
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Ivan Voras

CACHE SERVER FOR DISTRIBUTED
APPLICATIONS ADAPTED TO

MULTICORE SYSTEMS

DOCTORAL DISSERTATION

Zagreb, 2011

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Ivan Voras

POSLUŽITELJ PRIRUČNE MEMORIJE
ZA RASPODIJELJENE APLIKACIJE

PRILAGOĐEN SUSTAVIMA S
VIŠEJEZGRENIM PROCESORIMA

DOKTORSKI RAD

Zagreb, 2011.

This doctoral dissertation was created at the University of Zagreb, Faculty of elec

trical engineering and computing, at the Department of control and computer engin

eering.

Mentor: prof. Mario Žagar, Ph.D.

The doctoral dissertation is comprised of 114 pages.

Doctoral dissertation number ___.

The dissertation evaluation committee:

1. Professor Danko Basch, Ph.D.,

Faculty of Electrical Engineering and Computing, University of Zagreb

2. Professor Gordan Gledec, Ph.D.,

Faculty of Electrical Engineering and Computing, University of Zagreb

3. Professor Maja Štula, Ph.D.,

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architec

ture, University of Split

The dissertation defence committee:

1. Professor Danko Basch, Ph.D.,

Faculty of Electrical Engineering and Computing, University of Zagreb

2. Professor Gordan Gledec, Ph.D.,

Faculty of Electrical Engineering and Computing, University of Zagreb

3. Professor Maja Štula, Ph.D.,

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architec

ture, University of Split

4. Professor Mario Kovač, Ph.D.,

Faculty of Electrical Engineering and Computing, University of Zagreb

5. Professor Maja Matijašević, Ph.D.,

Faculty of Electrical Engineering and Computing, University of Zagreb

Date of dissertation defence: June 13th 2011

ix

Abstract

The Internet is the largest platform for application delivery today, but building scal

able Web applications for the global audience is hard. The problem of satisfying the

constraints of starting small to minimize initial investments but also adopting an ar

chitecture with the potential to allow future growth in the number of users and the

complexity of the service does not have an immediately obvious or boiler-plate solu

tion. This dissertation investigates the described problem and proposes solutions

which are based on data partitioning techniques, with the focus on introduction of a

new cache server designed for modern multi-core CPUs, offering an expanded

metadata model for cached records. In order to make use of the new cache server, it

also proposes new Web application patterns. The dissertation contains an analysis

and evaluation of the introduced models and a comparison with previously available

solutions.

Keywords: distributed systems, Web applications, cache, database, concurrency, al

gorithms

x

xi

Strukturirani sažetak

Izrada skalabilnih Web aplikacija dostupnih globalnoj publici je zahtjevan zadatak ko

jeg dodatno kompliciraju kompromisi aplikacijske arhitekture koji su prisutni kada

aplikacija započinje korištenjem među manjim krugom korisnika i kasnije eksplozivno

proširuje krug korisnika. Ovaj doktorski rad istražuje problem izrade visoko skalabil

nih Web aplikacija te predlaže rješenja koja su bazirana na tehnikama raspodjeljivanja

podataka, sa fokusom na uvođenje novog poslužitelja priručne memorije koji je po

sebno osmišljen za višeprocesorska i višejezgrena računala, sa proširenim modelom

podataka za pohranu zapisa, te predlaže arhitekture za Web aplikacije koje optimalno

koriste napredne mogućnosti novog poslužitelja priručne memorije.

Cilj

Doktorski rad istražuje problem stvaranja visoko skalabilnih Web aplikacija s obzirom

na broj korisnika, pomoću uvođenja poslužitelja priručne memorije te prilagodbu arhi

tektura aplikacija ovom novom poslužitelju. Cilj rada uključuje omogućavanje stvara

nja kompleksnih Web aplikacija koje koriste poslužitelj priručne memorije za ostvare

nje velikih performansi.

Metode

U ovom doktorskom radu su istražene trenutne prakse i trendovi u izradi Web aplika

cija, proučeni problemi skalabilnosti prisutni u Web aplikacijama te postojeće strate

gije koje doprinose izradi skalabilnih Web aplikacija. Na temelju proučenog postoje

ćeg stanja, u radu su dani zahtjevi za novi poslužitelj priručne memorije sa novim mo

gućnostima rada u višeprocesorskim i višejezgrenim računalima i novim podatkovnim

modelom za opis pohranjenih podataka sa podatkovim strukturama dizajniranima s

ciljem da ostvaruju velike performanse pri istovremenom pristupu pohranjenim poda

cima.

xii

Rezultati

U ovom doktorskom radu je predložen model novog poslužitelja međumemorije na te

melju prethodno danih zahtjeva koji omogućava usporedbu više modela višedretvenog

rada u pristupu i obradi podataka, visoke performanse pri istovremenom pristupu po

hranjenim podacima, te model pohranjenih podataka koji omogućava dodavanje me

tapodataka u svrhu efikasnog izvođenja grupnih operacija nad podacima. Predložene

su nove arhitekture Web aplikacija koje su prilagođene korištenju novog poslužitelja

priručne memorije. Izrađena je analiza predloženih modela i implementiranih rješenja

te njihova usporedba sa prethodnim rješenjima.

Zaključak

U ovom radu dan je novi model raspodijeljenog poslužitelja međumemorije temeljenog

na particioniranju podataka, ostvaren je novi poslužitelj međumemorije posebno

osmišljen za moderne višejezgrene procesore , te predložene arhitekture okoline apli

kacija na Webu prilagođena novom poslužitelju međumemorije . Napravljeno je vred

novanje modela, poslužitelja i arhitekture okoline aplikacije te usporedba sa postoje

ćim rješenjima.

Ključne riječi: raspodijeljeni sustavi, Web aplikacije, međumemorija, baza podataka,

konkurentni pristup, algoritmi

xiii

Acknowledgements

I wish to thank my family and friends for support, without which it would have been

difficult and pointless to create this work. I also wish to thank my mentor, prof. Žagar,

on both academic and personal guidance.

Ivan Voras, June 2011

xiv

xv

Table of Contents

1.Introduction..15
1.1.Motivation..16
1.2.Research goals and methods...17
1.3.Dissertation organization...17

2.Best practices and trends in Web application development...................................19
2.1.Trends in scalable Web applications architectures...21

3.Problems in Web application scalability..23
3.1.Scalability of CPU load...24
3.2.Scalability of memory..25
3.3.Scalability of storage...26
3.4.Scalability of networks and internal communication channels...............................27
3.5.Scalability of application architecture..28

4.Strategies for scalable Web applications..29
4.1.Strategies for global scalability...30
4.2.Strategies for data storage scalability...34
4.3.The importance of cache servers..35
4.4.Previous work..36

5.Requirements for a new cache server model...39
5.1.Data model and supported operations...40
5.2.Program architecture for multi-core processors..42
5.3.Durability through data replication..45

6.The model of a new cache server...47
6.1.Interaction between threads..50
6.2.Operating system interfaces and program infrastructure...52
6.3.Network setup...53
6.4.New connection processing...53
6.5.Network IO processing...53
6.6.Network protocol processing..55
6.7.Database data structures and algorithms..57
6.8.Database query processing..63
6.9.Replication processing...66
6.10.Client application interfaces...68

7.Web application architecture patterns for high scalability using the new cache
server ...69
7.1.Cache server as application object cache..70
7.2.Cache server as database cache layer...75
7.3.Cache server as primary data store...77
7.4.Cache server and application data partitioning...78

xvi

7.5.Trade-offs and the limits of applicability of proposed Web application
architecture patterns..79

8.Analysis and evaluation of the proposed models and architectures......................81
8.1.Analysis of scalability and efficiency of the multithreading models......................81
8.2.Analysis of scalability and efficiency of network IO operations.............................86
8.3.Scalability and efficiency of the data structures..88
8.4.Benefits of application architectural patterns with the new cache server...........89
8.5.Strategies for global scalability using the new cache server....................................90

9.Future work...94
9.1.Improvements in data structure locking..94
9.2.Improvements in network IO processing...94
9.3.Explicit use of the NUMA computer model..95
9.4.Extension of the cache server to persistent storage..95
9.5.Improvements in Web application architecture...96

10.Conclusion...98

11.Bibliography...100

12.Indexes...106

13.Biography..108

17

1. Introduction

By the year 2011 when this dissertation is written, it is both a cliché and an under

statement to claim the Internet has changed the lives of everyone on the planet. As

one of the most significant drivers of globalization it is a true candidate for the short-

list of humanity's greatest achievements, present due to its unconstrained nature in all

segments of daily lives and business. The Internet is a medium for numerous protocols

and services, but one of those services certainly stands out: the World Wide Web, as

probably the most important platform for the deployment of distributed applications.

From its humble beginnings [1], the Web has grown into a platform capable of de

livering hundreds of billions of dollars [2][3] in e-Commerce and reaching audiences

of hundreds of millions of everyday users [4]. Its low barrier to entry has enabled

companies to start small and over the course of a few years grow into world-class

companies as measured by their revenue stream (e.g. [5][6]). This large growth poses

challenges on both the technical aspects of the infrastructure providing the service,

which must support the growth, and the financial backing of the enterprise, as typical

large-scale data centres carry costs in the orders of hundreds of millions of dollars [7]

[8] for initial investments and millions of dollars in monthly expenditures for electri

city and network equipment [9][10]. Any investments in server and application optim

ization therefore have immediate influence in practical business matters.

The HyperText Transfer Protocol (HTTP) has shown itself to be adequate as a plat

form for application delivery, especially when augmented with client-side technolo

gies like JavaScript, but its real-world use requires certain cessions from application

creators. Among these the most significant are emulated persistent sessions over the

originally non-presistent protocol [11] and the use of still somewhat quirky cli

ent-to-server communication channels in the form of Asynchronous JavaScript and

18

XML (AJAX) [12]. However, these issues have been accepted and worked around in

practice, making the concept of Web applications immensely popular and wide-

spread.

Typical Web applications are built in a multi-tiered architecture, with at least an

HTTP server (i.e. a Web server), an application server (e.g. PHP, ASP, JSP, etc.), and a

database server (e.g. MySQL, PostgreSQL, Microsoft SQL Server, Oracle) layers.

Though this arrangement is conceptually often fixed, practical applications might

merge some of those layers into single entities / processes or add more layers as

needed to meet certain application requirements. A notable addition to the basic ar

chitecture is the introduction of a cache server with the intention of enhancing per

formance in typical environments where data is mostly accessed for reading (i.e. read-

mostly data). Modern deployments of large-scale applications regularly include at

least a simple cache server facility, often with huge success1.

This dissertation is a result of the research in the area of enhancing performance

of Web applications by using data caching techniques and includes as one of its res

ults a new cache server designed for modern industry standard server architectures.

1.1. Motivation

The most important type of distributed applications nowadays are Web applications,

as they can offer services to an unprecedented number of users and are from this

point of view currently the most scalable computer application types in practical use.

They pose unique challenges and present unique opportunities for research into the

development and deployment of large scale applications. The focus of this dissertation

is on performance enhancement of Web applications, which is as an improvement in

efficiency directly reflected to possible reduction of the number of servers used for ap

plications and with that, savings in the areas of maintenance, the usage of electricity

(for servers, network equipment, cooling and other components of the data server)

and even in certain configurations on the network bandwidth required by the applica

1 Facebook implements the largest publicly described deployment of a Web application with a cache
server, reportedly held more than 28 TB of frequently accessed user data in its cache in 2008, spread
across more than 800 cache servers [13], which climbed to over 300 TB in 2010 [14].

19

tions. This performance enhancement will be achieved through research into cache

servers and their integration into Web application architectures.

1.2. Research goals and methods

The central problem of this research can be stated as “How to increase scalability in

Web applications with acceptable levels of service and minimal cost?” This statement

of the problem in turn requires clarification of its parts and the specific discussion of

the following topics:

• What is scalability in the context of Web applications?
• What are acceptable levels of service?
• What minimizes cost?

These questions have the effect of practical constrains on this dissertation's results, as

its results will have to be justified through them. The research described here has (as

a touching point with real-world usage) its application in the “Quilt” Web content

management system which is written at our home Faculty, of which the author is one

of the principal developers.

The goals of this dissertation are: to create a model for a new highly distributed

cache server which is able to make use of modern multi-core CPUs, whose operation

is based on data partitioning techniques, to create its exemplary implementation, and

to describe Web application architectures which can extract the maximal performance

benefits from this cache server. It includes an evaluation of the models, the cache

server and the application architectures in comparison with existing solutions.

1.3. Dissertation organization

This dissertation is organized as follows: the introductory chapter 2 describes and dis

cusses current best practices in Web application development. Chapter 3 describes the

central problems in more detail which leads to a discussion of possible solutions in

chapter 4. Chapter 5 focuses on the requirements for the new cache server and

chapter 6 introduces the model for the new cache server. In order to make use of the

new cache server, new Web application architectures adapted to it are derived in

20

chapter 7, with a discussion of the trade-offs in practical implementations of this ar

chitecture. Finally, all the presented models and architectures are analysed and evalu

ated in chapter 8, the possibilities for future work are presented in chapter 9, and the

conclusions of the dissertation are presented in chapter 10.

21

2. Best practices and trends in Web application
development

Multi-tiered application architectures have been widely implemented in non-trivial

applications because the model is a natural continuation of the idea of modularity in

computer programs2. The advent of the networked age has simply broadened the me

dium over which modules can be integrated, which resulted in a virtual ecosystem of

distributed applications implemented by modules using what were until recently in

feasibly high-level calling conventions with very verbose protocols and data descrip

tion languages like HTTP and XML [16][17][18]. However, network bandwidth is still

a precious resource and network latencies often forbid highly-distributed architec

tures and architectures with complex protocols within application backbone infra

structure, favouring tighter binary protocols for the serialization of structured data,

like Google Protocol Buffers [19], Apache Thrift [20] or BSON [21].

The majority of contemporary Web applications have a generally uniform tiering

architecture consisting of:

1. A Web server

2. An application server

3. A database

In this configuration, the Web server is often nothing more than a simple protocol

broker, processing and passing HTTP requests to the application server (and option

ally serving static and miscellaneous requests such as files containing CSS design,

JavaScript code or images directly from file system). The most widely deployed type of

2 As eloquently stated by Schuman in 1974 [15]: “In general, program development does not consist of
writing independent procedures, but rather of writing complete packages that may be used as is or
selectively incorporated into other packages, thus defining progressively higher-level modules.”

22

the application server is a dynamic language interpreter (or runtime) which is a gen

eric execution environment for user code, providing a set of libraries and a framework

for creating Web applications but without specifying or limiting the details of the ap

plications it executes. The database usually implements a relational data model and

SQL as an interface to the application.

The methods of communication between these tiers / components are important

and have a large influence on overall application performance. The local optimum in

architecture for interfacing application servers to the Web server (in the sense that it

is widely supported and simple enough while having adequate performance) is the

FastCGI protocol [22]. By using FastCGI, the application servers can be implemented

as persistent processes running either on the same system as the Web server or on ar

bitrary connected systems. Performance achieved with with FastCGI is greatly im

proved over the formerly popular (but only recently standardized) CGI protocol [23]

[24] by avoiding process creation and teardown for every HTTP request. The database

server and the application communicate with SQL, but the exact communication pro

tocols are not defined beyond general purpose-dictated constraints (e.g. implemented

over a connection-oriented protocol similar to TCP). Each popular database imple

ments its own client-server protocol, an API and often its own libraries for communic

ation with applications (as visible e.g. from [25]). The described components can exist

in three general arrangements:

1. Completely separated, implemented on different server computers and com

municating via TCP or a similar protocol

2. Partially separated, with some components running on the same server, pos

sibly in separate processes, while others are running on separate servers

3. Completely integrated, with all components existing within the same process

on a single server

For each of the described arrangements there is a respectable number of active de

ployments in various Web sites (though of course the scale of deployment varies). One

example is the popular stack of Open source projects consisting of the Apache Web

23

server, the PHP scripting language interpreter and the MySQL or SQLite databases,

which can be implemented in either of the three arrangements. Similar arrangements

exist with proprietary stacks like Microsoft's (Internet Information Server as Web

Server, ASP.Net as the execution environment and the SQL Server as the database) or

Oracle's (Oracle Application Server, Oracle Database). Because of the distributed

nature of the Web there are many Web application architectures and stacks for vari

ous environments (e.g. as described in [26] and [27]), some of which could be con

sidered obsolete when compared to modern products. Even the considerably old CGI

protocol remains a popular option, especially in environments where the Web applica

tion is peripheral to the product (e.g. software and hardware network appliances, em

bedded devices managed with a Web interface). The focus of this dissertation how

ever is on the other end of the spectrum: on high-end Web applications built with

modern technologies and for global audiences.

2.1. Trends in scalable Web applications architectures
If there would be a need to summarize the recent trends in building large-scale Web

applications in as few words as possible, these words would be “Shared nothing archi

tecture.” In the historical debate between the opposite concepts of “Shared

everything” and “Shared nothing” architectures, the latter has become the de-facto

only architecture used today for implementing globally accessible Web applications,

mostly due to its intrinsic property that scalability for a larger number of clients can

be achieved by adding cheap servers to the hosting environment and that faults in

servers can have only a very localized influence. The Shared nothing architecture was

first championed in the field of database architectures in 1986 [28] but has recently

found its application in Web applications where it has achieved great popularity and

is currently the strategy on which the largest Web application and Web service

vendors rely on for scalability [29][30][31][32].

From the point of view of data storage, providing for global applications is challen

ging. The vastly dominant storage medium is still the mechanical hard disk drive, and

while solid state drive (SSD) deployments are growing, they have not yet reached the

same order of magnitude as with the conventional mechanical drives [33]. Since ap

24

plications for the global audience are accessed frequently and unpredictably, their

data access patterns emphasize the slowest operations in mechanical hard drives –

seeks. Increased requirements for performance have resulted in wide-spread adoption

of various caching techniques where the “hot set” of accessed data is kept in memory.

Some of the largest Web applications whose implementation is officially disclosed use

cache servers to increase the access performance for the largest part of their working

data set. Examples for this are Facebook, which holds more than 300 TB of data in

memory caches [14] and Twitter, which implements an architecture which considers

memory as its primary data store with the disk-based database storage being second

ary (and for which “flushing the cache” would be “catastrophic”) [34].

