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15. Distance measures and machine learning approaches for codon usage analyses 

Fran Supek and Tomislav Šmuc, Division of Electronics, Rudjer Boskovic Institute, Zagreb, Croatia. 

Abstract: Unequal use of synonymous codons is a widespread phenomenon caused largely by 

directional mutation pressures and selection for genomic nucleotide composition, but also by 

selection for speed and/or accuracy of protein translation. Much effort was dedicated to investigate 

whether this 'translational selection' had an influence on codon choice of highly expressed genes in 

various genomes. In such analyses genes are typically represented as vectors of codon frequencies, 

and the data analyzed using multivariate techniques, commonly either (a) dimensionality reduction, 

e.g. correspondence analysis, or (b) distance measures in the codon frequency space, such as the 

codon adaptation index (CAI). Such representations of data can be challenging as genes are too short 

to allow precise estimation of codon frequencies, introducing noise and consequently leading to 

serious artifacts in some commonly used methods. A supervised machine learning approach, as 

embodied in the use of a classifier, provides an alternative more robust to noise and also more 

sensitive in detecting codon biases. We describe a Random Forest-based computational framework 

that enables control over confounding factors (here, the background nucleotide substitution 

patterns) while reliably detecting translational selection, demonstrated on a large set of prokaryotic 

genomes. 

 

1. Causes of biased codon usage in genomes 

 Genetic code is a redundant, many-to-one mapping from codons to amino acids. Even though 

use of one or another synonymous codon does not lead to a different amino acid sequence, the 

synonymous codons are not used equally: there is a layer of biologically relevant information 

between genes at the level of coding sequences in the DNA, and the level of the protein sequence. 

The wide range of G+C content spanned by the known genomic sequences is illustrative of how 

nucleotide substitution patterns vary greatly across genomes, and these genome-wide biases in 

substitution patterns are the principal determinant of non-random codon usage in prokaryotes (Chen 

et al. 2004; Knight et al. 2001). On the other hand, there is also significant within-genome variation in 

direction and strength of nucleotide substitution patterns: along the prokaryotic chromosome, there 

is a general tendency toward A+T-enrichment near the replication terminus (Daubin and Perriere 

2003), and vertebrate genomes exhibit so-called 'isochore' structure where the local G+C content 

varies along the chromosome in a periodic manner. Furthermore, genomes often display an 

asymmetry between the two DNA strands where the leading strand is enriched in G over C and T 

over A or  ‘GC-skewed’,  mostly consequent to deamination of cytosine in single-stranded DNA 

exposed during replication (Lobry and Sueoka 2002). The organizational features of prokaryotic 

genomes with respect to local sequence composition and gene distribution were reviewed by Rocha 

(2004). 
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 Such biases in mutational processes appear to be an important contribution to the 

nucleotide substitution patterns, and may result from the nature of chemical changes to the 

nucleotides, but also from biases in errors of DNA replication and repair. In addition to being driven 

by the underlying mutational biases, the specific nucleotide compositions may have adaptive value 

and be selected for (Rocha and Danchin 2002); this also holds true for dinucleotides (Zeldovich et al. 

2007). Two recent investigations have found that mutations in bacteria are generally biased toward A 

and T, while the high G+C content of some genomes would be explained by selective forces 

(Hildebrand et al. 2010; Hershberg and Petrov 2010). Possible explanations for selection on 

prokaryotic GC content are briefly reviewed in Rocha and Feil (2010). 

 Competing with the nucleotide substitution patterns, selection is acting on silent sites to 

make protein translation more accurate and also more ‘efficient’, in this context implying ‘faster’.1  

Traditionally, the biases resulting from selection on codon usage were linked to abundances of tRNA 

isoacceptors for a particular codon (Kanaya et al. 1999). This correlation is consistent with a 

mechanistic model where the speed of translational elongation is limited by availability of charged 

tRNA molecules (Xia 1998). Biased codon use has also been shown to guard against missense and 

nonsense errors in proteins in the Escherichia coli genome; there, highly conserved sites and genes 

have a higher codon bias, but codon bias is also correlated to gene length and increases along the 

genes' length (Stoletzki and Eyre-Walker 2007). More recently, other more subtle translation-related 

determinants of codon usage have been observed, for instance the selective charging of tRNAs which 

promotes use of amino acid starvation-insensitive codons in amino acid biosynthetic pathways 

(Dittmar et al. 2005), and the ‘load minimization’ hypothesis which states that there should be a 

preference towards codons whose mutated forms cause less structural disruption to proteins 

(Najafabadi et al. 2007). Interestingly, a synonymous mutation in a human gene was shown to 

produce a phenotype via an altered protein structure (Kimchi-Sarfaty et al. 2007), an occurrence 

which may be related to the correlations between codon usage and protein structural features that 

have been observed previously by Oresic and Shalloway (1998). Regularities in codon order within 

genes were examined in multiple genomes and proposed to be related to translation dynamics in 

two different ways: (i) beginnings of genes exhibit a 30-50 codon 'ramp' where elongation is slowed 

down by use of specific codons (Tuller et al. 2010) and (ii) recurring instances of an amino acid in a 

protein tend to be encoded by codons read by the same tRNA more frequently than expected by 

chance (Cannarozzi, Schraudolph, Faty et al. 2010).  

