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Abstract. Genetic algorithms (GAs) generate solutions to optimization
problems using techniques inspired by natural evolution, like crossover,
selection and mutation. In that process, crossover operator plays an im-
portant role as an analogue to reproduction in biological sense. During
the last decades, a number of different crossover operators have been suc-
cessfully designed. However, systematic comparison of those operators is
difficult to find. This paper presents a comparison of 10 crossover oper-
ators that are used in genetic algorithms with binary representation. To
achieve this, experiments are conducted on a set of 15 optimization prob-
lems. A thorough statistical analysis is performed on the results of those
experiments. The results show significant statistical differences between
operators and an overall good performance of uniform, single-point and
reduced surrogate crossover. Additionally, our experiments have shown
that orthogonal crossover operators perform much poorer on the given
problem set and constraints.

1 Introduction

When dealing with optimization problems, one of the challenges is the need to
avoid trapping of the algorithm in the local optima. That objective is especially
present when there are numerous local optima and the dimensionality of the
problem is high. In the last 50 years there have been many metaheuristics com-
ing from the evolutionary computation family that are successful when dealing
with such problems. Among those algorithms, genetic algorithms has received
considerable attention. During that time, genetic algorithms have been success-
fully applied to the variety of optimization problems. Since the invention of
genetic algorithms in 1960s by J. Holland, crossover operator have played major
role as an exploratory force of genetic algorithms. Holland also used mutation
operator in his work, but it was generally treated as subordinate to crossover
operator [6]. In the following years, many modifications of crossover operators
have appeared [3] [11] .

Firstly, it is necessary to answer the question of whether it is possible to find
the best search algorithm. The answer is no, since the “No free lunch” theorem
demonstrates that when averaged over all problems, all search algorithms per-
form equally. However, when working with some knowledge about the problem,
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it is possible to choose more suitable algorithms.
To evaluate the performance of the algorithms it is not enough to compare mean
and standard deviation values [5]. Rather, a proper statistical analysis should
be performed. In this paper, we use nonparametric statistical tests to evaluate
the performance of the crossover operators. For a justification on the selection of
the employed statistical methods, and further information about the statistical
methods, refer to [2] and [13] .

The significance of this comparison lies in the fact that a thorough statistical
analysis of these crossover operators has not been done before, to the best of
our knowledge. The tests done previously were conducted on smaller sets of
crossover operators. The main disadvantage with that approach lies in the fact
that it is based on the mean, and standard deviation values, or on the parametric
statistical tests. The parametric statistical tests are usually performed without
the checking of the necessary conditions for their use, especially in the multi-
problem analysis scenario [5]. In this paper we use a mathematically appropriate
and thorough approach in conducting statistical analysis. We begin this paper by
giving a short overview of the relevant theory in Section 2. Section 3 defines the
parameters used in the experiments, the results obtained from the experiments
and gives directions for the future work; finally, Section 4 draws a conclusion.

2 Preliminary

2.1 Crossover Operator

Crossover, as a process where new individuals are created from the information
contained within the parents, is often said to be the distinguishing feature of
genetic algorithms. Crossover operators are usually applied probabilistically ac-
cording to a crossover rate pc. In this paper crossover will refer to a two-parent
case i.e. two individuals are selected as the parents to produce one offspring.
Table 1 lists references for all the crossover operators investigated in this paper.

2.2 Test Functions

Test functions from the Table 2 have been selected for the investigation of
crossover efficiency. These functions represent well known problems for evalu-
ating the performance of evolutionary algorithms. The table shows the function
formulae, dimension of the problem as used in the experiments, optimum value
of the function and the reference where additional information on the function
can be found.

2.3 Evolutionary Computation Framework - ECF

Evolutionary Computation Framework (ECF), used in this work, is a C++
framework intended for the application of any type of the evolutionary computa-
tion. ECF is developed at the Faculty of Electrical Engineering and Computing,
Zagreb [8].
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Table 1. Crossover operators used in experiments

Crossover operator Reference

Single-point crossover [11] [16]

Two-point crossover [16]

Half-uniform crossover [4]

Uniform crossover [11] [16]

Shuffle crossover [3]

Segmented crossover [3] [10]

Reduced surrogate crossover [3]

Non-geometric crossover [7]

Orthogonal array crossover [1] [9] [17]

Hybrid Taguchi crossover [15]

Table 2. Benchmark functions (D = 30)

Test function Domain Range Reference

f (x) =
∑D

i=1
x2i [-5.12, 5.12] [12]

f (x) =
∑D

i=1
i · x2i [-5.12, 5.12] [12]

f (x) =
∑D

i=1
5 · i · x2i [-5.12, 5.12] [12]

f (x) =
∑D

i=1

(∑i

j=1
x2j

)
[-65.536, 65.536] [12]

f (x) =
∑D−1

i=1
100 ·

(
xi+1 − x2i

)2
+ (1− xi)2 [-2.048, 2.048] [1]

f (x) = 10 ·D +
∑D

i=1

(
x2i − 10 · cos (2 ·Π · xi)

