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Abstract. The following results obtained within a project of finding algebra of states in a general

purpose quantum computer are reported: 1. all operations of an orthomodular lattice, including

the identity, are five-fold defined; 2. there are non-orthomodular models for both quantum and

classical logics; 3. there is a 4-variable orthoarguesian lattice condition which contains all known

orthoarguesian lattice conditions including 6- and 5-variable ones.
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1 Introduction

A computer is a computational device in which a 2 × 2 unitary matrices called logic gates
act on elementary bits |0〉 = (1, 0) and |1〉 = (0, 1) and on bits obtained by such operations.

A classical gate is for example a NOT gate which flips bits in the following way: NOT|0〉 =

NOT(1, 0) = |1〉 and NOT|1〉 = NOT(0, 1) = |0〉 and which can be represented as

NOT =

(
0 1
1 0

)
(1)

A quantum gate which is characteristic of the existing experimental hardware is the controlled

NOT gate which acts on two qubits in a conditional way [as simple NOT gate on the second
(target) qubit provided the first (control) qubit is 1] as follows:

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (2)
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The transformation CNOT—and all other classical operations transformed to quantum
gates by making them controlled ones—are obviously unitary, they do preserve superposi-

tions, and they cannot be decomposed into a tensor product of two single-bit transformations,
but without qubit rotations and without phase shifts

(
cos α sin α

− sin α cos α

)
,

(
eiα 0
0 e−iα

)
,

(
eiα 0
0 eiα

)
(3)

genuine quantum tasks cannot be processed. For example, even the simplest problem of a
photon passing two successive polarizers (quantum Malus law) could not be solved. On the

other hand, these non-classical rotations and phase shifts essential for quantum computers
depend on classical continuous variables and this cause problems which we are going to focus

on later on.
Even more essential difference between classical and quantum computers is contained in

elementary information units themselves. Classical unit is always either 0 or 1 (one bit).
Quantum unit—called a qubit—is a two state quantum system. We describe the system by

a unit vector in the Hilbert space H2 over the field of complex numbers. We denote the two
orthogonal states by |0〉 = (1, 0) and |1〉 = (0, 1). The states make an orthogonal basis forH2.

In a quantum computer we deal with a big number n of qubits which build up a composite

Hilbert space H = H2 ⊗ . . . ⊗ H2. The computational basis, i.e., the basis of this space,
consists of the following 2n vectors: |00 · · ·00〉, |00 · · ·01〉, . . . , |11 · · ·11〉, where, e.g., |00〉

means |0〉 ⊗ |0〉. Classical bits correspond to quantum states: i1i2...in ←→ |in〉 ≡ |i1....in〉.
To compute the function f : i1i2...in 7−→ f(i1, ....in). means to let the corresponding

states evolve according to the time evolution unitary operator U :

|i1i2...in〉 7−→ U |i1i2...in〉 = |f(i1, ....in)〉. (4)

More explicitly

|Ψf〉 = exp

(
−

i

~

∫
Hdt

)
|Ψ0〉 = U |Ψ0〉 (5)

which follows directly from the Schrödinger equation. The unitarity of U assures reversibility

and therefore prevents energy dissipation. This can be achieved with classical devices as well
but only at the cost of exponentially growing hardware or exponentially rising time. The

reason for that is simple: n classical states describing a system in a classical computer can
only be specified by ascribing values all 2n basis states. Quantum computers on the other

hand achieve the aim as well as a parallel way of computing—which is their most attractive
feature—by using superposition which puts n quantum states in a superposition of all 2n

basis states in one step. Again, for a parallel computation a classical computer would need
either an exponentially growing hardware or an exponentially rising time.

