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Abstract. Integrating prerequisite relationships, partially defined as 
graph components, produces a directed graph that corresponds to  
a well-defined and well-behaved workflow consisting only of and-splits 
and and-joins. Such a workflow often cannot be transformed to a 
structured workflow. This paper presents an approach to producing a 
corresponding structured workflow that will, with some adjustments in 
the runtime, correspond to the original unstructured workflow. The 
workaround is based on element cloning and on a workflow wrapper 
handling clones in order to avoid multiple element instances. An 
algorithm for finding clones and an algorithm for reducing the number of 
clones are proposed. Correctness of the algorithms is analyzed and 
some drawbacks and possible improvements are examined. 

Keywords: Workflow management, structured workflows, unstructured 
workflows, modeling prerequisite relationships, and-splits 

1. Introduction 

In order to follow the key guidelines for designing a business layer of an 
application [17] one of the tasks is to extract a workflow component that 
defines and coordinates multistep business processes. Although traditionally 
related to enterprise systems, workflow management has other applications. 
Applications of prerequisite relations between workflow elements can be 
found in merging dependencies between UML components [8], in modeling 
course prerequisites in a learning management systems [4][14][22], in 
modeling relationships between workflow sub-components of a learning 
management system [27] or in modeling workflow-based data for e-learning 
[25]. Development of proprietary workflow management software can 
enhance flexibility and help in avoiding limitations of existing systems in 
dealing with synchronization points in unstructured workflows [18], but it 
requires a lot of work and raises compatibility and interoperability issues. On 
the other hand the use of existing workflow management software induces 
problems during the design of the business process model, because the 
workflow management systems impose different syntactical restrictions on 
models. One of the restrictions is that the workflow model should (and often 
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must) be structured. Perspectives regarding this restriction vary. In [9] authors 
propose that workflow models should be structured in order to avoid the so 
called “spaghetti business process modeling”, but there might be good 
reasons to use unstructured business processes [5]. 

In this paper an approach to avoiding unstructured workflows in 
prerequisite modeling using directed graphs is described. The idea was 
introduced in [19], but here we elaborate on how to produce a structured 
workflow that will, with some additional adjustments in the runtime 
environment, correspond to the original unstructured workflow. An overview of 
a related work is given in the second section. The third section describes the 
process of merging partially defined prerequisite relationships into a directed 
graph that corresponds to a workflow with only and-split and and-joins and 
further expands on the idea of a modification based on the graph‟s vertex 
cloning. Finding vertices that have to be cloned is done using an original 
vertex labeling algorithm formally described in the fourth section. The fifth 
section deals with reducing the number of clones prior to transforming an 
integrated graph into a concrete workflow model. For the sake of presentation 
simplicity we use the Windows Workflow Foundation model [23] (in further text 
WF-model). The algorithm for reducing the clones is described in the sixth 
section. The seventh section proves the correctness of the proposed 
algorithms and the eighth section discusses their complexity. The ninth 
section deals with possible improvements of the proposed algorithms. 

2. Related Research 

In [11] authors define a well-behaved workflow as one that can never lead to a 
deadlock or result in multiple active instances of the same activity. Another 
body of research [7] defines well-formed workflows, relates them to well-
behaved workflows and defines prerequisites that a well-formed workflow 
must have in order to be structured. 

Tools for transforming a process model into a corresponding structured 
model [21] and for translating an unstructured workflow into a structured 
BPEL model [13], [2] automate the transformation, but not all models can 
have their structural pair. In [11] and [12] it is shown that there are well-
behaved workflow models that cannot be modeled as structured workflow 
models. Moreover, [15] shows that a workflow containing only and-splits [24] 
is always well-behaved but does not have a structured mapping if it does not 
meet certain requirements. Intuitively expressing those requirements, in order 
to have a structured mapping, such workflow must have and-splits paired with 
corresponding and-joins in a parallel routing form [1].  

An approach for prerequisite modeling in which dependencies are modeled 
in a tree form, which has the target element as the root node of the (sub)tree 
and its prerequisites as its children [8], enables direct transformation to the 
structured workflow, but can produce large trees with same elements in 
different subtrees. For such elements the same dependency subtree has to 
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be added several times and the tree can grow rapidly. As there might be 
many elements having a common prerequisite, which is quite common in 
course modeling, it is better to use directed graphs. The more common 
prerequisites exist, the more obvious the benefit of this approach is. The 
drawback of this idea is that such graphs usually produce unstructured 
workflows. 

The idea how to produce a structured workflow that will, with some 
additional adjustments in the runtime environment, correspond to the original 
unstructured workflow introduced in [19] is based on workflow elements 
cloning (duplication), which in normal circumstances leads to multiple 
instances of an element but one can resolve these in the runtime. As clones 
will formally be different elements, the formal verification techniques will treat 
such a workflow as a structured workflow. Although this approach also 
introduces duplicates, their number should be significantly less than using 
trees due to common split and merge points. 

3. Partially Defined Prerequisite Relationships 

Each prerequisite relationship can be graphically presented as a directed arc 
between two vertices. Direction of the arc defines the dependency of a target 
vertex upon a source vertex. The vertices and arcs form a single (not 
necessary connected) integrated directed graph in which each vertex can 
have one or more incoming and outgoing arcs. Each component of a graph 
with one source and one sink vertex can be paired with a well-formed 
workflow model containing only and-splits and and-joins. Fig. 1 shows this 
straightforward process of transformation from a directed graph into a well-
formed workflow model. Each vertex having two or more outgoing arcs is 
presented with one workflow element connected to an and-split with outgoing 
arcs moved from the vertex to an and-split. Each vertex having two or more 
incoming arc is presented with one and-join and one workflow element, where 
incoming arcs are moved to the and-join. 
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Fig. 1. From a directed graph to a well-formed workflow model  

With some modifications described later in this section, it is guaranteed that 
the integrated graph will be connected and will have one source and one sink 
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vertex and therefore can be represented with one well-formed workflow. In the 
remainder of the paper, workflow models will be depicted as directed graphs 
without explicitly shown and-split and and-join elements in order to simplify 
the figures. 

