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1. Introduction

Quasicrystals are a form of condensed matter that differs
from the other two — crystalline and amorphous — by
possessing long-range quasiperiodic translational and
non-crystallographic orientational order.[1] For example,
icosahedral quasicrystals exhibit diffraction patterns with
fivefold symmetry axes, while diffraction patterns of deca-
gonal quasicrystals exhibit tenfold symmetry axes. This
particular character of the structure raises the question of
how the dynamics of quasilattices are best described and
whether the aperiodicity implies that the vibration spectra
of quasicrystals are similar to those of amorphous materi-
als.
A particular characteristic of amorphous materials is

the existence of tunneling states[2] modeled by structural
configurations of the atoms which are almost degenerate
in energy. These states are separated by low potential bar-
riers through which “tunneling” is possible, and their in-
fluence on physical properties is significant in the sub-
Kelvin temperature range. The thermal conductivity is
the physical quantity that reveals the nature of lattice vi-
bration. The phonon scattering on tunneling states leads
to k Tð Þ / T2 dependence at low temperature, that is, in
quasicrystals described in refs. [3, 4]. Although other ex-
periments do not confirm tunneling states as relevant
phonon scattering centers,[5] ultrasonic attenuation
data[6–8] still confirm their presence in quasicrystals, indi-
cating that low-temperature lattice excitations are similar
to those of amorphous materials.
In this work we present the study of the heat transport

in aluminum-based quasicrystals with different symme-
tries (icosahedral and decagonal), covering the tempera-
ture range between 2 K and 300 K. After subtracting the

electron contribution, the low-temperature quasilattice
contribution was analyzed using the Debye thermal con-
ductivity model, which fails to reproduce the experimen-
tal data above approximately 50 K. For that temperature
range we have employed two competitive models: one
where the activation of localized lattice vibration is taken
into account, and the other that considers modifications
of the Wiedemann–Franz law in quasicrystals.
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2. Sample Selections and Experimental Details

For our study we chose the following samples: icosahe-
dral (i) quasicrystals Al72Pd19.5Mn8.5 (abbreviated as i-
AlPdMn) and Al64Cu23Fe13 (i-AlCuFe), and the decagonal
quasicrystal (d) Al70Co10Ni20 (d-AlCoNi).

2.1. i-AlPdMn Icosahedral Quasicrystals

The samples of i-AlPdMn were grown in the Ames Labo-
ratory by I.R. Fisher and P.C. Canfield from the ternary
melt via a “self-flux” technique.[9] The quasicrystals
grown by this technique have a composition of
Al72Pd19.5Mn8.5 as measured by electron microprobe analy-
sis (EMPA), with an estimated error of approximately
0.5 at.% for each element.[9] The samples show a high
degree of structural order, as demonstrated by X-ray
transmission and electron-diffraction.[9] For the transport
measurements, a bar of dimensions 0.5�0.6�5.9 mm3 was
cut from a well-formed very large ingot, using a wire saw.
Transport properties (electrical resistivity, thermopower,
and thermal conductivity) and transmission electron mi-
croscopy (TEM) experiments of isocahedral
Al72Pd19.5Mn8.5 were reported recently.[10,11]

2.2. i-AlCuFe icosahedral quasicrystals

The single-crystal icosahedral quasicrystals with composi-
tion Al64Cu23Fe13 were grown by the Czochralski tech-
nique at the Himeji Institute of Technology by Y. Yo-
koyama.[12] This composition was chosen because of its su-
perior thermal stability (any secondary-phase precipitates
in the as-grown material disappeared upon annealing[13]),
so that it is considered to represent the ideal icosahedral
composition. The crystal was pulled out of the molten
alloy of composition Al57.7Cu37.7Fe3.5Si1.1 (where Si was
added to restrain crystallization of (Al+Cu)13Fe4) and
the growth direction was parallel to the threefold symme-
try axis. The investigated single-crystal i-AlCuFe has an
almost phason-free quasicrystalline structure and shows
superior quasicrystallinity on both macro- and microscop-
ic scales.[14] The sample was shaped in the form of a
prism, with dimensions 3.9�1.5�1.4 mm3. Intrinsic elec-
trical, magnetic, and thermal properties of isocahedral
Al64Cu23Fe13 were reported recently.[15]

