
DOI 10.2298/CSIS101120042M

Avoiding Unstructured Workflows in

Prerequisites Modeling

Boris Milašinović and Krešimir Fertalj

Faculty of Electrical Engineering and Computing, Unska 3,
10000 Zagreb, Croatia

{boris.milasinovic, kresimir.fertalj}@fer.hr

Abstract. Integrating prerequisite relationships, partially defined as
graph components, produces a directed graph that corresponds to
a well-defined and well-behaved workflow consisting only of and-splits
and and-joins. Such a workflow often cannot be transformed to a
structured workflow. This paper presents an approach to producing a
corresponding structured workflow that will, with some adjustments in
the runtime, correspond to the original unstructured workflow. The
workaround is based on element cloning and on a workflow wrapper
handling clones in order to avoid multiple element instances. An
algorithm for finding clones and an algorithm for reducing the number of
clones are proposed. Correctness of the algorithms is analyzed and
some drawbacks and possible improvements are examined.

Keywords: Workflow management, structured workflows, unstructured
workflows, modeling prerequisite relationships, and-splits

1. Introduction

In order to follow the key guidelines for designing a business layer of an
application [17] one of the tasks is to extract a workflow component that
defines and coordinates multistep business processes. Although traditionally
related to enterprise systems, workflow management has other applications.
Applications of prerequisite relations between workflow elements can be
found in merging dependencies between UML components [8], in modeling
course prerequisites in a learning management systems [4][14][22], in
modeling relationships between workflow sub-components of a learning
management system [27] or in modeling workflow-based data for e-learning
[25]. Development of proprietary workflow management software can
enhance flexibility and help in avoiding limitations of existing systems in
dealing with synchronization points in unstructured workflows [18], but it
requires a lot of work and raises compatibility and interoperability issues. On
the other hand the use of existing workflow management software induces
problems during the design of the business process model, because the
workflow management systems impose different syntactical restrictions on
models. One of the restrictions is that the workflow model should (and often

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 208

must) be structured. Perspectives regarding this restriction vary. In [9] authors
propose that workflow models should be structured in order to avoid the so
called “spaghetti business process modeling”, but there might be good
reasons to use unstructured business processes [5].

In this paper an approach to avoiding unstructured workflows in
prerequisite modeling using directed graphs is described. The idea was
introduced in [19], but here we elaborate on how to produce a structured
workflow that will, with some additional adjustments in the runtime
environment, correspond to the original unstructured workflow. An overview of
a related work is given in the second section. The third section describes the
process of merging partially defined prerequisite relationships into a directed
graph that corresponds to a workflow with only and-split and and-joins and
further expands on the idea of a modification based on the graph‟s vertex
cloning. Finding vertices that have to be cloned is done using an original
vertex labeling algorithm formally described in the fourth section. The fifth
section deals with reducing the number of clones prior to transforming an
integrated graph into a concrete workflow model. For the sake of presentation
simplicity we use the Windows Workflow Foundation model [23] (in further text
WF-model). The algorithm for reducing the clones is described in the sixth
section. The seventh section proves the correctness of the proposed
algorithms and the eighth section discusses their complexity. The ninth
section deals with possible improvements of the proposed algorithms.

2. Related Research

In [11] authors define a well-behaved workflow as one that can never lead to a
deadlock or result in multiple active instances of the same activity. Another
body of research [7] defines well-formed workflows, relates them to well-
behaved workflows and defines prerequisites that a well-formed workflow
must have in order to be structured.

Tools for transforming a process model into a corresponding structured
model [21] and for translating an unstructured workflow into a structured
BPEL model [13], [2] automate the transformation, but not all models can
have their structural pair. In [11] and [12] it is shown that there are well-
behaved workflow models that cannot be modeled as structured workflow
models. Moreover, [15] shows that a workflow containing only and-splits [24]
is always well-behaved but does not have a structured mapping if it does not
meet certain requirements. Intuitively expressing those requirements, in order
to have a structured mapping, such workflow must have and-splits paired with
corresponding and-joins in a parallel routing form [1].

An approach for prerequisite modeling in which dependencies are modeled
in a tree form, which has the target element as the root node of the (sub)tree
and its prerequisites as its children [8], enables direct transformation to the
structured workflow, but can produce large trees with same elements in
different subtrees. For such elements the same dependency subtree has to

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 209

be added several times and the tree can grow rapidly. As there might be
many elements having a common prerequisite, which is quite common in
course modeling, it is better to use directed graphs. The more common
prerequisites exist, the more obvious the benefit of this approach is. The
drawback of this idea is that such graphs usually produce unstructured
workflows.

The idea how to produce a structured workflow that will, with some
additional adjustments in the runtime environment, correspond to the original
unstructured workflow introduced in [19] is based on workflow elements
cloning (duplication), which in normal circumstances leads to multiple
instances of an element but one can resolve these in the runtime. As clones
will formally be different elements, the formal verification techniques will treat
such a workflow as a structured workflow. Although this approach also
introduces duplicates, their number should be significantly less than using
trees due to common split and merge points.

3. Partially Defined Prerequisite Relationships

Each prerequisite relationship can be graphically presented as a directed arc
between two vertices. Direction of the arc defines the dependency of a target
vertex upon a source vertex. The vertices and arcs form a single (not
necessary connected) integrated directed graph in which each vertex can
have one or more incoming and outgoing arcs. Each component of a graph
with one source and one sink vertex can be paired with a well-formed
workflow model containing only and-splits and and-joins. Fig. 1 shows this
straightforward process of transformation from a directed graph into a well-
formed workflow model. Each vertex having two or more outgoing arcs is
presented with one workflow element connected to an and-split with outgoing
arcs moved from the vertex to an and-split. Each vertex having two or more
incoming arc is presented with one and-join and one workflow element, where
incoming arcs are moved to the and-join.

B

D

A

C
B

D

A

C

AND

AND

Fig. 1. From a directed graph to a well-formed workflow model

With some modifications described later in this section, it is guaranteed that
the integrated graph will be connected and will have one source and one sink

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 210

vertex and therefore can be represented with one well-formed workflow. In the
remainder of the paper, workflow models will be depicted as directed graphs
without explicitly shown and-split and and-join elements in order to simplify
the figures.