The prevalent type of the memory cache used is a simple key-value data store

with automatic expiry, which is exemplified in the Open source product memcached,

used by some of the largest Web sites such as Facebook, Flickr, LiveJournal, Reddit,

Twitter, YouTube and Wikipedia [36]. The successes in implementing this type of

cache in highly popular Web applications has contributed to the resurgence in usage

of simple, non-relation data models for main data stores, which is focused in the

“NoSQL movement” [35]3.

3 The “NoSQL movement” self-defines in [35] as “Next Generation Databases mostly addressing some
of the points: being non-relational, distributed, open-source and horizontally scalable. The original
intention has been modern Web-scale databases. The movement began early 2009 and is growing
rapidly.”

25

3. Problems in Web application scalability

The term “scalability” as applied to Web applications can be defined with clarity as

describing the simplicity with which the applications can be made accessible to a lar

ger number of users, usually by introducing new hardware resources like CPUs,

memory and persistent storage into the system, or in other words how well the applic

ation responds to an increased amount of resources available to it. When discussing

computer system scalability in general, there are usually two aspects of the problem

which are being discussed: vertical scalability and horizontal scalability. The former is

describing the response of the applications to adding more resources to a single com

puter system (e.g. a local CPU, more RAM modules, more disk drives) while the latter

describes the application's response to adding more computer systems, assuming that

the question of vertical scalability within each system is already solved or irrelevant.

This dissertation touches on both aspects of scalability but has a slightly more intense

focus on the area of horizontal scalability, which is currently necessary for reaching

global audiences.

Internet-facing, publicly available Web applications are unique in that they can lit

erally be made accessible to the whole world, or at least every Internet user on it4.

This introduces large strains on all important resources of such a system: the CPU

load, memory, storage space and network bandwidth, all of which must support all of

the users accessing the application or there is a risk of degraded experience for a sig

nificant part of the user base, or even all of it. The following sections discuss the prob

lems in scalability of major types of resources in a computer system and their influ

ence on the quality of services delivered to end-users.

4 Currently no more than one third of the world population has Internet access [37][38]. According to
some statistics, almost 50% of these users access Google on daily basis [39] and almost 40% access
Facebook on daily basis [40].

26

3.1. Scalability of CPU load
Scalability of CPU usage has been the typical problem of vertical scalability for a long

time. It can be described as the efficiency in using available CPU computational

power (i.e. not wasting it on “book-keeping” operations or inefficient algorithms).

Though historically the problem has been addressed though advancements in al

gorithms and program architecture, today it shares some points with horizontal

scalability in environments where there is more than one active CPU core available to

applications on a single system [41].

One of the major tasks of application architecture design today is the design and

choice of algorithms which can be applied in programs running on multi-core mul

ti-processor (SMP) computer architectures. In the technological landscape where the

Moore's Law was redirected from building faster CPU cores to building more cores on

a single chip5 [42] but the memory, system data buses and even storage have re

mained centralized and at least partially shared between the CPU cores, the emphasis

has shifted over time to developing algorithms which operate on multiple cores but re

duce or avoid contention on shared memory regions [43][44][45].

 From the application's point of view the “hidden latencies” such as memory and

system bus accesses usually manifest as non-specific CPU-related slowdowns. These

latencies will, unless a specific distinction needs to be made, be folded under “CPU

load.” This discussion assumes that the CPU, buses and memory are matched in tech

nical properties and speed and considers largely out of scope the situations where

there is some kind of mismatch between CPU performance and memory or system bus

performance (for example where a fast new-generation CPU is used with a slow past-

generation memory).

The impact of a CPU overload on a Web application server used (shared) by many

users degrades the response time, usually in linear proportion to the factor of over

load, for all users of the server. This property makes the effects of CPU overload

among the more light-weight of the overload effects. However in some border cases,

5 Moore's law concerns itself with the growth of the number of transistors on a single chip

27

for example if there is significant contention for application resources, overloading the

CPU may have a significantly worse then linear impact on overall system perform

ance.

In order to maximize vertical scalability of available CPU resources, applications

need to be designed to make use of multiple CPUs or CPU cores in a computer sys

tem, by using techniques of multiprocessing and multithreading. The challenge of ho

rizontal scalability is in extending these techniques to implementation on multiple

networked computer systems.

3.2. Scalability of memory
Though the amount of available system memory (RAM) has increased significantly in

the past years, the demands on memory have grown to match it. A large portion of

this increase simply comes from the increase in the scope of data processed by applic

ations: more messages, larger images, multimedia features and similar demands which

come from the demand for better user experience.

Traditionally, memory overload is somewhat mitigated by using virtual memory

techniques with disk paging, colloquially called “swapping” but high-performance ap

plications suffer greatly from increased latencies of disk drive-backed memory, lead

ing to severe user experience degradation. In this respect, memory overload is a signi

ficantly worse situation than CPU overload and should be avoided at all cost. Addi

tionally, memory is used for local file system caches so the shortage of memory can

cause performance and stability problems even if there is strictly enough memory for

the programs themselves.

Depending on memory access patterns and operating system virtual memory al

gorithms, as well as the severity of memory shortage, memory overloads can have an

influence on either all users of the Web application or only for some users. Due to the

large gap in latencies between “real” memory and disk-based virtual memory, memory

shortage manifests in sudden performance drops and, if not handled properly can lead

28

to “spiral of death” behaviour as the queue of incoming HTTP requests is lengthening

while waiting for progressively slower requests to finish executing.

Vertical scalability in memory availability is usually trivially achieved within the

applications if the hardware allows memory expansion (though with the exception of

high-end systems this expansion requires system downtime). Horizontal scalability of

system memory is usually not achievable by itself due to requirements of high-band

width and low-latency interconnects, and is usually a consequence of horizontally

scaling for CPU load by running programs on multiple servers.

Another aspect of memory scalability is the possibility of memory bandwidth

overload, either directly caused by the memory modules themselves or by the design

of system buses. While this aspect can have an impact on application performance,

contemporary practices in system design tend to pair CPUs, buses and memory mod

ules of similar performance classes [46], minimizing the impact or preventing band

width overload.

3.3. Scalability of storage

Storage systems in general have three aspects critical for practical Web application

scalability: available storage space, performance expressed in terms of operations per

seconds (IOPS – Input Output operations Per Second) and reliability, each having a

different influence on overall application performance.

Scalability of storage space is important as the amount of data in the application

grows. If the storage hardware or the application architecture do not allow storage

space expansion, new data cannot be recorded but access to existing data will gener

ally not be hindered. This situation may prevent signing up of new users or uploading

of new data, but existing users may view already present data, usually without major

additional problems.

Overloading the storage systems in terms of IOPS is a problem with larger con

sequences, influencing all users of the same storage service or a device in a way sim

29

ilar to CPU overload: in the general case the performance degradation is linear in pro

portion to the factor of overload. Recently popularized technologies such as flash

memory based solid state drives (SSDs) can allow significantly increased IOPS per

formance but the gains are sensitive to the type of workload and they can degrade

over time in which the device is actively used [47].

Vertical scalability of storage (both for available space and for IOPS performance)

is usually easily achievable within the applications if the hardware allows expansion.

Making use of horizontal scalability requires application designs which allow storage

to be implemented across multiple servers or specialized storage devices, while still

maintaining coherence and data integrity with respect to business rules.

In addition to storage space and IOPS scalability, an important property of storage

systems for the majority of applications is their reliability. While disasters involving

CPUs, memory and other core systems can be relatively painlessly recovered by repla

cing those parts, loss of data is usually a much more serious problem which can more

directly lead to business problems such as loss of revenue and customers (users) [48].

Unfortunately, as reliability of storage is achieved by implementing redundancy in

various components [49], it often stands as a goal opposite to the goals of increased

storage space and IOPS performance, requiring compromises.

3.4. Scalability of networks and internal communication channels

Application tiers need to communicate, and the way this communication is implemen

ted affects application performance and scalability. It is easily observable that this

area of system design is often not given the attention it deserves, erroneously assum

ing near-instant communication between application tiers whether they are imple

mented on a single server or distributed across many servers in various arrangements.

This assumption leads to various “unexplainable” performance problems for applica

tions which are otherwise correctly designed. Commoditization and componentization

of modules from which the application tiers themselves are built with can lead to

overlooking performance bottlenecks such as using comparatively expensive protocols

for internal communication within a server (such as using TPC over localhost instead

30

of light-weight operating system IPC or shared memory), verbose or complex proto

cols for communicating latency-sensitive data between servers (such as using AS

CII-based or XML-formatted protocols to communicate with database servers) or even

using inadequate or unconfigured hardware (such as 100 Mbit/s Ethernet instead of 1

Gbit/s Ethernet).

From the application scalability point of view, the problems are in identifying crit

ical communication paths and implementing them in a way which maximizes both

local performance and allows future expansion.

3.5. Scalability of application architecture
Even if all the lower levels are designed correctly, that alone is not enough to ensure

adequate scalability. A scalable Web application architecture will adapt to expansion

of each of the previously described types of resources, with the goal of maximizing the

effective use of any new resources attached to the application. It must respond with

increased performance if local computer resources (CPUs, memory and storage) are

added as well as allow running application instances on separate computer systems

(servers), while also being able to access multiple networked storage servers and other

devices.

31

4. Strategies for scalable Web applications

A beneficial aspect of the HTTP with respect to scalability is that it was originally de

signed as a stateless protocol in versions up to and including 1.0 [50]. This directly

supports the shared nothing approach and allows for a trivial scheme of scalable con

tent delivery based on the property that, since no persistent data needs to be kept

between HTTP requests, sequential requests can be responded to by separate and un

related servers, providing that each one of the servers carries the whole data set and

implements the same namespace. The simplest practical implementation of this

scheme utilizes a feature of the Domain Name System (DNS [51]) by which clients re

questing domain name resolution can be pointed to an IP address chosen from a list of

possible addresses in a round-robin fashion, which results in a stochastically balanced

load between the servers in the list (a “load balanced group”).

Dynamic Web content – which would now in most cases be synonymous with

Web applications – relies on preserving state between HTTP requests to provide users

with a richer set of interactive features. Application state data can be preserved across

requests even in HTTP/1.0 by including it as “query” parts of URLs or HTML “form

data” in requests. While this approach has the distinction of being very standard-com

pliant, retaining the basically stateless aspects of the protocol, it is also cumbersome

and very inefficient if the application state is large.

To standardize and encourage the creation of more complex applications, the

concept of “HTTP Cookies” was introduced [52], allowing applications to either trans

fer state data with every request or to use more advanced session-keeping facilities of

the servers. In either case, the move has proven to be pivotal for the appearance of

complex Web applications. As the applications become more complex and with more

state data to be preserved, a common technique in preserving the state became trans

32

porting only a short, unique and random “session identifier” string in an HTTP cookie

(or in older applications as a part of URLs), storing the much larger application state

data on the server as “session data” in a database or as a simple file (which is also re

commended in [53]). This technique minimizes the amount of data being transferred

between the client and the server in each request-response transaction, however it

also breaks with the stateless nature of the protocol, removing the possibility of ex

ploiting the trivial shared nothing approach in scaling to multiple servers. Addition

ally, complex applications most likely need access to a larger data set in addition to

the user-centric state data, e.g. a database containing business data, a set of files, etc.

Achieving similar levels of scalability with stateful Web applications is possible if

all servers acting as part of a load balanced group have equal access to all of the ap

plication data (including session data). This requirement can be satisfied by having all

servers accessing the same database or the file system or by replicating data between

them. This approach is adequate for a smaller number of servers but introduces

scalability problems for larger deployments. In the segment of bleeding-edge Web ap

plication technology, overcoming this step is what separates small and medium de

ployments of Web applications and the large-scale or global Web applications.

4.1. Strategies for global scalability

Web sites aiming for global scalability with complex applications must implement

shared nothing architectures more aggressively. On a high level, users from different

parts of the world need to be presented a service with harmonized network condi

tions, getting around latency sources such as inter-continental network links, conges

ted network links and unstable routing paths [54]. This is achieved by geographically

distributing data centres involved in serving the application to the users, together

with deploying geographically-dependant DNS service which provides transparent

balancing of user requests to the data centre which is closest to the request origin (in

terms of network topology and latency) [55].

33

This strategy introduces the notion of a Web application which appears for all in

tents and purposes to be monolithic and single-sourced but which is in practice dis

tributed across the globe. It also introduces a problem of global data coherency.

To return to the shared nothing ideal architecture, the currently largest Web sites

have begun to implement aggressive data partitioning schemes in order to minimize

the need for online data synchronization between various parts and layers in their ap

plication architecture, with the ultimate goal of handling a single related block of in

formation on as few systems as possible, preferably localized with respect to global

distribution.

4.1.1. Case study: Facebook

Facebook as one of the largest Web applications currently deployed has a very pro

nounced history of “starting small” and upgrading their infrastructure as the number

of users increased [56], relying on self-invented techniques based on commodity

products to handle scalability. Due to the specific nature of data maintained by Face

book – social graphs which span the whole world – it has not yet deployed geograph

ically distributed data centres for its core data, but makes extensive use of third party

content delivery networks (CDNs) for static content (uploaded images, multimedia)

[32]. This enables the core application to process the bulk of the applications' dynamic

data within its main data centres but handle high-volume data in a distributed fash

ion.

Facebook's main data centres contain over 30,000 servers total, of which approxim

ately 2,000 are database servers and approximately 1,000 are cache servers (numbers

estimated from partial data available for years 2009 and 2010 from cited sources).

Since Facebook makes use of CDNs for static data, the majority of the remaining serv

ers are Web application servers.

4.1.2. Case study: Google

Though Google publishes more papers on methods, technology and analysis than any

of the big Web-oriented companies [57], less is known about its specific internal infra

34

structure. It is known that Google used techniques for building distributed computing

systems from the start and relied less on commodity products, building its infrastruc

ture (both software and hardware [58]) with considerable planning. One of the

biggest early technical innovations from Google was the “BigTable” system, a highly

distributed database which was the forerunner in the application of map-reduce al

gorithms [59] for high volume data processing [30].

Google is known to have highly geographically decentralized architecture, imple

menting its service through more than 50 world-wide data centres (extrapolated from

information available in 2008 [60]) and an estimated more than a million servers [61].

These data centres are used to store and serve both global search index results and

user information such as the contents of Google Mail mailboxes. In case the user ac

cesses his information from a “distant” location (i.e. an suboptimal data centre), his

data (or a portion of it) is migrated at runtime.

4.1.3. Case study: Twitter

Twitter is one of the youngest globally popular Web applications, but similar to oth

ers, it has experienced a large growth in the number of users, requiring a rapid trans

ition from a minimal infrastructure to one needing substantial hardware and software

investments [34]. Interestingly for this dissertation, its most recent infrastructure for

goes the model of a classic database-centric architecture for a more memory-based

one implemented with the memcached cache server (the database is “only” a backup),

and can achieve processing volume of at least 7,000 messages per second on a global

scale [62]. Due to the high volume of data, a complete database restart in Twitter is

an operation lasting more than 12 hours [63]. Little is known about the specifics of

Twitter's current hardware infrastructure but it is large enough to warrant the con

struction of a custom-built data centre [64].

4.1.4. Service levels

While having a widely distributed and well implemented application can effectively

increase its availability [65] on the large scale, this is not true for smaller deploy

ments. In environments where redundancy is not totally pervasive, increasing the

35

number of components which can break down can in a trivial way decrease the avail

ability of the application.

Introducing redundancy in hardware targets removing single points of failure on

the lowest level and spans the entire spectrum from redundancies in the design of the

electrical supply to the building, power supply units on the equipment, network con

nectivity (including active equipment like network switches) to using redundant serv

ers, which themselves are equipped with ECC or Extended ECC RAM (whose import

ance is attested in [66]), certified server CPUs and disk drives (if applicable). In order

to protect from data loss or unavailability, redundant data storage equipment and ser

vices are a necessary part of the overall system, manifesting on different levels as us

ing redundancy-increasing RAID levels on disk drives, file systems with built-in replic

ation and database services with built-in replication in various forms. On the applica

tion level, redundancy is achieved by running multiple instances of the application

code on different servers rather than implemented on the same system6, but requires

that the application supports this type of deployment and can make efficient use of

the distributed data storage and services.

4.1.5. Cost

Large-scale Web application deployments rely on using cheap hardware and high

levels of automation for bringing down both cost and complexity of implementation

[58][14]. Large data centre deployments drive costs down by using mass-produced

equipment, commodity industry standard servers based on Intel x86 or AMD architec

tures [67][68], with standardized components such as storage and network systems.

The cost breakdown of data centres indicates that servers themselves take slightly less

than 60% of overall cost, while the rest is spent on electrical energy supply and distri

bution, cooling and other equipment [10].

Any increase in server efficiency – from better hardware to better algorithms – re

flects not only as direct savings in the number of servers needed to serve a fixed num

6 Except in very high-end business-targeted computer systems with mainframe qualities which offer
advanced CPU coupling features for application redundancy, which are out of scope for this
dissertation.

36

ber of users but also indirectly on savings on power supply, cooling and supporting

equipment. In rapidly growing globally available Web application deployments,

switching to a more efficient Web application tier can slow down the rate at which

new equipment is acquired [32].

4.2. Strategies for data storage scalability

In order to maximize the locality of data and with it reduce the latencies involved and

to directly or indirectly implement shared nothing architectures, large-scale Web ap

plications make extensive use of sharding and tiering techniques, either separately or

in a combination. Conceptually, both techniques can be implemented independently

of the actual low-level data storage methods (such as database types or storage device

architecture) and can be realized either purely as a function of the database (or other

storage system) or as a high-level application feature closely tied with business logic

[69][70][71][72][73][32].

The term sharding has been recently popularized by developers of distributed ap

plications to usually refer to a specific method of data partitioning with the goal of

aggressive horizontal scalability where data objects and all their referenced objects

reside self-sufficiently on a single system (typically, the criteria for sharding include

users, topics and geographic locations). This approach is usually combined with at

least slight denormalization of data (to reduce data set complexity while increasing

performance) and some duplication of data across data partitions (to ensure complete

independence of data partitions), but with the combined benefit of ensuring with high

certainty that the method will result in a highly horizontally scalable architecture.

Data storage tiering is an extension of the hierarchical model of memory [74], ap

plied to the topics of scalability. Tiering for scalability includes isolating and/or mov

ing frequently accessed (“hot”) data to better performing (and regularly more expens

ive) storage while leaving less frequently accessed data on slower, mass storage

devices [75]. This principle is the basis of caching, including the use of cache servers

in Web applications. When combined with sharding, the technique involves moving

37

entire self-sufficient data sets to better performing storage systems for the duration of

the period of frequent accesses [14].