2.3. d-AlCoNi Decagonal Quasicrystals

The single crystal of d-Al70Co10Ni20 was grown by the
Czochralski method in the laboratory of P. Gille at LMU,
Munich.[16] The EMPA measurements yielded the average
composition of Al69.7Co10.0Ni20.3 with a standard deviation
of 0.2 at.% for each component. This composition is close
to the Ni-rich limit of the quasicrystal stability region.
The characterization by X-ray transmission indicates a su-
perior structural quality of the material.[16] The radial ele-

mental distribution was found absolutely homogeneous
within the error of EMPA. In order to perform transport
measurements in the quasiperiodic direction, we have cut,
from the parent crystal, a rectangular bar of dimensions
10�2�2 mm3, with the long axis oriented in the quasi-
periodic plane. Intrinsic transport and magnetic proper-
ties of decagonal Al70Co10Ni20 were determined recent-
ly.[17, 18]

2.4. Experimental

Since the samples investigated are rod-shaped, one-di-
mensional approximation can be used for experimental
determination of the thermal conductivity: PQ/A =kDT/l,
where PQ, A, and k are the thermal flux, sample cross sec-
tion, and thermal conductivity coefficient, respectively,
and DT is the temperature drop along the sample length
l. We use a specially designed, laboratory-made cryo-
stat,[19] applying an absolute measurement method, where
the sample heater is glued directly to the sample, the
other end of which is thermally anchored to a heat sink,
that is, the sample-holder body. We use a RuO2 chip-resis-
tor as the heater. The heat power through the sample
(PQ) is supposed to be equal to the electrical power PE of
the chip-resistor (PE =UI, where U is the voltage drop,
and I the current). The sample and the chip-resistor are
glued with IMI 7031 varnish, in order to provide the best
possible thermal contact between them. The IMI 7031
varnish is also used to anchor the sample thermally to the
heat sink. The temperature drop across the sample is
monitored with differential, chromel–gold thermocouple
with the fraction of iron atoms of 0.07%. Its dimensions
are 20 cm in length and 25 mm in diameter. As shown in
refs. [20] and [21], heat losses due to radiation and con-
duction through the contact wires can be neglected with
this set-up at temperatures below 300 K. The experimen-
tal thermal conductivity data were taken in temperature
steps. The electrical resistivity was measured on the same
specimens using the standard dc four-terminal technique
using a laboratory-made cryostat designed for the mea-
surement of the electrical resistivity and the thermoelec-
tric power in the temperature range between 1.5 K and
325 K.[20,22] During the experiment, the temperature was
sweeping not faster than 5 Kelvin per hour.

3. Thermal Conductivity

The thermal conductivity of quasicrystals consists of
quasi-lattice (kql(T)) and electronic contribution (kel(T)).
The approach to the determination of the electronic ther-
mal conductivity and that of quasi-lattice thermal conduc-
tivity is quite different. In the case of electrons, the prob-
lem is normally regarded as one of calculating the effec-
tive Lorenz number, L Tð Þ ¼ kel Tð Þ=s Tð Þ � T, where elec-
trical conductivity, s Tð Þ ¼ 1 Tð Þÿ1, is taken from the
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measurements that should cover the same temperature
range as that of the thermal conductivity. Thus, the infor-
mation on the electrical conductivity is essential if the
thermal conductivity is to be successfully analyzed. On
the other hand, the quasi-lattice thermal conductivity is
treated as an entity in itself. One normally calculates the
electronic thermal conductivity as accurately as possible,
so that the quasi-lattice conductivity, under assumption of
their mutual independence, is obtained by subtracting the
electronic from the total conductivity,
kqlðTÞ ¼ k Tð Þ þ kel Tð Þ.

3.1. A Semi-Quantitative Analysis of Thermal Conductivity Data

In what follows, we present a study of thermal conductivi-
ty combined with the electrical resistivity data of the
single crystals i-AlPdMn, i-AlCuFe and d-AlCoNi.

