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Abstract—In this paper, we deduce general observability condi-
tion of all types of SLAM solutions regardless what states they
consider directly in estimation, i.e. whether SLAM is feature
based or pose (graph) based. This result comes from doing
nonlinear observability analysis of the pose-based SLAM. We
consider general vehicle motion model whose control inputs are
translational and rotational velocity of the vehicle’s body, and
relative vehicle’s pose measurements that come, for example
but not necessarily, from stereo camera image registration. We
conclude that, for the SLAM to be observable, one vehicle pose
must be known apriori, or must be exactly reconstructable from
observed features. This approach avoids extra non-singularity
conditions, i.e. connection of the localization algorithm and a
robot control law in observability analysis. Finally, we demon-
strate the theory on the common pose estimation problem solved
with the Extended Kalman Filter.

Index Terms—SLAM, nonlinear observability, estimation

I. INTRODUCTION

When Simultaneous Localization And Map building (SLAM)

is considered as a control system, three of the main difficulties

are interconnected: the localization of the vehicle with respect

to the environment, the construction of the map of the

environment itself, and the control of the vehicle to desired

postures relative to the environment [2]. In literature, different

approaches, considering first two aspects, have been proposed

with main differences in motion and observation models they

employ, states they consider directly in estimation (feature

based or pose based), and representation of state uncertainty

and filtering algorithm used (EKF-SLAM [13], SEIF [16],

FastSLAM [11], ESDSF [5], CI-SLAM [9] etc.). However,

structurally they all can be related one to another which means

they all contain the same information - global map of the

environment and the robot’s pose in it, whether directly or not.

The third aspect of SLAM is not often considered, as in most

cases, vehicles are controlled in open loop. A serious flaw

could be made if SLAM is assumed essentially observable

like in most of the proposed solutions.

Observability of a control system is its structural property

defined as being able to deduce state of the system from

observing its input-output behavior. It provides understand-

ing of the fundamental limits of every estimation method

regardless of process and measurement noises. In literature,

feature based 2D world centric SLAM observability analysis

was done involving odometry inputs for robot speed and

range/bearing measurements to features of the environment

[10, 1]. Observability analysis of feature based SLAM comes

to the same conditions like in this paper, but implies that

robot must move on a certain observable trajectory. For

example, in [1] mobile robot’s pose and obstacle positions

are unknown (more generally , known up to some apriori

probability distribution) and the task is to reconstruct such

information from angular measurements. If a robot moves

along straight line which passes through 2 obstacles, it cannot

localize itself.

In this paper, we generalize observability condition on the

basis of observability analysis of the pose SLAM which

implies that one robot’s pose must be apriori known or

reconstructable from measurements. It unifies all types of

SLAM solutions and avoids extra non-singularity conditions,

i.e. connection of the localization algorithm and a robot

control law in observability analysis. Observability of the pose

based 2D world centric SLAM involving odometry inputs for

robot translational and rotational speed and stereo camera ego

motion measurements is analyzed, with special case of 2D

pose SLAM model with differentially-driven wheeled robot

with stereo camera head. This kind of analysis ends up with

condition for the given system to be observable.

World centric SLAM is a nonlinear and inherently cou-

pled system. In general, control inputs to nonlinear coupled

systems can not be neglected in the observability analysis

contrary to the linear systems where structural properties do

not depend on inputs. It was shown that the linearized feature

based 2D SLAM system does not have the same structural

properties as the nonlinear one [1, 10, 12], particularly,

conditions which linearized SLAM observability analysis

implies do not agree with common logic of possibility of

reconstructing the pose by triangulation from at least two

known features. Therefore, pose SLAM observability analysis

must be done directly on the nonlinear model.

Our SLAM observability analysis is based on the nonlin-

ear systems observability theory studied and described by

[6, 8, 14, 15]. Applied approach is from a differential ge-

ometry point of view. Hermann and Krener [6] related the

concept of observability to the concept of indistinguishability

of states with respect to the inputs emphasizing effect of

inputs to nonlinear systems observability. Explicit algebraic

observability test is derived for the class of nonlinear systems

affine in control inputs, as the SLAM systems belong to that

class.