Consider for example the following state of 2 particles, known as the entangled state

(Pavičić & Summhammer, 1994; Pavičić, 1995) of the particles which can then also be used
for a teleportation of states or Bell experiments or quantum cryptography (we omit the

normalization factors throughout):
|00〉+ |11〉 (6)
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Here no one of the two qubits has a definite state: the state of the system is not a tensor
product of the states, and we cannot find a1, a2, b1, b2 such that

(a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉) = |00〉+ |11〉

since

(a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉) = a1a2|00〉+ a1b2|01〉+ b1a2|10〉+ b1b2|11〉

and a1b2 = 0 implies that either a1a2 = 0 or b1b2 = 0. These states represent situations that
have no classical counterpart. These are also the states that provide the exponential growth

of quantum state spaces with the number of particles.
To see this let us consider the following superposition of n qubits:

1∑

i1i2...in=0

|i1i2 . . . in〉 (7)

Applying the linear unitary operation which computes f , from Eq. (4), to this state, yields:

1∑

i1,i2,...,in=0

|f(i1i2 . . . in)〉. (8)

Hence, U computes f parallelly on all the 2n possible inputs i.
To achieve such a parallel computing in an assumed realistic computer, we start with

an initial state |i〉 which corresponds to an “input” to the computation. We then perform
elementary operations on the system using the quantum gates defined above. The operations

correspond to the computational steps in the computation, just like logic gates are the
elementary steps in classical computers, and are performed on an isolated system, so the

evolution can always be described by a unitary matrix operating on the state of the system.

Therefore we can always implement a unitary operator which is given by the Hamiltonian
of a given process or state of a system as a set of instructions on how to transform input

states in time. But the crucial problem are initial states themselves. Can we write down a
general input state:

|Ψ0〉 = |i1i2...in〉 (9)

by means of quantum gate operations over elementary input propositions so as to corre-

spond to a general wave function of the Hilbert space which describes the input state? The
answer is currently in the negative. There is no known finite and definite receipt for such

a correspondence. But in the recent years a lot has been achieved to narrow the gap be-
tween an algebra of elementary propositions (corresponding to pure states) and the Hilbert

space description. Let us consider some most important details in a possible construction
of a quantum machine language which could mimic quantum system and therefore directly

correspond to its Hilbert space representation.
In Sec. 3 we show (using only lattice theory) that both a proper quantum logic of propo-

sitions and a proper classical logic of propositions have models that are not even orthomodu-
lar. Therefore in both classical and quantum computers one must use algebras instead. Such
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an algebra—orthomodular lattice—which is usually considered to be an algebra underlying
quantum measurement and a Hilbert space representation we analyze in Sec. 2 and show

that all its binary operations are ambiguous and that bare orthomodular lattices cannot
be employed in quantum computers. In Sec. 4 we show how one can construct Hilbertian

lattices which enable a direct representation in a Hilbert space of quantum computational

simulation and provide a lattice for the purpose, which at the same time eliminates the
so-called 4-dim postulate. We also show that quantum theory is at least so incompatible

with the strong form of the Church-Turing principle as any classical theory contrary to the
Deutsch’s claim. (Deutsch, 1985)

2 All Operations in Orthomodular Lattices Are Ambiguous

The Birkhoff-von Neumann requirement (Kalmbach, 1983):

a→i b ⇒ a ≤ b, i = 1, . . . , 5, (10)

where a→1 b
def
= a′∪ (a∩ b), a→2 b

def
= b′ →1 a′, a→3 b

def
= (a′∩ b)∪ (a′∩ b′)∪ (a→1 b), a→4

b
def
= b′ →3 a′, and a→5 b

def
= (a∩ b)∪ (a′ ∩ b)∪ (a′ ∩ b′), not only holds in every orthomodular

lattice but also amounts to the orthomodularity itself in the sense that condition (10) added
to an ortho-lattice makes it orthomodular. (Pavičić, 1987)

Since in any orthomodular lattice (Pavičić & Megill, 1998b)

a ∪ b = (a→i b)→i (((a→i b)→i (b→i a))→i a) i = 1, . . . , 5, (11)

this means that all operations (five-fold negation follows trivially) in an orthomodular lattice

are fivefold definable.
At the first sight it still seems that one can prove a conjecture that the relation of equation

in the lattice is uniquely definable. The reasons for such a conjecture are the following ones.