 Only a small set of highly abundant or rapidly induced proteins – a typical representative are 

the ribosomal protein (RP) genes – is expected to be strongly affected by selection for translational 

efficiency and accuracy. The portion of a genome undergoing at least some degree of translational 

optimization may, however, be larger. Which genes are a part of this specific subset is an organism-

specific characteristic which was speculated to be related to the organism's preferred environment 

(Carbone 2006). A variety of single-organism analyses of prokaryotic genomes have reported no 

influence of translational selection in the genomes, most notably for the insect endosymbionts 

Buchnera (Rispe et al. 2004), Wigglesworthia (Herbeck et al. 2003) and Blochmannia floridanus 

(Banerjee et al. 2004), or the slow-growing pathogens Borrelia burgdorferi (McInerney 1998) and 

                                                           
1 Note that the use of the word ‘efficiency’ is in fact not fully appropriate in this context (Dethlefsen 
and Schmidt 2005). Still, in this text we opted not to use the more correct term 'translational power' 
in order to be more consistent with previous literature. 



 

 

Helicobacter pylori (Lafay et al. 2000). Inconsistent with absence of translational selection, in 

Buchnera a correlation was found between codon composition of highly expressed genes and 

experimentally measured abundances of tRNAs (Charles et al. 2006). Three large multiple-genome 

analyses have not detected evidence of translational selection in approx. 75% (dos Reis et al. 2004) , 

50% (Carbone et al. 2005) or 30% (Sharp et al. 2005) of the prokaryotes analyzed. The quite sizable 

differences in the extent of translational selection reported by these three studies can be explained 

by the use of a different mathematical apparatus in each analysis; it is unclear which of these 

approaches produced a more dependable result. Interestingly, on several occasions it has been found 

that several gene functions close in codon usage to RP genes in E. coli also have RP-like codon usage 

in some of the organisms which are supposed to lack translational selection, see e.g. the glycolysis 

genes in H. pylori (Carbone and Madden 2005) or respiration and ATP synthase genes in B. 

floridanus (Mrázek et al. 2006). If translational selection was not active in these organisms, it would 

be highly improbable to expect biased codon usage in any specific gene functional category, let alone 

a function that may be adaptive to a specific environmental conditions or a specific physiology. In 

summary, there are significant inconsistencies in the literature concerning the prevalence of 

translational selection among and within genomes; the relationship of translation-related codon 

biases to microbial ecology and physiology has also not been examined in a systematic, large-scale 

manner. 

 Investigations of codon biases in genomes are interesting from a theoretical viewpoint, 

because these analyses (a) provide new knowledge of the rules by which DNA sequences evolve, but 

also (b) by using codon biases as a proxy for expression levels, offer new insight about organisms' 

adaptation to environment. In addition, there is a single quite significant application of codon bias 

analyses in biotechnology: optimization of gene sequences for heterologous expression (Welch et al. 

2009b). For instance, when trying to overexpress a human gene in an E. coli host, if the gene 

contains many codons that the E. coli translational machinery translates slowly or inaccurately, the 

functional protein product may not be produced in great abundance; a prominent example are the 

Arg codons AGA and AGG. Common strategies to alleviate this problem include changing the gene 

sequence to consist exclusively of codons common in naturally highly expressed genes, or 

alternatively modifying the sequence so it mimics the codon frequencies of the host organism. 

Several software solutions exist to facilitate this process (Puigbo et al. 2007; Supek and Vlahovicek 

2004). A recent investigation on foreign protein expression in E. coli employed libraries of silent site 

variants of proteins to conclude that the codons conducive to very high (above physiological levels) 

expression levels are different than the ones typically considered 'optimal' for the genome-encoded 

genes of the E. coli host (Welch et al. 2009a). As an alternative to the 'codon optimization' strategy, 

the problem of failed heterologous expression may be alleviated by using an expression host 

engineered with extra copies of certain tRNA genes (Tegel et al. 2010), such as the Agilent CodonPlus 

or the Novagen Rosetta strains of E. coli. 

 

2. Methods for quantifying codon biases 

 A variety of specialized statistical approaches have been invented for the purpose of codon 

usage analyses, and the implementations of these methods are available in freely accessible 

software, such as INCA (Supek and Vlahovicek 2004). In the following section we aim to describe the 

prominent examples. 