The duplication of vertices [11] in the process of transformation of simple 
workflows without parallelism into structured workflows cannot be directly 
applied because it would lead to multiple instances of certain elements. If it 
can be guaranteed that multiple instances are handled in the way that only 
one of them is effectively executed during the runtime, then the corresponding 
structured workflow can be created. We propose cloning common vertices 
(workflow elements) and putting them into parallel branches. Concrete 
implementation of the workflow model must ensure that the corresponding 
clones behave as a single element and that no data duplication occurs in the 
runtime. This can be ensured by building a workflow wrapper that would 
expose only unique instances of elements to other layers of the application.  

In order to briefly illustrate the idea, two graphs are shown in the Fig. 2. 
The graph on the left hand side corresponds to an unstructured workflow. If 
the vertex C is cloned into two instances C1 and C2, and if C1 is prerequisite 
for E and C2 is prerequisite for F the outcome is a structured workflow model 
presented in the graph on the right hand side. The graph on the right hand 
side is equivalent to a structured workflow that can be easily transformed into 
a WF-model (or any other concrete workflow model). In the runtime it has to 
be guaranteed that C1 and C2 are treated as a single instance of C. After the 
integration, vertices such as vertex C in this example have to be labeled in 
order to be cloned later in the process of the WF-model creation. 
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Fig. 2. Unstructured workflow and resulting structured workflow  

The complete modeling process consists of several steps as shown in the  
Fig. 3. Firstly, partially defined prerequisite relationships have to be merged 
into an integrated graph. 

The efficient way of doing the initial integration is to represent the graph 
with an adjacency matrix. Vertices have to be uniquely mapped to positive 
numbers ranging from 1 and the total number of the vertices. Creating 
adjacency matrix eases the detection of (in terms of prerequisites) illicit 
situations, such as the existence of graph cycles of length 1 and 2. In order to 
find cycles of length more than 2, algorithms shown in [10] or [20] can be 
used. The latter is suitable when short cycles are expected.  
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As the goal is to find at least one cycle and since the topological order is 
necessary for the next steps of the process, the better approach would be to 
use the algorithm for incremental cycle detection and topological ordering 
shown in [6]. 
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Fig. 3. Phases of the workflow creation algorithm 

After creating the adjacency matrix and completing the detection of cycles, 
the algorithm proceeds with arcs removal. Due to transitivity of prerequisite 
relation, there is a possibility that some of the arcs could be removed. In a 
nutshell, if for some arc a = (A,B) an alternative path from vertex A to vertex B 
exists, then the arc a can be removed because it is redundant. For example 
arc a = (A,B) in the Fig. 4 is removed since A is a transitive predecessor of B 
via C and D.1 This step is similar to the transitive reduction of a graph [3]. 
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Fig. 4. Removing a redundant arc from A to B 

                                                   
1 In terms of logic, the situation from Fig. 4 can be expressed as B=>A, B=>D, D=>C, 

C=>A, which is equivalent to B=>D, D=>C, C=>A. (B=>A is a surplus) 
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An alternative to cycle detection and transitive prerequisites removal is the 
use of algorithms for Boolean satisfiability problem (SAT). Each arc a=(i,j)  
means that i is a prerequisite for j and such dependency can be logically 
represented as j entails i. The logic implication j=>i is evaluated to false only 
in case that j is true and i is false which corresponds to the situation where 
some activity is started without its prerequisite being finished. All other 
combinations (both false, both true, only the prerequisite has finished) are 
considered to be valid. Other options can be the algorithms presented in [16] 
and [26], but as prerequisite relationships produce only and-splits and and-
joins the initial approach is enough. 

Depending on the arrangement of the prerequisites it might happen that a 
graph is not connected which is not suitable for the algorithm steps that 
should follow. Therefore, after the reduction of arcs algorithm, two new 
vertices have to be added to the graph: Start and End. Start vertex will be 
connected with all vertices having number of inward arcs equal to zero in such 
a way that Start is their predecessor. All vertices having their outward degree 
equal to zero will be connected with the End vertex in such way that End is 
their successor. Consequently, it is guaranteed that the graph is connected 
that is essential for the vertex labeling algorithm, illustrated in the next section. 

4. The Vertex Labeling Algorithm 

The vertex labeling algorithm can be applied to a directed graph  

with the set of vertices  and set of directed arcs  according to the following 
presumptions: 

 Graph  is connected and there are no cycles in the graph 

 There is only one start vertex  such that its indegree deg
-
( ) = 0 

 There is only one end vertex  such that its outdegree deg
+
( ) = 0 

 For each pair of vertices  and  such that exists an arc 

between them (  ,   ) there is no other path  

(  ∈ ) from  to  in graph . 
 

Cycle detection, arcs reduction and the introduction of Start and End vertices 
ensure that the previous presumptions are satisfied. 

 
Definition 1. Vertex label is a string that contains only natural numbers and 

dots. 
 

Set of all possible labels is marked with . Mapping :   , where , 
assigns one or more labels to each vertex in the graph. The vertex labeling 
algorithm is presented in the Table 1.  