)
[-5.12, 5.12] [12]

f (x) =
∑D

i=1
−xi · sin

(√
|xi|
)

[-500, 500] [9]

f (x) =
∑D

i=1
x2i /4000−

∏D

i=1
cos
(
xi/
√
i
)

+ 1 [-600, 600] [1]

f (x) = −20 · e
−0.2

√∑D

i=1
x2
i
/D

− [-32.768, 32.768] [12]

−e
∑D

i=1
cos(2Πxi)/D + 20 + e

f (x) = −
∑D

i=1
sin (xi) ·

(
sin
(
i · x2i /Π

))20
[0, 3.14] [12]

f (x) =
∑D

i=1

(
106
)(i−1/D−1) · x2i − 450 [-100, 100] [14]

f (x) =
∑D

i=1
|xi|+

∏D

i=1
|xi| [-10, 10] [9]

f (x) =
∑D

i=1
2 ·D+ [3, 13] [1]∑D−1

i=1
[sin (xi + xi+1) + sin (2 · xi · xi+1/3)]

f (x) = 1/D ·
∑D

i=1

(
x4i − 16 · x2i + 5 · xi

)
[-5, 5] [9]∑D

i=1

(∑20

k=0

[
0.5k · cos

(
2Π · 3k (xi + 0.5)

)])
− [-0.5, 0.5] [14]

−D
∑20

k=0

[
0.5k · cos

(
Π · 3k

)]
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3 Experimental Results and Comparisons

3.1 Environmental Settings

In all the experiments, binary-coded genetic algorithm with roulette-wheel se-
lection [16] is used. Individuals are binary vectors which represent real values
[10]. Parameters of the genetic algorithm that are common to every round of
the experiments are as following: simple bit mutation with mutation probability
pm of 0.01 per bit, population size N of 30, precision is set to 3 digits after the
decimal point, which is sufficient to produce large enough number of possible
solutions for used test problems. The number of independent runs for each ex-
periment is 30, dimensionality D of all the test problems is set to 30, and the
number of fitness evaluation is set to 500000. For all the test functions finding
the global minimum is the objective. As a performance measure, we use the error
rate obtained for every algorithm.

Two rounds of the experiments are conducted in total. Each round is designed
to provide the answer to one question. The first round is a parameter tuning
round where the goal is to find the best value of pc for every crossover operator
and every test function. The goal of the second round is to find the best overall
algorithm on the set of all the test functions used in this paper.

Additionally, one may want to find the best performing operator for each
of the test functions. The answers to these questions are not included in the
paper, because knowing the ‘best’ operator for a single problem may be relevant
only for that same problem and the volume of those results exceeds the scope
of this work. Naturally, by choosing other selection and mutation operators it
is possible to expect different results of analysis. However, in order to adhere to
prescribed paper length we decided to use the simplest mutation operator with
constant pm value since the mutation operator is not of the primary interest in
this paper. Furthermore, we use only roulette wheel selection as an example of
commonly used selection type where the pc are variable.

3.2 Experiments and Results

In the first round, each operator is run 30 times on each test function with
different values of pc, ranging from 0.1 to 1 in steps of 0.1. The results for every
combination of single operator and test function are then processed to find the
best crossover probability value. In a large number of combinations there were
no significant statistical differences between performances for different pc values.
However, since a single probability value is needed if there is to be an operator
comparison, for every combination the pc value which gives the smallest average
error on best individuals in 30 runs was chosen.

In the second round, the operators were compared using the above aver-
age error of best individuals from 30 runs with the best probability value. This
structure of input data is in accordance with previous analysis performed over
multiple algorithms and test problems [5] [14]. A series of non-parametrical sta-
tistical tests is performed on the data in this round.
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The first test is Friedman two-way analysis of variances by ranks, which
represents the most well known procedure for testing the differences between
more than two related samples [13]. Additionally, we use Iman-Davenport test
as a variant of Friedman test that provides better statistics [2]. The objective
of the Friedman and Iman-Davenport tests is to show that there is a statistical
difference between groups (crossover operators). If there is a statistical difference,
then additional post-hoc statistical analysis can be performed to discover where
those differences are. Table 3 summarizes the rankings obtained by Friedman
procedure. The results highlight single-point as the best operator, so the post-
hoc analysis is performed with single-point crossover as the control method.

Operator Average ranking

Single-point 3.5667
Two-point 4.3667

Half-uniform 4.7667
Uniform 3.7333

Segmented 4.4333
Shuffle 5.4333

Reduced surrogate 4.3
Non-geometric 5.9333

Orthogonal array 9.4
Hybrid Taguchi 9.0667

Table 3. Average rankings of crossover operators (Friedman)

With the level of significance α of 0.05 both the Friedman and Iman-Davenport
statistic show significant differences in operators with test values of 64.44 and
12.79, respectivelly, and p < 0.001.