 

 

2.1. Unsupervised methods 

 Many methods commonly used for codon usage analyses are statistics that attempt to 

summarize genes' codon frequencies to a single numeric value – a measure of pairwise distance 

between vectors of codon frequencies. A typical example is the popular ‘codon adaptation index’ or 

CAI (Sharp and Li 1987) that measures the distance to the codon usage of a predefined set of highly 

expressed genes, and has been established as a surrogate for gene expression under optimal growth 

conditions of E. coli and S. cerevisiae. Other commonly used distance measures for vectors of 

codon frequencies include: (i) the “codon bias between gene groups” (CB) which is essentially a 

weighted Manhattan distance employed on many occasions employed by Karlin and Mrazek (2000) 

and colleagues for finding ‘predicted highly expressed’ genes in microbial genomes; and (ii) the 

“measure independent of length and composition” (MILC) (Supek and Vlahovicek 2005) which is a 

corrected χ2-type statistic devised to resolve methodological deficiencies present in other widely 

used approaches, most notably the CB which strongly overestimates distances when comparing short 

genes (Fig. 1).  

Here we describe how these distance measures are computed. Let G indicate a gene or 

group of genes with codon frequencies g(x,y,z) for a codon (x,y,z) normalized such that  Σ 

g(x,y,z) = 1, where the sum extends over all codons (x,y,z) translated to amino acid a. Let f(x,y,z) 

indicate the codon frequencies of another gene or gene group F, again normalized to sum to 1 within 

each amino acid. Let pa(F) be the amino acid frequencies of the gene/genes in F, which sum to 1 

over all amino acids. 

The ‘codon bias’ measure (Karlin and Mrazek 2000) is computed as: 
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Distance in the codon frequency space between the genes or gene groups F and G is estimated by 

the MILC method (Supek and Vlahovicek 2005) as:  
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Where ra is the redundancy class for an amino acid (2 for two-fold degenerate amino acids, 3 

for isoleucine, and so on), and L is the gene length. The sums should iterate only over the amino 

acids present in the gene F. Note that the formulae in the original paper (Supek and Vlahovicek 2005) 

contain errors in the equations; for more information, please see the formal correction (Supek and 

Vlahovicek 2010). 

The codon adaptation index (Sharp and Li 1987) is computed as: 
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where “gmax((x,y,z)=a)” denotes the maximum frequency of the codons coding for amino acid a in 

gene group G. The ratio g/gmax is called codon ‘relative adaptiveness’ by Sharp and Li (1987), and the 



 

 

CAI is a geometric mean of these adaptiveness values of all codons in the gene F. In a typical usage 

scenario of the CAI, the group G would consist of a set of highly expressed genes, sometimes also 

called a ‘reference set’; see Fig. 2A,B for an example of a visualization of such distances using CAI and 

MILC methods. In contrast to CB and MILC, CAI decreases with increasing distance, therefore it is 

technically a measure of similarity. 

 Correspondence analysis (CA), an unsupervised dimensionality reduction technique, has 

often been used in single-genome studies to detect dominant trends in codon usage patterns, 

reflected in the 'factors' the method provides as output. This approach has lead to qualitatively 

different results regarding presence or absence of translational selection depending on how the data 

was normalized, as demonstrated for B. burgdorferi  (Perriere & Thioulouse 2002), and for a larger 

number of genomes using the related technique of principal component analysis (PCA) (Suzuki et al. 

2005). In addition to the issues with data normalization prior to CA or PCA, use of these methods may 

also lead to erroneous conclusions for a different reason: While PCA/CA generally do well in 

summarizing the main trends in between-gene codon usage variability into first two or three factors 

which are then typically visualized (as in Fig. 2C) or used for clustering of genes, it is not at all 

guaranteed that the following (ignored) factors would contain no information useful for the task at 

hand – here, this implies checking if the factors correlate to gene expression levels, a signature of 

translational selection in the genome. A rule of thumb for use of PCA is to retain as many factors as 

necessary to describe at least 95% of variance from the original dataset; when analyzing codon 

frequencies of genes in a single genome, the first three factors of PCA typically explain far less than 

95% of variance, and therefore using only them in visualization is bound to omit at least some 

informative ('non-noise') trends in the data. This issue is further aggravated by the inability of 

PCA/CA to deal with non-linearity in the data, meaning that a single trend might be 'split' between 

more than a single factor output from PCA/CA, or missed altogether due to inherently non-linear 

dependencies. 