All five quantum implications a →i b collapse to the classical one a →0 b
def
= a′ ∪ b in a

distributive lattice. Even more

a→i b = a→j b, i 6= j; i, j = 0, . . . , 5, (12)

makes an ortho-lattice distributive.(Pavičić, 1987) On the other hand

a→0 b ⇒ a ≤ b, (13)

also makes an ortholattice distributive. (Pavičić, 1998) In any orthomodular lattice we have:

a↔i b = a ≡ b, i = 1, . . . , 5 (14)

where a↔i b
def
= (a→i b) ∩ (b→i a) and a ≡ b

def
= (a ∩ b) ∪ (a′ ∩ b′). The identity operation

a ≡ b reduces to a ≡0 b
def
= (a′ ∪ b) ∩ (b′ ∪ a) in a distributive theory and since a ≡ b is

an equivalence relation in an othomodular lattice and a ≡0 is an equivalence relation in a
distributive lattice, we could hope that the conjecture does hold, i.e., that the relation of
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equation ‘=’ in orthomodular lattices can be uniquely defined and connected to the operation
of identity by the following rule

a ≡ b = 1 ⇔ a = b, (15)

which is known to make an ortholattice orthomodular (Pavičić, 1993) and which can be
compared to the rule

a ≡0 b = 1 ⇔ a = b, (16)

which makes an ortholattice distributive (Pavičić, 1998).
Unfortunately, the conjecture does not hold. The reason is simple. In a distributive

lattice a →i b, i = 1, . . . , 5 all merge to a →0 b and therefore (a →i b) ∩ (b →j a),

i 6= j, i, j = 1, . . . , 5 must merge to a ≡0 b
def
= (a →0 b) ∩ (b →0 a). But in an ortho-

modular lattice the mixed biimplications (a →i b) ∩ (b →j a) are equal—depending on the

values of i and j—to the following five identities a ≡ b, a ≡1 b
def
= (a ∪ b′) ∩ (a′ ∪ (a ∩ b)),

a ≡2 b
def
= (a∪b′)∩(b∪(a′∩b′)), a ≡3 b

def
= (a′∪b)∩(a∪(a′∩b′)), and a ≡4 b

def
= (a′∪b)∩(b′∪(a∩b))

as given in the Table 1. (Pavičić & Megill, 1999)

i
↓ \ j

→ b→0 a b→1 a b→2 a b→3 a b→4 a b→5 a

a→0 b a ≡0 b a ≡4 b a ≡3 b a ≡2 b a ≡1 b a ≡ b

a→1 b a ≡1 b a ≡ b a ≡ b a ≡ b a ≡1 b a ≡ b

a→2 b a ≡2 b a ≡ b a ≡ b a ≡2 b a ≡ b a ≡ b

a→3 b a ≡3 b a ≡ b a ≡3 b a ≡ b a ≡ b a ≡ b

a→4 b a ≡4 b a ≡4 b a ≡ b a ≡ b a ≡ b a ≡ b

a→5 b a ≡ b a ≡ b a ≡ b a ≡ b a ≡ b a ≡ b

Table 1: Products (a→i b) ∩ (b→j a), i = 0, . . . , 5 (rows), j = 0, . . . , 5 (columns).
Identities a ≡i b, i = 1, . . . , 4 are asymmetrical.

The expressions a ≡i b, i = 1, . . . , 4 are all asymmetrical and at first we would think
it would be inappropriate to name them identities. And also because a ≡i b = a ≡j b

when added to an ortho-lattice does not make it even orthomodular but apparently weakly
distributive (see next section), as opposed to Eq. (12). Nevertheless, we are able to prove

the following theorem. (Pavičić & Megill, 1999)

Theorem 2.1. An ortholattice in which

a ≡i b = 1 ⇒ a = b, i = 2, . . . , 5 (17)

holds is an orthomodular lattice and vice versa.

Hence, putting together Eq. (15) and Eq. (17) we have an indication that the relation

of equivalence which establishes a connection between quantum logic and its models might
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turn out to be based on several different operations of identity at the same time thus making
a direct evaluation of elementary logical propositions impossible. However, as we will see

in the next section, there is an even more important reason why we cannot use proper
quantum logic to evaluate quantum propositions and this is that a proper quantum logic

is not orthomodular. As even bigger surprise comes the result that even standard classical

logic need not be orthomodular.