The rest of the paper is structured as follows. Section II briefly

reviews observability theory of nonlinear systems affine in

control inputs and Section III applies it to the observability

analysis of the 2D pose SLAM. The observability conditions

are demonstrated on the common pose estimation problem

solved with the Extended Kalman Filter (EKF) in Section

IV. Section V gives the conclusions of the paper.
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II. NONLINEAR SYSTEMS OBSERVABILITY

A. Control systems affine in control inputs

Here, we consider only the nonlinear Multi-Input Multi-

Output (MIMO) control system Σ affine in control inputs to

which pose SLAM, as will be shown later, can be reduced

to:

Σ







































ẋ = F (x, u) = f(x) +

m
∑

i=1

gi(x)ui

y = h(x) =











h1(x)
h2(x)

...

hp(x)











,

(1)

where x ∈ M (an open subset of R
n), is the state, u ∈

Ω ⊆ R
m the control input and y ∈ R

p observable output of

the system. f, g1, . . . , gm and h are smooth vector fields of

adequate dimension defined on M .
To the set of all smooth vector fields V (M) defined on M , the
structure of a vector space over the set R of real numbers can
be given - structure of a Lie algebra under the multiplication
of vector fields f1 and f2 defined by their Lie bracket [f1, f2]
as:

[f1, f2] =
∂f2

∂x
(x)f1(x) −

∂f1

∂x
(x)f2(x), f1, f2 ∈ V (M). (2)

V (M) is an infinite dimensional real vector space whose

elements are n-dimensional column vectors of real valued

functions of x. Let C∞(M) denotes the infinite dimensional

real vector space of all smooth real valued functions on M .

Elements of V (M) act as linear operators on C∞(M) by

Lie differentiation. If τ ∈ V (M) and ϕ ∈ C∞(M) then

Lτ (ϕ)(x) ∈ C∞(M) is defined as a scalar product of the

gradient of the function ϕ and vector τ :

Lτ (ϕ)(x) =
∂ϕ

∂x
(x)τ(x) = 〈dϕ, τ〉. (3)

The gradient of the function ϕ is a row vector valued function:

dϕ =
∂ϕ

∂x
=

(

∂ϕ
∂x1

∂ϕ
∂x2

. . . ∂ϕ
∂xn

)

. (4)

In order to study observability, we consider the smallest

subspace of C∞(M), O, which contains output functions

h1, . . . , hp and is closed under Lie differentiation along the

vector fields f, g1, . . . , gm. Subspace O will be called obser-

vation space. Element of O is a finite R-linear combination

LC of functions from the set S0:

S0 =
{

λ ∈ C∞(M) : λ = hj orλ = Lτi1
. . . Lτi2

hj;

1 6 j 6 p, 1 6 ik 6 q, k > 1} , (5)

where vector fields {τik
: 1 6 ik 6 q} belong to the

set {f, g1, . . . , gm}, i.e. all R-linear combinations of the

functions from the set S0 form observation space, LC(S0) =
O. With O we associate codistribution by setting

ΩO = span {dλ : λ ∈ O} . (6)

Theorem 1: A sufficient condition for a control system Σ to

be locally weakly observable on M is that

dim (ΩO(x)) = n (7)

for all x ∈ M .

Proof: Proof is given in [8].

Above condition is called observability rank condition. Con-

verse holds only partially.

Theorem 2: If control system Σ is locally weakly observable,

then the observability rank condition is satisfied generically.

Proof: Proof is given in [6].

B. Lie algebra of analytic systems affine in control inputs

Observability of nonlinear control system does not imply

that every input distinguishes points of M, but some gen-

eralizations can be drawn. Wang and Sonntag [4] proved

that observation space of the control system affine in control

inputs, Σ, defined in terms of piecewise constant inputs and

of the same system defined in terms of analytic inputs are

identical. Therefore, we can treat u as constant in testing

observability rank of such systems and we can write:

LF h(x) =
∂h(x)

∂x
F (x, u) (8)

LF dh(x) = dLF h(x) =

=
∂h(x)

∂x

∂F (x, u)

∂x
+ F (x, u)T ∂

∂x

(

∂h(x)

∂x

)

. (9)

Analogously, differentials of repeated Lie derivatives can be

given recursively [10]:

dL0
F h(x) =

∂h(x)

∂x
(10)

dLi
F h(x) = dLi−1

F h(x)
∂F (x, u)

∂x
. . .