2.2. Supervised methods 

 The previously described methods – distance measures in codon frequency space, 

dimensionality reduction, visualization and clustering – are the tools traditionally employed in codon 

usage investigations, and all have one thing in common: they are examples of an unsupervised 

approach to data analysis. In other words, that what is sought for does not have a bearing on how 

the data is treated; the distance measure or the projection technique, for instance, does not take 

into account whether a gene is highly expressed or not. By exploiting this additional source of 

information, an analysis may gain in power. A supervised machine learning approach, embodied in 

the classifier paradigm, should therefore in principle be more desirable than unsupervised 

techniques (distance measures or dimensionality reduction) in discerning a specific class of genes – 

when looking for translational selection, a set of highly expressed genes. Since the composition of 

this class is an a priori assumption in codon usage studies, it is prudent to incorporate this 

information via a supervised formulation of the problem at hand. The classifier can then ‘learn’ from 

the data a function that most accurately maps the codon frequencies to the class labels without 



 

 

resorting to an (inflexible) definition of distance in the codon frequency space such as the CAI, CB or 

MILC.2  

 Following this principle, and in contrast to previous approaches based on unsupervised 

techniques, Supek et al. (2010) have introduced a supervised machine learning-based framework for 

detecting the presence and the extent of translational selection in 461 prokaryotic genomes. Their 

method is based on the Random Forest (RF) classifier (Breiman 2001) which they have evaluated in 

the task of discriminating a group of genes affected by selection for translational efficiency and/or 

accuracy, using only codon frequencies; see Box 1 for a short description of the RF algorithm. The 

group of ribosomal protein (RP) genes was assumed to be highly expressed and therefore a 

representative subset of genes under such selective pressures. The RF method allows the internal 

structure of the classification model to be visualized by a projection of the genes' pairwise distance 

matrix; an example for E. coli genes is given in Fig. 2D to illustrate how the data is internally 

represented by the (supervised) RF algorithm, in comparison to the (unsupervised) use of codon 

distance measures or the PCA technique (Fig. 2A-C). 

 Supek et al. (2010) have demonstrated RF to be a more accurate tool in discriminating the RP 

genes from the rest of the genes in the genome, when compared to three previous approaches 

based on pairwise distances (Sharp and Li 1987; Karlin and Mrazek 2000; Supek and Vlahovicek 

2005); see Fig. 3 for a comparison on two selected genomes using the Receiver Operating 

Characteristic (ROC) curve methodology (Fawcett 2006). Additionally, the RF predictions correlated 

with experimental measurements of protein concentrations in Escherichia coli slightly better than 

previous methods did (Supek et al. 2010). Furthermore, this side-by-side evaluation of the methods 

has revealed the commonly used CAI method (Sharp & Li 1987) to be suboptimal for genomes with 

highly imbalanced G+C content, as was previously hinted by its author in an analysis of 

Pseudomonas aeruginosa genes (Grocock and Sharp 2002) . This would also explain the CAI's 

inability to predict gene expression levels in the A+T rich unicellular eukaryote Plasmodium 

falciparum (Supek and Vlahovicek 2005). 

 In addition to a classifier proving useful in examinations of codon biases in genome-encoded 

genes, supervised machine learning has also been employed to search for a relationship between 

codon usage and protein levels in heterologous gene expression (Supek and Šmuc 2010). In this 

specific instance, two non-linear regression methods – M5' decision trees and Support Vector 

Machines (SVM) – were used to show that codon frequencies play a role in determining protein 

expression in a library of 154 GFP variants that differed only in the genes' silent sites. In the original 

analysis of this 154 gene variant experiment (Kudla et al. 2009), this correlation was not found and 5' 

mRNA secondary structure was reported as the only determinant of protein expression; this was due 

to an overrepresentation of gene variants with very strong 5' structures in this dataset, coupled with 

the use of linear regression which did not capture the complex three-way relationship between 5' 

mRNA structure, codons and expression. This relationship became evident only with the M5' and 

SVM non-linear algorithms (Supek and Šmuc 2010). Note that both decision trees and the SVM can 

also be used as classifiers, i.e. for predicting categorical variables, instead of continuous ones (as in a 

regression setting). 

                                                           
2 The dimensionality reduction techniques mentioned above rely on some notion of distance which is 
also blind to the class label. 



 

 

 

3. Application to bacterial and archaeal genomes 

 We argued that introducing a supervised machine learning-based computational framework 

for codon usage analysis would lead to an increased sensitivity in detecting codon usage biases over 

commonly used unsupervised techniques, as well as better agreement to protein expression levels. 

Here we describe in detail how such an classifier-based approach was applied to prokaryotic 

genomes on a large scale, and what insights were gained from this analysis. 

3.1. Rationale behind using classifiers to control for background nucleotide 

composition. 

 In addition to offering increased sensitivity over the unsupervised methods, there is another 

highly important issue in codon usage analyses that a classifier can help resolve: the need to control 

for a strong confounding factor – the background nucleotide composition – that shapes codon usage, 

but in a manner not related to protein translation. The background nucleotide composition results 

from an interplay of directional mutation pressures (mutational biases) and selection on genomic 

nucleotide composition, as we have discussed earlier.  