The duplication of vertices [11] in the process of transformation of simple
workflows without parallelism into structured workflows cannot be directly
applied because it would lead to multiple instances of certain elements. If it
can be guaranteed that multiple instances are handled in the way that only
one of them is effectively executed during the runtime, then the corresponding
structured workflow can be created. We propose cloning common vertices
(workflow elements) and putting them into parallel branches. Concrete
implementation of the workflow model must ensure that the corresponding
clones behave as a single element and that no data duplication occurs in the
runtime. This can be ensured by building a workflow wrapper that would
expose only unique instances of elements to other layers of the application.

In order to briefly illustrate the idea, two graphs are shown in the Fig. 2.
The graph on the left hand side corresponds to an unstructured workflow. If
the vertex C is cloned into two instances C1 and C2, and if C1 is prerequisite
for E and C2 is prerequisite for F the outcome is a structured workflow model
presented in the graph on the right hand side. The graph on the right hand
side is equivalent to a structured workflow that can be easily transformed into
a WF-model (or any other concrete workflow model). In the runtime it has to
be guaranteed that C1 and C2 are treated as a single instance of C. After the
integration, vertices such as vertex C in this example have to be labeled in
order to be cloned later in the process of the WF-model creation.

B

G

C D

A

FE

B

G

C1 D

A

FE

C2

Fig. 2. Unstructured workflow and resulting structured workflow

The complete modeling process consists of several steps as shown in the
Fig. 3. Firstly, partially defined prerequisite relationships have to be merged
into an integrated graph.

The efficient way of doing the initial integration is to represent the graph
with an adjacency matrix. Vertices have to be uniquely mapped to positive
numbers ranging from 1 and the total number of the vertices. Creating
adjacency matrix eases the detection of (in terms of prerequisites) illicit
situations, such as the existence of graph cycles of length 1 and 2. In order to
find cycles of length more than 2, algorithms shown in [10] or [20] can be
used. The latter is suitable when short cycles are expected.

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 211

As the goal is to find at least one cycle and since the topological order is
necessary for the next steps of the process, the better approach would be to
use the algorithm for incremental cycle detection and topological ordering
shown in [6].

A

B

B

C

D B

E

Partially

defined

prerequisite

relationships

Merge process

Cycle detection

Adjacency matrix

produced

Arc reduction

Vertex labeling

Labels reduction

Create workflow

Integral workflow

 model produced

Fig. 3. Phases of the workflow creation algorithm

After creating the adjacency matrix and completing the detection of cycles,
the algorithm proceeds with arcs removal. Due to transitivity of prerequisite
relation, there is a possibility that some of the arcs could be removed. In a
nutshell, if for some arc a = (A,B) an alternative path from vertex A to vertex B
exists, then the arc a can be removed because it is redundant. For example
arc a = (A,B) in the Fig. 4 is removed since A is a transitive predecessor of B
via C and D.1 This step is similar to the transitive reduction of a graph [3].

B

C

A

D

Fig. 4. Removing a redundant arc from A to B

1 In terms of logic, the situation from Fig. 4 can be expressed as B=>A, B=>D, D=>C,

C=>A, which is equivalent to B=>D, D=>C, C=>A. (B=>A is a surplus)

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 212

An alternative to cycle detection and transitive prerequisites removal is the
use of algorithms for Boolean satisfiability problem (SAT). Each arc a=(i,j)
means that i is a prerequisite for j and such dependency can be logically
represented as j entails i. The logic implication j=>i is evaluated to false only
in case that j is true and i is false which corresponds to the situation where
some activity is started without its prerequisite being finished. All other
combinations (both false, both true, only the prerequisite has finished) are
considered to be valid. Other options can be the algorithms presented in [16]
and [26], but as prerequisite relationships produce only and-splits and and-
joins the initial approach is enough.

Depending on the arrangement of the prerequisites it might happen that a
graph is not connected which is not suitable for the algorithm steps that
should follow. Therefore, after the reduction of arcs algorithm, two new
vertices have to be added to the graph: Start and End. Start vertex will be
connected with all vertices having number of inward arcs equal to zero in such
a way that Start is their predecessor. All vertices having their outward degree
equal to zero will be connected with the End vertex in such way that End is
their successor. Consequently, it is guaranteed that the graph is connected
that is essential for the vertex labeling algorithm, illustrated in the next section.

4. The Vertex Labeling Algorithm

The vertex labeling algorithm can be applied to a directed graph

with the set of vertices and set of directed arcs according to the following
presumptions:

 Graph is connected and there are no cycles in the graph

 There is only one start vertex such that its indegree deg
-
() = 0

 There is only one end vertex such that its outdegree deg
+
() = 0

 For each pair of vertices and such that exists an arc

between them (,) there is no other path

(∈) from to in graph .

Cycle detection, arcs reduction and the introduction of Start and End vertices
ensure that the previous presumptions are satisfied.

Definition 1. Vertex label is a string that contains only natural numbers and

dots.

Set of all possible labels is marked with . Mapping : , where ,
assigns one or more labels to each vertex in the graph. The vertex labeling
algorithm is presented in the Table 1.

Labeling starts from the End vertex that receives label 1 and is added to
the set of “open” vertices. Open vertex is a vertex that still has not forwarded
all its labels to its predecessors. The labeling algorithm will in each step take a

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 213

new vertex from the set of open vertices. The chosen vertex will forward its
labels to its predecessors according to the following rules.

 If the vertex has only one predecessor then all its labels are added
to the predecessor‟s label set without being changed.

 If the current vertex has N predecessors (N ≥ 2) then each label is
concatenated with .i where i is a predecessor‟s order number. In this
way the first predecessor in the order will receive all vertex labels
concatenated with .1. For the second predecessor .2 will be
concatenated and same principle respectively applies to all other
predecessors until the N-th predecessor which receives labels
concatenated with .N. The current vertex will be removed from the
set of open vertices and its predecessors will be added to the set.

Table 1. Vertex labeling algorithm

1. Assign label '1' to End vertex and add it to the open vertices set

 (End) := {'1'} , O := {End}

2. Let curr be the last vertex in the topological order of set O and let P
be a set of its predecessors in the graph.

 := O such that O,

 P := { | such that = (,)}

if |P| = 1 then

 := where P
if |P| > 1 then

 for each P do

 := ‟.orderNumber‟)
where concat is function that will add text from the
second parameter as a suffix to each label in label
set in the first parameter.
orderNumber represents the order number of each
predecessor in P (possible values are 1 to |P|)

 O := (O P) \ {curr}

3. If |O| > 0 repeat step 2.

If a random or depth first algorithm is applied in choosing a new vertex in

each step of the algorithm, the chosen vertex could be added to and removed
from the set of open vertices several times depending of the vertex order and
the number of its successors. This can be solved by tagging the labels as they
are forwarded. Instead, we choose to take vertices in a reversed topological
order, which ensures that at the time of dealing with a vertex all its successors
have already forwarded their labels.

