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Abstract. In most of today’s exactly solved classes of polyominoes, either all members are
convex (in some way), or all members are directed, or both. If the class is neither convex
nor directed, the exact solution is usually elusive. This paper is focused on polyominoes
with hexagonal cells. Concretely, we deal with polyominoes whose columns can have either
one or two connected components. Those polyominoes (unlike the well-explored column-
convex polyominoes) cannot be exactly enumerated by any of the now existing methods.
It is therefore appropriate to introduce additional restrictions, thus obtaining solvable sub-
classes. In our recent paper, published in this same journal, the restrictions just mentioned
were semidirectedness and an upper bound on the size of the gap within a column. In
this paper, the semidirectedness requirement is made looser. The result is that now the
exactly solved subclasses are larger and have greater growth constants. These new poly-
omino families also have the advantage of being invariant under the reflection about the
vertical axis.
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1. Introduction

In our previous paper [2], we began to search for polyomino models which are more
general than column-convex polyominoes, but still have reasonably simple area gen-
erating functions. In [2], we introduced level m cheesy polyominoes (m = 1, 2, 3, . . .),
and here we shall introduce another sequence of models, which we call level m poly-
ominoes with cheesy blocks (m = 1, 2, 3, . . .).

At every level, both cheesy polyominoes and polyominoes with cheesy blocks have
a rational area generating function. However, at any given level, cheesy polyominoes
are a rather small subset of polyominoes with cheesy blocks. The latter set of
polyominoes has a greater growth constant than the former set. For example, the
growth constant of level one cheesy polyominoes is 4.114907 . . . , while the growth
constant of level one polyominoes with cheesy blocks is 4.289698 . . . . (By the growth
constant we mean the limit limn→∞ n

√
an, where an denotes the number of n-celled

elements in a given set of polyominoes.) In addition, if we reflect a polyomino with
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cheesy blocks about the vertical axis, we get a polyomino with cheesy blocks again.
This kind of invariance under reflection is enjoyed by column-convex polyominoes,
but not by cheesy polyominoes. Admittedly, counting level m polyominoes with
cheesy blocks requires some more effort than counting level m cheesy polyominoes.
Anyway, at level one, polyominoes with cheesy blocks are not very hard to count.
In this paper, the level one model is solved in full detail, the solution of the level
two model is outlined, and the result for the level three model is stated with no
proof. (Just as with cheesy polyominoes, as the level increases, the computations
quickly gain in size.) Our computations are done by using Bousquet-Mélou’s [1] and
Svrtan’s [3] “turbo” version of the Temperley method [5].

If the reader is interested in the history of polyomino enumeration, or in the
role which polyominoes play in physics and chemistry, then he/she may refer to the
recently published book [4]. However, if the reader would settle for a few lines, then
it could be enough to see the introduction of our previous paper [2].

2. Definitions and conventions

Some of the relevant definitions were already stated in the section “Definitions and
conventions” of our previous paper [2]. Those “old” definitions are not repeated here
because, whether we repeat them or not, it is natural to read [2] before reading this
paper.

In this paper, we deal with polyominoes with hexagonal cells. When we write “a
polyomino”, we actually mean “a hexagonal-celled polyomino”.

Suppose that P is such a polyomino that the first (i.e., leftmost) column of P has
no gap and that in every pair of adjacent columns of P every connected component
of the right column has at least one edge in common with the left column. Then we
say that P is a rightward-semidirected polyomino.

A polyomino P is a level m cheesy polyomino if the following holds:

• P is a rightward-semidirected polyomino,

• every column of P has at most two connected components,

• if a column of P has two connected components, then the gap between the
components consists of at most m cells.

See Figure 1.
Suppose that P is such a polyomino that the last (i.e., rightmost) column of P has

no gap and that in every pair of adjacent columns of P every connected component
of the left column has at least one edge in common with the right column. Then we
say that P is a leftward-semidirected polyomino.

A polyomino P is a bird if the following holds:

• P has exactly one gap-free column (a, say),

• if we take the union of a and of all (zero or more) columns lying to the left of
a, the result is a leftward-semidirected polyomino,
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Figure 1. A level one cheesy polyomino

• if we take the union of a and of all (zero or more) columns lying to the right
of a, the result is a rightward-semidirected polyomino.