4.3. The importance of cache servers

Contemporary cache servers are specialized memory-only database servers whose

primary purpose is providing performance enhancements to complex applications,

typically by serving as fast storage for performance-sensitive application data. De

pending on the specifics of their usage, they do not necessarily need to be highly op

timized for performance (though they usually are) as long as their common operations

are faster than the operations the applications would have to perform if the cache

servers are not used.

A common use for cache servers is as intermediate cache layers between the ap

plication and the database, storing and retrieving data sets which are slow or complex

to query directly from the database. In this arrangement, the cache server can be

shared by application servers to make effective use of common data cached between

application instances, virtually acting as a tier in the hierarchical memory model. A

classic problem of all data caching techniques is data expiry, for which the cache serv

ers need to provide adequate support.

Dedicated cache servers (like memcached [36]) are optimized for performance of

their most commonly used operations, sacrificing all other database functionalities

(such as ACID properties or complex data models). An important aspect of this is the

use of main memory for storage as maximal performance is achieved if the whole data

set fits in the system RAM (which is not preserved across server reboots or other

events which cause discontinuations of the cache server operation). The orientation

towards performance also manifests in the implementation of simple data models (in

popular cache servers it is exclusively the simple key-value pair model) and in the sup

port for only a restricted set of operations – usually only PUT, GET, DELETE are im

plemented, with occasional support for atomic increment and decrement on (specially

formatted) data record entries [36][76][77].

38

 One of the observations this dissertation explores is that the benefits of cache

servers can be exploited in both the technical and the business aspect of Web applica

tion deployments. As general-purpose data storage accelerators they can help build

better performing applications or they can enable application feature growth with the

same performance characteristics. From the business point of view, they can enable

savings in the amount of server infrastructure needed to provide services to a certain

number of users. Their usage is wide-spread and it would be fair to say that cache

servers are one of the principal enablers of today's complex and global Web applica

tions.

4.4. Previous work
Cache servers for Web applications are one of the building blocks of high performance

Web applications and are responsible for much of the good performance of some ma

jor contemporary Web sites like Wikipedia, LiveJournal, Filckr, YouTube, Digg [36],

Zynga, ShareThis [77] and companies like VMWare [76]. Several high-profile state of

the art projects with similar features are available with relatively similar features, of

which the most important are Memcached, Membase and Redis, used at the previ

ously listed sites respectively. Their most important features and drawbacks are high

lighted in Table 1.

PROJECT NAME NOTES FEATURES DRAWBACKS

Memcached The first and very popular
cache server

Simple key-value store with
atomic operations, the most
popular Web cache server

Very simple data model,
asynchronous
replication

Membase Created as an alternative
to Memcached

Network protocol compatible
with Memcached, multi-
tenancy, replaceable storage
layer, optional data persistence

Very simple data model,
asynchronous
replication

Redis Created to offer a richer
data model

Internal support for complex
data types in records (lists, sets,
bitmaps, with associated
operations), optional data
persistence

Single-threaded, only
master-slave replication

Table 1: Characteristics of existing major Web cache servers

Common features shared by all projects in Table 1 are the use of the key-value data

model as the central model, fast operation provided by in-memory data storage, and

39

at least some type of asynchronous data replication between servers of the same type.

The projects are also uniformly created for the Unix-like (or POSIX) environments, and

at least to some extent make use of advanced event-based IO APIs. Of the listed pro

jects, Memcached is by far the most popular cache server and the one with the most

active development, so it is suitable as a baseline for comparison in this dissertation.

A goal of this dissertation is to design a Web cache server which would extend the

capabilities of existing solutions and address some of their shortcomings.

40

41

5. Requirements for a new cache server model

While cache servers are widely deployed in high scale applications, they offer a

simplistic and limited data model (making it harder to design applications with com

plex caching requirements), sometimes incomplete adaptation to multi-processor en

vironment (resulting in underutilization of hardware) and with less attention spent on

data consistency in replication (which can cause data loss or even performance prob

lems).

Based on the needs for development and large scale deployment of Web applica

tions, the proposed hypothesis of this dissertation is that the following improvements

would make the biggest impact on the efficiency of the cache server and the ease of

implementation over the existing solutions:

• A more complex data model, allowing for more complex data queries and for

more complex processing to be performed directly on the cache server

• A program architecture optimized for contemporary multi-core processors

commonly found in industry standard servers

• A model of durability based on synchronous data replication with predictable

performance and data coherency

These improvements to the contemporary cache server architectures are designed to

enable faster and more productive development of scalable and feature-rich Web ap

plications. In order to be competitive with the currently widely deployed cache serv

ers, the new model adopts some existing constraints and optimizations: the cache

server should effectively be a memory-only database, with a data model considerably

simpler than that of general-purpose databases, with simple atomic operations and

42

without multi-operation transactions. Thus, the new cache server will not attempt to

be a general-purpose database but is designed for a specific mode of use.

5.1. Data model and supported operations

The basic form for an addressable database is a store of records made of key-value

pairs (a dictionary), where both the key and the value are more or less opaque binary

strings. The keys are conceptually treated as unique addresses by which the values

are stored and accessed. Because of the simplicity of this model, it can be implemen

ted efficiently and it is often used for fast and robust databases [78]. As a simple and

robust model, it is often used as an architectural primitive on top of which more com

plex data models can be built. However, pure key-value databases can be limiting and

inflexible and complex applications would benefit from a more complex cache data

model, as demonstrated in [79].

The new cache server's data model should be based on the key-value record data

model with simple timed expiry at its core but it should extend it with user-defined

“tags” so that each key-value data record stored in the cache server can be addition

ally augmented with an arbitrary number of specially formed record tags. The struc

ture of these tags should also follow the key-value model but with a limited and rigor

ous format which maintains high performance of common operations: both the tag

key and tag value data are to be of strictly enforced data types, namely signed in

tegers. The intent behind the introduction of such limited tags is to enable applica

tions to assign custom metadata to the key-value records (which leads to the possibil

ity of implementing queries which reference not only record keys but also such

metadata) while at the same time holding efficiency and performance as key design

goals. Such tags can be viewed as a means for classification of cache records for the

purpose of extending the flexibility of certain operations. This extension to the basic

key-value data model, is simple but hopefully powerful enough to significantly extend

the functionality and usefulness of the new cache server, allowing for easier imple

mentation of more complex applications. An overview of the structure of the new re

cords is depicted in Figure 1.

43

:

Figure 1 Main elements of the new cache server record

The data model should be accompanied by the additions to the basic set of cache

server operations, supporting conditional and ranged queries referencing tags keys

and tag values. The choice of the additional supported operations (at least in this

phase) was governed by performance concerns. If the records are described as having

a key K and value V, and one or more tag keys TKn and tag values TVn, the additional

operations are described in a pseudo relational query syntax in Table 2.

ADDITIONAL CACHE OPERATIONS

PUT (K, V), (TK1, TV1) [, (TK2, TV2)...]

GET K, V WHERE TK = $TK AND TV IN ($TV1, [$TV2...])

DELETE WHERE TK = $TK AND TV IN ($TV1, [$TV2...])

Table 2: Additional cache operations supported by the new data model

The new operations emphasize the use of tag keys as data types or data groups, with

the tag values as specific object identifiers within the type or group. One particularly

useful application of this scheme is for describing cached records as belonging to a

particular user, page, page object or a business object, enabling queries such as “GET

records belonging to a certain object” or “DELETE records belonging to a certain

page.” The latter example demonstrates a frequent operation required for efficient

cache data expiry; without metadata tagging, relationships such as those between a

Cache record structure

Key (K)

Value (V)

TK4 TV4 TK5 TV5 . . .

TK1 TV1 TK2 TV2 TK3 TV3

Key (K)

Metadata (timestamp, expiry time...)

44

page (which is a high-level Web application entity) and individual cached records

(which are low-level data objects) would have to be stored either in the application's

private data or in another record in the cache server whose updating may lead to race

condition errors in concurrent updates due to the simple “PUT & GET” model of oper

ations.

The introduction of tagging in the cache server is expected to be a large step in

flexibility for application developers, enabling the development of more complex ap

plication features which are supported by a more complex data model in the cache.

With it, the cache server can (if needed) become a part of the application instead of a

peripheral subsystem not normally accessed from the application business logic.

5.2. Program architecture for multi-core processors
Contemporary industry standard servers are built around SMP and small-scale

ccNUMA processor architectures, that is to say either with memory which is uni

formly shared across all of the processor cores (illustrated in Figure 2) or with pro

cessors with their own locally attached memory (as in Figure 3) but with enforced

memory coherency on the hardware level [80][81].

Figure 2: SMP / UMA - Symmetric multiprocessing,
uniform memory architecture illustration

45

Figure 3: NUMA - Non-uniform memory access
architecture illustration

The benefits of the SMP architecture are centred around its relative simplicity and the

symmetry of memory and IO access arbitrated by the use of the front-side bus (FSB),

while the NUMA architecture offers potentially significantly lower latencies in

memory and IO access if they reference the particular CPU's memory and IO space.

The most common number of processor sockets in industry standard servers is two,

but varies from one on the low end to eight on the high end (servers with a higher

number of sockets are rare and implement specialized hardware which moves them

away from industry standards). The total number of processor cores (not counting

technologies such as Hyperthreading) is approaching 64 in high-end servers but is

more commonly around 16 [82][83][84].

In order to make use of the multiple available CPU cores, data structures and al

gorithms must be adapted to allow parallel execution on multiple cores, generally aim

ing to be as efficient as possible in the face of Amdahl's law [41][85]. This goal is

made difficult by real-world constraints on several layers: the application, the operat

ing system and the hardware. Within these, this dissertation will focus on three as

pects:

1. Interaction with the operating system,

2. Distribution of tasks and resources across CPU threads of execution, and

3. Allowing parallel access to the cache server structures in memory.

These aspects together govern the program architecture and have a very direct influ

ence on its actual performance. This research has included a study of several vari

ations of the listed aspects and as one of its results the implementation of multiple

techniques and algorithms (where applicable) to allow direct comparison between

46

them. Some of these techniques and algorithms have direct influence on client applic

ation architecture patterns.

5.2.1. Interaction with the operating system

The new cache server should be portable across operating systems in order to ease its

implementation in various environments and provide easy access to its client applica

tions. The dominant platform for wide scale server deployment (mostly because of free

implementations in the form of Linux and BSD variants) is a Unix-like POSIX environ

ment [14][34][56][86], which has influenced the decision to make the new cache

server POSIX compliant. Apart from the standard general-purpose application pro

gramming interfaces, it should use asynchronous and event-driven IO operations and

the pthreads API for multi-threading and inter-thread synchronization.

5.2.2. Task distribution across CPU threads

The workings of a cache server can be divided into several distinct groups of tasks, the

most important of which are connection handling, network IO handling and query

processing. The distribution of these tasks across CPU threads has a large influence

on its performance, and some models of this distribution may be more suitable for cer

tain tasks than others. For this reason, the cache server should architecturally support

several multithreading models known in literature: single-process event-driven

(SPED), staged event-driven architecture (SEDA), asymmetric multi-process event-

driven (AMPED) and symmetric multi-process event-driven (SYMPED) [87].

5.2.3. Allowing parallel access to in-memory cache records data

The well known Amdahl's law dictates that the gains from parallelism are in the

largest part governed by the tasks which cannot be parallelized. Since the hardware

memory model for which the cache server is targeted offers a coherent view on all of

the memory to all running threads (as described e.g. in [88]), it is possible to imple

ment a synchronization model which allows parallel read operations and only requires

waiting for write operations. The literature describes this topic extensively and from

different points of view – from low level methods used to ensure proper ordering of

operations (such as critical sections [89], reader-writer locks [90], monitors [91] and

47

non-blocking algorithms [92]) to more high-level consistency models used for both

multiprogramming and distributed computing [93] (of which the most important ones

for contemporary highly distributed systems are serializability [94], multi-version con

currency control and eventual consistency [95]). Using some of these techniques, the

new cache server should minimize the amount of blocking while accessing shared

data, while allowing maximum throughput for (read) operations on non-shared data.

5.3. Durability through data replication

Though the commonly implied goal behind the use of caches of any kind is to improve

a system's performance, it is also implied that the original operations themselves

could be performed even without the caches but with lower performance. However,

practical use usually includes complex interactions where this is not so simple. Many

advanced computer users are familiar with situations which arise when various levels

of operating system caches become inoperable or suboptimally configured (most not

ably the disk caches) and such situations are proportionally worse on servers with

more demanding workloads. Shutting down a cache server for a Web application can

be compared to disabling operating system disk caches – most systems would not be

able to continue operating with acceptable performance [34]. Additionally, application

architecture may not even allow operation without a cache server as that could trans

late to losing the functionality of an API layer.

Due to the nature of the cache servers, they cannot use slower persistent storage

devices to achieve durability of data and must implement durability with systems of

comparable speed and capacity – i.e. other cache servers. The most common way of

achieving such an arrangement is deployment of identical cache servers which replic

ate their data over a local network, with the obvious downside of increased latencies

(even 10 Gbit/s Ethernet links are very slow compared to internal server buses which

offer a few orders of magnitude better performance). With simpler cache servers such

replication may be implemented at the application layer by having the application

push data (e.g. execute PUT commands) on multiple cache servers and pull data (e.g.

GET) from one of them, chosen randomly or in round-robin fashion. Cache record in

validation could be implemented in an analogous way. While it is simple to implement

48

(and its implementation does not rely on server-side support), this method has a

downside of possible temporary loss of data coherency between replicas (i.e. its opera

tions are not atomic).

The new cache server should implement a model with stronger guarantees – syn

chronous multi-master replication specifically intended for improving durability by

replicating data between a small number of servers connected with high-speed net

work links.

49

6. The model of a new cache server

Requirements described in Chapter 5 are not met by existing cache server products,

which has led me to propose the model of a new cache server which supports the fol

lowing functionalities:

• Startup and management. The cache server is configurable from the com

mand line with at least these options: network parameters, the threading

model and resource limits.

• Communication with client applications. As communication channels, the

cache server offers TCP/IP and Unix domain sockets. The protocol used in this

communication emphasizes performance over convenience of operation.

• Data model. The cache server offers a data model centred around a key-value

records, with the addition of arbitrary integer key-value tags to each record.

• Cache operations. The cache server offers the following data operations:

simple PUT, GET and DELETE (by one or more keys), tagged PUT, GET and

DELETE (described in table 2), simple atomic ADD, SUBTRACT and CMPSET

(arithmetic and synchronization operations on a single record).

• Concurrent access. The cache server can be used by multiple clients at once,

with efficiency and flexibility.

• Data replication. The cache server offers synchronized multi-master replica

tion of data between several identically configured cache servers.

In order to implement these functionalities, the cache server needs a careful program

design which would allow the features to be implemented efficiently. It can be divided

functionally into the following modules and tasks:

50

1. Operating system interfaces and basic program infrastructure

2. Network setup

3. New connection processing

4. Network IO processing

5. Network protocol parsing

6. Database data structures and algorithms

7. Database query processing

8. Replication processing

The relationships between these modules and tasks are presented in Figure 4. The net

work setup task, the network connection handler module, the network IO handler

module and the replication module interface directly with the operating system while

the network protocol parsing module, the database query processing module and the

data storage module do not need to communicate with the operating system directly.

In order to support multiple multithreading models, the connection handler module,

the network IO handler module and the network protocol parsing module communic

ate (in general) by using synchronized queues, while the remaining modules use direct

calls (where applicable).

The modular approach outlined in Figure 4 allows experimentation in the design of

the data structures, multithreading models and queuing techniques. Tasks are labelled

T1 to T4 and they can include multiple modules (exemplified by task T3 which con

tains “payload work” done on behalf of the client applications).

Support for multithreading is implemented by carefully decoupling the operation

of various tasks. Tasks T2 and T3 are almost completely isolated from the rest of the

program by using job queues and as such can be instantiated in an arbitrary number

of CPU threads. Task T1 is generally intended to be instantiated at most in one thread

because at the lowest level it is dependant on individual server sockets and its work

load is not complicated so it cannot be expected to be improved by introducing paral

lelism (which agrees with other research, e.g. [96]).

51

Figure 4: Modules and tasks of the new cache server

Task T4 containing the replication module is a special case, as for reasons of ensuring

data consistency it must participate in concurrent access to data structure in response

to both local changes and events from remote replicas, for which it instantiates addi

tional threads.

6.1. Interaction between threads

The new cache server uses the POSIX threads (pthreads) API for thread management

and synchronization. The pthreads API is a fairly complete API specification with a

O
pe

ra
tin

g
sy

st
em

 in
te

rf
ac

es
 a

nd
 p

ro
gr

am
 in

fr
as

tr
uc

tu
re

Network setup

New connection
processing

Network protocol
parsing

Network IO
processing

Database query
processing

Database data
structures and

algorithms

T1

T2

T3

Queue

Direct call

Replication processing

T4

52

medium level of abstraction for realizing proper multithreaded programs. Of its many

supported features, the new cache server uses the Thread, Mutex, Condition Variable

and Read/Write Lock parts of the API to achieve controlled parallel execution in mul

tiprocessor environments.

In this dissertation, the term “multithreading model” refers to a distinct way tasks

in an IO driven network server are distributed to CPU threads (specifically, tasks T1,

T2 and T3 from Figure 4). It generally concerns itself with the general notion of

threads dedicated for certain type of tasks, rather than the quantity of threads or

tasks present at a time (except for some special or degenerate cases like 0 or 1). A typ

ical network server (and specifically also in the new cache server) has three types of

tasks that can be parallelized or instantiated into different CPU threads:

1. Accepting new client connections and closing or garbage collecting existing

connections.

2. Network communication with accepted client connections.

3. Payload work that the server does on behalf of the client, which includes gen

erating a response. This task class contains all operations the server needs to

perform in response to a command or input received from the network.

These types of tasks map into tasks T1, T2 and T3 in Figure 4. Several models for dis

tribution of such tasks are recognized in practice and literature [97]. At one part of

the spectrum is the single process event driven (SPED) model, where all three types of

tasks are always performed by a single thread (or process), using kernel-provided

event notification mechanisms to manage multiple clients at virtually the same time,

but actually performing each individual task step sequentially. This model is charac

terized by the presence of a single “event loop” program construct which receives IO

events from the operating system, processes them one by one and blocks waiting for

new IO events. On the opposite side of SPED is staged event-driven architecture

(SEDA), where every task is implemented as a thread or a thread pool and a response

to a request made to the client might involve processing in multiple different threads.