 To provide an illustrative example, let us imagine a genome with a strong 'GC skew', meaning 

the leading strand of DNA has an excess of G over C, which would cause the silent sites in codons of 

genes on the leading strand to prefer G over C even in the absence of translational selection, and vice 

versa on the lagging strand. Furthermore, let us suppose that optimal codons for that organism are 

commonly C-ending. If a specific gene on the lagging strand is found to be enriched with C-ending 

codons, to determine whether the gene was subject to translational selection, we would need to 

examine if the extent of the GC-skew (which can be quantified from non-coding DNA surrounding the 

gene) is sufficient to explain the bias towards C-ending codons observed in the gene. If not, the bias 

has to be due to a different reason; if the direction of the bias is towards the codon usage of a set of 

a highly expressed genes – such as the RPs – we can conclude this bias is related to translational 

selection. Note that another possible cause of codon bias in prokaryotic genes is horizontal transfer, 

where a gene retains the codon usage of a host genome. It is, however, unlikely that the codon usage 

of a gene unbiased in the genome of origin would match the codon preferences of highly expressed 

genes in the recipient genome, thus mimicking the effect of translational selection. Additionally, the 

horizontal transfer event should be evident in the composition of intergenic DNA, meaning it would 

be controlled for in the same manner as the GC-skew or the regional nucleotide composition biases. 

 In order to control for these factors that confound detection of translational selection, Supek 

et al. (2010) have harnessed a supervised machine learning-based computational methodology that 

couples the RF classifier to standard statistical tests. The classifiers’ ability to learn mappings from 

one space to another allows for a convenient way to control for a strong confounder: the 

local/strand-specific nucleotide substitution patterns that affect codon usage, but not as a result of 

translational selection. By using a classifier both sets of data can be mapped to the same space 

(which here has a single dimension: the gene's probability of belonging to the highly expressed gene 

class), and the results than compared in this new space, thereby controlling for the confounder; see 

Fig. 5 for an illustration of the procedure. Using the crossvalidation technique to evaluate the RF 

models in multiple runs of computation, the framework has allowed the authors to obtain 



 

 

statistically-backed calls about (a) in which genomes, (b) and on which genes in the genomes 

translational selection can be shown to act. 

3.2. An example application of supervised machine learning in codon usage analysis. 

 Supek et al. (2010) employed the above strategy to test whether individual prokaryotic 

genomes are subject to translational selection. For each of the 461 genomes, the authors encoded 

the information about local nucleotide substitution patterns affecting each gene by computing 

mononucleotide and dinucleotide frequencies in the non-coding regions of DNA neighboring the 

translated part of the gene. Genes for functional RNA molecules such as tRNA and rRNA were also 

treated as coding and thus did not contribute toward mono- and di-nucleotide frequencies of 

intergenic DNA. The size of the neighborhood window was set to either 5, 10 or 20 kilobases 

upstream from the gene’s start codon, and 5, 10 or 20 kilobases downstream from the stop codon. 

The window size of 10 kb upstream + 10 kb downstream guaranteed that in 99% of the genomes 

(457 out of 461), 99% of the genes have at least 142 non-coding nucleotides available for estimation 

of mono- and di-nucleotide frequencies. The analysis described below was re-run for all three values 

of the ‘window size’ parameter, and the results combined into a consensus set at a later stage.  

To detect if selection for translational efficiency acts on a genome, Supek et al. (2010) 

employed the following procedure (depicted in Fig. 4): The RF classifier was first trained to 

distinguish ribosomal protein genes (‘positive class’) based solely on the mono- and di-nucleotide 

frequencies of genes’ neighboring non-coding DNA within a given window size. Fifty runs of four-fold 

crossvalidation were used to estimate the accuracy of the classifier using the area-under-ROC-curve 

(AUC) score (Fawcett 2006), and the AUC for each of the 50 runs of crossvalidation was recorded. 

 This procedure was then repeated for a second time, however now the codon frequencies 

were also included in the dataset for the RF classifier training, in addition to the description of the 

intergenic regions. The AUC scores were again recorded for each of the 50 runs of crossvalidation. To 

determine if selection for translational efficiency acts on the genome, the sign test (McDonald 2009) 

was used to compare the 50 AUC scores obtained without codon frequencies to those obtained with 

them, for each genome. If the AUC score exhibited a consistent increase over 50 runs of 

crossvalidation, this meant that the introduction of codon frequencies improved the ability to 

discriminate ribosomal protein genes, providing evidence that translational selection acted on that 

specific genome. The weakest result was observed in the bacterium Saccharophagus degradans 

2-40, the only genome where the change in AUC scores was not statistically significant at p<10-3. The 

majority of examined prokaryotes (457 of 461) had sign test p<10-9. The results were qualitatively 

equivalent for window sizes 5k and 20k, with 460 and 459 (of 461) genomes, respectively, having sign 

test p<10-9. The Saccharophagus degradans 2-40 genome was previously found to exhibit a 

mosaic structure with respect to the G+C content (Weiner et al. 2008), probably due to large 

amounts of recently horizontally transferred (HT) DNA. The fact that translational selection has gone 

unnoticed might be explained if we hypothesize that not enough evolutionary time has passed for 

these HT segments to 'ameliorate' (Lawrence and Ochman 1997) to match the new host's 

translational apparatus; of course, it is also possible this organism genuinely does not exhibit 

translationally selected codon usage. 