See Figure 2.
A polyomino P is a level m polyomino with cheesy blocks if the following holds:

• there exist positive integers k and i1, i2, . . . , ik such that the first i1 columns
of P form a bird, the next i2 columns of P form a bird,. . . , the last ik columns
of P form a bird,

• every column of P has at most two connected components,

• if a column of P has two connected components, then the gap between the
components consists of at most m cells.

See Figure 3.
Notice that a polyomino with cheesy blocks may have more than one decompo-

sition into birds. Nevertheless, this ambiguity will not bother us during the enu-
meration. Namely, our enumeration method is not a bird-by-bird one, but rather a
column-by-column one. Next, it is easy to see that, if P is a cheesy polyomino, then
P is also a polyomino with cheesy blocks. For example, say that a cheesy polyomino
P has 10 columns and that the 1st, 4th and 5th columns are gap-free, whereas each
of the remaining 7 columns does have a gap. Then the first 3 columns form a bird,
the 4th column itself forms a bird, and the last 6 columns form a bird as well.

Furthermore, if we reflect a bird about the vertical axis, we get a bird again.
Therefore, if we reflect a polyomino with cheesy blocks about the vertical axis, we
get a polyomino with cheesy blocks again.

If a polyomino P is made up of n cells, we say that the area of P is n.
Let a be a column of a polyomino P . By the height of a we mean the number

of those cells which make up a plus the number of those (zero or more) cells which
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Figure 2. A bird

make up the gaps of a. For example, in Figure 2, the highlighted column has height
3, and the next column to the left has height 3, too.

Let R be a set of polyominoes. By the area generating function of R we mean
the formal sum

∑

P∈R

qarea of P .

By the area and last column generating function of R we mean the formal sum

∑

P∈R

qarea of P · tthe height of the last column of P .

3. Level one polyominoes with cheesy blocks

Let E = E(q, t) be the area and last column generating function for level one poly-
ominoes with cheesy blocks. Let E1 = E(q, 1) and F1 = ∂E

∂t (q, 1).
Let U be the set of all level one polyominoes with cheesy blocks.
When we build a column-convex polyomino (resp. a cheesy polyomino) from left

to right, adding one column at a time, every intermediate figure is a column-convex
polyomino (resp. a cheesy polyomino) itself. However, when we build a polyomino
with cheesy blocks, this is no longer the case. A “left factor” of an element of U
need not be an element of U itself.

We say that a figure P is an incomplete level one polyomino with cheesy blocks
if P itself is not an element of U , but P can be made into an element of U by adding
an extra column on the right side of P . When we build a level one polyomino with
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Figure 3. A level one polyomino with cheesy blocks

cheesy blocks, then every intermediate object is either a level one polyomino with
cheesy blocks or an incomplete level one polyomino with cheesy blocks. Incomplete
polyominoes with cheesy blocks can appear when we build the left “wing” of some
bird.

Let V be the set of all incomplete level one polyominoes with cheesy blocks. Let

G(q) =
∑

P∈V

qarea of P .

For P ∈ U ∪ V , we define the body of P to be all of P , except the rightmost
column of P .

We write Uα for the set of level one polyominoes with cheesy blocks which have
only one column. For P ∈ U \ Uα, we define the pivot cell of P to be the lower
right neighbour of the lowest cell of the second last column of P . As Figure 4 clearly
shows, the pivot cell of a polyomino P ∈ U \ Uα is not necessarily contained in P .
Let

Uβ = {P ∈ U \ Uα : the body of P lies in U, the last column of P

has no hole, and the pivot cell of P is contained in P},
Uγ = {P ∈ U \ Uα : the body of P lies in U, the last column of P

has no hole, and the pivot cell of P is not contained in P},
Uδ = {P ∈ U \ Uα : the body of P lies in U, and the last column of P

has a hole} and
Uε = {P ∈ U \ Uα : the body of P lies in V }.