53

In the new cache server the SPED model is implemented within the connection ac

cepting thread (running task T1) with bypassed queueing between it and the task T2,

and between tasks T2 and T3, by using direct calls to complete requests. This is made

possible by the fact that the number of threads for all tasks is known in advance (at

server startup and configuration). In contrast to this mode of operation, SEDA is the

generic model where each of the tasks is instantiated as an arbitrary number of

threads.

Between the extremes are the asymmetric multi-process event-driven (AMPED)

model where the network operations are processed in a way similar to SPED (i.e. in a

single thread) while only the payload work is delegated to separate threads to avoid

running long-term operations directly in the network IO loop and symmetric mul

ti-process event driven (SYMPED) which uses multiple SPED-like threads, each pro

cessing several client connections. AMPED is achieved in the new cache server by

handling network IO (task T2) from the same thread as the connection handler task

(task T1) and SYMPED by grouping tasks T2 and T3.

A special class of AMPED is a thread-per-connection model (usually called simply

the multithreaded or multiprocessing – MT or MP – model) where connection accept

ance and garbage collecting is implemented in a single thread which delegates both

the network communication and payload work to a separate thread for each connec

ted client. This model will not be specially investigated here as there is a large body of

work already covering it and because it exhibits performance degradation as the num

ber of clients rises [98].

This flexibility of the new cache server in testing multithreading models is unique

among publicly described software of comparable type.

The experience with multithreading models in [99] led to an interest in certain

edge cases – in particular, reducing unwanted effects of inter-thread communication

and limiting context switching between threads. This research has also touched on a

previously undistinguished variation of the SEDA model where the number of worker

54

threads exactly equals the number of network threads and each network thread al

ways communicates with the same worker thread, avoiding some of the inter-thread

locking of communication queues; this model, previously not specially discussed in the

reviewed literature, was given the name SEDA-S (for symmetric).

Each of the described multithreaded models can also be implemented with multi

processing, and in fact some of them are more well known in this variant (the process-

or thread- per connection model is well known and often used in Unix environments),

but this work is focused on the multithreaded variants. The configuration of tasks and

threads in relation to various multithreading models is summarized in Table 3.

MODEL
NEW CONNECTION

HANDLER (T1)
NETWORK IO HANDLER (T2) PAYLOAD WORK (T3)

SPED 1 thread In connection thread In connection thread

SEDA 1 thread N1 threads N2 threads

SEDA-S 1 thread N threads N threads

AMPED 1 thread 1 thread N threads

SYMPED 1 thread N threads In network thread

Table 3: Supported multithreading models

This division of tasks into multithreaded models closely follows the description of the

models available in literature, but is of course adapted to this specific program.

6.2. Operating system interfaces and program infrastructure

The new cache server is created in a mix of C and C++ and limits itself to the common

Unix-like operating system interfaces, mostly those documented as POSIX standards.

It has been successfully tested for portability on two major such environments: Linux

and FreeBSD. Of the advanced features offered by the operating system, only POSIX

threads and asynchronous network IO are used, making the program self-contained

and independent of third-party libraries.

The program is configured from command line arguments. Among the configurable

features are the threading model, logging, cache contents dumping and pre-warming,

and the list of replication peers. The main program thread performs network setup

55

and creates other appropriate threads, then waits until all threads exit before ending

the process.

6.3. Network setup

The new cache server offers its services over stream-based communication channels:

TCP and Unix domain (or “local”) sockets, treated equally. A small number of optimiz

ations are applied to all sockets (client and server): turning off of “Nagle's algorithm”

for reduced latencies (in case of TCP) and explicit configuration of network buffers to

sizes expecting to hold average incoming and outgoing messages.

6.4. New connection processing
The new connection handler (task T1) is always instantiated in a single thread. Its

main workload is asynchronously accepting newly connected client sockets from the

operating system (i.e. “listening” on server sockets), configuring them and enqueuing

them into the asynchronous network IO delivery mechanism. As a special case, it can

enlist the client sockets into its own IO delivery queue, supporting the SPED model.

6.5. Network IO processing

Modern operating systems support both synchronous and asynchronous IO opera

tions (as described from the point of view of how they report their status and comple

tion to the caller) in various forms. Asynchronous, event-based IO operations are more

efficient as they push a larger part of the task into the operating system kernel where

they can be executed more efficiently and in bulk [100][101]. In effect, this network IO

architecture notifies the program when one or more IO events become available for

processing. Performance gains resulting from this type of interaction between the pro

gram and the operating system are the primary reason why they are used in the new

cache server.

The prevailing and recommended model for building high-performance network

servers for a long time was based on single process asynchronous and event-driven IO

architectures in various forms [98][102][103]. Shortcomings of this model grew as the

number of CPU cores available in recent servers increased. Despite the complexities

56

present in creating multithreaded programs, multithreading programming was inevit

ably accepted as it allows fuller use of hardware possibilities [104][105].

All network IO in the new cache server (including the network IO within the new

connection handler) is performed by using asynchronous IO functions of the operating

system. Since this is a performance sensitive area of the program, advanced APIs are

used to ensure maximal efficiency – Linux epoll [106] and FreeBSD kqueues [101].

Messages received from clients in task T2 are checked for consistency and queued for

delivery (or passed as a direct call in case of SPED and SYMPED) to task T3 for pars

ing and execution.

An important optimization for efficiency of network IO is in the scaling of the net

work IO buffers. For optimal buffer sizing, the sizes of cache data requests during reg

ular operation (8 hours on a work day) of www.fer.hr have been investigated, and the

results are presented in Figure 5.

Figure 5: Sample of cached record sizes during regular usage of www.fer.hr

The analysis of cache data requests from Figure 5 showed that approximately 90% of

cached data records (per number of records) are smaller than 1000 bytes (and approx

imately 96% are smaller than 4096 bytes). This information is used to scale the “aver

age record size” and IO buffers in the new cache server to 1 kB and 4 kB, respectively.

39
56100347

655
964

1288
1696

2131
2598

3158
3786

4364
5079

6140
7692

9573
12463

15355
18286

21206
24724

31641361822

0

50.000

100.000

150.000

200.000

250.000

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Cached data sizes histogram

Size (in bytes)

N
um

be
r o

f r
ec

or
ds

57

6.5.1. Efficient event scheduling

The initial implementation of IO processing in the new cache server mapped the oper

ating system's event-based IO capabilities to program behaviour in a direct and simple

way. During the performance evaluation of the new cache server with the described

architecture, the analysis of the program IO path revealed that in the case of large

transaction per second loads, the distribution of IO events received by the program

was inefficient, distributing events received from the operating system one by one to

the worker queues. To improve this situation, a different model was created and im

plemented. In the new approach, events are received from the operating system in as

large numbers as possible and distributed to worker threads (depending on the multi

threading model) in bulk, while at the same time avoiding locking operations on the

worker queues. This approach significantly increased the complexity of the interaction

with worker queues and the associated locking, but has resulted in measurably in

creased performance in situations with a large number of clients and high loads (as

described in chapter 8).

6.6. Network protocol processing
The protocol used for communication between the client applications and the new

cache server is designed to be light-weight and requiring minimal parsing. It is a bin

ary protocol working directly with hardware data types (without the need for transla

tions such as for different endianness or alignment requirements), allowing direct ac

cess to protocol data inside the network IO buffers. The primary reason for choosing

this type of protocol (rather than a text-based protocol or a more descriptive binary

protocol) is the performance advantage which is gained by having only minimal pro

tocol parsing. The client and the server can test their compatibility in areas such as

endian-ness in the protocol handshake.

The messages used in the protocol are of uniform structure which includes (among

other data, detailed in Figure 6) the message type and the message's full size. The ex

istence of the size field enables the server to perform at most one more memory (re)al

location if a message is received which does not fit into expected buffer size.

58

Figure 6: Uniform network message header

All fields are unsigned integers unless otherwise stated. The uniform message header

is of minimal size (only 8 bytes) and optimized for efficiency, containing only the es

sential data to adequately retrieve and fetch the rest of the message. Because of this

its design contains some minor compromises: there can be only 256 different message

(which is not a significant limitation), only 8 message flags and the message sequence

counter overflows every 65536 messages (which is deemed enough to distinguish mes

sages in processing and pair them to their responses even at high message rates). The

message data following the header can be variably sized, depending on the payload. A

typical message (PUT) is described in Figure 7.

The PUT message, used to insert (or overwrite) a single record into the cache, is a

common variably-sized message. It begins with the uniform message header, the num

ber of tags, the sizes of the record key and data (key length is limited to 64 KiB – 1

byte, data length to 4 GiB – 1 byte), the expiration time (expressed in the Unix integer

timestamp format) and then contains the variably-sized tags, each a pair of two 32-bit

signed integers, following with the key data and the value data.

Uniform message header

8 bits

8 bits

16 bits

32 bits

. . . Message
data

Message type

Message flags /
options

Sequence number

Total message size
(including header)

59

Figure 7: PUT message structure

The decision to use 32-bit integers for tags instead of 64-bit integers, which are cur

rently natively supported by industry standard servers, was made because 32-bit in

tegers offer a good trade-off between a (compact) data size and the size of the

namespace they can represent. This choice can be easily changed at compile-time.

When received, such a message is stored directly and the parsing step only in

volves calculating and storing additional pointers to the tags, name and value data in

additional internal structures, for faster direct access.

6.7. Database data structures and algorithms

The primary concern for the design of data structures and algorithms was their effi

ciency with respect to two facilities:

PUT message

64 bits

16 bits

16 bits

32 bits

Uniform message
header

Number of tags
(ntags)
Key size
(ksize)

Value size
(vsize)

32 bits Record expiration
time (exptime)

ntags*64
bits

ntags pairs of
(TK, TV)

ksize*8
bits

vsize*8
bits

Key data

Value data

60

1. Quick access to data

2. Maximal concurrency of data access (from the viewpoint of simultaneously

connected clients)

The first facility is a necessity for high-performance applications in general, and thus

also for cache servers where the high speed of data access is a highly desired feature.

The choice of structures and algorithms for data storage has a huge impact on the

performance curve of the cache server as the number of stored records increases. A

frequent choice for the purpose of fast indexed data access is the tree structure due to

its simplicity and applicability to datasets whose size is not known in advance. For

this model the “Red-black tree” variant of the structure (originally introduced by

[107]) was chosen, as it has the following useful properties [108]:

• Trees with n internal nodes have a height of O(log n)

• All operations on the tree (SEARCH, INSERT, DELETE) have strong worst-case

complexity of O(log n).

Red-black trees trade a somewhat complex implementation for proved complexity

bounds, making them suitable for real-time applications7. Though with desirable per

formance characteristics, the Red-black trees (like all balanced trees) are difficult to

implement with concurrent write access (INSERT and DELETE) as the nodes need to

be shuffled (rotated) based on a balancing criteria, which would require an extensive

and very careful design of concurrency control (locking). In order to support concur

rent write operations on records, a composite data structure was designed consisting

of a hash table whose elements (buckets) are Red-black trees, shown in Figure 8.

This data structure breaks down the need for locking into separate locks for each

of the hash table buckets, enabling concurrent write operations on separate trees.

Consequently, in such an arrangement, all nodes of a single tree hash to the same

7 Though the new cache server does not specifically attempt to have real-time characteristics, it could
have at least soft real-time characteristics if such characteristics are supported by the network IO
and if the number of records in the cache and the number of simultaneous clients is known or
restricted.

61

hash value, making the effects of a bad hash function amplified through trees of dif

ferent height8.

Figure 8: Data structure for cached records indexed by keys (from [99])

The expected algorithm time complexity of this composite structure, without taking

into account lock contention artefacts, is O(log(n) / H) where n is the number of items

stored in the composite structure and H is the number of hash table buckets (and also

the number of locks).

8 To counter this, a relatively novel but well tested hash function called MurmurHash2 [109] is used.

Hash table

RW
lock node

node

node

node

node

node

Red-black
tree

RW
lock node

node

node

node

node

node

Red-black
tree

hash value = H1

hash value = H2

. . .

tree root

tree root

62

6.7.1. Expected performance under contention

The data structure locks are implemented with pthreads reader-writer locks (also

called shared-exclusive). This type of locks is the best match for the purpose as it al

lows any number of read transactions to be performed concurrently on a tree (which

is allowed by the Red-black tree structure as it isn't self-adjusting for read requests as

some other tree structures are, notably the Splay tree), while write transactions re

quire exclusive access as usual. As a cache server is ideally a read-mostly database,

the ability to execute concurrent read transactions is highly desirable.

Reader-writer locks can be implemented either with reader priority or with writer

priority, with respect to behaviour in the case when a locking request of one type ar

rives for a lock which was already acquired by another thread with the opposite lock

type. It is intuitively obvious that since there can be a large number (theoretically in

finite) of simultaneous read acquisitions on a lock but only one write acquisition, im

plementing reader priority would result in writer starvation as the writers would have

to wait too long until all readers (including newly arrived ones) release their locks.

Writer priority avoids this by implementing a special case where a write lock acquisi

tion causes all further attempts of read acquisitions to be put on a waiting list until

that write lock acquisition is performed and released. Inspection of the source code for

popular Unix-like operating systems (Linux, OpenSolaris and FreeBSD) confirms that

the writer priority scheme is more commonly implemented.

63

Figure 9: Data structure lock contention with 90% readers and 10%
writers (from [99])

Figure 10: Data structure lock contention with 80% readers and 20%
writers (from [99])

4 8 16 32 64 128 256
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NCPU=64, SHARED NCPU=64, EXCLUSIVE
NCPU=8, SHARED NCPU=8, EXCLUSIVE

Number of hash table buckets (H)

P
er

ce
nt

ag
e

of
 u

nc
on

te
st

ed
 lo

ck
 a

cq
ui

si
tio

ns
 (U

)

4 8 16 32 64 128 256
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NCPU=64, SHARED NCPU=64, EXCLUSIVE
NCPU=8, SHARED NCPU=8, EXCLUSIVE

Number of hash table buckets (H)

P
er

ce
nt

ag
e

of
 u

nc
on

te
st

ed
 lo

ck
 a

cq
ui

si
tio

ns
 (U

)

64

Figure 11: Data structure lock contention with 50% readers and 50%
writers (from [99])

In order to study the expected behaviour of the designed data structure with respect

to locking contention in multi-core and multi-user environments, a GPSS simulation

was created which simulates a system where a large number of transactions is simul

taneously arriving to a pool of locks which may be acquired either for shared or for

exclusive access. The simulations were run with different ratios of transactions requir

ing shared and exclusive access and their result was expressed as the percentage of

uncontested (fast) lock acquisitions the transactions have been able to perform. At the

boundary conditions, a system in which all lock acquisitions are shared would have

100% of uncontested lock acquisitions in all cases (per definition of a shared lock ac

quisition), while a system in which all lock acquisitions are for exclusive access, the

percentage of uncontested lock acquisitions (with multiple parallel transactions)

would be nearly 0%. These results were plotted in Figures 9, 10 and 11 for ratios of

shared to exclusive locks of 90%:10%, 80%:20% and 50%:50%, respectively, and for two

cases of simulated parallel execution: with 8 CPU cores and for 64 CPU cores (limiting

the number of transactions which may execute an operation simultaneously). The

CPU core counts have been selected to represent those currently widely deployed on

4 8 16 32 64 128 256

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NCPU=64, SHARED NCPU=64, EXCLUSIVE
NCPU=8, SHARED NCPU=8, EXCLUSIVE

Number of hash table buckets (H)

P
er

ce
nt

ag
e

of
 u

nc
on

te
st

ed
 lo

ck
 a

cq
ui

si
tio

ns
 (U

)

65

industry standard servers and those estimated to be available, at least in high-end

equipment, in the following years.

The results (first published in [99]) show that in the cache-friendly case with 90%

read transactions (Figure 9), over 90% of those read transactions can be processed

without significant lock contention for all significant hash table sizes (8 and above) for

the case of 8 CPU cores. More generally, an interpolation of these results shows that

almost 95% of read transactions can be processed without significant lock contention

in a system with N CPU cores if the size of the hash table H is equal to or larger than

N. Write transactions, requiring exclusive locks, move this percentage down to around

60%. The shapes of the curves in Figures 9, 10 and 11 follow the expectations set by

the Amdahl's law (Equation 1) and indicate that this data structure can be expected to

allow a very high level of parallelism in practical applications.

S N = 1

1−P
P
N

 Equation 1

In Equation 1, the variable P represents the portion of the task which can be paral

lelized, and N represents the number of parallel execution units (CPUs). The data

points resulting from these simulations can be fitted to functions which are inferred

(and generalized) from the original Amdahl's law (Equation 2).

U H =A B

1−P
P⋅N
H

 Equation 2

Note that the common graph representation of Equation 1 presents speedup S as a

function of the number of available CPUs N, while graphs in Figures 9, 10 and 11 as

well as the function in Equation 2 present the percentage of uncontested locks U as a

function of the number of hash buckets H. The similarity with Amdahl's law is thus by

analogy, and the variables A and B are free fit factors.

66

The record tag key-value pairs from data records are also organized to serve as in

dexes for fast lookup, and in this model they are stored in structures similar in design

to the composite data structure storing the records, with the added layer which

groups tags with the same key values for increased performance of lookup operations.

The tag keys are hashed in a table with shared-exclusive locks, which contain Red-

Black trees with tag values, in which each node contains a list of pointers to records

that hold the relevant key-value pairs. This structure is optimized for queries which

lookup all records containing a particular tag key-value pair or only a specific tag key.

6.8. Database query processing

The complete list of queries supported by the new cache server (extending the list in

Table 2) is given in Table 4.

