± 0.07 26.3 28.9

Table 3. Inpainting results in terms of the SSIM metric for the
complete bases learned on patches of size 8× 8 pixels.

ICA K-SVD
Fig. 6a 0.9± 0.002 0.9± 0.0007
Fig. 6b 0.75± 0.003 0.74± 0.0016
Fig. 6c 0.77± 0.001 0.76± 0.0012
Fig. 6d 0.936± 0.0004 0.935± 0.0007
Fig. 6e 0.58± 0.004 0.575± 0.0015
Fig. 6f 0.91± 0.001 0.914± 0.0008

Mean 0.809± 0.002 0.804± 0.0011

Table 4 shows detailed results of inpainting for learned overcomplete bases in term
of the SSIM values, while Table 5 shows corresponding PSNR values. Both bases
were twice overcomplete, i.e. of the size 256× 512. Again, for comparison, in Table
6 we also show results obtained with bases learned on patches with the size of 8× 8
pixels, wherein number of atoms used in K-SVD training was 4. It can be seen
that smaller patches and smaller number of atoms in the K-SVD training phase did
not bring performance improvement. It can be seen from the Tables 4 and 5 that
the ICA basis again outperformed the K-SVD learned basis. It is also clear that
the use of overcomplete bases did not make significant performance improvement
with respect to the complete case, which seems to be consistent with the conclusion
already presented in [32] in the speech coding problem.

It should be said that the K-SVD algorithm is designed to minimize the mean
squared error (MSE) of the representation, and thus does not necessarily give good
performance in terms of the SSIM. The authors in [34] themselves noted that using
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Figure 7. Examples of two images from the validation set with
80 percent of missing pixels: a) and b). Inpainting of two degraded
images using ICA learned basis: c) and d). Inpainting of two de-
graded images using K-SVD learned basis: e) and f).

Inverse Problems and Imaging Volume 5, No. 4 (2011), 815–841



832 Marko Filipović and Ivica Kopriva

Table 4. Inpainting results in terms of the SSIM metric for the
overcomplete bases learned on patches of size 16× 16 pixels.

ICA K-SVD
Fig. 6a 0.907± 0.0005 0.903± 0.0011
Fig. 6b 0.76± 0.0008 0.754± 0.0011
Fig. 6c 0.773± 0.0011 0.772± 0.001
Fig. 6d 0.944± 0.0004 0.94± 0.0004
Fig. 6e 0.6± 0.0009 0.596± 0.0014
Fig. 6f 0.919± 0.0005 0.918± 0.0005

Mean 0.817± 0.0007 0.814± 0.0009

Table 5. Inpainting results in terms of the PSNR metric for the
overcomplete bases learned on patches of size 16 × 16 pixels. The
values are in dB.

ICA K-SVD
Fig. 6a 30.2± 0.06 30± 0.1
Fig. 6b 24.5± 0.03 24.3± 0.03
Fig. 6c 29.7± 0.03 29.6± 0.02
Fig. 6d 34.4± 0.06 34.1± 0.06
Fig. 6e 19.5± 0.03 19.3± 0.02
Fig. 6f 33.3± 0.09 33.2± 0.05

Mean 28.6± 0.05 28.4± 0.05

Table 6. Inpainting results in terms of the SSIM metric for the
overcomplete bases learned on patches of size 8× 8 pixels.

ICA K-SVD
Fig. 6a 0.899± 0.0006 0.896± 0.0013
Fig. 6b 0.745± 0.0013 0.74± 0.0011
Fig. 6c 0.765± 0.0007 0.765± 0.0011
Fig. 6d 0.936± 0.0006 0.931± 0.0004
Fig. 6e 0.593± 0.0016 0.59± 0.0017
Fig. 6f 0.915± 0.0006 0.915± 0.0004

Mean 0.809± 0.0009 0.807± 0.001

some metric other than the MSE in the K-SVD could be an interesting direction to
study. However, such extensions of the K-SVD are not straightforward.