The sets Uα, Uβ , Uγ , Uδ and Uε form a partition of U . We write Eα, Eβ , Eγ ,
Eδ and Eε for the parts of the series E that come from the sets Uα, Uβ , Uγ , Uδ and
Uε, respectively.
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Figure 4. The pivot cell

We have

Eα = qt + (qt)2 + (qt)3 + . . . =
qt

1− qt
. (1)

If a polyomino P lies in Uβ , then the last column of P is made up of the pivot
cell, of i ∈ {0, 1, 2, 3, . . . } cells lying below the pivot cell, and of j ∈ {0, 1, 2, 3, . . . }
cells lying above the pivot cell. See Figure 5. Hence,

Eβ = E1 · qt ·
[ ∞∑

i=0

(qt)i

]
·


∞∑

j=0

(qt)j


 =

qt

(1− qt)2
· E1. (2)

Figure 5. The last two columns of two elements of Uβ

Consider the following situation. A polyomino P ∈ U ends with a column I. We
create a new column to the right of I, and the result should be an element of Uγ .
Then, whether or not the column I has a hole, we can put the lowest cell of the new
column in exactly m places, where m is the height of I. See Figure 6. Hence
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Eγ =
qt

1− qt
· F1. (3)

Figure 6. The last two columns of two elements of Uγ

Let us proceed to another situation. A polyomino P ∈ U ends with a column J .
We create a new column to the right of J , and the result should be an element of
Uδ. Then, whether or not the column J has a hole, we can put the hole of the new
column in exactly n − 1 places, where n is the height of J . See Figure 7. The new
column is made up of i ∈ {1, 2, 3, . . . } cells lying below the hole, of a hole of height
one, and of j ∈ {1, 2, 3, . . . } cells lying above the hole. Altogether,

Eδ =
qt

1− qt
· t · qt

1− qt
· (F1 − E1) =

q2t3

(1− qt)2
· (F1 − E1). (4)

Figure 7. The last two columns of two elements of Uδ

Now, let P be an element of Uε. By the definition of Uε, P is a polyomino with
cheesy blocks, but the body of P is not a polyomino with cheesy blocks. So, we
can decompose P into birds (in one or more ways), but we cannot decompose the
body of P into birds. The only possible reason is the following. The body of P
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ends with some “problematic” holed columns, while P itself ends with a hole-free
column. When this hole-free column is added to the “problematic” columns, the
resulting figure is a bird (with no right “wing”).

Let us translate these remarks into mathematical formulae. In the second last
column of P there is a hole, and in the last column of P there are two cells with
which the hole is filled. In addition to this two-celled “cork”, the last column contains
i ∈ {0, 1, 2, . . . } cells lying below the “cork” and j ∈ {0, 1, 2, . . . } cells lying above
the “cork”. See Figure 8. Hence

Eε =
1

1− qt
· q2t2 · 1

1− qt
·G =

q2t2

(1− qt)2
·G. (5)

Figure 8. The last two columns of an element of Uε

Since E = Eα + Eβ + Eγ + Eδ + Eε, Eqs. (1)–(5) imply that

E =
qt

1− qt
+

qt

(1− qt)2
·E1 +

qt

1− qt
·F1 +

q2t3

(1− qt)2
· (F1−E1)+

q2t2

(1− qt)2
·G. (6)

Setting t = 1, from Eq. (6) we get

E1 =
q

1− q
+

q

(1− q)2
· E1 +

q

1− q
· F1 +

q2

(1− q)2
· (F1 − E1) +

q2

(1− q)2
·G. (7)

Differentiating Eq. (6) with respect to t and then setting t = 1, we get

F1 =
q

1− q
+

q2

(1− q)2
+

q

(1− q)2
· E1 +

2q2

(1− q)3
· E1 +

q

1− q
· F1

+
q2

(1− q)2
· F1 +

3q2

(1− q)2
· (F1 − E1) +

2q3

(1− q)3
· (F1 − E1)

+
2q2

(1− q)2
·G +

2q3

(1− q)3
·G. (8)