A semi-quantitative model of thermal conductivity appro-
priate to quasicrystals was used previously in the investi-
gations of AlCrFe approximant[23,24] and AlPdMn quasi-
crystalline phases.[25,26] According to that model, thermal
conductivity parameter k(T) is divided into three terms

kelðTÞ ¼ kel Tð Þ þ kql Tð Þ ¼ kel Tð Þ þ kDebye Tð Þ þ khop Tð Þ

ð1Þ

where khop(T) is the contribution important at higher tem-
peratures only (T >100K), and comes from the hopping
of localized vibrations.
The simplest way to estimate the electronic contribu-

tion to the thermal conductivity kelðTÞ is the Wiedemann-
Franz law that follows from the Drude theory

kelðTÞ ¼ L0T=1 Tð Þ ð2Þ

where L0 =2.44 �10ÿ8WWKÿ2 is the Lorenz constant.
The assumption of the validity of Equation 2 in the whole
temperature range is rather crude; even for metals, it
holds only within elastic electron scattering limit (i.e. , for
very low and very high temperatures, as compared to the
Debye temperature). Calculation of the effective Lorenz
number L Tð Þ for the intermetallic Al3(Mn,Pd)
phases[26,27] and quasicrystals[15] has shown that its “relaxa-
tion-time-approximation” value, L0, has correction pa-
rameter c of the order of 10%. For that reason a slight
modification of the Wiedemann–Franz law is assumed:

kelðTÞ ¼ 1þ cð ÞL0T=1 Tð Þ ð2aÞ

The parameter c may also be considered as a compen-
sating factor for the experimental error in the resistivity
1 Tð Þ data, which is of the same order of magnitude. Note
that Equation 2 does not include the temperature de-
pendence of the effective Lorenz number. The physically

more appropriate way to calculate electronic contribution
kelðTÞ is within Kubo–Greenwood formalism, which em-
ploys the spectral conductivity s(e).[15, 26,28–30] This requires,
in addition to the knowledge of the electrical conductivity
s(T), the knowledge of the thermopower S(T) of the
system. In the limit of zero temperature, the spectral con-
ductivity model predicts L T ! 0ð Þ ! L0. The upper limit
for the effective Lorenz number is reached for T ! 1,
being L ! 21=5ð ÞL0 for icosahedral quasicrystals.[28] Be-
tween these two temperature extremes, L Tð Þ in general
rises monotonically. The spectral conductivity model sug-
gests that instead of the Wiedemann–Franz law given in
Equation 2, one should use its modified form

kelðTÞ ¼ L Tð ÞT=1 Tð Þ ð2bÞ

The quasi-lattice contribution, calculated as
kqlðTÞ ¼ k Tð Þ ÿ kel Tð Þ, could be analyzed by considering
two contributions: 1) the propagation of long-wavelength
acoustic phonons within the Debye model which is, at
low temperature, applicable for non-crystals too since
only long-range acoustic phonons that are not affected by
underlying non-periodicity are excited, and 2) hopping of
localized vibrations within the icosahedral cluster sub-
structure, which participate in the heat transfer via ther-
mally activated hopping. In the simplest model, hopping
of localized vibrations is described by mean activation
energy Ea, yielding a contribution to the thermal conduc-
tivity

khopðTÞ ¼ k
0
hop exp ÿEa=kBTð Þ ð3Þ

where k
0
hopis a constant. The Debye thermal conductivity

is related to the phonon mean free path l and the specific
heat C[31]

kDebye Tð Þ ¼
1

3
�v �

Z

qD=T

0

l xð Þ

�C xð Þdx ¼
kB

2p2�v

kB

�h

� �

3

�T3 �

Z

qD=T

0

t xð Þ �
x4 � ex

ex ÿ 1ð Þ2
dx

ð4Þ

where �v is the average sound velocity, qD the Debye tem-
perature, t the phonon relaxation time, and
x ¼ �hw=kBTð Þ with �hw being the phonon energy. The dif-
ferent phonon-scattering processes are incorporated into
the relaxation time t xð Þ. We assume that different scatter-
ing mechanisms are independent (i.e., Matthiessen�s rule
is valid), tÿ1 ¼

P

j

tÿ1
j , where tÿ1

j is a scattering rate relat-
ed to the j-th scattering channel. In analogy to the
AlCrFe approximants[24] and AlPdMn quasicrystalline
phases,[25,32] it is appropriate to consider two dominant
scattering processes. The first one follows from
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k Tð Þ / T for T <10 K . We assign such temperature de-
pendence to the phonon scattering on structural defects
of stacking-fault type with the scattering rate tÿ1

sf / x2T2

(note that, since x2 / w2Tÿ2, tÿ1
sf does not show an explicit

temperature-, but frequency-dependence

tÿ1
sf ¼

7a2g2N5

10vmean

w2 ð5Þ

where Ns, a, and g are the linear density of stacking
faults, lattice, and the Grüneisen parameter, respectively.
The second important scattering process should be re-
sponsible for maximum/plateau appearance at
T � 20ÿ 30K. It is the umklapp-type process with the
phenomenological form of the scattering rate pertinent to
quasicrystals,[11,24,25] tÿ1