 Since the codon frequencies consistently facilitated classification over the baseline, Supek et 

al. (2010) concluded that translational selection is, in fact, universal among prokaryotes, in contrast 



 

 

to previous large-scale studies (Reis et al. 2004; Carbone et al. 2005; Sharp et al. 2005) which failed 

to find evidence of translational selection in many genomes (30-75%, depending on the study).  

 

3.3. Proportion of genomes subject to translational selection and correlations with 

gene functional categories 

 Expectedly, the accuracy of codon-trained RF classifiers generally reflected the intensity of 

codon biases within a genome, but the accuracy is also bound to be related to the proportion of 

genes within a genome that are affected by translational selection - Supek et al. (2010) showed a 

sizeable portion of each prokaryotic genome to have an above-baseline codon usage similarity to the 

RP genes. It is easier to understand how such calls may be made on a per-gene level if we consider 

the classifiers' predictions for each gene as a measure of similarity of each gene's codon usage to the 

ribosomal protein genes, an approach in concept similar to the codon distance measures CB, CAI or 

MILC. Supek et al. (2010) proposed the following naming convention: a gene is declared to have 

optimized codon usage (OCU) if this similarity increases more frequently than expected by chance 

after codon frequencies are introduced to the classifier; statistical significance is determined by a 

conservative criterion of sign test p<10-15 across 50 runs of crossvalidation. The authors found that 

genomes contained on average 13.2% of OCU genes, ranging from 5.4% to 33.0%.  

 Roughly speaking, the estimate of the extent of translational selection within bacterial and 

archaeal genomes expressed as % OCU genes (5-33%) is similar to the quantity arrived at in a study 

of eukaryotes (Resch et al. 2007) that reported purifying selection at synonymous sites in ~28% of the 

analyzed rat-mouse orthologous pairs. The findings from the two studies, when accepted together, 

suggest that it cannot be assumed that synonymous sites of protein coding genes in any genome 

evolve neutrally, regardless of the phyletic subdivision examined.  

 By subdividing the genes into OCU and non-OCU groups, Supek et al. (2010) did not imply 

that there was a clearcut boundary between the codon frequencies of the two groups. Instead, a 

gradient of codon usages exists in genomes (as seen for example in Fig. 2), where the genes labeled 

as OCU are those above the detection threshold of the RF-based method. This subdivision is 

conceptually similar to the approach formulated by Karlin and Mrazek (2000; Karlin et al. 2005; 

Mrázek et al. 2006) where a set of genes in the genome is labeled  "PHX" (predicted highly 

expressed) by codon usage similarity to a set of RP and other translation-related protein genes. There 

are, however, three important features of OCU assignments that distinguish them from the PHX 

approach: (a) OCU labels are based on a RF classifier that outperformed the CB distance measure 

used for PHX assignments, (b) OCU is separated from non-OCU by a significance call of a statistical 

test instead of relying on an arbitrary threshold, and (c) OCU assignments are made using a control 

for local nucleotide substitution patterns which confound codon usage analyses. Use of a continuous 

variable instead of a categorical one, such as the OCU/non-OCU status, would be more descriptive 

with respect to gene expression levels. However, it remains to be seen to what degree of accuracy a 

quantitative estimate of expression can be reliably derived from codon biases alone, especially for 

genomes where translational selection is weak (e.g. slow-growing bacteria). 



 

 

3.4. Distribution of codon-optimized genes within specific gene functional categories 

and relationship to microbial lifestyle 

 Generally, %OCU was smaller in larger genomes, and this anticorrelation could be largely 

explained by the change of relative proportions of certain gene functional categories with genome 

size: Smaller genomes have a larger proportion of genes that typically exhibit translationally selected 

codon usage, such as genes for protein production and energy metabolism (all steps leading to ATP 

production); such genes are mostly indispensable even in a very reduced genome. Larger genomes 

have an increased proportion of genes dealing with regulation, transport, sensing and signaling which 

are rarely codon-optimized. Several papers dealt with examining codon biases in specific gene 

functions in bacterial genomes using different methods (Carbone and Madden 2005; Karlin and 

Mrazek 2000) and were mostly consistent in their conclusions; equivalent general trends of 

correlation of gene function and codon bias were recognized also in Archaea (Supek et al. 2010). 