Now we turn to incomplete polyominoes with cheesy blocks. Firstly, we see that an
incomplete polyomino with cheesy blocks always ends with a holed column.
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We write Vα for the set of incomplete level one polyominoes with cheesy blocks
which have only one column. Let P ∈ V \ Vα. If the body of P lies in U , then the
said body is in contact with just one of the two connected components of P ’s last
column. The non-contacting component of the last column is located either wholly
above or wholly below the second last column of P . We define the lower pivot cell
of P ∈ V \ Vα to be the lower right neighbour of the lowest cell of the second last
column of P . In addition, we define the upper pivot cell of P ∈ V \ Vα to be the
upper right neighbour of the highest cell of the second last column of P . Let

Vβ = {P ∈ V \ Vα : the body of P lies in U, and the hole of the last
column of P coincides either with the lower pivot cell of P

or with the upper pivot cell of P} and
Vγ = {P ∈ V \ Vα : the body of P lies in U, and the hole of the last

column of P lies either below the lower pivot cell of P

or above the upper pivot cell of P}.

Let us move on to the case when the body of P ∈ V \Vα lies in V . Then the second
last column of P has two connected components. It is easy to see that each of those
two components must be in contact with the last column of P . (This does not mean
that each of the two connected components of the last column must be in contact
with the second last column.) Now, it may or may not happen that one connected
component of P ’s last column is in contact with both connected components of P ’s
second last column. Accordingly, we define the following two sets:

Vδ = {P ∈ V \ Vα : the body of P lies in V , and the hole of the last
column of P touches the hole of the second last column of P} and

Vε = {P ∈ V \ Vα : the body of P lies in V , and the hole of the last
column of P does not touch the hole of the second last column of P}.

The sets Vα, Vβ , Vγ , Vδ and Vε form a partition of V . We write Gα, Gβ , Gγ , Gδ

and Gε for the parts of the series G that come from the sets Vα, Vβ , Vγ , Vδ and Vε,
respectively.

The set Vα contains every two-part column (with one-celled hole) having i ∈
{1, 2, 3, . . . } cells below the hole and j ∈ {1, 2, 3, . . . } cells above the hole. Thus,

Gα =
q

1− q
· q

1− q
=

q2

(1− q)2
. (9)

If P ∈ Vβ , then the body of P lies in U . The hole of the last column has two
possibilities: to coincide with the lower pivot cell of P or to coincide with the upper
pivot cell of P . Anyhow, the last column is made up of i ∈ {1, 2, 3, . . . } cells
lying below the hole and j ∈ {1, 2, 3, . . . } cells lying above the hole. See Figure 9.
Therefore,

Gβ = 2 · q

1− q
· q

1− q
· E1 =

2q2

(1− q)2
· E1. (10)
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Figure 9. The last two columns of two elements of Vβ

Now let P ∈ Vγ . The body of P again lies in U . If the hole of the last column
lies below the lower pivot cell of P , then the last column of P is made up of:

• i ∈ {1, 2, 3, . . . } cells lying below the hole,

• j ∈ {0, 1, 2, . . . } cells lying above the hole and below the lower pivot cell,

• the lower pivot cell, and

• k ∈ {0, 1, 2, . . . } cells lying above the lower pivot cell.

If the hole of the last column lies above the upper pivot cell of P , then the last
column of P is made up of:

• i ∈ {1, 2, 3, . . . } cells lying above the hole,

• j ∈ {0, 1, 2, . . . } cells lying above the upper pivot cell and below the hole,

• the upper pivot cell, and

• k ∈ {0, 1, 2, . . . } cells lying below the upper pivot cell.

See Figure 10. Altogether,

Gγ = 2 · q

1− q
· 1
1− q

· q · 1
1− q

· E1 =
2q2

(1− q)3
· E1. (11)

If P ∈ Vδ, then the body of P lies in V . The second last and last columns of P
both have a hole. The hole of the last column is either the lower right neighbour or
the upper right neighbour of the hole of the second last column.
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Figure 10. The last two columns of two elements of Vγ

In the last column, there are i ∈ {1, 2, 3, . . . } cells below the hole and j ∈
{1, 2, 3, . . . } cells above the hole. See Figure 11. Hence,

Gδ = 2 · q

1− q
· q

1− q
·G =

2q2

(1− q)2
·G. (12)

Figure 11. The last two columns of two elements of Vδ

Let P ∈ Vε. Once again, the second last and last columns of P both have a hole.
However, to the right of the hole of the second last column, there are two cells which
both belong to P .