3 Non-Orthomodular Models for Both Quantum and Classical

Logics

A crucial difference between logics and lattices as their models is that properties that play
a decisive role in lattices do not play such a role in logics at all. To explain this differ-

ence let us consider the orthomodularity and distributivity properties. When we add the
orthomodularity (distributivity) property to an ortholattice it becomes an orthomodular

(distributive) lattice. We can compare what happens in a logic by looking at a lattice we
obtain by mapping logical axioms ` A to an ortholattice where they take over the form

a = 1; here a = v(A) and v is a morphism from the logic to the lattice. As we have shown
in (Pavičić & Megill, 1998a) the property (a ∪ (a′ ∩ (a ∪ b))) ≡ (a ∪ b) = 1, we obtain by

mapping the logical formula for “orthomodularity” ` (A ∨ (¬A ∧ (A ∨ B)) ≡ (A ∨ B) into

an ortholattice, is true in all ortholattices. On the other hand, as we have shown in (Pavičić
& Megill, 1999), (a ∩ (b ∪ c)) ≡0 ((a ∩ b) ∪ (a ∩ c)) = 1 which we obtain by an analogous

mapping of the distributivity, is true in all weakly distributive lattices which are not even
orthomodular.

The reason for such different structures of logics as opposed to their models lies in
completely different syntax of a = 1 lattice equations (which correspond to logical wwf’s)

and a = b lattice equations. For example, another way of expressing orthomodularity is
` A ∨ (B ∧ (¬A ∨ ¬B)) ≡ A ∨ B whose lattice mapping is ((a →1 b) →0 b) ≡ (a ∪ b) = 1

which, when added to an ortholattice, makes it weakly orthomodular. This means that
the “orthomodularity” from QL sometimes maps to an ortho-property and sometimes to a

weakly orthomodular property but never to an orthomodular property. The reader can find
details on weakly orthomodular logics and lattices in (Pavičić & Megill, 1998a, 1999).

Classical logic also does not necessarily map its syntactical structure to its model. More
precisely, it does if valuated on {0,1} or if valuated by classical Kolmogorovian probability

functions. Therefore, our results show that for classical logics there are non-orthomodular

models which do not use {0,1} valuation of propositions. Since all standard applications
of classical logic invoke exactly such valuation the above discovery most probably will not

have serious repercussions for classical reasoning and computing. Quantum logic as well as
orthomodular lattices, on the other hand, in principle cannot ascribe definite values to their

propositions and cannot have {0,1} valuation at all. This might have serious repercussions
to the quantum computers, though, as we will see in the next section. The reader can find

detailed soundness and completeness proofs for both quantum and classical logics in (Pavičić
& Megill, 1999).
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4 Quantum Algebra for Quantum Computers

Computational instructions to a quantum computer for handling inputs to give desired out-

puts are lately simply called quantum logic. (Christianson, Knight, & Beth, 1998) The latter
logic can however not be a proper logic, especially if we want it to be a general machine

language capable of solving and simulating any given Hamiltonian. Recently devised algo-
rithms such as factorization of big numbers in cryptography (Shor, 1997) or searching big

data bases in networks (Grover, 1997) are certainly ingenious but do not use any general
quantum algebra. They make a direct use of hardware prepared and hardware processed

input states. In order to build up a general quantum algebra input states must satisfy addi-
tional conditions which do not result from qubit superposition, entanglement, and rotation

and phase shift control. Algebraically these conditions amount to an extension of orhtomod-
ular lattices which we call the Hilbertian lattice, HL and will consider in this section as a

structure isomorphic to a Hilbert space description of an arbitrary quantum system.
Classical computer states obey all the conditions required by the Boolean algebra (dis-

tributivity etc.). As opposed to this, quantum computer states which appear in the known

algorithms (e.g., Shor’s and Grover’s) do not obey all the conditions required by HL. On
the other hand it is still unclear how one can implement HL conditions into a quantum

computer. So, even the Schrödinger equation itself which is describing the evolution of
states in a quantum computer must be simulated by a specially designed approximative al-

gorithm.(Boghosian & Taylor, 1998) Such quantum computer is therefore still not what it
was conceived to be: a quantum simulator which should mimic quantum systems by giving

precise instructions on how to produce input states how to evolve them and how to read
off the final states.(Feynman, 1982, 1986) Let us analyze conditions which quantum states

should obey in order to enable full quantum computing, i.e., proper quantum mathematics.
In order to enable an isomorphism between an orthocomplemented orthomodular lattice

and the corresponding Hilbert space we have to add further conditions to the lattice. The
conditions correspond to the essential properties of any quantum system such as superposi-

tion. Combining (Holland, JR., 1995) and (Ivert & Sjödin, 1978) the conditions are:

Additional Conditions for a Hilbertian lattice HL.