In the post-hoc analysis we applied the Bonferroni-Dunn, Hochberg, Finner
and Li tests [2] over the results of Friedman procedure. The analysis indicates
the level of significance with which the control operator is better than each
of the remaining operators (i.e. for which the null hypothesis is rejected) and
the adjusted p values are shown in Table 4. For the Bonferroni-Dunn test, a
critical difference (CD) [5] is calculated which for these data equals 3.0656.
The interpretation of this measure is that the performance of two algorithms is
significantly different only if the corresponding average ranks differ by at least
a critical difference, which is depicted in Fig. 1.

It can be perceived that only orthogonal array and hybrid Taguchi operators
may be regarded as significantly worse than the single point crossover with a level
of significance α of 0.05. For all the other operators, the null hypothesis cannot
be rejected with any of the tests for α= 0.05. When considering Finner test with
level of significance α= 0.1, it can be seen that it rejects another hypothesis i.e.
single point crossover outperforms the non-geometric crossover.
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Algorithm unadjusted p pBonf pHochberg pFinner pLi
Orthogonal array 0 0.000001 0.000001 0.000001 0.000001
Hybrid Taguchi 0.000001 0.000006 0.000005 0.000003 0.000005
Non-geometric 0.032296 0.290662 0.22607 0.093792 0.212294

Shuffle 0.091322 0.821901 0.547934 0.193838 0.432492
Half-uniform 0.277726 2.499538 0.880168 0.443246 0.698581
Segmented 0.433081 3.897733 0.880168 0.573144 0.783272
Two-point 0.469295 4.223652 0.880168 0.573144 0.796594

Reduced surrogate 0.507122 4.564102 0.880168 0.573144 0.808867
Uniform 0.880168 7.921516 0.880168 0.880168 0.880168

Table 4. Post-hoc comparison (control operator: single-point crossover)

SP TP HU U Seg Sh RS NG OA HT
Single-point (SP) 0 -0.003 -0.004 0.009 -0.021 -0.054 0 -0.094 -3.922 -3.682
Two-point (TP) 0.003 0 -0.001 0.012 -0.018 -0.051 0.004 -0.091 -3.918 -3.679
Half-uniform (HU) 0.004 0.001 0 0.013 -0.017 -0.05 0.005 -0.09 -3.917 -3.678
Uniform (U) -0.009 -0.012 -0.013 0 -0.03 -0.063 -0.009 -0.103 -3.931 -3.691
Segmented (Seg) 0.021 0.018 0.017 0.03 0 -0.033 0.021 -0.073 -3.901 -3.661
Shuffle (Sh) 0.054 0.051 0.05 0.063 0.033 0 0.055 -0.04 -3.867 -3.628
Reduced surrogate (RS) -0.001 -0.004 -0.005 0.009 -0.021 -0.055 0 -0.095 -3.922 -3.682
Non-geometric (NG) 0.094 0.091 0.09 0.103 0.073 0.04 0.095 0 -3.827 -3.588
Orthogonal array (OA) 3.922 3.918 3.917 3.931 3.901 3.867 3.922 3.827 0 0.239
Hybrid Taguchi (HT) 3.682 3.679 3.678 3.691 3.661 3.628 3.682 3.588 -0.239 0

Table 5. Contrast estimation (pairwise comparison)

Fig. 1. Bonferroni-Dunn’s test (CD = 3.0656, control operator: single-point crossover)
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Since there are no significant differences for the majority of the operators, a
procedure contrast estimation based on medians [2] can be used to estimate the
differences between each two crossover operators. In this test the performance of
the algorithms is reflected by the magnitudes of the differences in error rates, and
test values are shown in Table 4. A negative value for the operator in a given
row indicates that the operator performs better than the operator in a given
column. These results highlight the uniform, single point and reduced surrogate
operators as the best performing ones.

4 Conclusions

In this work we performed an exhaustive search for optimal choice of crossover
operators on a well established set of optimization problems. The results clearly
show significant statistical differences between certain operators. On the other
hand, the conclusions regarding the best overall operators cannot be given with
reasonable significance.

A notable difference can be perceived in the case of orthogonal array and
hybrid Taguchi crossover, which perform worse than the other operators on the
given set of benchmark functions. Nevertheless, this cannot be taken as a general
rule, since there certainly exist some problems for which those operators may
behave differently. Among other operators, the most successful ones appear to
be the uniform, single-point and reduced surrogate crossover.

The presented results may only be considered relevant if the problem at
hand bears similarities with the problems addressed in this work. Since in most
cases there is not enough time for an exhaustive operator and parameter search,
the provided findings may prove useful to researchers in similar optimization
environment.

Further work should consider the following issues: additional experiments
with different population sizes and mutation probabilities, tournament selection
and additional test functions similar to “real-world” problems. When conducting
additional, more exhaustive analysis it is prudent to employ additional statistical
tests.
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