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 214

9

10

8

5

6

4

7 3

2

1

1.2.2

1.3.2

1.1.1 , 1.1.2, 1.2.1.1 ,

1.2.1.2 , 1.3.1.1, 1.3.1.2

1.1.1 , 1.1.2, 1.2.1.1 ,

1.3.1.1, 1.2.1.2 , 1.3.1.2

1.1.1 , 1.2.1.1 , 1.3.1.1

1.1.2

1.2.1.2

1.3.1.2

1.1

1.2.1

1.3.1

1.2

1.3

1.3 1.2 1.1

End 1

Start
1.1.1 , 1.1.2, 1.2.2,

1.2.1.1 1.2.1.2 ,

1.3.1.1, 1.3.2 , 1.3.1.2

Fig. 5. An illustration of the vertex labeling algorithm operation

An example of the vertex labeling algorithm is shown in the Fig. 5.
Presuming the topological order was Start, 9, 4, 1, 8, 2, 5, 10, 7, 6, 3, End, in
the first step of the algorithm, label 1 is assigned to End vertex and End is
added to the set of open vertices. Vertex End has 3 predecessors – 3, 6 and 7
respectively. As End has more than one predecessor, label 1 is suffixed with
.1 and added to the label set of vertex 3, to label set of vertex 6 with suffix .2
and to label set of vertex 7 with suffix .3. After that, vertex End is removed
from the set of open vertices and vertices 3, 6 and 7 are added to that set.
Vertex 3 is the last in the topological order of all open vertices and it is
processed in the next step. It has only one predecessor (vertex 5) and its
labels (the only label is 1.1) are added to vertex 5 without modification. Vertex
3 is removed from the set of open vertices and vertex 5 is added to the set.
The process proceeds further with vertex 6 (that copies its label to vertex 10)
and after that with vertex 7. At this point the set of open vertices consists of

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 215

vertices 5 and 10. Vertex 10 is processed because it is behind vertex 5 in the
topological order. Vertex 10 has two predecessors and each of them receives
labels from vertex 10. This way, vertex 5 receives 1.2.1 and 1.3.1 and vertex
9 receives 1.2.2 and 1.3.2. Step 2 is repeated until the Start vertex with no
predecessors is processed making the set of open vertices empty.

5. The Label Reduction Algorithm

Since the cardinality of a vertex label set is the number of the clones of the
vertex while producing a WF-model, it is reasonable to reduce the cardinality
of each set when possible. A brief look at the Fig. 5 leads to a conclusion that
vertices 1 and 5 should have the same labels. There is no arc from vertex 1
that is not joined in vertex 5 and there is no inbound arc for vertex 5 that
cannot be traced back to vertex 1. For example, a part of the WF-model is
presented in the Fig. 6 where parallel activities occur after vertex 1 followed
by activity created for vertex 5 that was added after the synchronization point.
Therefore label set of vertex 1 can be reduced to have same labels as vertex
5.

Fig. 6. WF-model for excerpt of graph from Fig. 5

Definition 2. Function level: → (where is the set of all possible
labels) is defined as the number of dots inside a label.

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 216

In our example, level (1) is 0 and level (1.3.1.1) is 3. The relationship

between labels will be expressed as a parent-child and an ancestor-successor
relation. For instance, label 1.3.1.1 is a child of label 1.3.1 and a successor of
label 1. Vice versa, label 1 is an ancestor of labels 1.3.1 and 1.3.1.1, while
label 1.3.1 is a parent of label 1.3.1.1.

Definition 3. Label is a parent of label if level() = level()+1 and

and are the same until the last dot in both labels.

Definition 4. Label is an ancestor of label if is a parent of or there

exists a chain of labels such that is a parent of , is a parent of

,… and is a parent of .

The basic idea behind the label reduction algorithm is to replace labels with

their common parent. The replacements are done for vertices having all
children of a particular parent label. For example, if all children of label 1.2 in
a graph are labels 1.2.1, 1.2.2, 1.2.3 then for all vertices that contain all those
three labels, those three labels are replaced with 1.2.

The label reduction algorithm groups labels by value of level function and
starts checking labels backwards from the next to the last level until it comes
to the first level where the return value of function level for the first level is

equal to zero. For each label in current level (marked as set U in the

following algorithm), set S is a set containing all children of the label . The
next step is finding all vertices (set V') that contain all labels from the set S.

This way, vertices containing all children of the label are found and for those
vertices the replacement can be done. In the end, for each vertex from set V‟,

all labels from the set S are removed from its label set and label is added.
The algorithm continues until all labels on all levels have been checked, i.e.

until label 1 (the only label at the level 0) is checked. Formal definition of the
algorithm follows in the Table 2.

Table 2. Label reduction algorithm

1. curr_level := – 1

2. Let U be the set of all labels from current level

U: = { | level() = curr_level}

 for each label from set U do

S := { | such that is a parent of m}
If S ≠ ∅ then

 V' := { | such that , ∀ S}

 for each V' do

 := (\ S) { }
3. curr_level := curr_level - 1

 If curr_level ≥ 0 repeat step 2.

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 217

For the graph from the Fig. 5 label reduction occur for the vertices 1, 4 and

Start. Labels 1.3.1.1 and 1.3.1.2 are replaced with 1.3.1, labels 1.2.1.1 and
1.2.1.2 are replaced with 1.2.1 and labels 1.1.1 and 1.1.2 are replaced with
1.1. Next replacements occur only for the vertex Start. Newly added labels
1.3.1 and label 1.3.2 are replaced with 1.3. Newly added labels 1.2.1 and
1.2.2 are replaced with 1.2. Therefore, a new replacement can be done.
Labels 1.1, 1.2 and 1.3 are replaced with 1.

After the algorithm ends, vertex Start must only contain label 1. Fig. 7
shows the graph after the label reduction has been applied to the graph in the
Fig. 5.