Labeling starts from the End vertex that receives label 1 and is added to 
the set of “open” vertices. Open vertex is a vertex that still has not forwarded 
all its labels to its predecessors. The labeling algorithm will in each step take a 
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new vertex from the set of open vertices. The chosen vertex will forward its 
labels to its predecessors according to the following rules.  

 

 If the vertex has only one predecessor then all its labels are added 
to the predecessor‟s label set without being changed.  

 If the current vertex has N predecessors (N ≥ 2) then each label is 
concatenated with .i where i is a predecessor‟s order number. In this 
way the first predecessor in the order will receive all vertex labels 
concatenated with .1. For the second predecessor .2 will be 
concatenated and same principle respectively applies to all other 
predecessors until the N-th predecessor which receives labels 
concatenated with .N. The current vertex will be removed from the 
set of open vertices and its predecessors will be added to the set. 

Table 1. Vertex labeling algorithm 

1. Assign label '1' to End vertex and add it to the open vertices set  

 (End) := {'1'} , O := {End} 
 

2. Let curr be the last vertex in the topological order of set O and let P 
be a set of its predecessors in the graph. 

               :=  O such that    O,  

               P := {  |   such that  = ( , )} 
 

if |P| = 1 then  

 :=  where   P 
if |P| > 1 then  

            for each   P do 

 := ‟.orderNumber‟)  
where concat is function that will add text from the 
second parameter as a suffix to each label in label 
set in the first parameter.  
orderNumber represents the order number of each 
predecessor in P (possible values are 1 to |P|) 

   O := (O  P) \ {curr} 
 

3. If |O|  > 0 repeat step 2. 

  
If a random or depth first algorithm is applied in choosing a new vertex in 

each step of the algorithm, the chosen vertex could be added to and removed 
from the set of open vertices several times depending of the vertex order and 
the number of its successors. This can be solved by tagging the labels as they 
are forwarded. Instead, we choose to take vertices in a reversed topological 
order, which ensures that at the time of dealing with a vertex all its successors 
have already forwarded their labels. 
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Fig. 5. An illustration of the vertex labeling algorithm operation 

An example of the vertex labeling algorithm is shown in the Fig. 5. 
Presuming the topological order was Start, 9, 4, 1, 8, 2, 5, 10, 7, 6, 3, End, in 
the first step of the algorithm, label 1 is assigned to End vertex and End is 
added to the set of open vertices. Vertex End has 3 predecessors – 3, 6 and 7 
respectively. As End has more than one predecessor, label 1 is suffixed with 
.1 and added to the label set of vertex 3, to label set of vertex 6 with suffix .2 
and to label set of vertex 7 with suffix .3. After that, vertex End is removed 
from the set of open vertices and vertices 3, 6 and 7 are added to that set. 
Vertex 3 is the last in the topological order of all open vertices and it is 
processed in the next step. It has only one predecessor (vertex 5) and its 
labels (the only label is 1.1) are added to vertex 5 without modification. Vertex 
3 is removed from the set of open vertices and vertex 5 is added to the set. 
The process proceeds further with vertex 6 (that copies its label to vertex 10) 
and after that with vertex 7. At this point the set of open vertices consists of 
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vertices 5 and 10. Vertex 10 is processed because it is behind vertex 5 in the 
topological order. Vertex 10 has two predecessors and each of them receives 
labels from vertex 10. This way, vertex 5 receives 1.2.1 and 1.3.1 and vertex 
9 receives 1.2.2 and 1.3.2. Step 2 is repeated until the Start vertex with no 
predecessors is processed making the set of open vertices empty. 

5. The Label Reduction Algorithm 

Since the cardinality of a vertex label set is the number of the clones of the 
vertex while producing a WF-model, it is reasonable to reduce the cardinality 
of each set when possible. A brief look at the Fig. 5 leads to a conclusion that 
vertices 1 and 5 should have the same labels. There is no arc from vertex 1 
that is not joined in vertex 5 and there is no inbound arc for vertex 5 that 
cannot be traced back to vertex 1. For example, a part of the WF-model is 
presented in the Fig. 6 where parallel activities occur after vertex 1 followed 
by activity created for vertex 5 that was added after the synchronization point. 
Therefore label set of vertex 1 can be reduced to have same labels as vertex 
5. 

 

Fig. 6. WF-model for excerpt of graph from Fig. 5   

 

Definition 2. Function level:  →  (where  is the set of all possible 
labels) is defined as the number of dots inside a label. 
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In our example, level (1) is 0 and level (1.3.1.1) is 3. The relationship 

between labels will be expressed as a parent-child and an ancestor-successor 
relation. For instance, label 1.3.1.1 is a child of label 1.3.1 and a successor of 
label 1. Vice versa, label 1 is an ancestor of labels 1.3.1 and 1.3.1.1, while 
label 1.3.1 is a parent of label 1.3.1.1. 

   

Definition 3. Label  is a parent of label  if level( ) = level( )+1 and  

and  are the same until the last dot in both labels.  
 
Definition 4. Label  is an ancestor of label  if  is a parent of  or there 

exists a chain of labels   such that  is a parent of , is a parent of 

,… and  is a parent of . 
 
The basic idea behind the label reduction algorithm is to replace labels with 

their common parent. The replacements are done for vertices having all 
children of a particular parent label. For example, if all children of label 1.2 in 
a graph are labels 1.2.1, 1.2.2, 1.2.3 then for all vertices that contain all those 
three labels, those three labels are replaced with 1.2.  