If this two-celled “cork” is contained in the upper component of the last column,
then the last column is made up of:
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• i ∈ {1, 2, 3, . . . } cells lying below the hole of the last column,

• j ∈ {0, 1, 2, . . . } cells lying above the hole and below the “cork”,

• the two cells forming the “cork”, and

• k ∈ {0, 1, 2, . . . } cells lying above the “cork”.

If the said cork is contained in the lower component of the last column, then the
last column is made up of:

• i ∈ {1, 2, 3, . . . } cells lying above the hole,

• j ∈ {0, 1, 2, . . . } cells lying above the cork and below the hole,

• the two cells forming the cork, and

• k ∈ {0, 1, 2, . . . } cells lying below the cork.

See Figure 12. Consequently,

Gε = 2 · q

1− q
· 1
1− q

· q2 · 1
1− q

·G =
2q3

(1− q)3
·G. (13)

Figure 12. The last two columns of two elements of Vε

Since G = Gα + Gβ + Gγ + Gδ + Gε, Eqs. (9)–(13) imply that

G =
q2

(1− q)2
+

2q2

(1− q)2
· E1 +

2q2

(1− q)3
· E1 +

2q2

(1− q)2
·G +

2q3

(1− q)3
·G. (14)

Eqs. (7), (8) and (14) form a system of three linear equations in three unknowns,
E1, F1 and G. Solving this system yields the following result.
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Proposition 1. The area generating function for level one polyominoes with cheesy
blocks is given by

E1 =
q(1− 6q + 11q2 − 6q3 + 2q4)

1− 9q + 27q2 − 32q3 + 13q4 − 3q5 − q6
.

The complex roots of the denominator of E1 are‡ r1 = −6.109867, r2 = 0.233117,
r3 = 0.449922−0.087757 · i, r4 = 0.449922+0.087757 · i, r5 = 0.988454−1.537589 · i
and r6 = 0.988454 + 1.537589 · i. The root with the smallest absolute value is
r2 = 0.233117, and 1

r2
is equal to 4.289698. By decomposing E1 into partial fractions

and expanding the partial fractions into Taylor series, we establish the following fact.

Corollary 1. The number of n-celled level one polyominoes with cheesy blocks [qn]E1

has the asymptotic behaviour

[qn]E1 ∼ 0.126651 · 4.289698n.

Thus, the growth constant of level one polyominoes with cheesy blocks is 4.289698.
For comparison, the growth constants of level one cheesy polyominoes and column-
convex polyominoes are 4.114908 and 3.863131, respectively. The increase from
4.114908 to 4.289698 is certainly respectable, although not quite so large as the
increase from 3.863131 to 4.114908.

4. Level two polyominoes with cheesy blocks

In this enumeration, if the last column of a polyomino (or of an incomplete poly-
omino) has two connected components, we often need to record not only the overall
height of the last column, but also the height of the last column’s upper component
and the height of the last column’s lower component. Hence, in addition to the “old”
variables q and t, we introduce two new variables, u and v. As before, the exponent
of q is the area and the exponent of t is the overall height of the last column§. The
exponent of u is the height of the upper component of the last column, and the
exponent of v is the height of the lower component of the last column.

The four main generating functions in this enumeration are A = A(q, t), C =
C(q, t, u, v), G = G(q, u, v) and J = J(q, u, v). Those generating functions are used
for the following purposes:

• A is a generating function for level two polyominoes with cheesy blocks whose
last column either has no hole or has a one-celled hole,

• C is a generating function for level two polyominoes with cheesy blocks whose
last column has a two-celled hole,

• G is a generating function for incomplete level two polyominoes with cheesy
blocks whose last column has a one-celled hole,

‡Those roots have infinitely many digits. Since here we do not have an infinite amount of space,
we shall round those roots to six decimal places.
§Recall what we mean by the height of a column: in Figure 2, the highlighted column has height
3, and the next column to the left has height 3, too.
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• J is a generating function for incomplete level two polyominoes with cheesy
blocks whose last column has a two-celled hole.