9

10

8

5

6

4

7 3

2

1

1.2.2

1.3.2

1.1

1.2.1

1.3.1

1.1.1 , 1.2.1.1 , 1.3.1.1

1.1.2

1.2.1.2

1.3.1.2

1.1

1.2.1

1.3.1

1.2

1.3

1.3 1.2 1.1

End 1

Start 1

1.1

1.2.1

1.3.1

Fig. 7. An example of a graph after the reduction of labels

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 218

Fig. 8. WF-model for the labeled graph from Fig. 7

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 219

After the labels have been reduced, a WF-model can be created. Some
vertices will be cloned and the corresponding WF-elements will be added as
several parallel branches. WF-model for the previous example is presented in
the Fig. 8 where the elements are named with C_{vertex number}, parallel
activities are named with PA_{label name} and branches of parallel activities
are named with B_{label name}. In case a vertex had to be cloned, inst_{clone
instance number} is appended to the element name in order to ensure that the
element names remain unique. The principle of the WF-model creation is
described in the next section.

6. WF-model Creation

Each element of a created WF-model will be either an activity that represents
a clone of a vertex in the labeled graph or a built-in activity (ParallelActivity or
SequenceActivity). In every WF-model at least one (main) sequence must
exist, which contains all elements having label 1. For any other label
corresponding new parallel activities and parallel branches will be created and
assigned to the particular label. For example, vertex with the label 1.3.1.2
would be added in a branch assigned to the label 1.3.1.2. If such a branch
does not exist it is created as a branch of a parallel activity assigned to the
label 1.3.1. If such a parallel activity does not exist, it is created in the branch
assigned to the label 1.3.1. This procedure is recursive and finishes on the
main sequence assigned to the label 1. Names of the activities must be
unique and follow variable naming rules in which parallel activities are
prefixed with PA_ and branches of parallel activities take prefix B_.

For the graph from the Fig. 7 a label is uniquely assigned to a particular
parallel branch in Fig. 8 and branch where an activity for a vertex will be
added can be uniquely determined. It is important to note that a label does not
have to uniquely identify a branch as it can be seen in Fig. 9 and Fig. 10.
Label is rather a indicator where a particular element would be nested within
the workflow relative to its current position. The main benefit of this principle is
that label set can be further reduced.

Vertices from the graph are processed in the topological order, which
ensures that all merge points are added after its parents. For instance, a
topological sort for the graph in Fig. 9 can be Start,1,2,5,3,4,6,7,8,End. The
algorithm starts by adding vertex 1 with label 1 (WF-element has name C_1)
to the main sequence activity. Afterwards, an element representing vertex 2
with label 1.1 is processed and must be added to the branch assigned to label
1.1. As such branch still does not exist and a parallel branch assigned to label
1 does not exist, a new parallel activity (named PA_1) is added to the main
sequence and assigned to label 1. Subsequently branch of a parallel activity
PA_1 is created, named B_1_1 and assigned to label 1.1 upon which WF
element for vertex 2 is added to the newly created branch.

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 220

2

4

5

1.1 1.2

1

7

End

6 1

1.21.1

1

Start

3

8

1.1.1 1.1.2

1

1

Fig. 9. A simple graph illustrating the creation of a WF-model

Similarly, element that represents vertex 5 is added to the branch B_1_2
assigned to label 1.2. Vertex 3 has label 1.1.1, which means that there must
exist a branch assigned to label 1.1.1 as a branch of a parallel activity
assigned to 1.1. As both do not initially exist, they will be created. The same
procedure follows for all other vertices until vertex 6 is reached. Vertex 6 is
the synchronization point of branches 1.1 and 1.2. As it has label 1 it will be
added as the next child of the main sequence (after parallel activities). It is
important to note that appearance of a label that is an ancestor of an existing
label causes that all mappings between successor labels and parallel
activities and branches get removed. These way vertices 7 and 8 are not
added to the “old” branches B_1_1 and B_1_2 respectively, but a new parallel
activity PA_1_inst1 is created containing branches B_1_1_inst1 and
B_1_2_inst1. PA_1_inst1 is added to the main sequence after the element
C_6. The new mapping for labels 1.1 and 1.2 is active until the next
occurrence of label 1. WF-model of the graph in the Fig. 9 is shown in the
Fig. 10.

If a vertex has more than one label, previously described steps are
repeated for each label.

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 221

Fig. 10. An WF-model for the labeled graph in Fig. 9

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 222

Pseudo code for the WF-model creation algorithm is given in the Table 3.
Prior to the formal definition of the algorithm two mappings must are defined.

Definition 5.

 : → PA is mapping between a particular label and the assigned parallel

activity, where is a set of all labels and PA is set of all parallel activities in
WF-model

 : → B is mapping between a particular label and the assigned branch,

where is a set of all labels and B is a set of all branches for parallel activities
in WF-model

with initially defined in order to assign the main sequence to label 1.

Table 3. The WF-model creation algorithm based on a labeled graph

Let is a graph labeled according to the algorithms from Table 1 and
Table 2

for i:=1 to i do

 := i
th
 element from the topological order of the graph

for each label do

D := { | such that is an ancestor of m}

if D ≠ ∅ then

 for each D do

 := undefined

 := undefined

 if is not defined

 createBranch()

 add element C_ 2 in branch

Recursive function createBranch creates a branch for a given label. It

depends on the function for creating parallel activity. Both functions are
described in the next table.

2 Name of the element can contain suffix _instX where X is the number of elements

already created for vertex

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 223

Table 4. The algorithm for creating a branch and parallel activity for a given label

createBranch()

if is not defined

 createParallelActivity()

 := create branch B_ 3 as a branch of parallel activity

createParallelActivity()

if is not defined

 createBranch()

 := create parallel activity PA_ as a next activity in branch

7. Correctness of the Workflow Creation Algorithm

In order to prove the correctness of the workflow creation algorithm it is
necessary to prove two main claims. The first one is that algorithms for graph
integration, arc reduction, vertex labeling and label reducing preserve all of
the initial prerequisite relationships and create no new prerequisites. The
second one is that the WF-model creation algorithm creates correct
sequences and parallel activities.

By looking into the steps of the complete process of workflow creation it
becomes clear that the first two steps only transform the partially defined
prerequisites into a graph representation without any modifications. The third
step (arc reduction) removes arcs representing prerequisite relationships that
are already present through transitivity of some other prerequisites. The graph
is modified but the meaning has not been changed – all prerequisites are kept
either in the original relationship or as a set of transitive prerequisite
relationships.

To show the correctness for the remaining algorithm steps (labeling, label
reduction and WF-model creation) the following claims should be proven:

 All vertices are in correct order, which means that all prerequisite
relationships are satisfied.

