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Abstract—Permanent magnet synchronous motor (PMSM), em-
ploying vector control, is used in high performance servo drive
applications. It is highly non-linear plant which can be described by
linear parameter varying (LPV) state-space model. In order to solve
nonlinearity problem and syntesize speed controler, tensor product
(TP) model transformation is proposed. Using this transformation,
given linear parameter varying state-space model is transformed
into polytopic model form, namely, to parameter varying convex
combination of linear time invariant (LTI) systems. The main
advantage of the TP model transformation is that it is executable
in a relatively short time and the linear matrix inequality (LMI)-
based control design frameworks can immediately be applied to the
resulting polytopic models. Proposed control approach of nonlinear
systems is applied to the speed control of permanent magnet
synchronous motor drive (PMSM). Simulation results show benefits
of the non-linear control applied to PMSM.
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I. INTRODUCTION

Permanent magnet synchronous motor (PMSM) has attracted

increasing interest in recent years for industrial drive application.

The several advantages (high efficiency, compact structure, high

air-gap flux density, high power and torque to inertia ratio, high

torque capability density, simpler controller compared with the

induction motor drives, etc.) makes PMSM as a good alternative

in certain applications. The two high-performance control strate-

gies for PMSM, field-oriented control (FOC) and direct torque

control (DTC), have been successfully implemented in industrial

products. They aim both to control effectively the motor torque

and flux in order to force motor to accurately track the command

trajectory regardless of the machine and load parameter variation

or any extraneous disturbances. [1]–[4]. FOC enables use of linear

control theory to controlling PMSM, for example LQG optimal

speed control is proposed, and proved effective by simulation in

[2]. In this paper FOC is used, however non-linear controller is

derived using TP model transformation methodology.

The TP model representation belongs to the class of polytopic

models. It represents the linear parameter varying state-space

models by the parameter varying combination of linear time

invariant (LTI) models and was proposed as a uniform and auto-

matic way to transform LPV model. The TP model transformation

was introduced as the higher order singular value decomposition

(HOSVD) of the linear parameter varying (LPV) state-space

models and the result of the TP model transformation was defined

as the HOSVD-based canonical form of LPV models [5], [6]. In

[7] trade-off techniques between accuracy and complexity of the

TP form are proposed.

Furthermore, the TP model transformation offers options to

satisfy various convexity constrains on the type of the resulting

parameter varying combination, which is suitable, for instance

for the linear matrix inequality-based control design, [5], [8]. In

[9] and [10] LMI control methodology is presented.

The main contributions of this paper merging field-oriented

control and TP model transformation-based control design for

application in PMSM motor control.

II. TENSOR PRODUCT MODEL TRANSFORMATION-BASED

CONTROL DESIGN METHODOLOGY

Consider the linear parameter-varying state-space model(
ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
(1)

with input u(t) ∈ Rk, output y(t) ∈ Rl and state vector x(t) ∈
Rm. The system matrix

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ R(m+k)×(m+l) (2)

is a parameter-varying object, where p(t) ∈ Ω is time varying

parameter vector, where Ω is a closed hypercube in RN , Ω =
[a1, b1]×[a2, b2]×. . .×[aN , bN ]. Parameter p(t) can also include

the elements of the state vector x(t), therefore LPV system given

in Eq. (1) is considered in the class of non-linear dynamic state

space models. The main idea of TP model transformation is to

EDPE 2011, Stará Lesná, The High Tatras, Slovakia, 28-30 September 2011

323



discretize the given LPV model given in Eq. (1) over hyper

rectangular grid M in Ω, then via executing higher order singular

value decomposition, the tensor product structure of given model

is obtained. By ignoring singular values, TP model of reduced

complexity and accuracy can be obtained. For more details see

[5] and [7]. Tensor product structure can be written as follows

S(p(t)) =S
N

�
n=1

wn(pn)

=

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

in=1

N∏
n=1

wn,in(pn)Si1,i2··· ,iN ,
(3)

where S ∈ RI1×I2×···IN×(m+k)×(m+l) denotes obtained tensor,

In denotes number of LTI systems in n-th dimension of Ω, �
denotes multiple n-mode product of a tensor by a matrix, wn is

row vector containing wn,in(pn) ∈ [0, 1] which is corresponding

one variable weighting function defined on the n-th dimension

of Ω and Si1,i2···iN is LTI system matrix obtained by TP model

transformation. By using i as linear index, equivalent to the multi

linear array index with the size of I1 × I2 × · · · IN , TP model

(3) can be rewritten in standard polytopic form

S(p) =

N∑
i=1

wi(p)Si, (4)

where Si denotes

Si =

(
Ai Bi

Ci Di

)
, (5)

and wi is corresponding weighting function. Controller is deter-

mined in same polytopic form as TP model. Control signal is

given by

u = −
N∑
i=1

wi(p)Kix, (6)

where the Ki are corresponding LTI feedback gains.