Let

A1 = A(q, 1), B0 = ∂A
∂t (q, 0), B1 = ∂A

∂t (q, 1),

C1 = C(q, 1, 1, 1), D1 = ∂C
∂t (q, 1, 1, 1), E0 = ∂C

∂u (q, 1, 0, 1),

F0 = ∂C
∂v (q, 1, 1, 0), G1 = G(q, 1, 1), H0 = ∂G

∂u (q, 0, 1),

I0 = ∂G
∂v (q, 1, 0), J1 = J(q, 1, 1), K0 = ∂J

∂u (q, 0, 1),

L0 = ∂J
∂v (q, 1, 0).

In Section 3, where the main generating functions were denoted by E and G, we
established a functional equation Eq. (6) for E and a functional equation Eq. (14)
for G. Recall that the proof of Eq. (6) breaks into five cases. Namely, we partition
the set of all level one polyominoes with cheesy blocks (denoted by U), into five
subsets: Uα, Uβ , Uγ , Uδ and Uε.

Now, here we have to establish four functional equations, one for each of the
generating functions A, C, G and J . The proofs of the functional equations for A,
C, G and J break into nine, two, ten and twelve cases, respectively.

It would take quite a lot of space to consider all those cases. Hence, as a kind of
compromise, we shall only prove the functional equation for C. That will suffice to
get a taste of all the four proofs.

Let S be the set of those level two polyominoes with cheesy blocks whose last
column either has no hole or has a one-celled hole. Let T be the set of those level
two polyominoes with cheesy blocks whose last column has a two-celled hole. As in
Section 3, for P ∈ T , we define the body of P to be all of P , except the rightmost
column of P .

Let

Tα = {P ∈ T : the body of P lies in S}, and
Tβ = {P ∈ T : the body of P lies in T}.

The sets Tα and Tβ form a partition of T . We write Cα and Cβ for the parts of the
series C that come from the sets Tα and Tβ , respectively.

Let P be an element of S and let c be a column with a two-celled hole. Suppose
that we want to glue c to P so that P ∪ c lies in Tα, and so that P and c are the
body and the last column of P ∪ c, respectively.

In how many ways can P and c be glued together? In principle, the number of
ways is (the height of the last column of P ) minus two. See Figure 13. However, if
P ends with a one-celled column, then we can glue c to P in zero ways, and not in
minus one ways. Thus, we have

Cα =
q2t4uv

(1− qtu)(1− qtv)
· (B1 − 2A1 + B0). (15)
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Figure 13. The last two columns of two elements of Tα

Let P be an element of T and let c be a column with a two-celled hole. Suppose
that we want to glue c to P so that P ∪ c lies in Tβ , and so that P and c are the
body and the last column of P ∪ c, respectively. In how many ways can P and c
be glued together? First, there are (the height of the last column of P ) minus two
ways to satisfy these two necessary conditions:

• the bottom cell of the upper component of c is either identical with or lies
lower than the upper right neighbour of the top cell of the last column of P ,
and

• the top cell of the lower component of c is either identical with or lies higher
than the lower right neighbour of the bottom cell of the last column of P .

See Figure 14.
So, if there were no special cases, then Cβ would be equal to

q2t4uv

(1− qtu)(1− qtv)
· (D1 − 2C1). (16)
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Figure 14. The last five columns of two elements of Tβ

However, special cases do exist. There are two of them:

1. The upper component of the last column of P ∈ T has at least two cells and
the lower component of the two-component column c has just one cell.
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2. The lower component of the last column of P ∈ T has at least two cells and
the upper component of the two-component column c has just one cell.

In case 1, it is (so to speak) dangerous to glue c to P in such a way that the
one-celled lower component of c becomes a common neighbour of the two cells which
form the hole of the last column of P . This dangerous operation produces an object
which is not a polyomino and hence does not lie in Tβ .