 Execution of each element depends only on its prerequisites; i.e. there
is no waiting for elements which are not prerequisites.

From the design of the WF-model it is obvious that in order to have two
elements run in parallel, it is imperative that their labels are not in an
ancestor-successor relationship. The vice versa statement does not have to
be valid (see Fig. 10, labels 1.1 and 1.2). The claim is formally stated through
the following theorem.

Theorem 1. The non existence of an ancestor-successor relationship

between labels and , where , is required in order to have a WF-

3 Name of the element can contain suffix _instX where X is the number of elements

already created for vertex

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 224

element for vertex X with label and a WF-element for vertex Y with label

both running in parallel.
Proof: Without loss of generality it can be assumed that vertex X is before

vertex Y in the topological order. There are two possible cases that must be
discussed. In the first case there is no vertex between X and Y in the

topological order having a label which is a common ancestor of labels
and . The second case is that such vertex exists which shows that the

presumption about non existence of the ancestor-successor relationship is not
enough to run the elements in parallel.

Case I. According to the algorithm presented in the Table 3, the branches

of parallel activities are created in a way that a branch B assigned to label is

branch of the parallel activity PA assigned to label . Parallel activity

PA is added to the branch assigned to label which is a branch of

the parallel activity assigned to label) etc. Creating activity

for vertex X with label will create (if such does not already exists) a branch

assigned to the label . The same principle applies to the vertex Y with the
label . If then it is the same branch and X and Y are in the same

branch which also means they are in the same execution line. If is an
ancestor of then, according to previously described algorithm, the branch

assigned to the label is contained inside the branch assigned to the label .

If is an ancestor of the label it means that branch assigned to the label

already exists and activity representing a clone of the element Y is added to
the end of that branch which means that Y is a synchronization point for
branches contained in the branch assigned to putting X and Y in the same

execution line. If and are not in an ancestor-successor relationship then it

is obvious that they can be run in parallel.

Case II. Appearance of label that is a common ancestor of labels
and , according to the algorithm from the Table 3, causes all assignments

between branches and successors of the label to be removed. As such,
assignments for labels and are also removed. The clone of vertex with

label such as one between X and Y, is a synchronization point for all
branches that have been assigned to the labels and . This fact causes

that when an element for the vertex Y is going to be created it gets added to
the newly created branch assigned to and that branch is a part of the

branch assigned to the label and, as such, is in the same line of execution
with X.

As an outcome from the proof of the Theorem 1, Corollary 2 follows

directly.

Corollary 2. Clone of a vertex X with label and clone of a vertex Y with
label run in parallel if , labels and are not in an ancestor-

successor relationship and there are no vertices between X and Y in a
topological order with a label that is common ancestor of labels and .

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 225

 By observing not only a single clone, but all clones of a vertex it can be
stated that two vertices are in the same line of execution if for each clone of
one vertex exists a clone of the second vertex such that those two clones are
in the same line of execution. If not, these vertices can be run in parallel. For
example, for the graph from the Fig. 7 vertices 4 and 10 are in the same line
of execution because for each label of vertex 10 (labels are 1.2 and 1.3)
exists a label of vertex 4 (labels are 1.1, 1.2.1, 1.3.1) in an ancestor-
successor relationship with that label. Vertices 9 and 3 represent an opposite
situation. With Lemma 4 it will be shown that it is enough to find just one pair
of labels in an ancestor-successor relationship so to conclude that the two
vertices are in the same line of execution.

Corollary 3. For a WF-model created immediately after the vertex labeling

algorithm, two vertices X and Y are in the same line of execution if and only if
for each pair of labels (X) and (Y) label is equal to or label

 is an ancestor of label or label is ancestor of label .

Proof: The first direction follows directly from the Corollary 2 because there
are no vertices between X and Y in a topological order having a label which is
a common ancestor of labels and . Therefore and must be in an

ancestor-successor relationship. The second direction follows from the
Theorem 1, due to fact that nonexistence of an ancestor-successor
relationship between labels is required to have two clones run in parallel. If all
labels are in an ancestor-successor relationship then no pair of clones of
vertices X and Y can be run in parallel, hence vertices X and Y are in the
same line of execution.

Lemma 4. After the vertex labeling algorithm and before the labels

reduction algorithm, for each two vertices X and Y, such that X is predecessor
of Y, and for each label (Y) exists a label (X) such that either =

 or is an ancestor of .

Proof: Case I. Let X be an immediate predecessor of Y. If X is the only
immediate predecessor of Y then all labels of vertex Y are added to set of

labels of vertex X without any modification and in this case is (Y) (X).
From this it immediately follows that for each label (Y) exists a label

 (X) such that = . If the vertex Y has two or more immediate

predecessors and the vertex X is the i-th predecessor of Y then each label of
the vertex Y is suffixed with .i while adding to label set of the vertex X.
Therefore, for each label (Y) there is a label .i in (X).

Case II. Let X be a non-immediate predecessor of Y. Then there exists a
path Xv1v2..vnY in the graph. Labels from the vertex Y are transferred to vn,
from the vertex vn to the vertex vn-1 and so on until the vertex X. In each step
one of the two possible situations from the first case can be applied.
Therefore for each label (Y) either exists a label (X) such that =

 (in case all vertices in the path had only one immediate predecessor) or

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 226

is an ancestor of as a consequence of successive suffixing with dot and the
order number of a particular predecessor.

Lemma 5. After the vertex labeling algorithm two vertices cannot be in the

same line of execution if one vertex is not a predecessor of the other.
Proof: Let vertices X and Y be in the same line of execution, but such that

neither X is a predecessor of Y, nor Y is a predecessor of X. Let vertex Z be
the first (in the topological order) common successor of the vertices X and Y.
Such a vertex must exist because the graph is a connected graph having at
least vertex End as such a vertex. Since X and Y are according to the
presumption in different ancestry lines, after transferring labels from the vertex
Z to its predecessors, ancestry lines toward vertex X have received labels of
the vertex Z with the suffix .i, and ancestry line toward the vertex Y has
received labels of the vertex Z with the suffix .j. As there was no label
reduction, vertices X and Y have labels that are not in an ancestor-successor
relationship and according to the Corollary 3 cannot be in the same line of
execution which is in the contradiction with the assumption. Therefore X must
be a predecessor of Y or Y must be a predecessor of X.

Lemma 4 shows that before the label reduction all predecessors and

successors of a vertex (and according to the Lemma 5 only these) are in the
same line of execution with the vertex due to the existence of an ancestor-
successor relationship between their labels. It has to be shown that the label
reduction algorithm keeps the execution line.