III. CONTROLLER DESIGN

A. Linear Matrix Inequalities

A class of numerical optimization problems called linear matrix

inequality LMI problems has received significant attention. These

optimization problems can be solved in polynomial time and

hence are tractable, at least in a theoretical sense. Interior-point

methods developed for these problems have been found to be

extremely efficient in practice. For systems and control, the

importance of LMI optimization stems from the fact that a wide

variety of system and control problems can be recast as LMI

problems. Except for a few special cases, these problems do not

have analytical solutions. However, the main point is that through

the LMI framework they can be efficiently solved numerically.

A linear matrix inequality (LMI) has the form

F (x) = F0 +

m∑
i=1

xiFi > 0, (7)

where x ∈ Rm is the variable and the symmetric matrices Fi =
FT
i are given. The inequality symbol in (7) means that F (x) is

positive definite i.e.

zTF (x)z > 0, ∀z �= 0. (8)

B. Control objective

The control objective is to find stabilizing controller, with pre-

scribed decay rate with minimal overshoot and with constrained

control signal. In order to obtain stabilizing controller, Lyapunov

stability condition is considered. If there exist candidate quadratic

Lyapunov function V(x) defined on some open set D ∈ RN ,

containing the origin, such that

V (x) = xTPx > 0, (9)

and there exist derivation

V̇ (x) = ẋTPx+ xTPẋ < 0, (10)

then origin of system ẋ = f(x) is stable equilibrium point. The

speed of response is related to decay rate, that is, the largest

Lyapunov exponent α [10] (Stability corresponds to positive

decay rate) such that

lim
t→∞ e−αt‖x(t)‖ = 0 (11)

A sufficient condition for desired decay rate can be written as

V̇ (x) ≤ −2αV (x), (12)

for any initial point [10]. From (12) it follows that the equilibrium

of the continuous system in polytopic form (4) is globally

asymptotically stable if there exists a common positive definite

matrix P such that

AT
i P + PAi + 2αP < 0; ∀i ∈ (1, r). (13)

Next, let us consider the stability of the closed-loop system (4)

with control algorithm given in (6), which is globally asymptoti-

cally stable, with decay rate less than α, if there exists a common

positive definite matrix P such that

GT
iiP + PGii + 2αP < 0,(

Gij +Gji

2

)T

P + P

(
Gij +Gji

2

)
+ 2αP ≤ 0, i < j,

(14)

where

Gij = Ai +BiKj (15)
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denotes closed loop state matrix. The largest possible decay rate

can be found by solving generalized eigenvalue minimization

problem (GEVP).

maximize α

subject to
X > 0

−XAT
i −AiX +MT

i BT
i +BiMi + 2αX > 0

−XAT
i −AiX −XAT

j −AjX +MT
j BT

i

+BiMj +MT
i BT

j +BjMi − 4αX ≥ 0,
(16)

where X = P−1 and Mi = KiX . In sequel predescribed value

of α is used.

In order to satisfy the constraints on control value and output

constraints initial conditions or its upper bound must be known.

Assume that initial condition x(0) is unknown, but its upper

bound ‖x(0)‖ ≤ φ is known, which can be recast as following

LMI

φ2I ≤ X, (17)

then the following LMIs are added to the Eq (16) [9] in order to

satisfy constraints:

1) Constraint on the control value: The constraint ‖u‖2 ≤ μ
is enforced ∀t ≥ 0 if the following LMI holds

(
X MT

i

Mi μ2I

)
≥ 0. (18)

2) Constraint on the output: Assume that condition (17) is

satisfied, the constraint ‖y(t)‖2 ≤ λ is enforced, ∀t ≥ 0, if the

following LMI holds

(
X XCT

i

CiX λ2I

)
≥ 0. (19)

Furthermore, controller is obtained as follows:

Kr = MrX
−1. (20)

IV. TP MODEL-BASED CONTROLLER DESIGN TO THE

PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVES

A. Dynamic model of Permanent Magnet Synchronous Motor
Drive

Non-linear model of SMPM can be described by following

equations

d

dt
id =

1

Ld
ud − R

Ld
id +

Lq

Ld
· p · ωriq

d

dt
iq =

1

Lq
uq − R

Lq
iq +

Ld

Lq
· pωr · id − λ

p · ωr

Lq

Te =1.5 · p · (λ · iq + (Ld − Lq) · id · iq)
d

dt
ωr =

1

J
(Te − b · ωr − TL)

(21)

where list of parameters is given in Table I.