In case 2, it is dangerous to glue c to P in such a way that the one-celled upper
component of c becomes a common neighbour of the two cells which form the hole
of the last column of P . Again, the dangerous operation produces an object which
is not a polyomino and hence does not lie in Tβ .

Now, Eq. (16) is actually a generating function for the union of Tβ with the set
of objects produced by the two dangerous operations. The generating function for
the objects produced by the first dangerous operation is

q2t4uv

1− qtu
· (C1 − E0). (17)

The generating function for the objects produced by the second dangerous operation
is

q2t4uv

1− qtv
· (C1 − F0). (18)

Subtracting Eqs. (17) and (18) from Eq. (16), we obtain

Cβ =
q2t4uv

(1− qtu)(1− qtv)
·(D1−2C1)− q2t4uv

1− qtu
·(C1−E0)− q2t4uv

1− qtv
·(C1−F0). (19)

Since C = Cα + Cβ , Eqs. (15) and (19) imply that

C =
q2t4uv

(1− qtu)(1− qtv)
· (B1 − 2A1 + B0 + D1 − 2C1)

− q2t4uv

1− qtu
· (C1 − E0)− q2t4uv

1− qtv
· (C1 − F0). (20)

Setting t = u = v = 1, from Eq. (20) we get

C1 =
q2

(1− q)2
· (B1 − 2A1 + B0 + D1 − 2C1)− q2

1− q
· (2C1 − E0 − F0). (21)

Differentiating Eq. (20) with respect to t and then setting t = u = v = 1, we get

D1 =
[

4q2

(1− q)2
+

2q3

(1− q)3

]
· (B1 − 2A1 + B0 + D1 − 2C1)

−
[

4q2

1− q
+

q3

(1− q)2

]
· (2C1 − E0 − F0). (22)

Next, we differentiate Eq. (20) with respect to u and then set t = 1, u = 0 and
v = 1. The result is

E0 =
q2

1− q
· (B1 − 2A1 + B0 + D1 − 3C1 + F0)− q2 · (C1 − E0). (23)
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Also, we differentiate Eq. (20) with respect to v and then set t = 1, u = 1 and
v = 0. The result is

F0 =
q2

1− q
· (B1 − 2A1 + B0 + D1 − 3C1 + E0)− q2 · (C1 − F0). (24)

Eqs. (21)–(24) make part of a system of altogether 13 linear equations in 13 un-
knowns: A1, B0, B1, C1, D1, E0, F0, G1, H0, I0, J1, K0 and L0. The other 9
equations of that linear system are obtained from the functional equations for A, G
and J . The computer algebra system Maple quickly solved the linear system and
then summed the generating functions A1 and C1. The result can be seen in the
following proposition.

Proposition 2. The area generating function for level two polyominoes with cheesy
blocks is given by

M =
N

O
,

where

N = q · (1− 13q + 70q2 − 202q3 + 336q4 − 317q5 + 143q6 + 18q7 − 84q8

+11q9 + 227q10 − 375q11 + 267q12 − 165q13 + 134q14 − 21q15 + 4q16

−124q17 + 98q18 − 12q19 + 28q20 − 16q21)

and

O = 1− 16q + 107q2 − 391q3 + 850q4 − 1108q5 + 797q6 − 169q7 − 266q8

+317q9 + 159q10 − 913q11 + 1081q12 − 672q13 + 446q14 − 268q15

+7q16 − 158q17 + 404q18 − 222q19 + 42q20 − 70q21 + 34q22.

Corollary 2. The number of n-celled level two polyominoes with cheesy blocks has
the asymptotic behaviour

[qn]M ∼ 0.102214 · 4.462811n.

So, the growth constant of level two polyominoes with cheesy blocks is 4.462811.

5. Level three polyominoes with cheesy blocks

In this section, we skip everything but the final results.