  On several occasions, researchers have touched on the issue how use of translationally 

optimal codons (consequent to elevated gene expression) in certain pathways might be related to 

the organism's environment. One would expect that, for instance, in obligate aerobes the citric acid 

cycle or the oxidative phosphorylation proteins would be more abundant than in facultative aerobes, 

and this should be reflected in codon usage biases of these functional categories. Precisely this 

example of aerobic vs. anaerobic microbial lifestyle was discussed in Bacteria (Carbone and Madden 

2005; Karlin et al. 2005) and also in nine fungal genomes (Man and Pilpel 2007).  Building on this 

concept, Supek et al. (2010) performed a systematic analysis of the distributions of translationally 

optimized genes along combinations of gene functional categories and different environments or 

phenotypes of organisms. They defined an 'adaptome' as a set of gene functions with expression 

levels elevated specifically in organisms living in a specific environment, where codon biases can 

serve as a proxy for expression levels in any fully sequenced genome enabling large-scale studies. As 

an example, the 'adaptome' of thermophilic bacteria and archaea was analyzed, and putative 

mechanisms for the protection of DNA and proteins against thermal denaturation were proposed 

(Supek et al. 2010). A number of other possible 'adaptomes' (related e.g. to use of certain modes of 

DNA repair, or to pathogenicity) were tested for statistical significance; the results are available from 

the authors' website at http://www.adaptome.org/. 

 The presence of translationally selected codon usage in mammalian genomes has been 

researched extensively (Urrutia and Hurst 2003) but is still an unresolved issue, as discussed in a 

recent analysis (Parmley and Huynen 2009).  The RF classifier-based method Supek et al. (2010) 

applied to prokaryotes could potentially be fruitfully applied also to mammalian genomes where 

local variation in GC content (isochores) greatly complicates analysis, while non-coding DNA is 

plentiful, thus allowing for an dependable control for the local GC content variation. 

3.5. mRNA expression levels and codon preferences of genes subject to translational 

selection 

 Supek et al. (2010) examined the correlation of OCU/non-OCU assignments to gene 

expression data from 19 phylogenetically diverse bacteria and found that OCU genes record 

microarray signal intensities on average 2.4-fold higher than non-OCU genes; for comparison, the RP 

– representing the most highly expressed genes – weigh in at 6.0x the average measurement in the 

same data. When quantifying the magnitude of these codon-expression agreements, one must be 



 

 

aware that that the estimates of correlation may be conservative, as gene expression may match 

codon usage more or less strongly, depending on the conditions when expression was measured. The 

best match would be obtained under the conditions that were dominant during the periods of rapid 

competitive growth in the evolutionary history of the organism (Wagner 2000). A case in point are 

the microarray measurements taken under conditions of stress or nutritional deficiency, for instance 

in a minimal medium, which have been shown to correlate less well with codon usage in Bacillus 

subtilis and Escherichia coli (Supek and Vlahovicek 2005), when compared to conditions more 

conducive to rapid growth (rich media). 

 An early investigation of codon usage in yeast genes (Bennetzen and Hall 1982) proposed 

that, in cases where the genome encodes only a single tRNA species for an amino acid, the 

translationally optimal codons would be the ones that match the tRNA anticodon by canonical 

Watson-Crick base pairing (without wobble). When multiple tRNA species are available for the amino 

acid, the anticodons on very abundant tRNAs would correspond to optimal codons – in this context, 

the genomic tRNA gene count is frequently used as a proxy for tRNA abundance (dos Reis et al. 2004; 

Tuller et al. 2010). 

 In prokaryotes, the presence or absence of tRNA genes with specific anticodons given in the 

GtRNAdb database (Chan and Lowe 2009) indicates that the optimal codons for two-fold degenerate 

amino acids are almost always either C/A-ending, or undefined if the genome contains tRNA genes 

with both anticodons for an amino acid. Supek et al. (2010) found that the OCU genes prefer such 

putatively optimal codons 6.2x more frequently than the suboptimal ones in Bacteria and 3.1x more 

frequently in Archaea. The examples of amino acids and genomes where this regularity is reversed 

have lead the authors to speculate that these exceptions stem from chemical modifications of 

nucleosides in the tRNA that modulate the codon-anticodon interaction (Agris 2004; Agris et al. 

2007). Unfortunately, the tRNA nucleoside modifications are currently fully known only for few 

organisms (Grosjean et al. 2009); future experimental data will shed some light on how the 

modifications relate to the OCU-preferred codons. Hershberg and Petrov (2009) discussed the choice 

of optimal codons in genomes and concluded that the main determinant of codon optimality was the 

direction of nucleotide substitution patterns evident in the overall genomic G+C content. Moreover, 

they also found that the gene set with the most highly biased codon usage in a genome was also 

typically enriched with RPs and translation elongations factors, and that this codon usage bias cannot 

be explained only by differences in composition of non-coding DNA. This study, together with the 

results of Supek et al. (2010), provides sufficient evidence for the notion of translationally selected 

codon usage as a prevalent phenomenon among prokaryotic genomes. 