We also include results of the inpainting experiments with the stronger structure
of the missing pixels, namely lines, blocks and text. We have modified the patch
based algorithm presented above for the case when missing regions are larger than
the used patch size: only patches that overlap with the missing region and have
percentage of known pixels greater than the predefined threshold are inpainted;
after the whole image is processed, this procedure is repeated. Similar iterative
approaches were used in [23], [24]. Threshold of 0.8 was used in our experiments.
Table 7 shows results of inpainting, using the ICA and K-SVD bases, where missing
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pixels have block structure. The ICA basis again performed better compared to the
K-SVD. Figure 8 shows two degraded and reconstructed images from the validation
set, whereupon images are corrupted by the block pattern of missing pixels. It
can be seen that the inpainted regions are blurry, but this is a known effect when
large missing regions are being inpainted (for an example, see [14]). Figure 9 shows
another, often used example. It should be noted that our heuristic approach in this
case can not compete with the more specialized methods like [24], [40]. Table 8
shows results of inpainting of images corrupted by the line structures. Figure 10
shows two degraded and reconstructed images from the validation set, whereupon
images are corrupted by the lines pattern of missing pixels. Figure 11 shows another
often used example. We also show results of the text inpainting in Figure 12 (the
images and the corresponding masks were taken from19). These examples should
illustrate that ICA-based approach to basis learning performs reasonably well on
realistic inpainting problems.

Figure 8. Examples of two images from the validation set with
the block pattern of missing pixels: a) and b). Inpainting of two
degraded images using ICA learned basis: c) and d).

19http://www.dtic.upf.edu/~mbertalmio/restoration0.html
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Figure 9. a) The Barbara image corrupted by the block structure
of missing pixels. b) Inpainting using ICA learned basis.

Table 7. Inpainting results in terms of the SSIM metric for the
block pattern of missing pixels.

initial ICA K-SVD
Fig. 6a 0.9284 0.9746 0.963
Fig. 6b 0.9303 0.9658 0.9488
Fig. 6c 0.9254 0.9689 0.9554
Fig. 6d 0.9265 0.9775 0.97
Fig. 6e 0.9337 0.9545 0.942
Fig. 6f 0.9205 0.9885 0.98

Mean 0.927 0.9716 0.96

Table 8. Inpainting results in terms of the SSIM metric for the
lines pattern of missing pixels.

initial ICA K-SVD
Fig. 6a 0.939 0.997 0.9965
Fig. 6b 0.9439 0.9935 0.9887
Fig. 6c 0.935 0.9943 0.9913
Fig. 6d 0.935 0.9982 0.9983
Fig. 6e 0.952 0.9895 0.9825
Fig. 6f 0.924 0.9975 0.9964

Mean 0.938 0.995 0.9923
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Figure 10. Examples of two images from the validation set with
the lines pattern of missing pixels: a) and b). Inpainting of two
degraded images using ICA learned basis: c) and d).

4.3. Denoising. As pointed out previously, presented approach to image inpaint-
ing can be used for image denoising purpose as well when image is corrupted by
additive impulsive noise such as salt and pepper noise. All pixels with maximal
intensity in the given resolution (when salt noise is considered) or with zero in-
tensity (when pepper noise is considered) are declared as missing pixels. Due to
the high efficiency of nonlinear image reconstruction methods and the learned basis
that provides sparse representation of an image, the small amount of correct pix-
els that is possibly mistakenly declared as corrupted will not significantly influence
the quality of denoising. Yet, such noise corrupted pixel detection scheme is very
simple. Impulsive noise belongs to the class of alpha stable processes, has infinite
variance and is optimally filtered out by means of myriad filters, [2], [21]20. In the
comparative performance analysis presented below we have used two-dimensional

20Due to the infinite variance of impulsive additive noise, the MAP approach to image denoising
[15], [34], that relies on solution of optimization problem with inequality constraint that depends

on the noise variance, see eq.(2), is not applicable to the considered denoising scenario.
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Figure 11. a) The Girls image. b) Inpainting using ICA learned basis.