Proposition 3. The area generating function for level three polyominoes with cheesy
blocks is given by

P =
Q

R
,
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where

Q = q · (1− 24q + 264q2 − 1766q3 + 8033q4 − 26297q5 + 63860q6

−116445q7 + 157849q8 − 148533q9 + 61825q10 + 99443q11

−308464q12 + 519182q13 − 655900q14 + 618461q15 − 344081q16

−101610q17 + 519331q18 − 707969q19 + 601249q20 − 284943q21

−68043q22 + 297023q23 − 346370q24 + 265550q25 − 140577q26

+31503q27 + 64681q28 − 166424q29 + 234520q30 − 218182q31

+130432q32 − 29144q33 − 33391q34 + 38482q35 − 12237q36 − 2050q37

−6144q38 + 18593q39 − 21514q40 + 11634q41 + 3351q42 − 13907q43

+12096q44 + 2302q45 − 8825q46 + 570q47 + 4681q48 − 1695q49

−1519q50 + 1290q51 + 64q52 − 224q53 + 44q54 − 12q55)

and

R = 1− 27q + 334q2 − 2515q3 + 12906q4 − 47836q5 + 132248q6

−276956q7 + 438796q8 − 508406q9 + 365771q10 + 36865q11

−648120q12 + 1344653q13 − 1932847q14 + 2126787q15 − 1632701q16

+408884q17 + 1117382q18 − 2223607q19 + 2392085q20 − 1636807q21

+418146q22 + 665251q23 − 1211688q24 + 1191386q25 − 838060q26

+416174q27 − 41907q28 − 323733q29 + 664097q30 − 810808q31

+657803q32 − 319442q33 + 14159q34 + 120746q35 − 95202q36

+22341q37 − 7930q38 + 47294q39 − 74720q40 + 62640q41 − 19120q42

−28394q43 + 46822q44 − 21864q45 − 18416q46 + 20930q47 + 6617q48

−14093q49 + 982q50 + 5867q51 − 2682q52 − 642q53 + 608q54

−88q55 + 12q56.

Corollary 3. The number of n-celled level three polyominoes with cheesy blocks has
the asymptotic behaviour

[qn]P ∼ 0.090504 · 4.538766n.

6. Taylor expansions and the limit value of the growth con-
stants

To see how many polyominoes of a given type have 1, 2, 3, . . . cells, we expanded
the area generating functions into Taylor series. The results are shown in Table 1.
In Table 2, we display the growth constant of column-convex polyominoes, together
with all the growth constants which we computed in this paper and in [2].

Now, it is natural to ask the question: to what value do the growth constants
tend as level tends to infinity? Our database is too small for giving a precise answer.
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Column- Level 1 Level 2 Level 3
convex polyominoes polyominoes polyominoes
polyo- with cheesy with cheesy with cheesy

Area minoes blocks blocks blocks
1 1 1 1 1
2 3 3 3 3
3 11 11 11 11
4 42 44 44 44
5 162 184 186 186
6 626 784 810 812
7 2419 3363 3582 3614
8 9346 14451 15952 16259
9 36106 62097 71242 73558

10 139483 266716 318441 333683
11 538841 1145074 1423411 1515454
12 2081612 4914448 6360809 6885303

Table 1. Here is how many polyominoes of a given type have 1, 2, . . . , 12 cells

Polyominoes
Cheesy with cheesy

Level polyominoes blocks
0 3.863131 3.863131
1 4.114908 4.289698
2 4.231836 4.462811
3 4.288631 4.538766

Table 2. The growth constants. By level 0 cheesy polyominoes and by level 0
polyominoes with cheesy blocks we mean the usual column-convex polyominoes

Anyway, we shall permit ourselves to make a vague estimate. In the case of poly-
ominoes with cheesy blocks, computing the first differences of the growth constants,
we obtain the numbers

4.290− 3.863 = 0.427, 4.463− 4.290 = 0.173, and 4.539− 4.463 = 0.076.

The sequence 0.427, 0.173, 0.076 is a little similar to a geometric sequence with
common ratio 2

5 . So, the limit value of the growth constants of polyominoes with
cheesy blocks might be about 4.463 + 5

3 · 0.076 = 4.590 . In a similar way, in [2],
the limit value of the growth constants of cheesy polyominoes was estimated to be
about 4.346 .
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