 



 

 

BOX 1 

 

The Random Forest classification model is essentially a collection of decision tree classifiers, where 

each decision tree is constructed by recursively subdividing the data by attribute value tests (into 

‘nodes’) in order to reduce the entropy of the class label within the resulting subdivisions 

(‘branches’). An example of a decision tree that discriminates between E. coli ribosomal protein 

genes and all other E. coli genes is given in this box – in this example, classes are "1" for ribosomal, 

"0" for other genes. RF is a particular kind of an ensemble classifier (modified bootstrap aggregation 

method), different from a simple collection of decision trees in two ways: (i) each of the trees is 

constructed not from the full dataset, but from a bootstrap sample of the dataset;  (ii) the choice of 

attributes at each node is artificially limited to reduce correlation between the individual trees, which 

has been found to help the predictive performance of the entire model. The final per-class 

probabilites of a RF model are obtained by averaging the prediction of individual trees (‘voting’) 

where each tree has equal weight. In addition to classification, the RF algorithm has some extra 

features such as: quantifying attribute importance, computing pairwise distances of all instances (see 

Fig. 2D), and providing a computationally efficient estimate of crossvalidation error called the out-of-

bag error; see Breiman (2001) or 

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm for more information. 

 

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
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Figure 1. Mis-estimation of distances in codon usage for various methods. The values of a distance 

measure at varying simulated sequence lengths (on the x axis) were subtracted from the values 

calculated for 2500 codons which are used as a gold standard – it was assumed there is no length-

related bias in very long genes. The overestimation of distances (shown on y axis) were computed by 

calculating the mean distance for 10000 randomly generated sequences per method per length, and 

are expressed as percentages of the measures' dynamic ranges; see Supek & Vlahovicek (2005) for a 

description of the methods, and the codon frequencies used for the three cases 'None', 'Low-1' and 

'Med-1'. The CB and MILC measures are as described in Section 2.1 of this chapter. SCUO is a 

normalized measure of Shannon entropy of a gene's codon usage (Angellotti et al. 2007). ENC is the 

widely used method called 'effective number of codons' (Wright 1990). Unlike the CAI, MILC or CB, 

SCUO and ENC are special cases of codon distance measure which can only be used to compare the 

codon usage of a gene to the unbiased codon frequencies, and not to any arbitrary set of codon 

frequencies. 

 

 



 

 

 

Figure 2. Visualizations of codon usage of all genes in the E. coli K12 genome; only genes at least 80 

codons long are shown. The "other highly expressed genes" class consists of genes coding for the 200 

most abundant E. coli cytoplasmic proteins according to Ishihama et al. (2008), excluding the 

ribosomal protein genes. (A, B) x axis shows the distance of a gene's codon usage from the ribosomal 

protein genes, y axis shows the distance from the  average codon frequencies of all non-ribosomal 

protein genes. Panel A uses the 'codon adaptation index' similarity measure, while panel B uses the 

MILC distance measure. (C) A principal components plot of the genes' codon frequencies. (D) A 

principal components plot of the Random Forest algorithm's internal representation of the data as a 

matrix of gene-gene distances derived from the structure of the decision trees that constitute the RF 

classification model; see Breiman (2001) for more information. 

 



 

 

 

Figure 3. Receiver operating characteristic (ROC) curves showing the accuracy of various 

mathematical methods in discerning the ribosomal protein (RP) genes from all other protein coding 

genes by their codon frequencies. The area under ROC curve (AUC) statistic is higher in more 

accurate classifiers, ranging from 0.5 (random guessing) to 1.0 (perfectly accurate). All results are 

from ten-fold crossvalidation. On a set of 461 prokaryotic genomes, RF outperformed the distance 

measures: CAI in 459 genomes, CB in 440 genomes and MILC in 351 genomes (Supek et al. 2010). 

 

 

 



 

 

 

Figure 4. A flowchart representation of the Random Forest classifier-based computational framework 

(Supek et al. 2010) used to detect whether translational selection acts in a specific genome, and if so, 

which genes it affects. 

 



 

 

 

Figure 5.  An illustration of the reasoning behind using a classifier to control for a confounding factor; 

in this instance, the Random Forest classifier is used to decide whether a gene's codon usage 

similarity to the RP genes can be explained by the similarity in the local (or strand-specific) nucleotide 

substitution patterns that are evident from the composition of intergenic DNA. Figures show actual 

data from the B. subtilis genome (all genes ≥ 80 codons). Subpanels A and B show a principal 

components plot of B. subtilis genes represented by: (A) the composition of intergenic DNA 

surrounding genes within a 10kb window, or (B) codon frequencies. The main panel (right-hand side) 

is a scatter plot of the Random Forest probabilities without (x-axis) against those including (y-axis) 

codon frequencies. A gene is assigned the OCU (“optimized codon usage”) label if it increases in the 

RP-class probability after addition of codon frequencies. The diagonal line that divides OCU from 

non-OCU is for illustrative purposes only: The actual procedure to determine OCU (Fig. 4) involves 

checking for a consistent increase in Random Forest probability over 50 runs of crossvalidation, 

whereas the points in this Figure show only averages of probabilities over the 50 runs, while 

between-run variability is not depicted in the plot for clarity's sake. In effect, fewer genes in B. 

subtilis will be declared OCU than are above the diagonal line in the plot because of this variability. 

 

 

 

 