The label reduction algorithm groups labels by value of level function and 
starts checking labels backwards from the next to the last level until it comes 
to the first level where the return value of function level for the first level is 

equal to zero. For each label  in current level (marked as set U in the 

following algorithm), set S is a set containing all children of the label . The 
next step is finding all vertices (set V') that contain all labels from the set S. 

This way, vertices containing all children of the label  are found and for those 
vertices the replacement can be done. In the end, for each vertex from set V‟, 

all labels from the set S are removed from its label set and label  is added. 
The algorithm continues until all labels on all levels have been checked, i.e. 

until label 1 (the only label at the level 0) is checked. Formal definition of the 
algorithm follows in the Table 2.  

Table 2. Label reduction algorithm 

1. curr_level :=  – 1 
 

2. Let U be the set of all labels from current level 

U: = {   | level( ) = curr_level} 

             for each label  from set U do  

S := {  |   such that  is a parent of m} 
If S ≠ ∅ then 

     V' := {  |   such that  , ∀  S} 

     for each  V' do 

   := ( \ S)  {  } 
3. curr_level := curr_level - 1 

            If curr_level ≥ 0 repeat step 2. 
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For the graph from the Fig. 5 label reduction occur for the vertices 1, 4 and 

Start.  Labels 1.3.1.1 and 1.3.1.2 are replaced with 1.3.1, labels 1.2.1.1 and 
1.2.1.2 are replaced with 1.2.1 and labels 1.1.1 and 1.1.2 are replaced with 
1.1. Next replacements occur only for the vertex Start. Newly added labels 
1.3.1 and label 1.3.2 are replaced with 1.3. Newly added labels 1.2.1 and 
1.2.2 are replaced with 1.2. Therefore, a new replacement can be done. 
Labels 1.1, 1.2 and 1.3 are replaced with 1. 

After the algorithm ends, vertex Start must only contain label 1. Fig. 7 
shows the graph after the label reduction has been applied to the graph in the 
Fig. 5.  
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Fig. 7. An example of a graph after the reduction of labels 
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Fig. 8. WF-model for the labeled graph from Fig. 7 
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After the labels have been reduced, a WF-model can be created. Some 
vertices will be cloned and the corresponding WF-elements will be added as 
several parallel branches. WF-model for the previous example is presented in 
the Fig. 8 where the elements are named with C_{vertex number}, parallel 
activities are named with PA_{label name} and branches of parallel activities 
are named with B_{label name}. In case a vertex had to be cloned, inst_{clone 
instance number} is appended to the element name in order to ensure that the 
element names remain unique. The principle of the WF-model creation is 
described in the next section. 

6. WF-model Creation 

Each element of a created WF-model will be either an activity that represents 
a clone of a vertex in the labeled graph or a built-in activity (ParallelActivity or 
SequenceActivity). In every WF-model at least one (main) sequence must 
exist, which contains all elements having label 1. For any other label 
corresponding new parallel activities and parallel branches will be created and 
assigned to the particular label. For example, vertex with the label 1.3.1.2 
would be added in a branch assigned to the label 1.3.1.2. If such a branch 
does not exist it is created as a branch of a parallel activity assigned to the 
label 1.3.1. If such a parallel activity does not exist, it is created in the branch 
assigned to the label 1.3.1. This procedure is recursive and finishes on the 
main sequence assigned to the label 1. Names of the activities must be 
unique and follow variable naming rules in which parallel activities are 
prefixed with PA_ and branches of parallel activities take prefix B_. 

For the graph from the Fig. 7 a label is uniquely assigned to a particular 
parallel branch in Fig. 8 and branch where an activity for a vertex will be 
added can be uniquely determined. It is important to note that a label does not 
have to uniquely identify a branch as it can be seen in Fig. 9 and Fig. 10. 
Label is rather a indicator where a particular element would be nested within 
the workflow relative to its current position. The main benefit of this principle is 
that label set can be further reduced. 

Vertices from the graph are processed in the topological order, which 
ensures that all merge points are added after its parents. For instance, a 
topological sort for the graph in Fig. 9 can be Start,1,2,5,3,4,6,7,8,End. The 
algorithm starts by adding vertex 1 with label 1 (WF-element has name C_1) 
to the main sequence activity. Afterwards, an element representing vertex 2 
with label 1.1 is processed and must be added to the branch assigned to label 
1.1. As such branch still does not exist and a parallel branch assigned to label 
1 does not exist, a new parallel activity (named PA_1) is added to the main 
sequence and assigned to label 1. Subsequently branch of a parallel activity 
PA_1 is created, named B_1_1 and assigned to label 1.1 upon which WF 
element for vertex 2 is added to the newly created branch. 
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Fig. 9. A simple graph illustrating the creation of a WF-model  

Similarly, element that represents vertex 5 is added to the branch B_1_2 
assigned to label 1.2. Vertex 3 has label 1.1.1, which means that there must 
exist a branch assigned to label 1.1.1 as a branch of a parallel activity 
assigned to 1.1. As both do not initially exist, they will be created. The same 
procedure follows for all other vertices until vertex 6 is reached. Vertex 6 is 
the synchronization point of branches 1.1 and 1.2. As it has label 1 it will be 
added as the next child of the main sequence (after parallel activities). It is 
important to note that appearance of a label that is an ancestor of an existing 
label causes that all mappings between successor labels and parallel 
activities and branches get removed. These way vertices 7 and 8 are not 
added to the “old” branches B_1_1 and B_1_2 respectively, but a new parallel 
activity PA_1_inst1 is created containing branches B_1_1_inst1 and 
B_1_2_inst1. PA_1_inst1 is added to the main sequence after the element 
C_6. The new mapping for labels 1.1 and 1.2 is active until the next 
occurrence of label 1. WF-model of the graph in the Fig. 9 is shown in the 
Fig. 10. 