Figure 12. Inpainting for text removal. a) Image with text. b)
Inpainting using ICA learned basis.

myriad filter with the sliding window of size 5 × 5 pixels. Larger window would
filter out impulsive noise better, but would also cause a loss of details in filtered
image. We refer the interested reader to ref. [2], page 337, for other details related
to parameter settings for myriad filtering based denoising of gray scale images. Fig-
ures 13a and 13b show an image chosen from the validation set and corrupted with
impulsive noise. Corrupted pixels were selected randomly to respectively occupy
5 and 20 percent of the image. Denoising results obtained by myriad filtering are
respectively shown in Figures 13c and 13d, while denoising results obtained by in-
painting in ICA learned basis are shown in Figures 13e and 13f. It can be seen
that myriad filtering failed to denoise the image well, especially when 20 percent of
the image pixels were corrupted. On the contrary, quality of visual perception of
the image denoised through inpainting approach with the ICA learned basis is very
good. Numerical results for all six images from the validation set are shown in Ta-
bles 9 and 10 for the corruption level of 5 and 20 percent respectively. It is evident
that denoising using myriad filtering becomes very poor when higher percentage of
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Table 9. Denoising results in terms of the SSIM metric when 5
percent of pixels were corrupted by impulsive noise.

ICA Myriad filtering
Fig. 6a 0.998 0.873
Fig. 6b 0.983 0.93
Fig. 6c 0.986 0.865
Fig. 6d 0.999 0.909
Fig. 6e 0.871 0.854
Fig. 6f 0.998 0.771

Mean 0.973 0.867

Table 10. Denoising results in terms of SSIM metric when 20
percent of pixels were corrupted by impulsive noise.

ICA Myriad filtering
Fig. 6a 0.991 0.643
Fig. 6b 0.977 0.691
Fig. 6c 0.974 0.569
Fig. 6d 0.997 0.674
Fig. 6e 0.916 0.743
Fig. 6f 0.993 0.287

Mean 0.975 0.601

the pixels is corrupted. On the contrary, denoising based on inpainting approach
with learned basis remains robust even when as much as 80 percent of the pixels are
corrupted, see Figure 7. Obtained results are explained by the fact that filtering is
trying to smooth the image corrupted by additive impulsive noise while inpainting
is based on nonlinear signal reconstruction approach whereupon pixels corrupted
by additive noise are treated as missing pixels. Hence, provided that the learned
basis yields sparse representation of the image, good reconstruction is possible even
when a large number of pixels is corrupted. In the filtering approach, this requires
a smoothing window with a large support that causes severe loss of details in the
image.

5. Conclusion. This paper compared dictionary based approaches to inpainting
and denoising of natural images, whereas the emphasis has been given on the ICA-
learned complete and overcomplete basis. The paper also presented an algorithm
for the reconstruction of the saturated pixels in the image corrupted by the salt and
pepper noise, whereas saturated pixels are treated as missing pixels. Thus, image
denoising problem has been virtually converted into the noiseless image inpainting
problem. MAP approach can not solve this type of denoising problem due to the
fact that the noise variance is infinite, while the filtering approach yields an image
with degraded resolution. The FastICA algorithm with tanh nonlinear function has
been used to learn the basis from patch-based representation of randomly chosen
images of natural scenes that served as a training set. In the extensive compara-
tive performance analysis in the inpainting problem of randomly chosen images of
natural scenes from a validation set, ICA-learned bases outperformed bases learned
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Figure 13. Examples of noisy image from the validation set with 5
and 20 percent of corrupted pixels, respectively: a) and b). Denois-
ing using two-dimensional myriad filtering with the sliding window
of size 5× 5 pixels: c) and d). Denoising using inpainting and ICA
learned basis: e) and f).

by K-SVD and MCA algorithm in term of quality of reconstruction. It yielded
similar result as the FoE method with more than two orders of magnitude smaller
computational complexity. On the same problems, Fourier and wavelet bases as
representatives of fixed bases exhibited the poorest performance. It is also demon-
strated that noiseless inpainting-based approach to image denoising (estimation of
the saturated pixel values) greatly outperforms denoising based on two-dimensional
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myriad filtering that is theoretically optimal solution for this class of additive im-
pulsive noise.
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[28] J. Kovačević and A. Chebira, Life beyond bases: The advent of frames (Part I), IEEE Signal

Process. Mag., 25 (2007), 86–104.
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