LIST OF THE NEW CACHE SERVER'S DATA OPERATIONS

1. PUT (K, V)

2. GET K1 [, K2, ...]

3. DELETE K1 [, K2, ...]

4. ATOMIC_INCREMENT K, N

5. ATOMIC_CMPSET K, V1, V2

6. PUT (K, V), (TK1, TV1) [, (TK2, TV2)...]

7. GET (K, V) WHERE TK = $TK AND TV IN ($TV1, [$TV2...])

8. DELETE WHERE TK = $TK AND TV IN ($TV1, [$TV2...])

Table 4: Entire list of the new cache server's data operations

Operations 1 through 3 in Table 4 are the usual database operations found in key-

value databases, where the PUT operations doubles (atomically) as UPDATE if a re

cord key already exists, completing the CRUD (Create, Read, Update and Delete) set

of basic operations on a database [110]. Operations 4 and 5 are present for efficient

implementation of some client-side operations such as counters and shared locks, and

while they are not in any way required operations, they are a convenient addition im

plemented by several key-value databases (ATOMIC_INCREMENT variant in [36],

[76], [77], ATOMIC_CMPSET variant in [36], [77]). Operations 6 through 8 are the

additional operations of the new cache server that are aware and can make use of

tags. With regards to locking, all operations acquire locks first and implement the op

67

erations next, executing a rollback-and-retry operation if all the necessary locks can

not be acquired for the operation (a variant of Two-phase locking as described e.g. in

[94]). A consequence of this locking scheme is that essentially all operations can be

considered “atomic” in the sense that operations can not operate on half-completed

results of other concurrent operations.

The semantics of all these operations are described in the following sections,

grouped by the operation type.

6.8.1. PUT operations

Both forms of PUT operations (numbered 1 and 6 in Table 4) insert a single record in

the database, differing only in the presence of tags. Internally, both operations share

much of the code path and behave almost the same. In case the operations find an

already existing record with the specified key, they will atomically replace it and sig

nal this to the client. The PUT operations require exclusive access to the hash

bucket(s) used for record and tag data.

6.8.2. GET operations

GET operations (numbered 2 and 7 in Table 4) retrieve one or a number of records

from the cache based on one of the two criteria: either by a list of (one or more) record

keys provided by the client, or by a tag key and a list of tag values (zero or more). The

GET operations require only shared access to the hash bucket(s) used for record and

tag data and as such can be successfully used with high concurrency.

6.8.3. DELETE operations

DELETE operations (numbered 3 and 8 in Table 4) share the form and method of se

lecting records with the GET operations, except they delete the records instead of re

turning them. The DELETE operations require exclusive access to the hash bucket(s)

used for record and tag data.

68

6.8.4. Atomic operations

The atomic operations are special in two ways: in the type of the task they perform

and in the guarantees they give for the task. Specifically, they semantically involve

more than one step in completing the task, and they guarantee that the task will be

implemented as if there are no other atomic operations of the same type executing on

the same data records at the same time.

The ATOMIC_INCREMENT operation is currently the only operation which inter

prets the record value in some way instead of treating it as an opaque binary string. It

operates only on values exactly 8 bytes in size and treats them as 64-bit integers in the

same format (and endianness) as used in the network protocol. It is given a single re

cord key which identifies the record for the operation and a signed 64-bit value which

will be added to the record value. It returns the new value to the client.

The ATOMIC_CMPSET operation implements the CMPSET (Compare And Set,

also abbreviated to CAS) operation on a data record, without interpreting the data

values. It is given a record key and two values. If a record with the given key is found

and its value is a binary string which is exactly equal to the first given value, it re

places it with the second given value, leaving tags intact. It returns a success status to

its caller indicating if CMPSET was successfully executed.

The atomic operations require exclusive access to the hash buckets of the records

they operate on.

6.9. Replication processing
Replication processing in the new cache server introduces a parallel network service

in addition to its main client-server service (inactive unless specifically enabled at

server startup) named the replication backend. This part of the infrastructure commu

nicates with remote instances of the new cache server in a peer-to-peer mode and

adds two layers to the overall processing described in previous sections: one for in

ternal lock operations and one for data operations requiring exclusive access, forward

ing them to remote instances. In effect, it streams a sequence of data and lock opera

69

tions to remote peers, which replay the stream on their local data store. It cooperates

with “local” data operations in a uniform way: the Two-phase locking algorithm ap

plies to the appropriate hash buckets on all connected clients before the operations

are carried out (illustrated in Figure 12), allowing for synchronous multi-master replic

ation. The replication backend maintains a list of locks acquired by remote peers and

performs a rollback operation on them if communication with the peers is suddenly

dropped. Data consistency is further guarded by data generation counts per each

bucket.

70

Figure 12: Protocol diagram of a simple PUT operation of the cache server with
one replication peer

Because of its ties into the data locking operations, the replication backend can be a

performance bottleneck. The volume and the nature of the described stream of opera

tions (even non-exclusive operations need to stream reader locks to their peers) re

quires a low-latency high-bandwidth network connection. For this reason, the replica

Client

Cache server 1

Cache server 2
(peer of Cache server 1)

PUT (K,V)

Query
processing

Data structures
and locks

Acquire remote lock

Lock acquisition successful

Acquire lock

Lock acquired

Insert data

Data inserted

Release lock

Lock released

Release remote lock

Lock release successful
Result

Insert data

Data inserted

71

tion feature is mostly recommended for environments where having a “live” instance

of the cache server with current data is more important than performance or for envir

onments where a suitably fast network link can be implemented.

6.10. Client application interfaces
The new cache server is implemented in a combination of C and C++, and the cli

ent-server network protocol uses native C data types in the communication channel,

so the native client interface for the new cache server is implemented in the form of a

C library. As the C language is very wide-spread and universally supported in POSIX

environments, used as a foundation for more complex environments and even pro

gramming languages, this library can be directly used in higher-level frameworks. One

such wrapper, created during the development and implementation of the new cache

server, is an adaptor library for the PHP language that exposes most of the lower level

C library calls.

The client library offers straightforward functions implementing operations such

as “connect”, “put record”, “get record”, “delete record” etc.

72

73

7. Web application architecture patterns for high
scalability using the new cache server

The new cache server offers a novel approach to several very common cache opera

tions and a strict, coherent model of data replication which may be used for increas

ing reliability or performance without sacrificing strict data consistency. In order to

make the best use of these features in the light of addressing issues from Chapter 3

(Problems in Web application scalability), this chapter proposes a set of additions and

improvements to common Web application architectural patterns.

The new cache server is designed to be a service outside the application, not

tightly coupled with application code. It resembles conventional databases in that

there is a strict separation of duty between it and the application, to which it commu

nicates via a network protocol. In their most basic usage, cache servers operations are

meant to replace expensive operations in a system with more light-weight operations,

resulting in performance improvements (by the extension of the use of cache memory

buffers in computer system design, described in e.g. [111]).

The interaction with cache servers needs to be thought out in advance and care

fully implemented to achieve maximal performance benefits. Of particular importance

are the methods of cached records' expiry (also called cache invalidation) which, while

they can in some cases be simplified to data expiry by timeout, generally require the

involvement of the application since it is directly in control of all data that is incoming

to and outgoing from the system. Cache data expiry should necessarily be implemen

ted with the following two points in mind:

74

1. It should only touch the minimal set of data which is in direct need of expiry

as to not affect the performance of other data, and

2. It should be exact and thorough, affecting all data in need of expiry to prevent

stale data being processed or displayed to the users.

From the point of view of the system as a whole, these two points describe an efficient

cache data expiry mechanism. The following sections propose Web application pat

terns designed to take advantage of the new cache server's data model.

7.1. Cache server as application object cache

The role of object caches in Web applications is to reduce the occurrence of expensive

repetitive data processing (including database queries) by using fast storage to persist

the objects between Web application invocations. For the purpose of this discussion,

“objects” are any entities stored in application memory and do not necessarily have to

correspond to object instances from the Object Oriented Programming terminology; it

is sufficient that these objects are computationally expensive to construct (or require

a large amount of other resources).

Applications of any notable complexity and the number of users typically have a

mixture of global or non-session-specific data and session-specific data. Typical non-

session-specific data are semi-static Web page content like news articles, attached

files and even user comment and forum posts. Contrasted to this, session-specific data

is all data which varies in some way depending on the state of the current session

(this commonly includes information about the logged-in user). Web pages frequently

contain both types of data; for example: a news article in the central place on the page

and a welcome banner with the user's full name, or a different set of visible controls

and/or different content depending on the user's authorization levels. A typical prob

lem in such environments is keeping the data consistent and fresh with respect to

many changes which are dynamically entered into the system by its users, while at

the same time avoiding expensive operations that compile and manipulate data into

the final HTML document.

75

The object cache approach to using the cache server involves gathering data

which forms Web page objects (e.g. from a database), performing necessary data pro

cessing, rendering the HTML presentation of the objects and finally caching either the

objects augmented with their HTML presentation code, or just the final HTML code

in the cache server. Subsequent HTTP requests that need to include the HTML

presentation of an object can simply retrieve it from the cache, avoiding all the previ

ous phases. If needed, the objects' HTML presentation code can be divided into separ

ate parts, such as for the title, the lead text, the main text and the footer, allowing for

separate caching of each of the parts. This approach can be used directly with simple

key-value databases by using a unique ID (possibly generated from more complex

data by using a hash function) as the key. Cache freshness on data update is pre

served by deleting (forcibly expiring) cache records for objects which are being up

dated. However, this approach fails if the objects are not self-sufficient but dependent

on other system data and/or other objects as the key-value record does not hold any

dependency information, so it is not possible to properly refresh cache records if their

dependent data changes. Maintaining a dependency information within the applica

tion as another cached object only pushes the problem to another layer, as this record

itself needs to be frequently modified while the application is used by multiple simul

taneous users. On the other hand, using very coarse forced expiration / cache invalid

ation rules (such as purging all records from a cache server) can result in seriously in

efficient usage of the cache servers and can mitigate potential performance improve

ments. The new cache server's record tags are intended to address the common in

stances of this problem in a simple and robust way.

Groups or classes of interdependence can be given their unique integer identifiers

and used as tag keys, with particular dependency instances (also converted or re

duced to integer IDs) used as tag values. This scheme allows efficient querying and

expiring records of a certain dependency class and instance by using operations 7 and

8 from Table 4, with simpler semantics than some of the algorithms described earlier

in the literature (such as Data Update Propagation described in [112]), which are still

robust enough. It also allows record expiry by multiple criteria, as a record can have

multiple tags assigned to it. The following sections describe common Web application

76

object cache patterns and give implementation examples with focus on efficient re

cord expiry.

7.1.1. Inter-object dependencies

A Web application can work with objects which are complex (e.g. a news item has a

title, a lead text and a main text), have several forms of presentation (e.g. only title

and lead text, a special formatting for mobile devices and a special presentation for

the front page) or depend on objects of different type (e.g. a news item's presentation

may depend on the size and the type of a possible image gallery attached to it or vice

versa). Each of the described dependant objects can be cached as a separate record for

reasons of efficiency: it is highly unlikely that a single invocation of a Web application

will need to retrieve more than one such object.

For a pattern which ensures invalidation of all related cache records if a top level

object changes (in this example a news item object), the suggestion is to introduce a

tag key identifier with the notion of “news item” and a tag value with the specific

news item's unique database identifier (assuming it is an integer), then attaching this

tag to all records depending on the particular news item. Data expiry of all dependant

records can be implemented in a single efficient (and atomic, as described in section

6.8) DELETE operation which operates on all records tagged with this particular key-

value record tag.

7.1.2. Virtual locality dependencies

Web applications (as well as other application types) can usually provide several ways

in which their data may be grouped by its virtual location. Some such “natural” loca

tions for Web application can be pages, forum threads and news posts. The cache

server's tagging abilities can be used for efficient management of data grouped in this

way.

It is not rare for large Web sites to have thousands of pages – identified by unique

path components of the URLs used on the Web site9. Complex globally used Web ap

9 As examples, the main Web site of our Faculty, www.fer.hr, serves over 9,000 separate pages, the

77

plications can, depending on the specific definition of a “Web page” have millions of

different pages. As a dependency source, pages can have a number of properties

which if changed require invalidation of dependant objects (usually those presented

on the respective pages), such as page layout changes (requiring objects to be resized

or repositioned), page design changes and page access permission changes. If the

pages are described in a database, containing unique integer identifiers, invalidation

can be implemented as for application objects, described in the previous section. If

pages are identified only by their paths (as parts of their URLs), the same effect can

be achieved by using a good hash function on the URL to generate the tag value. De

pending on the number of pages and the quality of the hash function, the number of

hash collisions may be negligible. An experiment using the CRC32 function as a hash

function on the corpus of 9,161 page paths on the www.fer.hr system found only one

collision. Such collisions are non-fatal for cache invalidation, resulting in at most some

inefficiency by invalidating more cache records then strictly needed.

7.1.3. User session dependencies

Contents of a Web page may depend on the active user session, whether because it is

customized for the user or it depends on certain per-user business rules (such as ac

cess permissions). To take advantage of the performance improvements offered by the

new cache server, the Web application may cache user-customized content with tags

such as the database user ID or the session identifier string. In case a user ID is used,

the case becomes similar to that of recording inter-object dependencies, but the usage

of session identifiers is more involved.

As the HTTP is after all a stateless protocol with essentially independent re

quest-response pairs, it is up to the Web application or its underlying framework (if

any) to maintain session state (described in Chapter 4). Best practices in current Web

applications implement session state persistence across multiple HTTP transactions by

assigning a short, unique session identifier strings and piggybacking them on regular

HTTP requests and responses. The session identifier strings are created as strongly

Web site of the Faculty of Economics servers over 8,000 separate pages, and the Web site of the
Faculty of Law holds over 3,500 different pages (all Web sites are using the same Web content
management system).

78

random strings (to discourage session hijacking attacks on security by guessing the

identifier) whose length is on the order of 30 characters (usually 32 hexadecimal char

acters encoding 16 random octets, but this is highly implementation dependant). As

such, the namespace of session identifier is usually very sparsely used – even in a

Web application with approximately a billion active users this is a difference between

230 and 2128. Given that the new cache server uses integers as tag keys and values, a

mechanism for translating session identifiers to integer keys needs to be introduced.

This mechanism needs to map session identifiers to tag keys bijectively, prohibiting

utilization of a simple hash function for the mapping. The following two program pat

terns are suggested for efficient use if the new cache server.

The first suggested pattern for efficient implementation of this mapping is to store

it in the application's main database, using database-provided operations and al

gorithms to maintain it. The second suggested pattern is to use the new cache server's

atomic operations on a cache server record to calculate the integer session identifier

at the session creation time (in its simplest form it can be implemented as an integer

counter modulo 231), at the same time maintaining a set of mapping records which can

be queried or created with atomic CMPSET operations. The benefits of the second ap

proach are centred around the avoidance of database use and the use of light-weight

cache operations.

Forced data expiry of user session-related records may help efficiency and per

formance, but also overall system security by forcing expiry of sensitive data from the

cache server when the user “logs out” in the Web application.

7.1.4. Cache server as Web application session storage

As a special case of using the cache server for storing session-dependant data, the en

tire set of session-associated data can be stored in the cache server instead of the

main application database or a file system. This mode of operation is offered by most

Web application frameworks10 as a way of achieving data persistence across HTTP re

10 All the major Web application frameworks support customizable session storage, examples are PHP
(http://www.php.net/session), Ruby on Rails (http://guides.rubyonrails.org/security.html), Django
(http://docs.djangoproject.com/ en/dev/topics/http/sessions/) and Java Servlets (http:// download.

79

quests, exposing a simple and persistent environment to application developers and as

such is a different case from storing session-dependant data which are under the ex

clusive control of the Web application. As application frameworks tend to implement

serialization and deserialization of session data natively and their interfaces offer

“cooked” strings containing serialized application data, session storage often requires

only a key-value type of records, easily implementable with high performance with

the new cache server.

7.1.5. Cache server for storing application-global data

Large-scale Web applications may be implemented by technologies where application

instances are running on many separate systems, without a common central point.

Sharing data in such cases is usually detrimental to overall scalability and perform

ance, but if data sharing is needed, a high performance medium utilized for this shar

ing may reduce the harmful effects up to a point. The new cache server offers high-

performance simple key-value storage and some advanced features which can help in

this case.

7.1.6. Issues addressed

The use of the new cache server as an object cache primarily addresses issues dealing

with performance enhancements over slightly increased code complexity. As such it

can be used to improve applications in the areas of CPU load scalability and applica

tion architecture scalability. Improvements in CPU scalability can be achieved by

making use of the basic cache function of the server, reducing the need for redundant

complex operations, and by making use of fast operations offered by the new cache

server. Application architecture scalability can be improved by allowing application

instances to be run on separate servers while still sharing some data, or using a pool

of (possibly replicated) cache servers.

7.2. Cache server as database cache layer
The most common Web application architecture integrates separate environments for

the application itself and the database, i.e. separate servers, separate processes and

oracle.com/javaee/5/ap i/javax/servlet/http/HttpSession.html).

80

separate languages (e.g. PHP, Java, Ruby versus SQL). The application code usually

implements at least a part of the “business logic” layer and the back-end of the

presentation layer (i.e. creation of HTML documents). The application issues queries

to the database, and it responds with results.

Modern databases can implement complex data schemas and hold large volumes

of data without significant effort, but accessing such data can involve queries which

are complex, have high demands for database server resources and/or have long exe

cution times. Publicly available Web applications, especially if they implement func

tionalities of a news site, a Web portal site, a blog site or a similar application type

where a large number of users accesses essentially the same content, often issue re

peated database queries on a data set which while dynamic, changes relatively infre

quently on a “human” scale of several minutes, allowing for the implementation of a

cache layer in the database access framework of such applications. Such cache layers

can operate on simple key-value records by using the (hash of the) SQL query string

as the record key and the query result as the record value, which while effective, leads

to problem with data expiry. Cache record expiry is the central problem in the de

scribed model, especially if information is business-critical and stale information can

not be allowed to reach the users (e.g. in Web sites which track financial applications).

Two patterns which addresses the problem of record expiry while optimally mak

ing use of the new cache server are suggested here. The first suggested pattern is to

analyse the application schema for tables (or stored procedures, views and other data

producing entities) whose data needs to be presented fresh to the users, then tagging

cache records holding data (either entirely or in part) from these tables with tags con

taining table identifiers. When the table data changes, a cache server operation can be

issued which purges all dependant data.

The second suggested pattern is more involved and is based on identifying specific

database records or groups of records referenced by queries and choosing tags in a

way which allows expiry of a smaller number of cache records (instead of all records

associated with a table). This approach requires more detailed knowledge of the data

81

base schema and the business logic behind the application and can be in effect similar

to using the cache server as an application object cache with inter-object dependen

cies.

Both approaches require tight cooperation from the Web application code, a modi

fication of essentially all code which issues database queries for certain tables or data,

and as such may be complex or tedious to implement.