If a vertex has more than one label, previously described steps are 
repeated for each label.  
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Fig. 10. An WF-model for the labeled graph in Fig. 9 
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Pseudo code for the WF-model creation algorithm is given in the Table 3. 
Prior to the formal definition of the algorithm two mappings must are defined. 

 
Definition 5.  

 :  → PA is mapping between a particular label and the assigned parallel 

activity, where  is a set of all labels and PA is set of all parallel activities in 
WF-model 

 

 :  → B is mapping between a particular label and the assigned branch, 

where  is a set of all labels and B is a set of all branches for parallel activities 
in WF-model 

 
with  initially defined in order to assign the main sequence to label 1. 

Table 3. The WF-model creation algorithm based on a labeled graph 

Let  is a graph labeled according to the algorithms from Table 1 and 
Table 2 
 
for i:=1 to i  do 

 := i
th
 element from the topological order of the graph  

 

for each label    do 

D := {  |   such that  is an ancestor of m} 
 
if D ≠ ∅ then 

   for each  D do 

   := undefined 

                := undefined 
 

               if  is not defined 

          createBranch( ) 
 

               add element C_ 2 in branch  

 
Recursive function createBranch creates a branch for a given label. It 

depends on the function for creating parallel activity. Both functions are 
described in the next table. 

 
 
 

                                                   
2 Name of the element can contain suffix _instX where X is the number of elements 

already created for vertex  



Avoiding Unstructured Workflows in Prerequisites Modeling 

ComSIS Vol. 9, No. 1, January 2012 223 

Table 4. The algorithm for creating a branch and parallel activity for a given label 

createBranch( ) 

if  is not defined 

         createParallelActivity( ) 

 := create branch B_ 3 as a branch of parallel activity  
 

createParallelActivity( ) 

if  is not defined  

         createBranch( ) 

       := create parallel activity PA_  as a next activity in branch  

7. Correctness of the Workflow Creation Algorithm 

In order to prove the correctness of the workflow creation algorithm it is 
necessary to prove two main claims. The first one is that algorithms for graph 
integration, arc reduction, vertex labeling and label reducing preserve all of 
the initial prerequisite relationships and create no new prerequisites. The 
second one is that the WF-model creation algorithm creates correct 
sequences and parallel activities. 

By looking into the steps of the complete process of workflow creation it 
becomes clear that the first two steps only transform the partially defined 
prerequisites into a graph representation without any modifications. The third 
step (arc reduction) removes arcs representing prerequisite relationships that 
are already present through transitivity of some other prerequisites. The graph 
is modified but the meaning has not been changed – all prerequisites are kept 
either in the original relationship or as a set of transitive prerequisite 
relationships. 

To show the correctness for the remaining algorithm steps (labeling, label 
reduction and WF-model creation) the following claims should be proven: 

 All vertices are in correct order, which means that all prerequisite 
relationships are satisfied. 

 Execution of each element depends only on its prerequisites; i.e. there 
is no waiting for elements which are not prerequisites. 

From the design of the WF-model it is obvious that in order to have two 
elements run in parallel, it is imperative that their labels are not in an 
ancestor-successor relationship. The vice versa statement does not have to 
be valid (see Fig. 10, labels 1.1 and 1.2). The claim is formally stated through 
the following theorem. 

 
Theorem 1. The non existence of an ancestor-successor relationship 

between labels  and , where  , is required in order to have a WF-

                                                   
3 Name of the element can contain suffix _instX where X is the number of elements 

already created for vertex  
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element for vertex X with label  and a WF-element for vertex Y with label  

both running in parallel. 
Proof: Without loss of generality it can be assumed that vertex X is before 

vertex Y in the topological order. There are two possible cases that must be 
discussed. In the first case there is no vertex between X and Y in the 

topological order having a label which is a common ancestor of labels  
and . The second case is that such vertex exists which shows that the 

presumption about non existence of the ancestor-successor relationship is not 
enough to run the elements in parallel. 

Case I. According to the algorithm presented in the Table 3, the branches 

of parallel activities are created in a way that a branch B assigned to label  is 

branch of the parallel activity PA assigned to label . Parallel activity 

PA is added to the branch assigned to label  which  is a branch of 

the parallel activity assigned to label ) etc. Creating activity 

for vertex X with label  will create (if such does not already exists) a branch 

assigned to the label . The same principle applies to the vertex Y with the 
label . If  then it is the same branch and X and Y are in the same 

branch which also means they are in the same execution line. If  is an 
ancestor of  then, according to previously described algorithm, the branch 

assigned to the label  is contained inside the branch assigned to the label . 

If  is an ancestor of the label  it means that branch assigned to the label  

already exists and activity representing a clone of the element Y is added to 
the end of that branch which means that Y is a synchronization point for 
branches contained in the branch assigned to  putting X and Y in the same 

execution line. If  and  are not in an ancestor-successor relationship then it 

is obvious that they can be run in parallel. 

Case II. Appearance of label  that is a common ancestor of labels  
and , according to the algorithm from the Table 3, causes all assignments 

between branches and successors of the label  to be removed. As such, 
assignments for labels   and  are also removed. The clone of vertex with 

label  such as one between X and Y, is a synchronization point for all 
branches that have been assigned to the labels  and . This fact causes 

that when an element for the vertex Y is going to be created it gets added to 
the newly created branch assigned to  and that branch is a part of the 

branch assigned to the label  and, as such, is in the same line of execution 
with X.  