+ F (x, u)T ∂

∂x

(

dLi−1
F h(x)

)

, i ≥ 1. (11)

In observability rank test, the rank of the linear space contain-
ing the gradients of all Lie derivatives of the output functions
must be calculated. Since no bound is given for the number
of Lie derivatives necessary for the calculation, the practical
application of the test to other than the simplest examples
is difficult. However, it can be shown that observability Lie
algebra of the system Σ is spanned by gradients of the
first n Lie derivatives of the output function components
dLF

ihj , i = 0, 1, . . . , n − 1 for every j = 1, 2, . . . , p. The
system Σ satisfies the observability rank condition if any of
the observability matrices are of rank n, i.e. full rank, where
the observability matrices are given by [10]:

Oj =
`

dL0

F hj(x) dL1

F hj(x) . . . dLn−1

F hj(x)
´T

(12)

∀j = 1, 2, . . . , p.

It is also possible to use as an observability matrix any

combination {i, j} of n Lie derivatives dLi
F hj forming a

square matrix of dimension n.

III. OBSERVABILITY ANALYSIS OF 2D POSE SLAM

In general scenario, a mobile robot autonomously navigates in

an unknown (unstructured) three-dimensional space having all

degrees of freedom in translational and rotational motion. For

simplicity, we suppose that the environment is static because

this assumption doesn’t essentially change the SLAM prob-

lem. The motion of the features can easily be incorporated in
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the model and does not change SLAM’s structural properties

nor the estimation method. It, however, greatly complicates

implementation because feature tracking must then be realized

[17]. We only model the mobile robot’s kinematics from the

same reason of not influencing system’s observability.

Let quaternion t denotes mobile robot’s position (vector

(x, y, z) in Cartesian coordinates) and quaternion q its ori-

entation in the world coordinate system W :

q =
(

s a b c
)T

,

t =
(

0 x y z
)T

,

with the convention that the first component of quaternion is

scalar (s and zero respectively). Let’s say that we control a

robot by applying inputs to its motors that generate transla-

tional velocity

v =
(

0 vx vy vz

)T

and rotational velocity

ω =
(

0 ω0 ω1 ω2

)T

with respect to some coordinate system L attached to the

robot body. Both v and ω are represented with quaternions

where the vector part of quaternion corresponds to direction

of motion or axis of rotation, respectively, and its length to the

speed amplitude. Kinematics of such system can be described

by:









0
ẋ

ẏ

ż









= q









0
vx

vy

vz









q−1 (13)

q̇ =
1

2
q ∗ ω (14)

q̇ = M · q (15)








q̇0

q̇1

q̇2

q̇3









=









0 −ω0

2 −ω1

2 −ω2

2
ω0

2 0 ω2

2 −ω1

2
ω1

2 −ω2

2 0 ω0

2
ω2

2
ω1

2 −ω0

2 0

















q0

q1

q2

q3









. (16)

In equation (14) “∗” denotes quaternion multiplication while

“·” in eq. (15) denotes matrix multiplication which is then

expanded in eq. (16). System (13)-(16) is analytic affine in

control inputs for which observability rank test (12) is valid.

Robot starts from some pose x0 = (t0 q0)
T

and along its

trajectory in time step i samples pose xi = (ti qi)
T

and

builds local map of the features in the environment (see

Fig. 1). With stereo vision based SLAM, local map would

be disparity map and pair of images taken from the left

and right camera. When at least two poses are gathered,

measurement can be generated by performing stereo image

registration between corresponding poses. For clearness of

the observability analysis, we will assume that the pose of

the camera and the pose of the robot coincide. Then the

measurement model is given in the form of the relative pose

between robot’s poses xi and xj in terms of rotation qC
ij and

L

L

L

W

t q01, 01

x0

x1

x2

Fig. 1. Pose SLAM with stereo vision

translation tCij of the stereo head between those poses with:

qC
ij = qij = q−1

i qj (17)

tCij = tij = q−1
i (tj − ti)qi. (18)