Lemma 6. Two vertices X and Y are in the same line of execution after the

label reduction algorithm if and only if they were in the same line of execution
before the label reduction algorithm.

Proof: Let vertices X and Y be in the same line of execution after the
label reduction algorithm. If it is assumed that X and Y were not in the same
execution line before the label reduction, then their lines of execution split at
their common ancestor and join in the first (in the topological order) common
successor. As labels coming from the common successor are propagated to
two different lines of execution with different suffixes, neither one element in
the different ancestry lines (including X and Y) cannot have all children of a
label from the common successor‟s label set and that is true for each label
of the common successor. Therefore X and Y cannot reduce their label set to
have same labels as those in the label set in the other execution line or to
become their ancestors or successors. According to the Lemma 3 this means
that they were in the different lines of execution and no label reduction could
occur.

 Let vertices X and Y be in the same line of execution before the label
reduction algorithm and let, without loss of generality, X be a predecessor of
Y. This means that before the label reduction each label (Y) was equal

to a label (X) or was an ancestor of the label . Label reduction

algorithm can change the label set of the vertex X and/or the vertex Y and

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 227

three different mutual relationships between the vertices in the same line of
execution have to be observed.

In the first one, every path from the vertex Start to the vertex Y includes the
vertex X and every path from the vertex Start to the vertex End such that
includes the vertex X also includes the vertex Y (e.g. vertices 1 and 5 from
Fig. 5). In this case, after the label reduction algorithm vertices X and Y will
have the same labels because X contains all children of labels originated by
coping labels of the vertex Y to its predecessors.

In the second case each path from the vertex Start to the vertex Y includes
the vertex X, but there exists a path from the vertex Start to the vertex End
that includes the vertex X and does not include the vertex Y (e.g. vertices 1
and 2 from the Fig. 5). If the vertex X had contained labels that have the
same parent as the labels of the vertex Y, X‟s label set would be reduced and
those labels would be replaced with their parents. In the successive reduction
it may happen that for a label (Y) its corresponding label (X) is

swapped with a label that is an ancestor of . Therefore the new label is also
in an ancestor-successor relationship with the label , and according to the

Lemma 3, vertices are still in the same line of execution.
The third case is represented with a situation in which there exists a path

from the vertex Start to the vertex Y which does not include the vertex X (e.g.
vertices 4 and 7 from the Fig. 5). (The existence of the vertex Y in any path
from the vertex Start through X to the vertex End is irrelevant.) In this case the

vertex X in the label reduction algorithm cannot remove a label (X) that
is a successor of a label (Y), because there exists at least one label that

is a successor of the label in another ancestry line and as such is not an

element of (X) and therefore the relationship between X and Y has not been
changed.

Theorem 7. Every clone of a graph‟s vertices transformed into WF-

activities depends only on its predecessors in the graph and no clones can be
executed before all predecessor clones have been finished.

Proof: The Lemma 4 proves that all labels of a vertex are propagated to its
predecessors and no predecessors of the vertex are omitted. This means that
all predecessors are in the same line of execution before the label reduction.
Lemma 5 proves that for each vertex, a vertex in the same line of execution
cannot exist if it was not a predecessor of a successor of the vertex. Lemma 6
ensures that the label reduction algorithm keeps the line of execution, which
means that all predecessors are preserved and no new dependencies have
been added. Mutual vertical order of the clones inside the WF-model is
ensured using topological ordering.

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 228

8. Algorithms Complexity

Complexity of the presented algorithms depends on the number of (different)
labels, which is dependent not only on the number of vertices and arcs in a
graph, but also on the graph‟s structure. As the worst case for a particular
algorithm step can lead to significant simplification of another step in the
process, in this section we give main guidelines on how to calculate the
number of labels and which implementations to use in order to reduce the
complexity of the presented algorithms. It is important to stress out that the
given complexity is the upper bound and it can be far from the average
complexity.

In the step 2 of the vertex labeling algorithm from the Table 1, each vertex
having indegree greater than one creates new labels in the graph. A
contribution of the vertex to the number of new labels in a graph is a product
of the cardinality of the vertex label set and the number of the inbound arcs.
The cardinality of a vertex label set represents the number of different paths
from that vertex to the End vertex and can be calculated as a sum of

cardinalities of label sets of its successors. For a vertex in a graph

 this contribution of a vertex can be expressed with the following
formula

where

and = { | such that = (,)}.

This way, total number of different labels in the graph is equal to the sum of

contributions of all vertices incremented by one due to the label 1 initially
added to graph and assigned to the vertex End.

In the vertex labeling algorithm from the Table 1, a sub-step of the step 2 is

executed times, where is the number of arcs in the graph. The
complexity of the algorithm then depends on the implementation of
relationship between labels and vertices, implementation of the union
operation (with concatenation) and the number of labels in a vertex.

As it is shown later in this section, it is convenient to implement vertex label
set as a hash table and store all labels in a tree, where each node additionally
contains a pointer to the workflow branch assigned to the label and a hash
table of pointers to vertices that have the label in its label set. If the tree is
balanced then the addition of a new node to the tree has complexity of

 and the addition of a new vertex pointer into the hash table for the
retrieved node can be done in constant time. As insertion of a new vertex in

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 229

the set of open vertices in such a way that vertices are always sorted by
topological order and producing the union of labels is linear in relation to the
number of vertices and the number of labels respectively, it can be claimed

that the complexity of the vertex labeling algorithm is .
With labels stored in the tree, the label reduction algorithm can be

implemented as an inorder tree traversal in which for each non-leaf node a
slightly modified step 2 from the Table 2 is executed. In that case finding the

set V' for label in step 2 from the Table 2 is, complexity-wise, equal to
finding the intersection of all hash tables with vertices pointers to the children
of the node traversed and each intersection can be executed with linear
complexity. Replacement of children labels with label for all vertices from the
set V' is done with the following single step: for a vertex from intersection and

for a child label of the label , is deleted from the vertex label set, and

vertex pointer is deleted from the hash table in the node . As the deletion
from hash table can be done in constant time and as this occurs for each
vertex and each label in each step of a traversal process, the complexity is

.
A single step of the inner loop in the WF-model creation algorithm consists

of removing the existing mapping, creating a new branch and adding an
element to the branch. This step is executed times. If the tree is

balanced, finding an assigned branch to a label is done in logarithmic
complexity. When a mapping between a label and a branch has to be
removed, the pointer to the branch has to be deleted from the tree. Instead of
deleting pointers to the branches in entire subtree, to save on complexity it is
enough to delete just the pointer in root of the subtree. This implies that the
creation of a new branch has to be modified in such a way that, except
assigning new pointer to a node, the deletion of all pointers in the child has to
be done. According to this, it can be stated that complexity of the WF-creation
algorithm is .

