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Abstract. Column-convex polyominoes were introduced in 1950’s by
Temperley, a mathematical physicist working on “lattice gases”. By now,
column-convex polyominoes are a popular and well-understood model.
There exist several generalizations of column-convex polyominoes. How-
ever, the enumeration by area has been done for only one of the said gener-
alizations, namely for multi-directed animals. In this paper, we introduce
a new sequence of supersets of column-convex polyominoes. Our model
(we call it level m column-subconvex polyominoes) is defined in a sim-
ple way: every column has at most two connected components and, if
there are two connected components, the gap between them consists of
at most m cells. We focus on the case when cells are hexagons and we
compute the area generating functions for the levels one and two. Both of
those generating functions are q-series, whereas the area generating func-
tion of column-convex polyominoes is a rational function. The growth
constants of level one and level two column-subconvex polyominoes are
4.319139 and 4.509480, respectively. For comparison, the growth constants
of column-convex polyominoes, multi-directed animals and all polyominoes
are 3.863131, 4.587894 and 5.183148, respectively.

1. Introduction

The enumeration of polyominoes is a topic of great interest to chemists,
physicists and combinatorialists alike. In chemical terms, any polyomino (with
hexagonal cells) is a possible benzenoid hydrocarbon. In physics, determining
the number of n-celled polyominoes is related to the study of two-dimensional
percolation phenomena. In combinatorics, polyominoes are of interest in their
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own right because several polyomino models have good-looking exact solu-
tions.

Known results for polyominoes include the fact that the number of n-
celled polyominoes grows exponentially. More precisely, if an denotes the
number of n-celled polyominoes, then

• limn→∞ a
1/n
n = τ = supn≥1 a

1/n
n ,

• limn→∞ an+1/an = τ.

The first result follows from standard concatenation arguments, see e.g.
[12,13], while the second result, due to Madras ([10]) relies on a pattern the-
orem for lattice animals. These results are quite general, and apply mutatis

mutandis to the new polyomino models we consider here.
One can also obtain rigorous bounds on the growth constant τ. For ex-

ample, for hexagonal polyominoes we have [12]

4.8049 ≤ τ ≈ 5.183148 ≤ 5.9047.

A lower bound is immediately obtainable from the first itemised equation
above, and it can be improved with rather more work. The upper bound is
obtained by a method due to Klarner and Rivest ([9]), which relies on mapping
each polyomino onto a tree on the dual lattice, and relaxing the rules for tree
construction so that over-counting results.

One very popular polyomino model is that of column-convex polyomi-

noes. Column-convex polyominoes with hexagonal cells have a rational area
generating function. That generating function was found by Klarner in 1967
([8]). The growth constant of hexagonal-celled column-convex polyominoes is
3.863131 (by the growth constant we mean the limit limn→∞

n
√

an, where an

denotes the number of n-celled elements in a given set of polyominoes).
In a previous paper ([4]), one of us (Feretić) began to search for poly-

omino models which are more general than column-convex polyominoes, but
still have reasonably simple area generating functions. In [4], Feretić intro-
duced level m cheesy polyominoes (m = 1, 2, 3, . . .), and here we shall in-
troduce another sequence of models, which we call level m column-subconvex

polyominoes (m = 1, 2, 3, . . .)1.
At every level, cheesy polyominoes have a rational area generating func-

tion, whereas column-subconvex polyominoes have an area generating func-
tion which is unlikely to be algebraic, and indeed, unlikely to be differentiably
finite ([5]). Further, at any given level, cheesy polyominoes are an exponen-
tially small subset of column-subconvex polyominoes. The latter set of poly-
ominoes has a greater growth constant than the former set. For example,
the growth constant of level one cheesy polyominoes is 4.114908, while the
growth constant of level one column-subconvex polyominoes is 4.319139. In

1Bousquet-Mélou and Rechnitzer’s multi-directed animals ([3]) are also a superset of
column-convex polyominoes with hexagonal cells.
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addition, if we reflect a column-subconvex polyomino about a vertical axis,
we get a column-subconvex polyomino again. This kind of invariance un-
der reflection is enjoyed by column-convex polyominoes, but not by cheesy
polyominoes. Admittedly, counting level m column-subconvex polyominoes
requires more effort than counting level m cheesy polyominoes. Anyway, at
level one, column-subconvex polyominoes are not very hard to count. Just
as with cheesy polyominoes, as the level increases, the computations quickly
increase in size.