Based on the developed 3D robot’s motion model, we will
give in details observability analysis of 2D pose SLAM
system with differentially-driven wheeled robot and stereo
camera head mounted on it. We assume that the robot is
moving in xOy plane of the world coordinate system W
rotating only around z axis, with camera fixed to the robot.
Again for clarity, we suppose that robot and camera poses
coincide. Control inputs to this system are robot’s body
longitudinal velocity v and robot’s body rotational velocity
ω. With differential drive, only component of velocity vx

perpendicular to the base axle exists and the rotation is
possible only around axis perpendicular to traversal plane

through center of axle, i.e. v =
(

0 vx 0 0
)T

and

ω =
(

0 0 0 ωz

)T
. So, the SLAM system Σ in which

the state vector consists of two 2D poses x0 and x1 of the
trajectory and corresponding stereo vision measurement of
their relative pose h1 is:1

„

ẋ0

ẋ1

«

= F (x, u) =

0

B

B

B

@

04x1

vx

`

s2

1 − c2

1

´

2vxc1s1

−
ωzc1

2
ωzs1

2

1

C

C

C

A

(19)

h1 (x0, x1) =

0

B

B

@

(x0 − x1) c2
0 + 2s0 (y1 − y0) c0 + s2

0 (x1 − x0)
(y0 − y1) c2

0 + 2s0 (x0 − x1) c0 + s2
0 (y1 − y0)

c0c1 + s0s1

c1s0 − c0s1

1

C

C

A

.

(20)

Every observability matrix of this system is rank deficient
so the system is not observable, e.g. if observability matrix
O is formed like this

O =

`

dL0
F x10 dL0

F y10 dL0
F s10 dL0

F c10 . . .

. . . dL1
F x10 dL1

F y10 dL1
F s10 dL1

F c10 )T ,
(21)

where

dL0
F x10 =

0

B

B

B

B

B

B

B

B

B

@

c2
0 − s2

0
−2c0s0

2s0 (x1 − x0) + 2c0 (y1 − y0)
2 (c0 (x0 − x1) + s0 (y1 − y0))

s2
0 − c2

0
2c0s0

0
0

1

C

C

C

C

C

C

C

C

C

A

T

,

1For 2D pose xi, only two non-zero elements of quaternion qi, si and ci,
and xi and yi coordinates of ti form the state vector, i.e its dimension is
4×1
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dL0
F y10 =

0

B

B

B

B

B

B

B

B

B

@

2c0s0

c2
0 − s2

0
2 (c0 (x0 − x1) + s0 (y1 − y0))
2 (s0 (x0 − x1) + c0 (y0 − y1))

−2c0s0

s2
0 − c2

0
0
0

1

C

C

C

C

C

C

C

C

C

A

T

,

dL
0
F s10 =

0

B

B

B

B

B

B

B

B

B

@

0
0
s1

c1

0
0
s0

c0

1

C

C

C

C

C

C

C

C

C

A

T

, dL
0
F c10 =

0

B

B

B

B

B

B

B

B

B

@

0
0
c1

−s1

0
0

−c0

s0

1

C

C

C

C

C

C

C

C

C

A

T

,

dL1
F x10 =

0

B

B

B

B

B

B

B

B

B

@

0
0

2vx

`

−s0c2
1 + 2c0s1c1 + s0s2

1

´

2vx

`

2c1s0s1 + c0

`

c2
1 − s2

1

´´

0
0

4vxc0c1s0 + 2vx

`

s2
0 − c2

0

´

s1

2vx

`

c1c2
0 + 2s0s1c0 − c1s2

0

´

1

C

C

C

C

C

C

C

C

C

A

T

,

dL1
F y10 =

0

B

B

B

B

B

B

B

B

B

@

0
0

2vx

`

2c1s0s1 + c0

`

c2
1 − s2

1

´´

2vx

`

s0c2
1 − 2c0s1c1 − s0s2

1

´

0
0

−2vx

`

c1c2
0 + 2s0s1c0 − c1s2

0

´

4vxc0c1s0 + 2vx

`

s2
0 − c2

0

´

s1

1

C

C

C

C

C

C

C

C

C

A

T

,

dL
1
F s10 =

0

B

B

B

B

B

B

B

B

B

@

0
0

−
ωzc1

2ωzs1
2
0
0

ωzc0
2

−
ωzs0

2

1

C

C

C

C

C

C

C

C

C

A

T

, dL
1
F c10 =

0

B

B

B

B

B

B

B

B

B

@

0
0

ωzs1
2ωzc1
2
0
0

ωzs0
2ωzc0
2

1

C

C

C

C

C

C

C

C

C

A

T

,

its rank is only 4. Adding new unknown poses to the state
vector, would not change the system’s observability. However,
the SLAM system can become observable if we know at
least one trajectory pose, let’s say x2, and add a displacement
measurement h2 between that pose and some other, unknown,
pose:

h2 (x1, x2) =

0

B

B

@

(x1 − x2) c2
1 + 2s1 (y2 − y1) c1 + s2

1 (x2 − x1)
(y1 − y2) c2

1 + 2s1 (x1 − x2) c1 + s2
1 (y2 − y1)

c1c2 + s1s2

c2s1 − c1s2

1

C

C

A

.