TABLE I
PARAMETERS OF THE SMPM

Symbol Description Value Unit

Pn Nominal power 1.1 kW
nn Nominal speed 3000 rpm
R Stator phase resistance 0.02588 Ω

Ld, Lq Stator inductance 8.5 · 10−3 H
λ Flux linkage established by magnets 0.125 V s
J Inertia 0.8 · 10−3 Kgm2

b Friction factor 0 Nms
p Pole pairs 4
ωr Angular rotor speed rad/s
θe Rotor position at electrical angle rad
TL Motor load Nm

The basic principle in controlling the PMSM is based on field

orientation. This is obtained by letting the permanent magnet

flux linkage to be aligned in d-axis and stator torque component

vector, iq is kept along q-axis direction. This means that the value

of id is kept zero in order to achieve the field orientation. In order

to implement field oriented control concept, PI controller is used

to keep stator current id at zero value. PI controller is obtained

using technical optimum.

ud = KRid +
1

TI

∫ t

0

id(t)dt (22)

where

KR =
R

2

TI

Tmi

TI =
Ld

R
.

(23)

and Tmi is equivalent inverter time constant. Rotor speed ωr and

stator current iq are controlled by TP controller given in (6).

Proposed control structure is shown in Fig. 1
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B. LPV model of Permanent Magnet Synchronous Motor Drive

By augumenting Eq. (21) with (22), and

by letting x =
[
x1 x2 x3 x4 x5

]T
=[

id iq ωr

∫ t

0
iddt

∫ t

0
wrdt

]T
, the equations of motion in

linear parameter varying state space form is

S =

⎛
⎜⎜⎜⎜⎜⎝

−R+Kp
Ld

0
Lq

Ld
piq − 1

TILd
0 0

0 −R
Lq

−Ld

Lq
pid − λp

Lq
0 0 1

Lq
1.5p(Ld−Lq)iq

J
1.5pλ

J
−b
J 0 0 0

1 0 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

(24)

V. RESULTS

A. TP model representation of Permanent Magnet Synchronous
Motor Drive

Operating area is selected as Ω = [idmin, idmax] ×
[iqmin, iqmax] = [−10, 10]× [−50, 50]. The exact TP model (TP
model obtained by keeping all singular values) representation is
given by 4 LTI systems. Weighting functions of the TP model
are given in Fig. 2 The LTI system matrices of the TP model are
given in Eq. (25).

A1 =

⎛
⎜⎜⎜⎝

−1058.0 0 200.0 −39800.0 0
0 −338.2 −42.35 0 0
0 1312.0 0 0 0
1.0 0 0 0 0
0 0 1.0 0 0

⎞
⎟⎟⎟⎠

A2 =

⎛
⎜⎜⎜⎝

−1058.0 0 200.0 −39800.0 0
0 −338.2 −122.4 0 0
0 1312.0 0 0 0
1.0 0 0 0 0
0 0 1.0 0 0

⎞
⎟⎟⎟⎠

A3 =

⎛
⎜⎜⎜⎝

−1058.0 0 −200.0 −39800.0 0
0 −338.2 −42.35 0 0
0 1312.0 0 0 0
1.0 0 0 0 0
0 0 1.0 0 0

⎞
⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎝

−1058.0 0 −200.0 −39800.0 0
0 −338.2 −122.4 0 0
0 1312.0 0 0 0
1.0 0 0 0 0
0 0 1.0 0 0

⎞
⎟⎟⎟⎠

(25)

with
Bi =

(
0 117.6 0 0 0

)T , ∀i ∈ [1, 4] (26)

B. Control objective

The control objective is to find stabilizing controller, with

prescribed decay rate α < 150 with constrained control signal

uq ≤ 200V and constrained stator current iq ≤ 30A. By using

the Yalmip [11] and Sedumi [12] the following feasible solution

of (16) - (19) and feedback gains are obtained.

C. Obtained feedback gains

K1 =
( −0.004784 30.98 13.96 −4.872 2118.0

)T

K2 =
( −0.04661 36.08 16.53 −47.51 2657.0

)T

K3 =
(

0.004784 30.98 13.96 4.872 2118.0
)T

K4 =
(

0.04661 36.08 16.53 47.51 2657.0
)T

(27)

In Fig. 3 simulation results are shown.

VI. CONCLUSION

In this paper, we investigated non-linear controller, obtained by

tensor product metodology, in vector control of permanent magnet

synchronous motor. Simulation results show better performance

in terms of overshoot, speed and disturbance rejection when

compared to the results of conventional cascade PI+PI control

solution. PI controllers are tuned by symmetrical optimum and

tehnical optimum, respectively. Switching effects of inverter and

friction effects were neglected during controller design. Simula-

tions were performed using the MATLAB/Simulink environment.

In future work inverter dynamics, friction effects and testing of

proposed algorithm in real experimental setup, will be considered.
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