In this paper, the level one column-subconvex model is solved in full
detail. We also solved the level two column-subconvex model. To see the
level two result (stated with no proof), the reader may visit the web page
[14]. The said result involves too many auxiliary expressions to be stated in
this paper (to be specific, there are 33 auxiliary expressions, of which 25 are
polynomials; the degree of those polynomials is between 20 and 23).

Our computations are done by using Bousquet-Mélou’s ([1]) and Svrtan’s
([6]) “turbo” version of the Temperley method ([11]).

If the reader would like to have more information on the history of poly-
omino enumeration, or on the role which polyominoes play in physics and
chemistry, then he/she may refer to Bousquet-Mélou’s habilitation thesis [2],
or to the book [13].

2. Definitions and conventions

There are three regular tilings of the Euclidean plane, namely the triangu-
lar tiling, the square tiling, and the hexagonal tiling. We adopt the convention
that every square tile or hexagonal tile has two horizontal edges. In a regular
tiling, a tile is often referred to as a cell. A plane figure P is a polyomino
if P is a union of finitely many cells and the interior of P is connected. See
Figure 1. Observe that, if a union of hexagonal cells is connected, then it
possesses a connected interior as well.

Let P and Q be two polyominoes. We consider P and Q to be equal if
and only if there exists a translation f such that f(P ) = Q.

If a polyomino P is made up of n cells, we say that the area of P is n.
Let R be a set of polyominoes. By the area generating function of R we

mean the formal sum
∑

P∈R

qarea of P .

From now on, we concentrate on the hexagonal tiling. When we write “a
polyomino”, we actually mean “a hexagonal-celled polyomino”.

Given a polyomino P , it is useful to partition the cells of P according to
their horizontal projection. Each block of that partition is a column of P .
Note that a column of a polyomino is not necessarily a connected set. An
example of this is the highlighted column in Figure 1. On the other hand, it
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Figure 1. A hexagonal-celled polyomino.

Figure 2. A column-convex polyomino.

may happen that every column of a polyomino P is a connected set. In this
case, the polyomino P is a column-convex polyomino. See Figure 2.

Let a be a column of a polyomino P . By the height of a we mean the
number of those cells which make up a plus the number of those (zero or more)
cells which make up the gaps of a. For example, in Figure 1, the highlighted
column has height 7, and the next column to the left has height 4.

A finite union of cells P is a level m column-subconvex polyomino if the
following holds:
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• P is a polyomino,
• every column of P has at most two connected components,
• if a column of P has two connected components, then the gap between

the components consists of at most m cells.

See Figure 3.

Figure 3. A level one column-subconvex polyomino.

Let S denote the set of all level one column-subconvex polyominoes.
Let P be an element of S and let P have at least two columns. Then we

define the pivot cell of P to be the lower right neighbour of the lowest cell of
the second last column of P . See Figure 4. Observe that the pivot cell of P
is not necessarily contained in P .

Figure 4. The pivot cell.
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When we build a column-convex polyomino from left to right, adding one
column at a time, every intermediate figure is a column-convex polyomino it-
self. However, when we build a column-subconvex polyomino, this is no longer
the case. A “left factor” of an element of S need not itself be a polyomino,
and therefore need not be an element of S.

We say that a figure P is an incomplete level one column-subconvex poly-

omino if P itself is not an element of S, but P is a “left factor” of an element of
S. Notice that, if P is an incomplete level one column-subconvex polyomino,
then the last (i.e., the rightmost) column of P necessarily has a hole.