qu / xaTb . The corresponding fre-
quency and temperature dependence of the quasi-um-

klapp scattering rate is

tÿ1
qu / waTbÿa ð6Þ

where the exponents a and b are determined from the fit,
paying attention to reproduce a maximum/plateau region
of the quasilattice thermal conductivity as good as possi-
ble. Assuming the validity of Matthiessen�s rule, the total
scattering rate of phonons in quasicrystals within the
Debye model is

tÿ1 ¼ tÿ1
sf þ tÿ1

qu ð7Þ

3.2. i-AlPdMn

The thermal conductivity of i-AlPdMn quasicrystal is
shown in the main panel of Figure 1. The room-tempera-
ture value is relatively low and typical for quasicrystals:
k(300 K) �4.3 W/mk. By lowering the temperature, the
thermal conductivity first reaches a local minimum at
T �100 K where k �2.2 W/mK, then starts to rise until
T �23 K and k �3.8 W/mk, and falls again at lower tem-
peratures. The inset in Figure 1 shows the electrical resis-
tivity data of i-AlPdMn. The room-temperature value is
1(300 K) �1220 mWcm. It depends non-monotonically on
the temperature, with a maximum at T �120 K. Such
temperature behaviour comes from the scattering of the
conduction electrons on the ones localized around diluted
magnetic manganese atoms (this model of electron scat-
tering is known as the Korringa–Gerritsen model).[33]

Quantitative analysis of the thermal conductivity of i-
AlPdMn is presented in the main panel of Figure 2. The
electron contribution, denoted as the dash–double-dot
line, is calculated using the Wiedemann–Franz law (Equa-
tion 2), and contributes at most 10% at room tempera-
ture. It is then subtracted from the measured thermal
conductivity; the resulting data we assign to the quasilat-
tice contribution. Notice the importance of the proper de-

termination of the electronic contribution. It is specifical-
ly related to the low-temperature region where the
Debye model is applied. However, the electron thermal
conduction calculated by the Wiedemann–Franz law con-
tributes less that 1% at low temperature (see Table 1),
and any enhanced electron heat conduction due to the
Wiedemann–Franz law violation does not affect kqlatt Tð Þ
very much. We tested different cut-off temperature limits

Figure 1. Temperature-dependent thermal conductivity, k(T), of

the single grain i-AlPdMn. The inset shows the temperature-depen-

dent electrical resistivity 1(T).[10, 11]

Figure 2. Temperature-dependent thermal conductivity k(T) with

the fit to the total k(T), of the single crystal i-AlPdMn. Three contri-

butions to the total k(T), electronic kel(T), Debye kDebye(T) and hop-

ping khop(T), are shown separately.[11] Inset: Ratio of the effective

(Leff) and Lorenz number (L0), under assumption that the whole dif-

ference between measured thermal conductivity and

k0 =kel(T) +kDebye(T) originates from increased electron contribu-

tion to thermal conductivity.
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(Tcutÿoff) where the Debye model can still be applied, and
concluded that Tcutÿoff � 50 K is the proper choice. The
choice of Tcutÿoff, and especially that of a and b, affects
the values and temperature dependence of khop Tð Þ. The
average sound velocity �v that enters in Equation 4 is pro-
vided by ultrasonic data,[34] giving �v =4000 m·sÿ1. The fit
of the quasilattice data to Equations 4, 5, 6, and 7 results
in the following parameters: for the exponents of the em-
pirical quasi-umklapp scattering rate (Equation 6) we
obtain a ¼ 2 and b ¼ 4, while for the linear density of
stacking-fault-like defects we can estimate the order of
magnitude only: Ns ¼ 0:1ÿ 1 mmÿ1. This uncertainty
arises from the vagueness in the Grueneisen parameter
calculation from the data available in the literature.[35,36]