(22)

By choosing O to be

O =

`

dL0
F x10 dL0

F y10 dL0
F s10 dL0

F c10 . . .

. . . dL2
F x21 dL2

F y21 dL1
F s21 dL1

F c21

´T
,

(23)

where

dL0
F x10 =

0

B

B

B

B

B

B

B

B

B

@

c2
0 − s2

0
−2c0s0

2s0 (x1 − x0) + 2c0 (y1 − y0)
2 (c0 (x0 − x1) + s0 (y1 − y0))

s2
0 − c2

0
2c0s0

0
0

1

C

C

C

C

C

C

C

C

C

A

T

,

dL
0
F y10 =

0

B

B

B

B

B

B

B

B

B

@

2c0s0

c2
0 − s2

0
2 (c0 (x0 − x1) + s0 (y1 − y0))
2 (s0 (x0 − x1) + c0 (y0 − y1))

−2c0s0

s2
0 − c2

0
0
0

1

C

C

C

C

C

C

C

C

C

A

T

,

dL
2
F x21 =

0

B

B

B

B

B

B

B

B

B

@

0
0
0
0

ω2
z

`

s2
1 − c2

1

´

2ω2
zc1s1

2ω2
z (s1 (x1 − x2) + c1 (y1 − y2))

2ω2
z (c1 (x2 − x1) + s1 (y1 − y2))

1

C

C

C

C

C

C

C

C

C

A

T

,

dL2
F y21 =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0
0
0
0

−2ω2
zc1s1

ω2
z

“

s2
1 − c21

”

2ωz

“

2vxs1c21 + ωz (x2 − x1) c1 + s1

“

2vxs2
1 + ωz (y1 − y2)

””

2ωz

“

2vxc31 +
“

2vxs2
1 + ωz (y2 − y1)

”

c1 + ωzs1 (x2 − x1)
”

1

C

C

C

C

C

C

C

C

C

C

C

C

A

T

,

dL0
F s10 =

0

B

B

B

B

B

B

B

B

B

@

0
0
s1

c1

0
0
s0

c0

1

C

C

C

C

C

C

C

C

C

A

,

T

dL0
F c10 =

0

B

B

B

B

B

B

B

B

B

@

0
0
c1

−s1

0
0

−c0

s0

1

C

C

C

C

C

C

C

C

C

A

,

T

dL
1
F s21 =

0

B

B

B

B

B

B

B

B

B

@

0
0
0
0
0
0

q2ωz
2

−
s2ωz

2

1

C

C

C

C

C

C

C

C

C

A

,

T

dL
1
F c21 =

0

B

B

B

B

B

B

B

B

B

@

0
0
0
0
0
0

−
s2ωz

2
−

q2ωz
2

1

C

C

C

C

C

C

C

C

C

A

,

T

observability rank condition is satisfied.

IV. EXAMPLE

We demonstrate the observability theory on the common

pose estimation problem solved with EKF. Non-holonomic

differentially driven mobile robot was placed in origin of

the world coordinate system [x(0) y(0) ϕ(0)] = [0 0 0]
and driven with constant control inputs vx = 1.1 m/s and

ωz = 0.5 rad/s. Robot’s nonlinear kinematics model is:

ẋ = vx cos(ϕ)
ẏ = vx sin(ϕ)
ϕ̇ = ωz







, (24)

where x and y denote position and ϕ orientation coordinate

in Euler’s representation. Let the measured velocity inputs,

robot receives from its encoders, be corrupted with white

noise. Standard deviation of the linear velocity is set to

σvx
= 0.15 m/s and of the angular velocity to σωz

= 7 deg/s.