• Completeness: The meet and join of any subset of a lattice always exist.

• Atomicity: Every non-zero element in HL majorizes an atom which is a non-zero

element a∈HL with 0 < b ≤ a only if b = a.

• Superposition Principle:

1. Given two different atoms a and b, there is at least one other atom c, c 6= a and
c 6= b, that is a superposition of a and b.

2. If the atom c is a superposition of a the distinct atoms a and b, then a is a
superposition of b and c.

• Unitary operators: Given any two orthogonal atoms a and b in HL, there is a unitary
operator U such that U(a) = b.
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It is well-known that if the HL is of dimension ≥ 4, then there exists a field F and
a vector space E over F such that HL is ortho-isomorphic to the lattice LE of E-closed

subspaces of E.
In an “orthomodular approach” the condition ≥ 4 must be postulated. (Ma̧czyński,

1972) But if we found a condition which must be satisfied in HL and which requires at

least four nonequivalent variables then the condition would be automatically satisfied. A
natural idea is to look for conditions equivalent to those in Eqs. (15) and (16) with new “full

quantum identities” which would solve the ambiguity problem of the relation of equality ‘=’
and of lattice operations. The following definitions do the job.

Definition 4.1.

a
c
≡ib

def
= ((a→i c) ∩ (b→i c)) ∪ ((a′ →i c) ∩ (b′ →i c)); i = 1, 3, 5 (18)

a
c
≡ib

def
= ((c→i a) ∩ (c→i b)) ∪ ((c→i a′) ∩ (c→i b′)); i = 2, 4 (19)

a
c,d
≡ib

def
= a

d
≡ib ∪ (a

d
≡ic ∩ b

d
≡ic); i = 1, . . . , 5 (20)

Theorem 4.2. An ortholattice to which

a
c
≡ib = 1 ⇔ a→i c = b→i c, i = 1, 3, 5, (21)

a
c
≡ib = 1 ⇔ c→i a = c→i b, i = 2, 4 , (22)

are added is OML for i=5 and a variety of OML which fails in lattice L̂ (Fig. 1a) for
i=1,2,3,4.
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Figure 1: (a) L̂ from(Godowski & Greechie, 1984); (b) L38 from (Pavičić & Megill, 1999).

Theorem 4.3. An ortholattice to which

a
c,d
≡ib = 1 ⇔ a→i d = b→i d, i = 1, 3, 5 (23)

is added is a variety of OML which fails in lattice L38 (Fig. 1b) for i=1,3 and a variety of

OML which fails in lattice L̂ (Fig. 1a) for i=5.
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The reader can check that the equations really fail in the quoted lattices (and many
others from the literature) after compiling lattice.c written in C by Norman D. Megill.2

The new identities
c
≡i and

c,d
≡i when equal to one are relations of equivalence. The

previous theorems narrow down the ambiguity of operations →i (and therefore of relations

≤ and =, as well) to two. The role of the Sasaki projection φab = (a→1 b′)′ of b on a in the
the covering property which is a consequence of the superposition principle then apparently

resolves the ambiguity completely.

In the end we are able to prove that the previous theorems follow from the following
one.(Pavičić & Megill, 1999)

Definition 4.4. A 3OA is an OML in which the following additional condition is satisfied:

(a→1 c) ∩ (a
c
≡1b) ≤ (b→1 c) . (24)

A 4OA is an OML in which the following additional condition is satisfied:

(a→1 d) ∩ (a
c,d
≡1b) ≤ (b→1 d) . (25)

Theorem 4.5. Every 4OA is a 3OA, but there exist 3OAs that are not 4OAs. 4OA fails in
L38 and L̂ and 3OA only in L̂. (Fig. 1)

Eq. (22), i=1 follows from Eq. (24) and Eq. (23), i=1 follows from Eq. (25).