7.2.1. Issues addressed

By using the new cache server for caching database data, improvements can be

achieved in CPU load (on the database server) and storage scalability. CPU load is re

duced by fetching required data from the cache server instead of passing redundant

queries to the application's primary database. Storage scalability is increased on the

database side in the same way, by reducing the disk IO load created by the database

while working on a large data set. On the other hand, the usage of a cache server

which essentially duplicates (or more than duplicates) data from the database can ad

versely affect memory scalability. In order to reduce memory bloat, cache records may

be configured for automatic timed expiry, which would have the effect of keeping

only the most frequently used data in the cache server.

7.3. Cache server as primary data store
Certain use cases require high performance data operations but are not very sensitive

on data persistence, consistency or structure (one of these is the popular social net

work messaging platform Twitter, as described in section 4.1.3.) The new cache server

provides a convenient data model with high performance which can be used by ap

plications as a primary data store. The following application patterns which can be

used to build Web applications with distinct storage requirements are suggested.

The first pattern is to use the new cache server for sharing frequently used (“hot”)

data between several different applications or between instances of the same applica

tion, with forethought about the volatility of these data. Certain types of data, for ex

ample high volume operation and performance logs, sensor data, ephemeral user data

82

such as user preferences, actions, geographical position and position in virtual envir

onments (games, augmented reality or even the position in a classical Web site's page

structure) may be useful or even essential while the application is running but either

not worth storing in persistent storage at all or of no use in a disaster scenarios which

result in the application server and / or the database server being unavailable. Such

data may be stored in the new cache server, while making use of the advanced fea

tures of its data model (possibly with patterns described in section 7.1). For example,

an application might track a user's position in a virtual shopping mall and use the new

cache server as a shared database available to other users for the purpose of accurate

presentation and interaction but unless a very detailed log of the user's movements is

required, this data does not need to be stored in a persistent database.

Another pattern for the application of new cache server is in cases where the data

is reasonably important but the freshness of data is not of the utmost importance. In

such cases, data can be stored and operated on while completely stored in the cache

server but also periodically copied to a more persistent storage (e.g. a general-purpose

database). Using the same example as above, if the user's past movements are worth

storing but only at a granularity of one minute, a “checkpoint” process might copy rel

evant data from the cache server to the database for historical safekeeping.

7.3.1. Issues addressed

By using the new cache server as the application's primary storage, scalability issues

pertaining to storage are moved away from simple IO performance and start overlap

ping with areas of interest of network scalability, memory scalability and general ap

plication architecture scalability. Practical implementations will in many cases be con

strained by network latency and bandwidth, or in high-end environments with huge

amounts of data even by available system memory bandwidth.

7.4. Cache server and application data partitioning
High performance applications or applications needing to cache more data than can

practically fit in a single computer system's memory might build upon the new cache

server's existing features by introducing a data partitioning layer in front of the cache

83

server that would distribute records onto a pool of multiple cache server instances (se

lected by some criteria based on the record key, usually a hash function). In effect,

this pattern mimics the behaviour of the hash table data structure by treating whole

server instances as buckets, and shares with it both the good sides (the distribution of

processing load and data volume across multiple servers) and the bad sides (problems

arise when the number of buckets / servers needs to be increased).

A practical complex example of this pattern, with the cache server used as an ob

ject cache or a database cache, might use N cache servers as buckets, each of which is

replicated M times for reliability, then distribute cache requests among the N servers

while further distributing read requests among the M servers of each bucket for per

formance reasons. The issue of resizing the server pool might be addressed simply by

invalidating all cached data on all servers, allowing them to be repopulated in the

usual way, or by creating a new server pool of different size, copying the data to the

new pool, then gradually switching the applications to use the new pool. The latter

approach allows for the applications operate continuously during the migration.

7.4.1. Issues addressed

The ability to make use of a number of cache servers equally and without special

cases is a sign of good application scalability. The usage of multiple cache servers (es

pecially in two layers with replication and load balancing of read requests) can have a

significant impact on overall CPU scalability of the application. If the cache servers

are the primary data store of the application, this approach also addresses the scalab

ility of storage and memory.

7.5. Trade-offs and the limits of applicability of proposed Web
application architecture patterns

Though the new cache server is not strictly limited to data caching applications, cach

ing is one of its most likely applications. The concept of data caching relies on the as

sumptions that the cache operations are in some significant way faster (or better per

forming with respect to other computer resources) than the original operations they

are replacing and that such replacements can be achieved often enough to result in

84

benefits to the overall system. If the original operation that generates the potentially

cacheable data is fast enough or the data is modified frequently enough that the be

nefits from retrieving the cached data are small compared to the cost of refreshing it

in the cache, no significant gains can be obtained from any type of caching.

In order to achieve maximum performance, the new cache server implements a

data model centred around the concept of key-value records where both the key and

the value are opaque binary strings. Applications using the cache server need to be

adapted to this model, i.e. they need to construct these strings for the data they want

to store in the cache. Keys can be formed from already present domain-unique data

such as database identifiers, possibly with additional components specifying their do

main to avoid collision with other domains (e.g. “user-9238”), but the record values of

ten need to contain complex data structures which need to be adapted for the purpose

by serialization (or marshalling) into binary strings. If the structures' complexity is

high enough that the serialization is a resource-intensive process (or not even prac

tical), the application may not be able to take advantage of this type of caching.

The new cache server extends the key-value data model with record tags which

are the central concept for achieving significant efficiency gains for certain operations.

This new model is flexible enough, enabling the classification of the cached data

which can be used in operations performed on a large number of records, but is itself

of a very rigid structure, owing to it being designed for maximal performance. It is

therefore conceivable that there can be cases where the model is not suitable for ac

curately representing the application's data and the trade-offs would introduce unac

ceptable complexity, inefficiency or imprecision.

Finally, introducing another component in a system means that the failure of this

component must be considered to maintain a stable operation. In a simple Web applic

ation environment where the main components are the Web server, the application

server and the database, introducing the cache server presents a 25% increase in the

number of points of failure. If an application is using the cache server only for cach

ing, workarounds for when the cache server is unavailable should be implemented.

85

8. Analysis and evaluation of the proposed models and
architectures

The models used in the design of the new cache server and the architectural patterns

proposed for the client applications are verified from several aspects crucial for their

applicability:

• Scalability and efficiency of the multithreading models

• Scalability and efficiency of the model of network IO operations

• Scalability and efficiency of the data structures

• Benefits from application architectural patterns with the use of the new cache

server

These aspects are analysed in the following sections.

8.1. Analysis of scalability and efficiency of the multithreading
models

One of the defining characteristics of the new cache server is the support for a num

ber of different multithreading models for the distribution of its internal tasks. The

supported multithreading models, detailed in section 6.1, are SPED, SEDA, SEDA-S,

AMPED and SYMPED. These models have different characteristics and their optimal

use may be dependant on the exact environment and the task in which they are used.

The evaluation of the multithreading models within this dissertation is focused on the

efficiency of execution in the basic task of key-value record insertion and retrieval to

and from the cache server with the data size kept small in order to exercise the spe

cific edge cases of cooperation in the algorithms. Unless otherwise stated, the per

formance tests of the models has been carried out on server system with eight CPU

cores (of possibly different models), with the cache server and the benchmark client

86

running on the same system and communicating over local Unix domain socket pro

tocol (to minimize outside influences such as network latencies), and with the bench

mark client configured to use 50 simultaneous client threads, 30,000 small records (of

90 bytes average size) and a mixture of 10% write requests and 90% read requests un

der the FreeBSD 8 operating system.

As described in [87], multithreading models have different performance character

istics but also different resource uses. The performance aspect is best illustrated in

Figure 13. The lowest performance, as expected from its lack of support for multi-pro

cessor operation, belongs to the SPED model (Single Process Event Driven). The model

itself is robust and with excellent performance in situations where the cost of “pay

load” work resulting from a client request over the network (measured primarily in

CPU usage but also other resource usage) is negligible when compared to the cost of

actual network communication and connection multiplexing. Its design practically

guarantees that strictly less than a single CPU core will be dedicated to program

activities (not counting operating system kernel activities).

Figure 13: Performance characteristics of different implemented
multithreading models (from [87])

An unexpected result is the relatively low performance of the SEDA model (Staged

Event-Driven Architecture), supported in the new cache server by dividing the net

20 40 60 80 100 120 140
0

50
100
150
200
250
300
350
400
450
500

SPED SEDA SEDA-S AMPED SYMPED

Number of clients

Th
ou

sa
nd

s
of

 tr
an

sa
ct

io
ns

/s

87

work IO and the query processing tasks into an (arbitrary) number of threads, with

queue structures for communication between the threads and between the threads

and the rest of the program. Each of the query processing threads has its own job

queue. In the test whose results are shown in Figure 13, the number of network IO

and query processing threads is actually the same: two of each. Analysis of the pro

gram behaviour has indicated that the low performance is the result of relatively very

asymmetric processing requirements of the test, compared to relatively high cost of

multi-threaded task queuing. Effectively, the program and the operating system have

spent more time managing the queuing and context switching than doing useful work.

After noticing this, an improvement was designed and implemented as the SEDA-S

model (until now not specially described in literature). It shares the same basic opera

tion with SEDA, but the number of network IO threads and the query processing

threads must be exactly the same, with strong coupling between the pairs of threads

which eliminates most of the queue locking, only leaving in place inter-thread notific

ation, and also ensuring better utilization of CPU caches as each of the pairs of

threads can be executed on the same CPU. This addition has more than doubled the

average performance of the SEDA-S tests compared to plain SEDA.

The AMPED model (Asymmetric Multi-Process Event-Driven) uses a single net

work IO thread which dispatches tasks to an (arbitrary) number of query processing

threads (thus the asymmetry). This model effectively concentrates all network opera

tions in a single thread, allowing the operating system to optimize context switching,

while delegating the potentially more CPU-intensive tasks to separate threads (in the

specific tests shown in Figure 13, there were three query processing threads). Since

the number of worker threads can be arbitrary, there is still a relatively large amount

of work done in maintaining the job queues and context switching, and the perform

ance of the AMPED model is lower than that of the SEDA-S model.

Finally, the SYMPED model (Symmetric Multi-Process Event-Driven) is a variation

which can be most concisely described as instantiating multiple threads, each of

which is running the SPED “event loop”. It is supported in the new cache server by

directly invoking the query processing routines without any queuing from inside the

88

network threads, which can be instantiated in an arbitrary number. Each of the net

work threads in this model is assigned network connections from the new connection

processing task in the round-robin fashion. This model closely couples processing of

data received from the network in a single thread, so the lack of queuing and context

switching overheads make it the fastest model by far. It is also scalable in the sense

that the instantiated SPED-like threads can be directly distributed across CPUs, and

as threads do not themselves force context switching, they can stay bound to specific

CPUs, benefiting from efficient use of CPU caches and operating system scheduling,

as demonstrated by tests whose results are shown in Figure 14.

Figure 14: Performance of the SYMPED multithreading model in a 8-core
server, while varying the number of network threads on the server

(from [87])

In these specific tests, though the system is equipped with 8 CPU cores, because the

benchmark clients are executing on the same system as the cache server, improve

ments in scalability stop after all the CPU cores become saturated. As shown in Figure

14, instantiating 4 SPED threads results in not entirely predictable performance, while

with 5 threads the system is oversaturated and performance starts to fall.

20 40 60 80 100 120 140
0

100

200

300

400

500

1 network thread 2 network threads 3 network threads
4 network threads 5 network threads

Number of clients

Th
ou

sa
nd

s
of

 tr
an

sa
ct

io
ns

/s

89

8.1.1. Discussion

The performance tests described in this chapter test the behaviour of the multithread

ing models under specific conditions, where the number of records is relatively small

and the number of clients relatively large, exercising the behaviour under a load by a

large number of clients on a small database with simple queries.

If the conditions change, for example if the number of records is significantly in

creased and so does the complexity of queries, the cost of query execution might be

come large enough that the SPED-like behaviour of SYMPED might introduce notice

able latencies because of their serial processing of network requests. Under such con

ditions, models which offload query processing to separate threads (SEDA-S and AM

PED) would reduce some of the request processing latencies by parallelising network

IO and request parsing with query processing.

The overall performance differs significantly with hardware capabilities. Figure 15

shows the results of the test of the SYMPED model with similar parameters as in Fig

ure 14 (4 server threads, 60 clients), on two different hardware configurations.

Figure 15: Performance comparison of the new cache server on two
different server hardware configurations, depending on record size

92
185

278
371

464
558

651
744

837
930

1023
1395

1861
2792

3723

200.000 TPS

300.000 TPS

400.000 TPS

500.000 TPS

600.000 TPS

700.000 TPS

800.000 TPS

900.000 TPS

1.000.000 TPS

System A System B

Average record data size

P
er

fo
rm

an
ce

90

In Figure 15, System A contains two Intel Xeon 5430 quad-core CPUs (running at 2.6

GHz), while System B contains a single Intel Xeon 5630 quad-core CPU with Hyper

threading (running at 2.5 GHz), two CPU generations newer than System A and with

much faster memory and IO access performance. Despite having less full CPU cores

than System A (and is much cheaper), System B delivers more than twice the perform

ance. Comparison of the results presented for System B in Figure 15 with the publicly

available results of other cache servers (at the time of writing of this dissertation) sug

gests that the new cache server's results are in the best of class for software of similar

type.

8.2. Analysis of scalability and efficiency of network IO operations
As the new cache server is very fast in doing “payload” work (query processing), the

complexity of network IO operations can become the dominating factor in its overall

performance. The effects of this are demonstrated in Figure 16, where two cache serv

ers: the new cache server and Memcached 1.4.5 [36], are tested with different access

methods: Unix domain sockets (only the new cache server as memcached does not

support this access method), TCP over the loopback interface (the localhost address)

and TCP over a switched gigabit Ethernet LAN (the client and the server have

identical hardware, connected to the same managed Ethernet switch).

91

Figure 16: Performance of the new cache server and memcached
depending on the access method

The Unix domain socket access method has the lowest overhead, as it can be imple

mented efficiently within the operating system without the need for complex protocol

parsing and routing and so yields the highest performance among all access methods.

Its downside is, per its definition, that it can only be used for inter-process communic

ation within a single operating system image. Its peak performance is more than 3.5

times higher than the next fastest access method (TCP over Ethernet) and it can be

considered to represent the theoretical peak of communication performance. The

other access methods have several unavoidable overheads: TCP/IP protocol parsing,

routing (however rudimentary) and more software layers which limit scalability. The

operating system used for testing (FreeBSD 8, but the similar situation was observed

in Linux) uses a single network thread for processing network IO per network inter

face in the tested hardware configurations11, further limiting scalability with a relat

ively complex and chatty protocol like TCP/IP is. However, the performance is good

enough for a comparison between the two cache servers using the same access

method. The chart in Figure 17 shows relative performance difference in results

11 More advanced (and more notably, expensive) hardware exists with multiqueue processing which
can be supported by operating systems to implement multithreaded network processing. Such
hardware was not available for testing during the writing of this dissertation.

1 2 4 6 8 10 15 20 30 40 50 75 100 125 150 175 200
0 TPS

50.000 TPS
100.000 TPS
150.000 TPS
200.000 TPS
250.000 TPS
300.000 TPS
350.000 TPS
400.000 TPS
450.000 TPS

new cache (Unix) new cache (localhost)

memcached (localhost) memcached (LAN)
new cache (LAN)

Number of clients with simultaneous operations

P
er

fo
rm

an
ce

92

between the new cache server and memcached, created from the same data as in Fig

ure 16.

Figure 17: Performance difference between memcached and the new cache
server (in favour of the new cache server)

As Memcached implements the SYMPED multithreading model, the same model is

also configured on the new cache server, and the number of threads in both servers is

set to 6. The new cache server exhibits better performance then memcached in all

cases, with improvements as the number of clients increases. The biggest jump in per

formance happens when the number of clients is between 20 and 50, corresponding to

a similar jump with the Unix domain sockets access method from Figure 16. As the

number of server threads is in both cases is equal, this indicates better IO event

scheduling and more efficient data structures on the side of the new cache server.

An interesting property of these results is the difference between performances of

the loopback interface (localhost) and over the (gigabit) local area network. Aside

from the constant offset between localhost and LAN performance curves, there is a

difference in curve slopes for measurements with up to 50 clients, which can be attrib

uted to the more efficient use of system resources (among others: operating system

buffers and CPU caches) when both the client and the server are on the same system.

1 2 4 6 8 10 15 20 30 40 50 75 100 125 150 175 200
0 TPS

5.000 TPS

10.000 TPS

15.000 TPS

20.000 TPS

25.000 TPS

30.000 TPS

TPS difference (localhost) TPS difference (LAN)

Number of clients

P
er

fo
rm

an
ce

 d
iff

er
en

ce

93

8.3. Scalability and efficiency of the data structures
Records are stored in the new cache server in a composite data structure consisting of

a hash table as the first stage and the Red-black binary tree as the second stage, with

a tree rooted in each bucket of the hash table (as the only payload of the buckets).

Each of the buckets also contains a reader-writer lock object protecting access to the

tree, allowing concurrent write access to individual buckets, or in the best case arbit

rary read access to all buckets for all clients (described in detail in section 7.1.1).

The expected time complexity of random access to this structure is O(log(n) / H)

for the structure populated with n records and with H buckets in the hash table. The

default size of the hash table is set to 256, both reducing lock contention and increas

ing record access performance for up to two orders of magnitude over the tree struc

ture alone (though as a constant factor). The result of data structure scalability tests

are shown in Figure 18.

Figure 18: Scalability of the new cache server data structures depending on
the number of records in the structure (access over Unix domain sockets)

The tests in Figure 18 were made with 30 simultaneous clients running the common

benchmark with a configurable number of records (otherwise configured as in

Chapter 8.2). Memory constrains on the server prevented testing with 100,000,000 re

1.000 10.000 100.000 1.000.000 10.000.000
300.000 TPS

320.000 TPS

340.000 TPS

360.000 TPS

380.000 TPS

400.000 TPS

420.000 TPS

440.000 TPS

Data set size (number of records)

P
er

fo
rm

an
ce

94

cords but the attained results very closely match the predicted logarithmic scalability

(the better than expected results with 1,000 and 10,000 records are the results of two

factors: access method overheads and the data records being highly efficiently cached

by the CPU caches).