The calculated Debye contribution is presented as the
dash–dot line in Figure 2.
Above T � 50 K we have to introduce a new heat-car-

rying channel, since the sum of the Debye and the Wiede-
mann–Franz contributions cannot reproduce the experi-
mental data. We propose two possible contributions:
1) The first one is the hopping of the localized vibra-

tions that exist in the icosahedral clusters. The probability
of their jumps from site to site rises with temperature,
which in the most general case can be described with the
activation law given by Equation 3. The obtained fit is
shown as the dashed line in Figure 2, with the calculated
mean activation energy Ea � 23 meV. This result corre-
lates with the inelastic neutron (INS)[37–39] and X-ray[40]

scattering experiments on i-AlPdMn quasicrystals, where
dispersionless vibrational states are identified for energies
higher than 12 meV. Such dispersionless states indicate lo-
calized vibrations and are considered to be the conse-
quence of a dense distribution of energy gaps in the
phonon excitation spectrum of quasicrystals. The total fit
curve kel Tð Þ þ kDebye Tð Þ þ khop Tð Þ is presented by the
solid line in Figure 2.
2) The other possible heat-carrying channel is electrons,

whose thermal conductivity is, in that case, strongly un-
derestimated by the Wiedemann–Franz law (Equation 2).
Assuming that all the excess of the thermal conductivity
above T � 50 K is due to the enhanced electron heat con-
duction, one is able to determine an effective Lorenz
number L Tð Þ. The calculated L Tð Þ=L0 is presented in the
inset of Figure 2. At T � 250 K it reaches the local maxi-
mum of L Tð Þ=L0 � 8:4, exceeding the theoretically pre-
dicted extreme L Tð Þ=L0 for icosahedral quasicrystals.[28]

From that we conclude that the rise of the thermal con-

ductivity above T � 50 K can be attributed to both the
hopping of localized lattice vibrations and to the en-
hanced effective Lorenz number.

3.3. i-AlCuFe

The thermal conductivity k(T) and the electrical resistivi-
ty 1(T) of i-Al64Cu23Fe13 have been measured along the
threefold symmetry direction and are displayed in
Figure 3. The thermal conductivity value is low in the
whole temperature interval investigated from 2 to 300 K,
with a room-temperature value k300K=1.7 W/mK. This
value is surprisingly low for an alloy of regular metals
and is even lower than the thermal conductivity of known
thermal (and electrical) insulators, that is, amorphous
SiO2 with k(300 K) =2.8 W/mK.[41] The electrical resistivi-
ty (inset in Figure 3) exhibits a negative temperature co-
efficient with a room-temperature value
1300K =2200 mWcm and 14K =3950 mWcm. At 20 K, 1(T)
has a weakly pronounced maximum with the peak value
120K =4040 mWcm. The analysis of electrical resistivity to-
gether with the thermopower data obtained on the same
specimen[15] shows that the Fermi energy is located at the
minimum of the pseudogap in the spectral conductivity
s(T). All this gives evidence that we are dealing with an
icosahedral quaiscrystalline sample of exceptional quality,

Table 1. Comparison of thermal conductivity measured kð Þ and calculated by the Wiedemann - Franz law (kel) at T =20 K for i-AlPdMn, i-
AlCuFe, and d-AlNiCo quasicrystals.

Sample k(T=20 K)
[W/mK]

kel(T=20 K)
[W/mK]

kel T¼20Kð Þ

k T¼20Kð Þ

i-AlPdMn 3.7 3.4�10ÿ2 0.9%
i-AlCuFe 0.9 1.2�10ÿ2 1.3%
d-AlNiCo 2.9 1.8�10ÿ1 6.3%

Figure 3. Temperature-dependent thermal conductivity, k(T), of

the single-crystalline i-AlCuFe. The inset shows the temperature-de-

pendent electrical resistivity 1(T).[15]
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so that its transport properties may be considered as in-
trinsic to the i-AlCuFe phase. The thermal conductivity
k(T) data were analyzed by means of Equations 1–7 using
the Debye temperature estimated from specific heat data
qD �560 K[42] and mean sound velocity �v =4000 m·sÿ1

from ultrasonic data.[37] kel Tð Þ is determined by the Wie-
demann–Franz law (Equation 2); both k T ¼ 20 Kð Þ and
kel T ¼ 20 Kð Þ are given in Table 1. Similarly to i-
AlPdMn, due to rather small electron contribution at low
temperatures, the fit to the Debye model is not much af-
fected by the model used for kel Tð Þ determination. The
total fit, together with the electronic (kel(T)), Debye
(kDebye(T)) and hopping (khop(T)) contributions are shown
separately in Figure 4.