The 4OA law (25) is equivalent to the orthoarguesian law discovered by A. Day [cf.

(Godowski & Greechie, 1984)]. Thus the orthoarguesian law may be expressed by an equation
with only 4 variables instead of 6. In addition, we are able to prove that apparently all known

ortho-arguesian derivates follow from, or are identical to either 4OA or 3OA laws given above.
(Pavičić & Megill, 1999)

We therefore obtained the result that HL must be of dimension ≥ 4 and that therefore—
with the afore-cited additional conditions—is ortho-isomorphic to the lattice of subspaces

of a Hilbert space. On the other hand, as the consequence of the afore-stated additional
conditions we obtain that the number of atoms of a lattice (pure states) of any Hilbert space

of dimension ≥ 3 must be infinite. (Ivert & Sjödin, 1978) This is in a direct relation to a
coordinatization of Hilbert spaces. For example, if we want to have a complete description

of a spin-1 system we cannot achieve this in the spin space alone. We have to include the
orientations of preparations and measurements in space (otherwise we would not have even

the Malus law) in our description and these are continuous variables. In a qubit preparation

within a quantum computer the continuous variable is the angle α in Eq. (3). Thus the lattice
is infinite although the number of input qubits and the unitary transformation needed to

calculate the result of a measurement remains finite-dimensional. (Deutsch, 1985) This
invalidates the following Deutsch’s claim: “[‘Quantum’ Church-Turing principle] is so strong

that it is not satisfied by Turing’s machine in classical physics. Owing to continuity of
classical dynamics, the possible states of a classical system necessarily form a continuum.

2ftp://ftp.shore.net/members/ndm/quantum-logic
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Yet there are only countably many ways of preparing a finite input for [a quantum Turing
machine]. Consequently [it] cannot perfectly simulate any classical system.”

This distinction does not hold, because, as we have seen, a continuum appears with
quantum spin systems as well and on the other hand preparing a finite input is not in

contradiction with the existence of a continuum of possible states within a lattice. Infinite

number of states does not mean an infinite number of calculated spin projections for a
quantum system or positions and momentums for a classical system. The infinity contained

in the continuous variables is actually not a problem but an essential feature which actually
enables the Hilbert space representation with the help of the recent M. P. Solèr’s discovery:

we need not postulate (as it was considered necessary until several years ago) a complex
(or real or quaternionic) field for our Hilbert space—it follows from the infinity of the

lattice. (Holland, JR., 1995)

5 Conclusion

States of a general purpose quantum computer must—apart from conditions imposed by the
standard quantum logic gates—satisfy additional conditions given in Sec. 4 and required to

yield a general algebra of the states. One of the conditions is a 4-variable orthoarguesian
law given by Eq. (25) which gives all known orthoarguesian equations (including 6-variable

ones) and which eliminates the so-called 4-dim lattice postulate. The obtained algebra,
which is a Hilbertian lattice is then isomorphic to the subspaces of the Hilbert spaces which

characterizes general computation algorithms. Propositions a, b, c of the lattice are therefore
connected to probabilistic outcomes of a calculation of an observable A by means of µ(a) =

〈Ψ|PA|Ψ〉 where PA,E (E is a Borel set) is a projector of A, µ is the pure full (µ(a) ≤ µ(b) ⇒
a ≤ b) strongly convex (µj ∈ S &

∑
cj = 1 ⇒

∑
cjµj ∈ S) probability measure on HL:

µ : HL 7→ [0, 1] and Ψ we obtain from the Gleason theorem: if µ is a pure probability

measure, then there exists a vector Ψ ∈ H, which satisfies the above µ(a). The mean value
of the operator A is then given by the spectral theorem.

In Sec. 3 we have shown that no calculation can be carried out within propositional
quantum logic since the latter can be modeled with a non-orthomodular model. (In addition

we show that the standard classical logic has a non-orthomodular model too and explain
why this is of no consequence for classical computers.)

In Sec. 2 we have shown that an orthomodular lattice cannot be used as a satisfactory
algebra of states because all operations in the lattice are five-fold defined, including the

identity and the relation of equivalence.
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