Exact solution of the system (24) is the trajectory:

x(t) = x(0) +
vx

ωz

sin [ωzt + ϕ(0)] (25)

y(t) = y(0) +
vx

ωz

{1 − cos [ωzt + ϕ(0)]} (26)

s(t) = cos
ωzt + ϕ(0)

2
(27)

c(t) = sin
ωzt + ϕ(0)

2
, (28)

where, this time, orientation is expressed with quaternion

[0 s(t) 0 c(t)]T as in theoretic model. True robot’s trajectory is

shown with green line in Fig. 2 and Fig 3. We have simulated

several possible trajectories with given noise in velocity inputs
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Fig. 2. CASE 1: green - true trajectory and pose samples, gray - initial mean
and mean 1-sigma covariances of sampled poses, blue - mean and 1-sigma
covariances of sampled poses after N measurements

using Monte-Carlo (MC) simulation and computed statistics

of the robot’s poses during motion in three different times.

MC mean and covariances were used to correctly initialize

EKF applied later for update of the robot’s poses after N

observations of their relative displacements (see Figs 2 and

3).

We consider two cases of the trajectory estimation of the first

three sampled robot’s poses:

• CASE 1: filter does not have information of any of

the sampled trajectory poses, or more precisely it has

information known up to some apriori distribution (Fig.

2)

• CASE 2: filter has exact information of the second

robot’s pose, the other two are known up to same apriori

distribution as in CASE 1 (Fig. 3)

Both filters were given almost correct, near zero covariance

(because of numerical stability), relative pose measurements

h1(x0, x1) and h2(x1, x2) N times (N = 100). While in

CASE 1 robot’s trajectory after N EKF update iterations

converges only to vicinity of the true pose, in CASE 2 it

converges to true pose. This can be better seen in figures

comparing position coordinates in Fig. 4 and estimated angles

of the two cases in Fig. 5 (only the first estimated robot’s

pose x0 is considered because similar results are obtained for

other poses). Traces of the pose error covariances differ by

the order of magnitude (Fig. 6) and have almost reached their

saturation.

From the above example, it can be concluded that even well

initialized filter with exact relative measurements is not able

to observe the system trajectory if none of the poses is known.

To become observable, filter must know at least one pose, i.e.

at least one pose should be grounded. This is not a limitation

as the initial robot pose can be selected as absolutely known

and the environment map and robot trajectory can be built

x [m]

y
[m

]

Mobile robot’s stochastic trajectory samples
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Fig. 3. CASE 2: green - true trajectory and pose samples, gray - initial
mean and 1-sigma covariances of sampled poses, blue - mean and 1-sigma
covariances of sampled poses after N measurements
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Fig. 4. Position errors

relative to it.

V. CONCLUSIONS

In this paper, we have derived general SLAM observability

condition by applying nonlinear observability theory of con-

trol systems affine in control inputs to 2D pose SLAM. 2D

pose SLAM with general kinematics model of the robot and

relative pose measurements were sufficient in observability

analysis of all types of 2D SLAM systems as they can all

be reduced to that. Observability rank test was shown to

be satisfied iff at least one known pose was given to the

estimator. Pose SLAM analysis gives explicit observability

condition without extra constraints on motion or relative

position of robot and features. This conclusion, however,

does not make SLAM infeasible, as the starting robot pose



6Angle error

step

e
φ
(x

0
)
[r
ad
]

Angle error CASE 1

Angle error

step

e
φ
(x

0
)
[r
ad
]

Angle error CASE 2

0 20 40 60 80 100

0 20 40 60 80 100

-3

-2

-1

0

1
×10−3

-0.04

-0.02

0

0.02

0.04

Fig. 5. Angular errors

Trace of pose error covariance
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Fig. 6. Trace of the pose error covariances

could be selected as absolutely known and the map and

trajectory be consistently built relative to that starting world

coordinate system. Finally, the theory was demonstrated on

the simulation example of pose estimation with Extended

Kalman Filter (EKF) as a common way of designing an

observer of nonlinear systems. Since EKF uses piecewise

linear approximation of the system to observe its state and

linear approximation of the SLAM is not observable under the

given condition, it is reasonable to further investigate success

of such approach, i.e. consistency of EKF SLAM. In [7]

possible solutions were provided in which EKF linearization

points are selected in a way that ensures that the resulting

linearized system model has an observable subspace of ap-

propriate dimension. Another approach would be to consider

designing a nonlinear observer as in [3].
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