The room temperature value of the electronic contribu-
tion calculated by the Wiedemann–Franz law (Equa-
tion 2) amounts kel,300K =0.69 W/mK, so that at room-
temperature the electrons carry at least 40% of the total
heat. The Debye contribution exhibits a maximum at
about 30 K and declines above, whereas the hopping con-
tribution becomes significant at elevated temperatures.
The activation energy for hopping was determined as
Ea =6.3 meV. The parameters a and b define phonon
scattering by quasi-umklapp processes in a phenomeno-
logical way (Equation 4). The fit-determined a=3.2 and
b=4.0 values yields the frequency and temperature de-
pendence of the quasi-umklapp term tÿ1

qu / w3:2T0:8, indi-
cating similarity to the modified quasi-umklapp scattering
rate tum

ÿ1 /w3·T, used for the analysis of thermal conduc-
tivity of i-ZnMgY quasicrystals.[5] Here it should be men-
tioned that the Debye and hopping contributions slightly
compensate each other in the fit procedure, so that the

parameter values characterizing kDebye and khop should be
considered at the qualitative level only.
As in the case of i-AlPdMn, one can assume that

excess of the measured thermal conductivity to
kel Tð Þ þ kDebye Tð Þ above T � 30 K originates in the in-
creased electron contribution. In that case the effective
Lorenz number L Tð Þ can be estimated giving L(T)/
L0 =2.1 at room temperature,[15] that falls within the limit
predicted in ref. [28].

3.4. d-AlCoNi

The thermal conductivity k(T), measured in quasiperiodic
plane is shown in Figures 5 and 6, while the inset of
Figure 5 gives the resistivity data 1(T) measured in the
quasiperiodic plane as well. It exhibits metallic behavior,
with the fractional increase amounting to
1300K ÿ 12K=1300K � 2%.[43] Note that the value of electrical
resistivity is an order of magnitude smaller as compared
to i-AlPdMn and i-AlCuFe, but still hundred times larger
than that of copper. The thermal conductivity k(T) shows
an initial fast increase at low temperatures up to about
30 K. Above that temperature, k(T) exhibits a wide, shal-
low maximum up to 100 K, and grows only insignificantly
upon further heating, reaching the room temperature
value of k =5 W/mK. The dashed line represents the fit
obtained from the following equation:

k0ðTÞ ¼ kelðTÞ þ kDebyeðTÞ ð8Þ

where the electronic thermal conductivity kel(T) is esti-
mated using Equation 2 and the phonon thermal conduc-
tivity is calculated within the Debye model using Equa-Figure 4. Thermal conductivity k(T) with the fit to the total k(T), of

the single crystal i-AlCuFe. The three contributions to the total

k(T), electronic kel(T), Debye kDebye(T) and hopping khop(T), are

shown separately.[15]

Figure 5. Temperature-dependent thermal conductivity, k(T), of d-

AlCoNi measured in the quasiperiodic plane. Inset: the tempera-

ture-dependent electrical resistivity 1(T), measured in the quasiperi-

odic plane.[17,18]
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tions 4–7, giving parameters a =3 and b =4. We use
Debye temperature qD =545 K determined from the spe-
cific heat measurements[18] and the mean sound velocity
�v =4900 m·sÿ1 calculated from the resonant ultrasound
spectroscopy.[44] As in previous cases of i-AlPdMn and i-
AlCuFe, kel Tð Þ at low temperature contributes a few per-
cents only (Table 1). Accordingly, any enhanced electron
contribution to the heat conduction does not affect fur-
ther calculations much. Above approximately 60 K, the
measured data start to deviate from the fits, as already
observed in the other thermal conductivity data.[24,25] The
difference (Dk(T)) between the measured thermal con-
ductivity and k0(T), defined by Equation 8, is shown in
Figure 7. In order to explain this deviation we again con-
sider two approaches 1) The effective Lorentz number
L(T) exceeds L0, which leads to an enhanced electron
contribution to thermal conductivity (Equation 2b). As-
sumption Dk(T) =kel(T) enables calculation of L(T),
which is shown in the inset of Figure 7. It resembles the
theoretical predictions given in ref. [27]. 2) Contribution
of localized lattice vibrations (Equation 3) is shown in
Figure 7 as the dashed line, with the parameter
Ea �25 meV.[45] This value of the activation energy corre-
sponds well to the energy of optical phonons in the calcu-
lated phonon dispersion for AlTMSi approximants,[46] and
with other analyses of the thermal conductivity data of
quasicristalline phases.[24,32]