9. Possible Improvements of the Algorithm

Although the algorithm from the Table 2 reduces the number of clones, there
are some drawbacks to it. The Fig. 8 shows that the two rightmost branches
with labels B_1_2 and B_1_3 are almost the same, except for the elements
C_6 and C_7. The presented WF-model can be improved by deferring the
parallel split just before the elements C_6 and C_7. In that case all previous
elements can be added to the common branch. Hence, the possible
improvement consists of merging the parts of parallel branches that share the
same parent parallel activity. In our example this means that branches
assigned to labels 1.2 and 1.3 are the same (i.e. 1.3 can be replaced with 1.2)
for all vertices before the vertex 10 (including vertex 10). Therefore, for the
labels in those vertices, starting pattern 1.3 could be replaced with 1.2. For all
vertices after the vertex 10 label 1.2 should be replaced with 1.2.1 and 1.3
should be replaced with 1.2.2.

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 230

It turns out that the more “regular” a graph is (in terms of adequately paired
and-splits and and-joins) the surplus of the clones becomes more obvious. By
looking at the Fig. 11 one can notice that after the label reduction, label set of
the vertex 3 has been reduced from {1.1, 1.2} to {1}, but the same thing does
not apply to the vertices 1 and 2. Their label sets can be reduced by just
replacing starting patterns of the labels which will, in turn, produce the graph
shown in the Fig. 12.

1

3

2

1.1

1.1

1.2

1

Start
1.1.1 1.1.2

1.2.1 1.2.2

4

End

51.2

1.1.1

1.2.1

1.1.2

1.2.2

1

3

2

1.1

1

1

Start

4

End

51.2

1.1.1

1.2.1
1.1.2

1.2.2

1

Fig. 11. A graph after the vertex labeling and the same graph after the label reduction
algorithm

1

3

2

1.1

1

1

Start

4

End

51.2

1.11.2

1

Fig. 12. Optimal labeling solution for the graph on the left hand side in the Fig. 11

Proof of these claims is based on a proof of the Theorem 8 which deals
with an improvement that can be done for these vertices where the label set
has not been reduced but contains two or more labels that have same parent
as the vertex 10 in the Fig. 7. Replacing more labels with the same parent

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 231

starts from the vertex containing those labels and propagates replacements
upwards to the Start vertex or until the first vertex without these labels.

Theorem 8. Let the label set of a vertex contains a subset O={l1, … ,ln} of
labels that have same parent and let l1 be the first among them in the
lexicographic order. If the starting pattern liX is replaced with l1X for the labels

of the vertex and the labels of „s predecessors and the starting pattern lj is

replaced with li.k in the labels of „s successors, where k is the position of li
inside the set O, then it can be claimed the line of execution has been kept.

Proof: Without the loss of generality it can be claimed that the vertex
contains two labels l.i i l.j, where l is the mutual prefix of the labels and i<j. All

predecessors of , among other labels received from their other successors,
have labels with the patterns l.i.suffix i l.j.suffix, where suffix is a string of dots
and numbers that were concatenated during the labeling algorithm.

(Optionally, can have other labels that do not start with l and, for those

labels, in „s predecessors will exist labels, with an appended suffix, that are

the successors of those labels so is in the same line of execution with its

predecessors). By replacing prefix l.j with l.i in the vertex and in its
predecessors, it is possible that a label set of a particular vertex gets reduced,

but line of execution will be kept because for each label of the vertex there
exists a label in his predecessors in an ancestor-successor relationship with

label from the vertex . It remains to be shown that replacing prefix l.i with

l.i.1 and l.j with l.i.2 in all labels in a „s successor keeps the line of execution.

The vertex has labels l.i and l.j which means that at least one successor of

the vertex containing label l exists. That successor has at least one more
predecessor and that predecessor contains label l.k (in any other situation the
label reduction algorithm would reduce labels l.i i l.j with label l in the vertex

). The replacement of l.i with l.i.1 and l.j with l.i.2 implies that branches
assigned to labels l.i.1 i l.i.2 join one step before the join with a branch
assigned to l.k (and any other branches).

If set O had more than two labels, the proof is similar.

Although this improvement can reduce the number of the labels, it

significantly raises complexity as it adds labels of the higher value of a level
function after the level has already been processed. Appearance of those
labels requires algorithm reset and several re-runs.

10. Conclusion

Dividing prerequisite relationships into partially defined components helps
maintaining a relationship between elements and increases readability.
Nevertheless, as shown in the introductory example, even for simple models it
may be impossible to transform the integrated graph directly into a real
workflow model with an existing workflow modeling language because such

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 232

workflow models do not have to be structured. As an opposite to developing
proprietary workflow management software to support unstructured models,
an approach consisting of using existing workflow management software is
proposed. The approach consists of element cloning (duplication) and a
workflow wrapper ensuring the clones are shown as unique elements in the
runtime and no data duplication occurs. The description of the wrapper is out
of the scope of this paper.

The paper presented the steps for the integration of prerequisite
relationships into directed graphs and algorithms for vertex labeling and label
reduction. Initial algorithms and enhancements are presented and their
correctness has been proved. Furthermore, the complexity of the algorithms
has been discussed and the worst case complexity has been given, with the
remark that finding average complexities would require extensive tests since
the worst case in one of the algorithm‟s steps can significantly reduce
complexity of another step.