 
As an outcome from the proof of the Theorem 1, Corollary 2 follows 

directly. 

Corollary 2. Clone of a vertex X with label  and clone of a vertex Y with 
label  run in parallel if  , labels  and  are not in an ancestor-

successor relationship and there are no vertices between X and Y in a 
topological order with a label that is common ancestor of labels  and . 
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 By observing not only a single clone, but all clones of a vertex it can be 
stated that two vertices are in the same line of execution if for each clone of 
one vertex exists a clone of the second vertex such that those two clones are 
in the same line of execution. If not, these vertices can be run in parallel. For 
example, for the graph from the Fig. 7 vertices 4 and 10 are in the same line 
of execution because for each label of vertex 10 (labels are 1.2 and 1.3) 
exists a label of vertex 4 (labels are 1.1, 1.2.1, 1.3.1) in an ancestor-
successor relationship with that label. Vertices 9 and 3 represent an opposite 
situation. With Lemma 4 it will be shown that it is enough to find just one pair 
of labels in an ancestor-successor relationship so to conclude that the two 
vertices are in the same line of execution. 

 
Corollary 3. For a WF-model created immediately after the vertex labeling 

algorithm, two vertices X and Y are in the same line of execution if and only if 
for each pair of labels     (X) and    (Y) label   is equal to  or label 

  is an ancestor of label  or label  is ancestor of label . 

Proof: The first direction follows directly from the Corollary 2 because there 
are no vertices between X and Y in a topological order having a label which is 
a common ancestor of labels  and . Therefore  and  must be in an 

ancestor-successor relationship. The second direction follows from the 
Theorem 1, due to fact that nonexistence of an ancestor-successor 
relationship between labels is required to have two clones run in parallel. If all 
labels are in an ancestor-successor relationship then no pair of clones of 
vertices X and Y can be run in parallel, hence vertices X and Y are in the 
same line of execution.          

 
Lemma 4. After the vertex labeling algorithm and before the labels 

reduction algorithm, for each two vertices X and Y, such that X is predecessor 
of Y, and for each label    (Y) exists a label    (X) such that either  = 

 or  is an ancestor of . 

Proof: Case I. Let X be an immediate predecessor of Y. If X is the only 
immediate predecessor of Y then all labels of vertex Y are added to set of 

labels of vertex X without any modification and in this case is  (Y)   (X). 
From this it immediately follows that for each label    (Y) exists a label  

   (X) such that  = . If the vertex Y has two or more immediate 

predecessors and the vertex X is the i-th predecessor of Y then each label of 
the vertex Y is suffixed with .i while adding to label set of the vertex X. 
Therefore, for each label    (Y) there is a label .i in  (X). 

Case II. Let X be a non-immediate predecessor of Y. Then there exists a 
path Xv1v2..vnY in the graph. Labels from the vertex Y are transferred to vn, 
from the vertex vn to the vertex vn-1 and so on until the vertex X. In each step 
one of the two possible situations from the first case can be applied. 
Therefore for each label    (Y) either exists a label    (X) such that  = 

 (in case all vertices in the path had only one immediate predecessor) or  
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is an ancestor of  as a consequence of successive suffixing with dot and the 
order number of a particular predecessor. 

 
Lemma 5. After the vertex labeling algorithm two vertices cannot be in the 

same line of execution if one vertex is not a predecessor of the other. 
Proof: Let vertices X and Y be in the same line of execution, but such that 

neither X is a predecessor of Y, nor Y is a predecessor of X. Let vertex Z be 
the first (in the topological order) common successor of the vertices X and Y. 
Such a vertex must exist because the graph is a connected graph having at 
least vertex End as such a vertex. Since X and Y are according to the 
presumption in different ancestry lines, after transferring labels from the vertex 
Z to its predecessors, ancestry lines toward vertex X have received labels of 
the vertex Z with the suffix .i, and ancestry line toward the vertex Y has 
received labels of the vertex Z with the suffix .j. As there was no label 
reduction, vertices X and Y have labels that are not in an ancestor-successor 
relationship and according to the Corollary 3 cannot be in the same line of 
execution which is in the contradiction with the assumption. Therefore X must 
be a predecessor of Y or Y must be a predecessor of X. 

 
Lemma 4 shows that before the label reduction all predecessors and 

successors of a vertex (and according to the Lemma 5 only these) are in the 
same line of execution with the vertex due to the existence of an ancestor-
successor relationship between their labels. It has to be shown that the label 
reduction algorithm keeps the execution line.  

 
Lemma 6. Two vertices X and Y are in the same line of execution after the 

label reduction algorithm if and only if they were in the same line of execution 
before the label reduction algorithm.  

Proof:  Let vertices X and Y be in the same line of execution after the 
label reduction algorithm. If it is assumed that X and Y were not in the same 
execution line before the label reduction, then their lines of execution split at 
their common ancestor and join in the first (in the topological order) common 
successor. As labels coming from the common successor are propagated to 
two different lines of execution with different suffixes, neither one element in 
the different ancestry lines (including X and Y) cannot have all children of a 
label  from the common successor‟s label set and that is true for each label  
of the common successor. Therefore X and Y cannot reduce their label set to 
have same labels as those in the label set in the other execution line or to 
become their ancestors or successors. According to the Lemma 3 this means 
that they were in the different lines of execution and no label reduction could 
occur. 

 Let vertices X and Y be in the same line of execution before the label 
reduction algorithm and let, without loss of generality, X be a predecessor of 
Y. This means that before the label reduction each label    (Y) was equal 

to a label    (X) or  was an ancestor of the label . Label reduction 

algorithm can change the label set of the vertex X and/or the vertex Y and 
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three different mutual relationships between the vertices in the same line of 
execution have to be observed.  