8.4. Benefits of application architectural patterns with the new cache
server

Dynamically generated Web pages which are also visited by a large number of readers

without much per-user customization share a significant likeness to static Web pages:

their content is not often changed. However, modern Web applications can rarely get

away from using static or pre-generated pages as the users (rightly) expect more and

more interaction with the Web applications. In this scenario, pages cannot be pre-gen

erated or cached in whole but have to be composed from parts which are static and

parts which are dynamic. The new cache server offers a data model which facilitates

building complex applications that cache complex objects and in which the complexity

of record management and invalidation is significantly reduced.

This property enables the implementation of Web application patterns which are

not possible with other cache servers, such as the efficient caching of interdependent

objects, but even without it, it is estimated (based on the implementation of the Quilt

Web content management system at our Faculty) that the support for basic cache op

erations can be implemented in Web applications with up to 20% reduced code com

plexity (measured by the number of lines of code and the intricacy of the cache expir

ation logic).

8.5. Strategies for global scalability using the new cache server

To visualize the impact the use of the new cache server can have on applications' per

formance, it is useful to compare the speed of operations of cache servers and a gen

eric SQL relational database using similar query types and an identically sized data

set. Such a comparison was made on the same hardware used in tests in Figure 16,

with the same data set of 30,000 records used for the original tests, with a client writ

ten in C accessing an installation of the PostgreSQL 9.0 database configured for per

95

formance, over a Unix domain socket. The database contained a single table with two

fields of “TEXT” type, one used as the record key (set as the table's indexed primary

key) and the other as its value. The results of the comparison with strictly read opera

tions (i.e. GET) and a single client thread are shown in Figure 19.

The results in Figure 19 indicate that the implementation of any cache server in an

application for use as a local cache server (running on the same system) can signific

antly improve the application's performance. The new cache server offers significantly

better performance than Memcached and is almost five times faster than the rela

tional database on the same simple type of queries, using the same access method.

PostgreSQL (Unix)
memcached (localhost)

new cache (localhost)
new cache (Unix)

0 TPS

10.000 TPS

20.000 TPS

30.000 TPS

40.000 TPS

50.000 TPS

60.000 TPS

P
er

fo
rm

an
ce

Figure 19: Single-client performance comparison between PostgreSQL,
memcached and the new cache server

As a further exploration of these results, the performance of the system consisting of

the PostgreSQL database and the new cache server with the Unix domain socket ac

cess method with a varying ratio of cached queries to database queries (assuming

that a certain percentage of database queries can be completely replaced by cache

queries) was extrapolated. The results of this extrapolation are shown in Figure 20.

96

Figure 20: Extrapolated performance depending on the predicted ratio of
database queries that are retrieved from the cache instead of the database

From the point of view of a realistic application, this extrapolation is a pessimistic one

as the database queries are usually more complex than in this simulation, resulting in

larger performance improvements with caching. The performance increases offered by

the use of the new cache server can be reflected in the savings on the number of serv

ers used for the application.

The cost of maintaining a data centre with thousands of servers depends on several

factors, among which are the cost of air conditioning / cooling, the network equip

ment and the power supply to the servers. As described in [10], the portion of amort

ized monthly expenditures directly caused by servers can approach 60%. By imple

menting a cache scheme which allows the same overall application performance with

a smaller number of servers it is possible to introduce cost savings. Figure 21 contains

the results of an extrapolation of the portion of monthly amortized server cost based

on the referenced work. As cache efficiency increases, the number of total servers

used to maintain original performance decreases.

10% 20% 30% 40% 50% 60% 70% 80% 90%
11.000 TPS

16.000 TPS

21.000 TPS

26.000 TPS

31.000 TPS

36.000 TPS

41.000 TPS

46.000 TPS

51.000 TPS

56.000 TPS

Percentage of cached queries

P
er

fo
rm

an
ce

97

Figure 21: The estimated share of server cost in total data centre monthly
cost from a model by J. Hamilton

On the other hand, by keeping the number of servers constant, more users can be ser

viced with existing infrastructure, which is a direct improvement in scalability. The

new cache server can be implemented as a part of the application stack, running on

the same system as the Web application for maximum performance, or it can be im

plemented on separate dedicated servers. In the latter case it is possible to calculate

the approximate number of cache servers needed depending on the number of re

quests per second expected on the Web application servers and the number of cache

queries executed during each requests. As an example of this calculation, if the applic

ation servers are serving 100 page requests per second and each request causes 50

cache queries to be issued on average, the ratio of Web application servers to cache

servers could be (conservatively) estimated to be 20:1 (if all other factors are ruled out

such as the availability of memory and the necessary network bandwidth, using the

TCP access method). This estimate also plays a role in tracking cache efficiency – it

indicates that at most 20 Web application servers can make use of cached or shared

data if under full load.

100% 90% 80% 70% 60% 50%
40%

42%

44%

46%

48%

50%

52%

54%

56%

58%

60%

Percentage of servers used

S
er

ve
r c

os
t s

ha
re

 in
 to

ta
l d

at
a

ce
nt

re
 c

os
t

98

99

9. Future work

The area of Web application scalability is large and contains many possible avenues of

research. Some of these may be explored in the context of the new cache server with

the goals of improving its own efficiency and scalability, and others can be applied to

solving challenges in general Web application scalability. This section contains brief

descriptions of the future work possible as continuations to the work described in this

dissertation.

9.1. Improvements in data structure locking

The currently used locking model is very satisfactory, allowing concurrent access in all

but the most intensive workloads. This locking model relies on the classical concept of

locking objects whose services are provided by the operating system. In parallel with

this approach, a new class of algorithms with integrated concurrency control was

popularized as “lockless” and “non-blocking” algorithms which do not rely on the op

erating system-provided locking objects but on hardware-provided atomic operations,

pushing contention down to the level of system bus arbitration [113][114]. It is pos

sible that these algorithms may offer better performance in certain areas, such as the

job queues between the cache server tasks, leading to better performance in the SEDA

and AMPED multithreaded models.

9.2. Improvements in network IO processing

As shown in section 8.2, network communication over TCP/IP introduces a severe per

formance degradation when compared to the very light-weight Unix domain sockets

IPC mechanism. A part of this degradation is due to the relatively larger complexity of

the protocol, indicating that a more light-weight protocol may perform better. A good

candidate for such a protocol is UDP/IP, but its implementation would require a

greater restructuring of the cache server as this protocol is not stream-oriented.

100

9.3. Explicit use of the NUMA computer model
The NUMA model of computer design is becoming more popular with hardware man

ufacturers in order to circumvent current technological obstacles in building CPUs

with faster operating frequency and high-bandwidth access to memory [115]. The

currently widely deployed variant of NUMA (and the one which will in all probability

be the standard for the foreseeable future in industry standard servers), cache coher

ent NUMA (ccNUMA), mostly hides the basic hardware non-uniformity of memory

architecture in a level below the operating system,12 but it cannot always hide one

edge case in the way high-performance programs (both user programs and operating

systems) access memory: not all memory accesses are of comparable latencies and

bandwidth. Modern operating systems and applications cope by adapting process

schedulers [117] and memory allocation [80] subsystems which try to establish local

ity between the program code and the memory it accesses, exposing a mechanism of

hints to the applications which can be used to specify affinity for certain hardware

combinations. However, this is not enough for complex applications requiring a large

amount of memory (such as cache servers and databases in general) as memory ac

cesses are fundamentally unpredictable. Further studies need to be performed to es

tablish if even more complex scheduling (such as for TCP connections with regards to

the connecting client and its past behaviour in data accesses) can substantially help

achieve better performance or is the complexity of such scheduling too large to be

feasible.

9.4. Extension of the cache server to persistent storage
As the tasks of the new cache server are modular and separated by well defined inter

faces, the new cache server is suitable for experimentation where its data storage

module is replaced by one with a different characteristics – for example, one that

would store the data persistently in a file system. As there are several persistent key-

value databases available that could fit this purpose (e.g. Oracle's / SleepyCat's Berke

leyDB, GDBM, Tokyo Cabinet), a new data storage module could use one of them dir

ectly for persistent data storage.

12 Contemporary implementation of ccNUMA in x86 servers offers uniform-enough view of the
memory (by the usage of fast buses and caching) that the AMD Corporation sometimes calls its
architecture SUMO – sufficiently uniform memory organization [116]

101

9.5. Improvements in Web application architecture
While it is primarily intended as a cache server, the new cache server can be used for

data sharing and storage between multiple Web applications. Further work may re

veal new areas of application.

102

103

10. Conclusion

This dissertation introduces models and architectures for increasing performance in

Web applications centred around the new cache server. The first chapter describes the

motivations, the research goals and methods used throughout the work which is de

scribed in the dissertation. Web applications are a ubiquitous service on the Internet

which have spurred the creation of many new businesses. They are the most globally

accessible application type in contemporary computer engineering and their scalabil

ity can have a large influence on both business and leisure of their users. The second

chapter covers trends and best practices in building modern Web applications, with

them emphasis on application scalability, while the third chapter discusses problems

in Web application scalability. The problems touch on all general areas of computer

systems, from CPU load and memory to storage, network utilization and application

architectures.

Chapter four presents an overview of current strategies for both global Web ap

plication scalability and the infrastructure used by some of the currently largest com

panies focused on providing Web application services. It also contains a discussion on

the importance of cache servers in modern Web applications and a reviews some ex

isting cache servers. Based on this discussion, chapter five presents the requirements

for a new cache server with an improved data model, which would efficiently use the

capabilities offered by multi-core server systems and which would implement durabil

ity through data replication. Chapter six describes in detail the model for the new

cache servers, discussing its internal operation with emphasis on the requirements set

in chapter five. The new cache server implements novel functionalities which enable

the creation of more complex Web applications. The program architecture patterns

which may be used in Web application to maximize the benefits of the advanced fea

tures of the new cache server are presented in chapter seven. The largest improve

104

ments in Web application scalability are expected from the newly introduced capabil

ities of tracking inter-object dependencies in the cache and using them for efficient

data expiry, but the cache server can also be used as a facility for sharing data

between applications (or applications' instances) or as a primary data store.

Chapter eight presents an analysis of the proposed models, both for the new cache

server and for the Web applications wishing to make optimal use of the new cache

server. The results are encouraging, and the new cache server performs better than its

closest and most similar cache server, Memcached. By using the new cache server,

scalability can be increased and server costs reduced in large deployments. Finally,

chapter nine presents possible future areas of research based on the continuation of

themes of this dissertation.

This dissertation has introduced a novel model of a cache server which uses the

techniques of data partitioning to achieve high performance and scalability when ac

cessed by a large number of clients. It has presented an implementation of the de

scribed model, which allows the exploration of certain parameters of the said model

such as the multithreading model and the network access method, and presented

novel Web application architecture patterns designed to take advantage of the new

cache server. The dissertation has included the analysis and the evaluation of the

cache server model and the Web application architectures in comparison with existing

solutions.

105

11. Bibliography
1. Tim Berners-Lee, Weaving the Web, Texere Publishing, 2001
2. Forrester Research, Western European Online Retail Forecast, 2009 To 2014, 2010
3. Forrester Research, US Online Retail Forecast, 2009 To 2014, 2010
4. Facebook: "Facebook Statistics", Address: http://www.facebook.com/press/info.php?stat

istics, published in 2010, visited on 2010-10-04
5. All Facebook: "Facebook's Revenue to Surpass $1.2 Billion This Year", Address:

http://www.allfacebook.com/facebooks-ad-revenue-to-surpass-12-billion-this-year-2010-
08, published in 2010, visited on 2010-10-04

6. Google: "Google Investor Relations", Address: http://investor.google.com/earnings.html,
published in 2010, visited on 2010-10-04

7. The Wall Street Journal: "Facebook Picks Site for Data Center", Address: http://online.ws
j.com/article/SB10001424052748703848204575608613663031230.html, published in 2010, vis
ited on 2010-10-05

8. Data Center Knowledge: "Google's Data Center Spending Soars", Address:
http://www.datacenterknowledge.com/archives/2010/10/15/googles-data-center-spending-
soars/, published in 2010, visited on 2010-10-05

9. Data Center Knowledge: "Facebook: $50 Million a Year on Data Centers", Address:
http://www.datacenterknowledge.com/archives/2010/09/16/facebook-50-mil
lion-a-year-on-data-centers/, published in 2010, visited on 2010-10-05

10. James Hamilton: "Overall Data Center Costs", Address: http://perspectives.mvdirona.
com/CommentView,guid,57aec6e4-18e8-4cbe-a05a-890b0b0fd2fd.aspx, published in 2010,
visited on 2010-10-05

11. R. Fielding et al: "RFC 2616: Hypertext Transfer Protocol - HTTP/1.1", Address:
http://tools.ietf.org/html/rfc2616, published in 1999, visited on 2010-10-06

12. L.D. Paulson, "Building rich web application with Ajax", in Computer, IEEE Computer So
ciety, 2005

13. Facebook: "About Facebook", Address: http://www.facebook.com/topic.php?
uid=207734924035&topic=11783, published in 2010, visited on 2010-10-06

14. T. Cook: "A Day in the Life of Facebook Operations", Address: http://velocityconf.com/ve
locity2010/public/schedule/detail/13103, published in 2010, visited on 2011-01-16

15. S.A. Schuman, "Toward Modular Programming in High-Level Languages", in ALGOL
Bulletin, ACM, 1974

16. Dave Winer: "XML-RPC Specification", Address: http://www.xmlrpc.com/spec, published
in 1999, visited on 2010-10-07

17. W3C XML Protocol Working Group: "SOAP/1.2", Address: http://www.w3.org/TR/soap/,
published in 2007, visited on 2010-10-07

18. Pingdom: "REST in peace, SOAP", Address: http://royal.pingdom.com/2010/10/15/rest-in-
peace-soap/, published in 2010, visited on 2010-10-07

19. Google: "Protocol Buffers - Google Code", Address: http://code.google.com/apis/protocol
buffers/, published in 2010, visited on 2011-01-04

20. Apache Foundation: "Apache Thrift", Address: http://incubator.apache.org/thrift/, pub
lished in 2010, visited on 2011-01-04

106

21. 10gen: "BSON - Binary JSON", Address: http://bsonspec.org/, published in 2010, visited on
2011-01-04

22. Open Market: "FastCGI: A High-Performance Web Server Interface", Address:
http://www.fastcgi.com/drupal/node/6?q=node/15, published in 1996, visited on 2010-10-
08

23. R. McCool: "Server Scripts (e-mail message to the www-talk@w3.org mailing list)", Ad
dress: http://1997.webhistory.org/www.lists/www-talk.1993q4/0485.html, published in
1993, visited on 2010-10-10

24. D. Robinson et al: "RFC 3875: The Common Gateway Interface (CGI) Version 1.1", Ad
dress: http://tools.ietf.org/html/rfc3875, published in 2004, visited on 2010-10-08

25. The PHP project: "PHP: Database Extensions", Address: As visible e.g. in the number of
different APIs and styles in the PHP's collection of database extensions documented at
http://www.php.net/manual/en/refs.database.php, published in 2011, visited on 2011-03-
08

26. J. Hunter and W. Crawford, Java Servlet Programming, O'Reilly & Associates, 1998
27. R. Radhakrishnan and L. Kurian John, "A Performance Study of Modern Web applica

tions", in Lecture Notes in Computer Science / Euro-Par’99 Parallel Processing, Springer
Berlin / Heidelberg, 1999

28. M. Stonebraker, "The Case for Shared Nothing", in Database Engineering, IEEE Computer
Society, 1986

29. J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters",
in Proceedings of the Sixth Symposium on Operating System Design and Implementation,
USENIX, 2004

30. F. Chang, J. Dean, S. Ghemawat et al, "Bigtable: A Distributed Storage System for Struc
tured Data", in Proceedings of the Seventh Symposium on Operating System Design and
Implementation, USENIX, 2006

31. D. Farino: "Behind the Scenes at MySpace.com", Address:
http://www.infoq.com/news/2009/02/MySpace-Dan-Farino, published in 2009, visited on
2010-10-11

32. A. Agarwal: "Scale at Facebook", Address: http://www.infoq.com/presentations/Scale-at-
Facebook, published in 2010, visited on 2010-10-12

33. P. Prince, "When will Flash memory take off in enterprise environments?", in Proceedings
of the Flash Memory Summit 2010, Conference ConCepts 2010

34. E. Weaver: "Improving Running Components at Twitter", Address: http://blog.evan
weaver.com/articles/2009/03/13/qcon-presentation/, published in 2009, visited on 2010-10-
12

35. NOSQL Databases: "NOSQL Databases", Address: http://nosql-database.org/, published
in 2010, visited on 2010-11-20

36. Memcached: "memcached - a distributed memory object caching system", Address:
http://memcached.org/, published in 2010, visited on 2010-11-20

37. Internet World Stats: "World Internet Usage Statistics News and World Population
Stats", Address: http://www.internetworldstats.com/stats.htm, published in 2010, visited
on 2010-12-01

38. ITU: "Increased competition has helped bring ICT access to billions", Address:
http://www.itu.int/net/pressoffice/stats/2011/01/index.aspx, published in 2011, visited on
2011-01-28

39. Alexa Internet: "Google.com Site Info", Address: http://www.alexa.com/siteinfo/google.
com, published in 2010, visited on 2010-12-01

40. Alexa Internet: "Facebook.com Site Info", Address: http://www.alexa.com/siteinfo/face
book.com, published in 2010, visited on 2010-12-01

41. M.D. Hill and M.R. Marty, "Amdahl's Law In the Multicore Era", in Computer, IEEE
Computer Society, 2008

107

42. J. Rattner, "Multi-core to the masses", in Proceedings of the 2005 conference on Parallel
Architectures and Compilation Techniques, IEEE Computer Society 2005

43. S.P. Dandamundi, "Reducing hot-spot contention in shared-memory multiprocessor sys
tems", in Concurrency, IEEE Computer Society, 1999

44. W.N. Scharer, III and M.L. Scott, "Advanced contention management for dynamic soft
ware transactional memory", in Proceedings of the 2005 ACM symposium on Principles of
distributed computing, ACM, 2005

45. Xiaohuang Huang et al., "XMalloc: A Scalable Lock-free Dynamic Memory Allocator for
Many-core Machines", in Proceedings of the 2010 IEEE International Conference on Com
puter and Information Technology, IEEE Computer Society 2010

46. R. Shiveley and L. Mead: "The New Economics of Mission-Critical Computing - an Intel
Corp. whitepaper", Address: http://www.intel.com/Assets/en_US/
PDF/whitepaper/323911.pdf, published in 2010, visited on 2011-01-05