References

1. van der Aalst, W., van Hee, K.: Workflow management. Models, Methods and
Systems. MIT Press, Cambridge, Massachusetts, USA. (2004)

2. van der Aalst, W., Lassen, K.: Translating Unstructured Workflow Processes to
Readable BPEL: Theory and Implementation. Information and Software
Technology, Vol. 50, No. 3, 131-159. (2008)

3. Aho, A.V., Garey, M.R., Ullman, J.D.: The Transitive Reduction of a Directed
Graph. SIAM Journal on Computing, Vol.1, No 2, 131-137. (1972)

4. Cesarini, M., Monga, M., Tedesco, R.: Carrying on the e-Learning process with a
Workflow Management Engine. In Proceedings of the 2004 ACM Symposium on
Applied Computing. Nicosia, Cyprus, 940-945. (2004)

5. Gruhn, V., Laue, R.: Good and bad excuses for unstructured business process
models. In Proceedings of 12th European Conference on Pattern Languages of
Programs, Irsee, Germany. (2007)

6. Haeupler, B., Telikepalli, K.: Mathew, R.; Siddhartha S.; Tarjan, R.E.: Incremental
Cycle Detection, Topological Ordering, and Strong Component Maintenance.
(2008). [Online]. Available http://people.csail.mit.edu/haeupler/incremental-
topological-ordering-journal.pdf (October 2010)

7. Hausser, R., Friess, M., Küster, J.M., Vanhatalo, J.: Combining Analysis of
Unstructured Workflows with Transformation to Structured Workflows. In
Proceedings of the 10th

IEEE International Enterprise Distributed Object

Computing Conference, Hong Kong, China, 129-140. (2006)
8. Hlaoui, Y.B., Ayed, L.J.B.: An Interactive Composition of UML-AD for the

Modelling of Workflow Applications. Ubiquitous Computing and Communication
Journal, Vol. 4, No. 3, 599-608. (2009)

9. Holl, A., Valentin G.: Structured business process modeling (SBPM). Information
Systems Research in Scandinavia (IRIS 27), Falkenberg, Sweden. (CD-ROM).
(2004)

10. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM
Journal on Computing, Vol. 4, No. 1, 77-84. (1975)

Avoiding Unstructured Workflows in Prerequisites Modeling

ComSIS Vol. 9, No. 1, January 2012 233

11. Kiepuszewski, B., ter Hofstede, A., Bussler, C.: On Structured Workflow
Modelling. Lecture Notes in Computer Science, Vol. 1789. Springer-Verlag,
Berlin Heidelberg, 431-445. (2000)

12. Kiepuszewski, B.: Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows. PhD Thesis, Queensland University of Technology,
Brisbane, Australia. (2003)

13. Lassen, K., van der Aalst, W.: WorkflowNet2BPEL4WS: A Tool for Translating
Unstructured Workflow Processes to Readable BPEL. Lecture Notes in
Computer Science, Vol. 4275. Springer-Verlag, Berlin Heidelberg, 127-144.
(2006)

14. Lin, L., Ho, C., Sadiq, W., Orlowska, M.E.: Using Workflow Technology to
Manage Flexible e-Learning Services. Educational Technology & Society, Vol. 5,
No. 4, 116-123. (2002)

15. Liu, R., Kumar, A.: An analysis and taxonomy of unstructured workflows. Lecture
Notes in Computer Science, Vol. 3649. Springer-Verlag, Berlin Heidelberg, 268-
284. (2005)

16. Mendling, J., Simon, C.: Business Process Design by View Integration. Lecture
Notes in Computer Science, Vol. 4103. Springer-Verlag, Berlin Heidelberg, 55-
64. (2006)

17. Microsoft Patterns and Practices: Microsoft Application Architecture Guide, 2nd
Edition, Microsoft Press, Redmond, USA. (2009)

18. Milašinović, B., Fertalj, K., Nižetić, I.: On some Problems while Writing an Engine
for Flow Control in Workflow Management Software. In Proceedings of the 29

th

International Conference on Information Technology Interfaces, Cavtat, Croatia,
489-494. (2007)

19. Milašinović, B., Fertalj, K.: Using partially defined workflows for course modelling
in a learning management system. ICIT-2009, The 4th International Conference
on Information Technology, Amman, Jordan. (2009).

20. Nishizawa, K.: A method to Find Elements of Cycles in an Incomplete Directed
Graph and Its Applications – Binary AHP and Petri Nets. Computers &
Mathematics with Applications, Vol. 33, No. 9, 33-46. (1997)

21. Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring Acyclic Process
Models. Lecture Notes in Computer Science, Vol. 6336, Springer-Verlag, Berlin
Heidelberg 276-293. (2010)

22. Sadiq, S., Sadiq, W., Orlowska, M.: Workflow Driven e-Learning – Beyond
Collaborative Environments. International NAISO Congress on Networked
Learning in a Global Environment, Challenges and Solutions for Virtual
Education. Berlin, Germany. (2002)

23. Windows Workflow Foundation. [Online]. Available:
http://msdn.microsoft.com/en-us/netframework/aa663328.aspx (October 2010)

24. Workflow Management Coalition. Terminology & Glossary: Document Number
WFMC-TC-1011 - Document Status - Issue 3.0 [Online]. Available:
http://www.wfmc.org/Download-document/WFMC-TC-1011-Ver-3-Terminology-
and-Glossary-English.html (October 2010)

25. Xi, S., Yong, J.: New Data Integration Workflow Design for e-Learning. Lecture
Notes in Computer Science, Vol. 4402, Springer-Verlag, Berlin Heidelberg 699-
707. (2007)

26. Ye, Y., Roy, K.: A graph-based synthesis algorithm for AND/XOR networks. In
Proceedings of the 34th Annual Design Automation Conference, Anaheim,
California, USA, 107-112. (1997)

Boris Milašinović and Krešimir Fertalj

ComSIS Vol. 9, No. 1, January 2012 234

27. Yong, J.: Workflow-based e-learning platform. In Proceedings of the 9th
International Conference on Computer Supported Cooperative Work in Design,
Coventry, UK, Vol. 2, 1002-1007. (2005)

Krešimir Fertalj is a full professor at the Department of Applied Computing at
the Faculty of Electrical Engineering and Computing, University of Zagreb.
Currently he lectures a couple of computing courses on undergraduate,
graduate and doctoral studies. His professional and scientific interest is in
computer-aided software engineering, complex information systems and in
project management. He participated in a number of information system
designs, implementations and evaluations. Fertalj is member of ACM, IEEE,
PMI, and Croatian Academy of Engineering.

Boris Milašinović is a research assistant at the Department of Applied
Computing at the Faculty of Electrical Engineering and Computing, University
of Zagreb. He graduated in 2001 at the Department of Mathematics at Faculty
of Science, University of Zagreb. He received MSc degree in 2006 and Ph. D.
degree in 2010 in Computing at the Faculty of Electrical Engineering and
Computing. His main research interests include software development and
workflow management. Currently he lectures a couple of undergraduate
courses in Computing and he is teaching assistant to one graduate course in
Computing.

Received: November 20, 2010; Accepted: August 5, 2011