In the first one, every path from the vertex Start to the vertex Y includes the 
vertex X and every path from the vertex Start to the vertex End such that 
includes the vertex X also includes the vertex Y (e.g. vertices 1 and 5 from 
Fig. 5). In this case, after the label reduction algorithm vertices X and Y will 
have the same labels because X contains all children of labels originated by 
coping labels of the vertex Y to its predecessors.  

In the second case each path from the vertex Start to the vertex Y includes 
the vertex X, but there exists a path from the vertex Start to the vertex End 
that includes the vertex X and does not include the vertex Y (e.g. vertices 1 
and 2 from the Fig. 5). If the vertex X had contained labels that have the 
same parent as the labels of the vertex Y, X‟s label set would be reduced and 
those labels would be replaced with their parents. In the successive reduction 
it may happen that for a label    (Y) its corresponding label    (X) is 

swapped with a label that is an ancestor of . Therefore the new label is also 
in an ancestor-successor relationship with the label , and according to the 

Lemma 3, vertices are still in the same line of execution. 
The third case is represented with a situation in which there exists a path 

from the vertex Start to the vertex Y which does not include the vertex X (e.g. 
vertices 4 and 7 from the Fig. 5). (The existence of the vertex Y in any path 
from the vertex Start through X to the vertex End is irrelevant.) In this case the 

vertex X in the label reduction algorithm cannot remove a label    (X) that 
is a successor of a label    (Y), because there exists at least one label that 

is a successor of the label  in another ancestry line and as such is not an 

element of (X) and therefore the relationship between X and Y has not been 
changed.  

 
Theorem 7. Every clone of a graph‟s vertices transformed into WF-

activities depends only on its predecessors in the graph and no clones can be 
executed before all predecessor clones have been finished. 

Proof: The Lemma 4 proves that all labels of a vertex are propagated to its 
predecessors and no predecessors of the vertex are omitted. This means that 
all predecessors are in the same line of execution before the label reduction. 
Lemma 5 proves that for each vertex, a vertex in the same line of execution 
cannot exist if it was not a predecessor of a successor of the vertex. Lemma 6 
ensures that the label reduction algorithm keeps the line of execution, which 
means that all predecessors are preserved and no new dependencies have 
been added. Mutual vertical order of the clones inside the WF-model is 
ensured using topological ordering.  
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8. Algorithms Complexity 

Complexity of the presented algorithms depends on the number of (different) 
labels, which is dependent not only on the number of vertices and arcs in a 
graph, but also on the graph‟s structure. As the worst case for a particular 
algorithm step can lead to significant simplification of another step in the 
process, in this section we give main guidelines on how to calculate the 
number of labels and which implementations to use in order to reduce the 
complexity of the presented algorithms. It is important to stress out that the 
given complexity is the upper bound and it can be far from the average 
complexity. 

In the step 2 of the vertex labeling algorithm from the Table 1, each vertex 
having indegree greater than one creates new labels in the graph. A 
contribution of the vertex to the number of new labels in a graph is a product 
of the cardinality of the vertex label set and the number of the inbound arcs. 
The cardinality of a vertex label set represents the number of different paths 
from that vertex to the End vertex and can be calculated as a sum of 

cardinalities of label sets of its successors. For a vertex  in a graph 

 this contribution of a vertex  can be expressed with the following 
formula 

 
where  

 
and  = {  |   such that  = ( , )}. 

 
This way, total number of different labels in the graph is equal to the sum of 

contributions of all vertices incremented by one due to the label 1 initially 
added to graph and assigned to the vertex End. 

 
In the vertex labeling algorithm from the Table 1, a sub-step of the step 2 is 

executed  times, where  is the number of arcs in the graph. The 
complexity of the algorithm then depends on the implementation of 
relationship between labels and vertices, implementation of the union 
operation (with concatenation) and the number of labels in a vertex.  

As it is shown later in this section, it is convenient to implement vertex label 
set as a hash table and store all labels in a tree, where each node additionally 
contains a pointer to the workflow branch assigned to the label and a hash 
table of pointers to vertices that have the label in its label set. If the tree is 
balanced then the addition of a new node to the tree has complexity of 

 and the addition of a new vertex pointer into the hash table for the 
retrieved node can be done in constant time. As insertion of a new vertex in 
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the set of open vertices in such a way that vertices are always sorted by 
topological order and producing the union of labels is linear in relation to the 
number of vertices and the number of labels respectively, it can be claimed 

that the complexity of the vertex labeling algorithm is . 
With labels stored in the tree, the label reduction algorithm can be 

implemented as an inorder tree traversal in which for each non-leaf node a 
slightly modified step 2 from the Table 2 is executed. In that case finding the 

set V' for label  in step 2 from the Table 2 is, complexity-wise, equal to 
finding the intersection of all hash tables with vertices pointers to the children 
of the node traversed and each intersection can be executed with linear 
complexity. Replacement of children labels with label  for all vertices from the 
set V' is done with the following single step: for a vertex from intersection and 

for a child label  of the label ,  is deleted from the vertex label set, and 

vertex pointer is deleted from the hash table in the node . As the deletion 
from hash table can be done in constant time and as this occurs for each 
vertex and each label in each step of a traversal process, the complexity is 

. 
A single step of the inner loop in the WF-model creation algorithm consists 

of removing the existing mapping, creating a new branch and adding an 
element to the branch. This step is executed  times. If the tree is 

balanced, finding an assigned branch to a label is done in logarithmic 
complexity. When a mapping between a label and a branch has to be 
removed, the pointer to the branch has to be deleted from the tree. Instead of 
deleting pointers to the branches in entire subtree, to save on complexity it is 
enough to delete just the pointer in root of the subtree. This implies that the 
creation of a new branch has to be modified in such a way that, except 
assigning new pointer to a node, the deletion of all pointers in the child has to 
be done. According to this, it can be stated that complexity of the WF-creation 
algorithm is . 