47. N. Agrawal et al, "Design tradeoffs for SSD performance", in USENIX 2008 Annual Tech
nical Conference, USENIX Association, 2008

48. P. Fallara, "Disaster recovery planning", in IEEE Potentials, IEEE, 2004
49. P. Chen et al, "RAID: High-Performance, Reliable Secondary Storage", in ACM Comput

ing Surveys, ACM, 1994
50. T. Berners-Lee et all: "RFC 1945: Hypertext Transfer Protocol - HTTP/1.0", Address:

http://tools.ietf.org/html/rfc1945, published in 1996, visited on 2011-01-10
51. P. Mockapetris: "RFC 1034: Domain Names - Concepts and Facilities", Address:

http://tools.ietf.org/html/rfc1034, published in 1987, visited on 2011-01-11
52. D. Kristol et al: "RFC 2109: HTTP State Management Mechanism", Address: http://tools.i

etf.org/html/rfc2109, published in 1997, visited on 2011-01-11
53. D. Kristol et al: "RFC 2965: HTTP State Management Mechanism", Address: http://tools.i

etf.org/html/rfc2965, published in 2000, visited on 2011-01-11
54. H. Pucha et al, "Understanding network delay changes caused by routing events", in Pro

ceedings of the 2007 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, ACM, 2007

55. V. Cardellini et al, "Geographic load balancing for scalable distributed Web systems", in
Proceedings of the 8th IEEE International Symposium on Modeling, Analysis and Simula
tion of Computer and Telecommunication Systems, IEEE, 2000

56. Data Center Knowledge: "The Facebook Data Center FAQ", Address: http://www.data
centerknowledge.com/the-facebook-data-center-faq/, published in 2010, visited on 2011-
01-15

57. Google Inc.: "Google Research", Address: http://research.google.com/, published in 2011,
visited on 2011-01-16

58. S. Shankland: "Google uncloaks once-secret server", Address: http://news.cnet.com/8301-
1001_3-10209580-92.html, published in 2009, visited on 2011-01-15

59. J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters", in
Communications of the ACM, ACM, 2008

60. Pingdom: "Map of all Google data center locations", Address:
http://royal.pingdom.com/2008/04/11/map-of-all-google-data-center-locations/, published
in 2008, visited on 2011-01-16

61. B. Barrett: "Google’s Insane Number of Servers Visualized", Address:
http://gizmodo.com/5517041/googles-insane-number-of-servers-visualized, published in
2010, visited on 2011-05-20

62. J. Dawn: "Celebrating a New Year with a New Tweet Record", Address: http://blog.twit
ter.com/2011/01/celebrating-new-year-with-new-tweet.html, published in 2011, visited on
2011-02-28

108

63. J. Paul: "Twitter & Performance: An update", Address:
http://engineering.twitter.com/2010/07/twitter-performance-update.html, published in
2010, visited on 2011-02-28

64. J. Paul: "Room to grow: a Twitter data center", Address:
http://engineering.twitter.com/2010/07/room-to-grow-twitter-data-center.html, published
in 2010, visited on 2011-02-18

65. M. Glotzbach: "Destination: Dial Tone -- Getting Google Apps to 99.99%", Address:
http://googleenterprise.blogspot.com/2011/01/destination-dial-tone-getting-google.html,
published in 2011, visited on 2011-01-16

66. B. Schroeder, E. Pinheiro and W. D. Weber, "DRAM errors in the wild: a large-scale field
study", in Proceedings of the eleventh international joint conference on Measurement and
modeling of computer systems, ACM 2009

67. I. King: "Intel’s Server Demand Outweighs Tablet Shortcoming", Address:
http://www.bloomberg.com/news/2011-01-13/intel-first-quarter-sales-forecast-tops-ana
lysts-estimates-shares-climb.html, published in 2011, visited on 2011-01-18

68. Top500.Org: "TOP500 List - November 2010 (1-100)", Address:
http://www.top500.org/list/2010/11/100, published in 2010, visited on 1011-01-18

69. T. Hoff: "An Unorthodox Approach to Database Design : The Coming of the Shard", Ad
dress: http://highscalability.com/unorthodox-approach-database-design-coming-shard,
published in 2009, visited on 2011-01-21

70. L.A. Barroso at al, "Web search for a planet: The Google cluster architecture", in IEEE Mi
cro, IEEE, 2003

71. R. Miller: "Database Sharding Helps High-Traffic Sites", Address: http://www.datacenter
knowledge.com/archives/2007/04/27/database-sharding-helps-high-traffic-sites/, published
in 2008, visited on 2011-01-21

72. H. Li et al, "Pfp: parallel fp-growth for query recommendation", in Proceedings of the 2008
ACM conference on Recommender systems, ACM 2008

73. J. Waldo, "Scaling in Games & Virtual Worlds", in ACM Queue, ACM, 2008
74. A. Aggarwal et al, "A model for hierarchical memory", in Proceedings of the nineteenth

annual ACM symposium on Theory of computing, ACM, 1987
75. D. Vagnerov, "A reinforcement learning framework for online data migration in hierarch

ical storage systems ", in The Journal of Supercomputing , Springer, 2008
76. Redis: "Redis", Address: http://redis.io/, published in 2011, visited on 2011-01-22
77. Membase: "Membase", Address: http://www.membase.org/, published in 2011, visited on

2011-01-22
78. M. Olson et al, "Berkeley db", in Proceedings of the FREENIX Track: 1999 USENIX Annual

Technical Conference, USENIX 1999
79. Ivan Voras, Mario Žagar, "Web-enabling Cache Daemon for Complex Data", in Journal of

Computing and Information Technology, , 2008
80. P. Kaminski: "NUMA aware heap memory manager", Address:

http://developer.amd.com/Assets/NUMA_aware_heap_memory_manager_article_final.pdf
, published in 2009, visited on 2011-01-24

81. R. Singhal, "Inside Intel Next Generation Nehalem Microachitecture", in Intel Developer
Forum, Intel 2008

82. J. Jackson: "AMD Server CTO: Core Wars Will Subside", Address: http://www.pcworld.
com/article/207892/amd_server_cto_core_wars_will_subside.html, published in 2010, vis
ited on 2011-01-25

83. AMD: "AMD Opteron™ 6000 Series Platform", Address:
http://www.amd.com/us/products/server/processors/6000-series-platform/pages/6000-
series-platform.aspx, published in 2010, visited on 2011-01-25

84. Intel: "White paper: Intel® Xeon® Processor 7500 Series impact analysis", Address:
http://communities.intel.com/docs/DOC-4997, published in 2010, visited on 2011-01-25

109

85. G. M. Amdahl, "Validity of the single processor approach to achieving large scale com
puting capabilities", in AFIPS '67 Proceedings of the Spring 1967 joint computer confer
ence, ACM 1967

86. J. Corbet: "KS2009: How Google uses Linux", Address: http://lwn.net/Articles/357658/,
published in 2009, visited on 2011-01-28

87. Ivan Voras, Mario Žagar, "Characteristics of Multithreaded Models for High-perform
ance IO Driven Network Application", in Proceedings of the Africon 2009 International
Conference, 2009

88. L. Lamport, "How to Make a Multiprocessor Computer That Correctly Executes Multi
process Programs", in IEEE Transactions on Computers, IEEE, 1979

89. E. W. Dijkstra, "Solution of a problem in concurrent programming control", in Commu
nications of the ACM, ACM, 1967

90. P. J. Courtois, F. Heymans and D. L. Parnas, "Concurrent control with “readers” and
“writers”", in Communications of the ACM, ACM, 1971

91. C. A. R. Hoare, "Monitors: an operating system structuring concept", in Communications
of the ACM, ACM, 1974

92. M. P. Herlihy, "Impossibility and universality results for wait-free synchronization", in
Proceedings of the seventh annual ACM Symposium on Principles of distributed comput
ing, ACM 1988

93. S. V. Adve, "Shared memory consistency models: a tutorial", in IEEE Computer, IEEE, 1996
94. P. A. Bernstain, V. Hadzilacos and N. Goodman, Concurrency Control and Recovery in

Database Systems, Addison Wesley Publishing Company, 1987
95. W. Vogels, "Eventually Consistent", in ACM Queue, ACM, 2008
96. M. Crovella, R. Frangioso and M. Harchol-Balter, "Connection scheduling in web

servers", in Proceedings of the 2nd USENIX Symposium on Internet Technologies and Sys
tems, USENIX 1999

97. D. Pariag et al, "Comparing the performance of web server architectures", in ACM
SIGOPS - Operating System Review, ACM, 2007

98. J. K. Ousterhout, "Why Threads are a Bad Idea (for most purposes)", in Proceedings of
the 1996 USENIX Technical Conference, USENIX 1996

99. Ivan Voras, Danko Basch, Mario Žagar, "A High Performance Database for Web Applica
tion Caches", in Proceedings of the 14th IEEE Mediterranean Electrotechnical Conference,
2008

100. V. Pai et al, "Flash: An efficient and portable Web server", in Proceedings of the 1999
USENIX Annual Technical Conference, USENIX, 1999

101. J. Lemon, "Kqueue: A generic and scalable event notification facility", in Proceedings of
BSDCon 2000, BSDCon 2000

102. G. Banga, J. C. Mogul and P. Druschel, "A scalable and explicit delivery mechanism for
UNIX", in Proceedings of the 1999 USENIX Technical Conference, USENIX 1999

103. F. Dabek et al, "Event-driven programming for robust software", in Proceedings of the
10th ACM SIGOPS European Workshop, ACM 2002

104. R. von Behren, J. Condit and E. Brewer, "A scalable and explicit delivery mechanism for
UNIX", in Proceedings of the 2003 workshop on Hot Topics in Operating Systems, USENIX
2003

105. Peng Li and S. Zdancewic, "Combining events and threads for scalable network services
implementation and evaluation of monadic, application-level concurrency primitives", in
Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and
implementation, USENIX 2007

106. D. Libenzi: "/dev/epoll Home Page", Address: http://www.xmailserver.org/linux-
patches/nio-improve.html, published in 2001, visited on 2011-01-30

107. R. Bayer, "Symmetric binary B-Trees: Data structure and maintenance algorithms", in
Acta Informatica, Springer-Verlag, 1971

110

108. R. Sedgewick and L. J. Guibas, "A dichromatic framework for balanced trees", in Proceed
ings of the 19th Annual Symposium on Foundations of Computer Science (SFCS '78), IEEE
1978

109. A. Appleby: "SMHasher & MurmurHash", Address: http://code.google.com/p/smhasher/,
published in 2011, visited on 2011-02-07

110. J. Martin, Managing the data-base environment, Prentice-Hall, 1983
111. A.J. Smith, "Cache Memories", in ACM Computing Surveys, ACM, 1982
112. A. Iyengar, "Design and performance of a general-purpose software cache", in Proceed

ings of the 1999 IEEE International Conference on Computing and Communications, IEEE
1999

113. B.N. Bershad, " Practical considerations for non-blocking concurrent objects", in Proceed
ings the 13th International Conference on Distributed Computing, IEEE 1993

114. M. M. Michael and M. L. Scott, "Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing", in , ACM 1996

115. B. Verghese et al, "Operating system support for improving data locality on CC-NUMA
compute servers", in ACM SIGOPS Operating Systems Review, ACM, 1996

116. D. Watts and R. Moon, "System x3755 Technical Introduction", technical document pub
lished by IBM, 2007

117. T. Li et al, "Efficient operating system scheduling for performance-asymmetric multi-core
architectures", in Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
ACM, 2007

111

12. Indexes

Illustration Index
Figure 1 Main elements of the new cache server record..41
Figure 2: SMP / UMA - Symmetric multiprocessing,

uniform memory architecture illustration...42
Figure 3: NUMA - Non-uniform memory access architecture illustration43
Figure 4: Modules and tasks of the new cache server..49
Figure 5: Sample of cached record sizes during regular usage of www.fer.hr................................54
Figure 6: Uniform network message header..56
Figure 7: PUT message structure..57
Figure 8: Data structure for cached records indexed by keys (from [99]).......................................59
Figure 9: Data structure lock contention with 90% readers and 10% writers (from [99])............60
Figure 10: Data structure lock contention with 80% readers and 20% writers (from [99]).........61
Figure 11: Data structure lock contention with 50% readers and 50% writers (from [99]).........61
Figure 12: Protocol diagram of a simple PUT operation of the cache server with one replication

peer..67
Figure 13: Performance characteristics of different implemented multithreading models (from

[87])..82
Figure 14: Performance of the SYMPED multithreading model in a 8-core server, while varying

the number of network threads on the server
(from [87])..84

Figure 15: Performance comparison of the new cache server on two different server hardware
configurations, depending on record size...85

Figure 16: Performance of the new cache server and memcached
depending on the access method...86

Figure 17: Performance difference between memcached and the new cache server (in favour of
the new cache server)..88

Figure 18: Scalability of the new cache server data structures depending on the number of
records in the structure (access over Unix domain sockets)...89

Figure 19: Single-client performance comparison between PostgreSQL, memcached and the
new cache server..91

Figure 20: Extrapolated performance depending on the predicted ratio of database queries
that are retrieved from the cache instead of the database..92

Figure 21: The estimated share of server cost in total data centre monthly cost from a model
by J. Hamilton...93

112

Index of Tables
Table 1: Characteristics of existing major Web cache servers..36
Table 2: Additional cache operations supported by the new data model..41
Table 3: Supported multithreading models..52
Table 4: Entire list of the new cache server's data operations..64

113

13. Biography

Ivan Voras was born in Slavonski Brod, Croatia in 1981. He received his dipl.ing. de

gree in Computer engineering in 2006 from the University of Zagreb Faculty of elec

trical engineering and computing (FER) in Croatia. Since 2006 he has been employed

by the Faculty as an Internet Services Architect and has enrolled in the PhD program

in the same year. He has participated in research projects at the Department of con

trol and computer Engineering, and his current research interests are in the fields of

distributed systems and network applications, with a special interest in performance

optimizations. As a graduate and post-graduate student he has received several Fac

ulty and national-level awards for his work, and has been a four-time participant in

Google's Summer of Code program. He is an active member of several Open source

projects and is a regular contributor to the FreeBSD operating system.

Contact e-mail address: ivan.voras@fer.hr.

114

Životopis

Ivan Voras je rođen 1981. u Slavonskom Brodu, u Hrvatskoj, gdje je završio osnovnu

školu i prirodoslovno-matematičku gimnaziju. U 2006. godini je diplomirao na Fakul

tetu elektrotehnike i računarstva u Zagrebu, sa titulom diplomiranog inženjera raču

narstva. Te iste godine se zapošljava na Fakultetu kao Arhitekt usluga na Internetu pri

Centru informatičke potpore i upisuje poslijediplomski doktorski studij. Tijekom dok

torskog studija sudjelovao je u znanstvenim projektima pri Zavodu za automatiku i

računalno inženjerstvo, a istraživački interesi su mu u područjima raspodijeljenih sus

tava i mrežnih aplikacija, sa posebnim naglaskom na optimizaciju performansi. Tije

kom dodiplomskog i poslijediplomskog studija primio je nekoliko nagrada na fakultet

skoj i državnoj razini za svoj rad u ovim područjima te je četiri puta sudjelovao u pro

gramu Google Summer of Code. Član je nekoliko Open source projekata i jedan od re

dovitih suradnika na operacijskom sustavu FreeBSD.

E-mail adresa za kontakt: ivan.voras@fer.hr

	1. Introduction
	1.1. Motivation
	1.2. Research goals and methods
	1.3. Dissertation organization

	2. Best practices and trends in Web application development
	2.1. Trends in scalable Web applications architectures

	3. Problems in Web application scalability
	3.1. Scalability of CPU load
	3.2. Scalability of memory
	3.3. Scalability of storage
	3.4. Scalability of networks and internal communication channels
	3.5. Scalability of application architecture

	4. Strategies for scalable Web applications
	4.1. Strategies for global scalability
	4.1.1. Case study: Facebook
	4.1.2. Case study: Google
	4.1.3. Case study: Twitter
	4.1.4. Service levels
	4.1.5. Cost

	4.2. Strategies for data storage scalability
	4.3. The importance of cache servers
	4.4. Previous work

	5. Requirements for a new cache server model
	5.1. Data model and supported operations
	5.2. Program architecture for multi-core processors
	5.2.1. Interaction with the operating system
	5.2.2. Task distribution across CPU threads
	5.2.3. Allowing parallel access to in-memory cache records data

	5.3. Durability through data replication

	6. The model of a new cache server
	6.1. Interaction between threads
	6.2. Operating system interfaces and program infrastructure
	6.3. Network setup
	6.4. New connection processing
	6.5. Network IO processing
	6.5.1. Efficient event scheduling

	6.6. Network protocol processing
	6.7. Database data structures and algorithms
	6.7.1. Expected performance under contention

	6.8. Database query processing
	6.8.1. PUT operations
	6.8.2. GET operations
	6.8.3. DELETE operations
	6.8.4. Atomic operations

	6.9. Replication processing
	6.10. Client application interfaces

	7. Web application architecture patterns for high scalability using the new cache server
	7.1. Cache server as application object cache
	7.1.1. Inter-object dependencies
	7.1.2. Virtual locality dependencies
	7.1.3. User session dependencies
	7.1.4. Cache server as Web application session storage
	7.1.5. Cache server for storing application-global data
	7.1.6. Issues addressed

	7.2. Cache server as database cache layer
	7.2.1. Issues addressed

	7.3. Cache server as primary data store
	7.3.1. Issues addressed

	7.4. Cache server and application data partitioning
	7.4.1. Issues addressed

	7.5. Trade-offs and the limits of applicability of proposed Web application architecture patterns

	8. Analysis and evaluation of the proposed models and architectures
	8.1. Analysis of scalability and efficiency of the multithreading models
	8.1.1. Discussion

	8.2. Analysis of scalability and efficiency of network IO operations
	8.3. Scalability and efficiency of the data structures
	8.4. Benefits of application architectural patterns with the new cache server
	8.5. Strategies for global scalability using the new cache server

	9. Future work
	9.1. Improvements in data structure locking
	9.2. Improvements in network IO processing
	9.3. Explicit use of the NUMA computer model
	9.4. Extension of the cache server to persistent storage
	9.5. Improvements in Web application architecture

	10. Conclusion
	11. Bibliography
	12. Indexes
	13. Biography