4. Discussion and Conclusions

The thermal conductivity of quasicrystals exhibits some
general features regardless of the underlying type of qua-
sicrystal lattice. The most noticeable is its relative low

value, that is, at room temperature, comparable to that of
the best thermal insulators. The temperature variation of
the thermal conductivity follows this general pattern:
going from the low temperatures, the thermal conductivi-
ty first, rather slowly, increases (k Tð Þ / T above 1 K),
then reaches either a shallow maximum or a plateau at
the temperature of several tens of Kelvin, while it starts
to rise again above T � 100 K. The k Tð Þ / T dependence
between 2 K and 10 K we attribute to long wave-length
acoustical phonon scattering on the structural defects sim-
ilar to the stacking faults. Other studies assign the
phonon scattering at the low-temperature to a declination
of structural defects, which originate from close packing
in 3D of icosahedra and icosidodecahedra.[47,48] On the
basis of the thermal conductivity data only, it is hard to
distinguish which of the two defects really does take part
in phonon scattering, since both of them lead to the same
temperature dependence of the thermal conductivity. The
structural study of i-AlPdMn presented in this work show,
the existence of stacking faults.[11] The appearance of
maxima at T � 20 K should be an intrinsic feature of the
thermal conductivity in quasicrystals. The reason is the
presence of hierarchy of energy gaps in the acoustical vi-
brational spectrum of quasicrystals[49] that leads to quasi-
umklapp phonon scattering and to the decrease of the
thermal conductivity with rising temperature. However,
in some cases instead of maxima a plateau appears what
is noticed in the fitting procedure as non-uniqueness of
the quasi-umklapp scattering rate. This comes from differ-
ences in vibration spectra suggesting that ab initio calcu-
lations should be employed in order to determine the

Figure 6. Temperature-dependent thermal conductivity k(T) with

the fit to the total k(T) of the single crystal d-AlCoNi. The three

contributions to the total k(T) — electronic kel(T), Debye kDebye(T),

and k0 =kel(T) +kDebye(T) — are shown separately.[42]

Figure 7. Difference between measured thermal conductivity and

kel(T) +kDebye(T) for the single crystal d-AlCoNi. Solid line is the fit

to khop(T) =khop,0.exp(ÿEa/kBT). Inset: Ratio of the effective (Leff) and

Lorenz number (L0), under assumption that the whole difference

between the measured thermal conductivity and

k0 =kel(T) +kDebye(T) originates from an increased electron contri-

bution to the thermal conductivity (see text).
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form of quasi-umklapp. The problem of determining the
electron contribution is the one of the essential require-
ments for the thermal conductivity analysis of quasicrys-
tals. Although widely used, the Wiedemann–Franz law is
not simply applicable even for metals. The most accepted
approach to modified Wiedemann–Franz law is, as al-
ready described in previous text, via the spectral conduc-
tivity model, that predicts a strong enhancement of the
electron heat conduction at elevated temperatures and its
saturation to 4.2 times the value predicted by Wiede-
mann–Franz law as T ! 1.[28] An alternative calculation
of Vekilov and co-workers[50] resulted with the conclusion
that WFL in quasicrystals is valid only at temperatures
much higher than the Debye one. However, experiments
suggest that the thermal conductivity of quasicrystals in-
creases above T � 100 K, which can be attributed at least
partially to enhanced electron heat conduction. Comple-
mentary contribution to such thermal conductivity rise
has its origin in quasilattice, made of clusters where local-
ized atomic vibrations easily occur. As the temperature
rises, these localized states have more thermal energy
that enables their jumps between clusters, creating a new
heat-carrying channel.
In conclusion, in this work we have described a semi-

quantitative procedure for the analysis of the thermal
conductivity of quasicrystals. It takes into account two
heat carriers: electrons, whose contribution is calculated
by the Wiedemann–Franz law where a modified Lorenz
number is temperature independent and can differ by
around 10% from the Lorenz number valid in metals;
and quasilattice vibrations for which, at the low tempera-
ture limit, we use the Debye approximation, while at high
temperatures we apply the model of activation conductiv-
ity of localized vibrations. The procedure explains the
measured data very well, giving physically plausible fit-
ting parameters comparable, at least in order of magni-
tude, with the results of other experiments (e.g., the
linear density of stacking faults, excitation energy of lo-
calized vibrations). At present the main disadvantage of
the procedure is that it still does not incorporate the tem-
perature dependence of the effective Lorenz number.
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