9. Possible Improvements of the Algorithm 

Although the algorithm from the Table 2 reduces the number of clones, there 
are some drawbacks to it. The Fig. 8 shows that the two rightmost branches 
with labels B_1_2 and B_1_3 are almost the same, except for the elements 
C_6 and C_7. The presented WF-model can be improved by deferring the 
parallel split just before the elements C_6 and C_7. In that case all previous 
elements can be added to the common branch. Hence, the possible 
improvement consists of merging the parts of parallel branches that share the 
same parent parallel activity. In our example this means that branches 
assigned to labels 1.2 and 1.3 are the same (i.e. 1.3 can be replaced with 1.2) 
for all vertices before the vertex 10 (including vertex 10). Therefore, for the 
labels in those vertices, starting pattern 1.3 could be replaced with 1.2. For all 
vertices after the vertex 10 label 1.2 should be replaced with 1.2.1 and 1.3 
should be replaced with 1.2.2.  
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It turns out that the more “regular” a graph is (in terms of adequately paired 
and-splits and and-joins) the surplus of the clones becomes more obvious. By 
looking at the Fig. 11 one can notice that after the label reduction, label set of 
the vertex 3 has been reduced from {1.1, 1.2} to {1}, but the same thing does 
not apply to the vertices 1 and 2. Their label sets can be reduced by just 
replacing starting patterns of the labels which will, in turn, produce the graph 
shown in the Fig. 12. 
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Fig. 11. A graph after the vertex labeling and the same graph after the label reduction 
algorithm 
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Fig. 12. Optimal labeling solution for the graph on the left hand side in the Fig. 11 

Proof of these claims is based on a proof of the Theorem 8 which deals 
with an improvement that can be done for these vertices where the label set 
has not been reduced but contains two or more labels that have same parent 
as the vertex 10 in the Fig. 7. Replacing more labels with the same parent 
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starts from the vertex containing those labels and propagates replacements 
upwards to the Start vertex or until the first vertex without these labels. 

 

Theorem 8. Let the label set of a vertex  contains a subset O={l1, … ,ln} of 
labels that have same parent and let l1 be the first among them in the 
lexicographic order. If the starting pattern liX is replaced with l1X for the labels 

of the vertex  and the labels of „s predecessors and the starting pattern lj is 

replaced with li.k in the labels of „s successors, where k is the position of li 
inside the set O, then it can be claimed the line of execution has been kept. 

Proof: Without the loss of generality it can be claimed that the vertex  
contains two labels l.i i l.j, where l is the mutual prefix of the labels and i<j. All 

predecessors of , among other labels received from their other successors, 
have labels with the patterns l.i.suffix i l.j.suffix, where suffix is a string of dots 
and numbers that were concatenated during the labeling algorithm. 

(Optionally,  can have other labels that do not start with l and, for those 

labels, in „s predecessors will exist labels, with an appended suffix, that are 

the successors of those labels so  is in the same line of execution with its 

predecessors). By replacing prefix l.j with l.i in the vertex  and in its 
predecessors, it is possible that a label set of a particular vertex gets reduced, 

but line of execution will be kept because for each label of the vertex  there 
exists a label in his predecessors in an ancestor-successor relationship with 

label from the vertex . It remains to be shown that replacing prefix l.i  with 

l.i.1 and l.j with l.i.2 in all labels in a „s successor keeps the line of execution. 

The vertex  has labels l.i and l.j which means that at least one successor of 

the vertex  containing label l exists. That successor has at least one more 
predecessor and that predecessor contains label l.k (in any other situation the 
label reduction algorithm would reduce labels l.i  i l.j with label l in the vertex 

). The replacement of l.i with l.i.1 and l.j with l.i.2 implies that branches 
assigned to labels l.i.1 i l.i.2 join one step before the join with a branch 
assigned to l.k (and any other branches).  

If set O had more than two labels, the proof is similar. 

 
 
Although this improvement can reduce the number of the labels, it 

significantly raises complexity as it adds labels of the higher value of a level 
function after the level has already been processed. Appearance of those 
labels requires algorithm reset and several re-runs. 

10. Conclusion 

Dividing prerequisite relationships into partially defined components helps 
maintaining a relationship between elements and increases readability. 
Nevertheless, as shown in the introductory example, even for simple models it 
may be impossible to transform the integrated graph directly into a real 
workflow model with an existing workflow modeling language because such 
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workflow models do not have to be structured. As an opposite to developing 
proprietary workflow management software to support unstructured models, 
an approach consisting of using existing workflow management software is 
proposed. The approach consists of element cloning (duplication) and a 
workflow wrapper ensuring the clones are shown as unique elements in the 
runtime and no data duplication occurs. The description of the wrapper is out 
of the scope of this paper.  

The paper presented the steps for the integration of prerequisite 
relationships into directed graphs and algorithms for vertex labeling and label 
reduction. Initial algorithms and enhancements are presented and their 
correctness has been proved. Furthermore, the complexity of the algorithms 
has been discussed and the worst case complexity has been given, with the 
remark that finding average complexities would require extensive tests since 
the worst case in one of the algorithm‟s steps can significantly reduce 
complexity of another step.  
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