Let T denote the set of all incomplete level one column-subconvex poly-
ominoes.

Let P be an element of S ∪ T and let P have at least two columns. Then
we define the body of P to be all of P , except the rightmost column of P .

Let P be an element of T and let P have at least two columns. We define
the lower pivot cell of P to be the lower right neighbour of the lowest cell of
the second last column of P . In addition, we define the upper pivot cell of P
to be the upper right neighbour of the highest cell of the second last column
of P .

3. Notations for generating functions. Partitions of the sets

S and T

We shall deal with the following generating functions:

A(q, t) =
∑

P∈S

qarea of P · tthe height of the last column of P,

A1 = A(q, 1), B1 =
∂A

∂t
(q, 1),

C(q, u, v) =
∑

P∈T

qarea of P · u
the height of the upper

component of the last column of P ·

·v
the height of the lower

component of the last column of P ,

D(u) = C(q, u, 1), E(v) = C(q, 1, v), C1 = C(q, 1, 1).

Functional equations for the generating functions will be obtained by the
“divide and conquer” strategy. Namely, now we are going to partition the
sets S and T .
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Let Sα be the set of level one column-subconvex polyominoes which have
only one column. Let

Sβ = {P ∈ S \ Sα : the body of P lies in S, the last column of P

has no hole, and the pivot cell of P is contained in P},
Sγ = {P ∈ S \ Sα : the body of P lies in S, the last column of P

has no hole, and the pivot cell of P is not contained in P},
Sδ = {P ∈ S \ Sα : the body of P lies in S, and the last column of P

has a hole},
Sǫ = {P ∈ S \ Sα : the body of P lies in T , and the last column of P

has no hole} and

Sζ = {P ∈ S \ Sα : the body of P lies in T , and the last column of P

has a hole}.

The sets Sα, Sβ , Sγ , Sδ, Sǫ and Sζ form a partition of S. We write Aα, Aβ ,
Aγ , Aδ, Aǫ and Aζ for the parts of the series A that come from the sets Sα,
Sβ , Sγ , Sδ, Sǫ and Sζ , respectively.

We proceed to the set T . We write Tα for the set of incomplete level one
column-subconvex polyominoes which have only one column. Let P ∈ T \Tα.
If the body of P lies in S, then the said body is in contact with just one
of the two connected components of P ’s last column. The non-contacting
component of the last column is located either wholly above or wholly below
the second last column of P . Let

Tβ = {P ∈ T \ Tα : the body of P lies in S, and the hole of the last

column of P coincides either with the lower pivot cell of P

or with the upper pivot cell of P} and

Tγ = {P ∈ T \ Tα : the body of P lies in S, and the hole of the last

column of P lies either below the lower pivot cell of P

or above the upper pivot cell of P}.

Let us move on to the case when the body of P ∈ T \ Tα lies in T .
Then the second last column of P has two connected components. It is easy
to see that each of those two components must be in contact with the last
column of P (this does not mean that each of the two connected components
of the last column of P must be in contact with the second last column of
P ). Now, it may or may not happen that one connected component of P ’s
last column is in contact with both connected components of P ’s second last
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column. Accordingly, we define the following two sets:

Tδ ={P ∈ T \ Tα : the body of P lies in T , and the hole of the last

column of P touches the hole of the second last column of P} and

Tǫ ={P ∈ T \ Tα : the body of P lies in T , and the hole of the last

column of P does not touch the hole of the second last column of P}.
The sets Tα, Tβ, Tγ , Tδ and Tǫ form a partition of T . We write Cα, Cβ , Cγ ,
Cδ and Cǫ for the parts of the series C that come from the sets Tα, Tβ, Tγ ,
Tδ and Tǫ, respectively.

4. Setting up the functional equations for A, A1 and B

To begin with, it is clear that

(4.1) Aα = qt + (qt)2 + (qt)3 + . . . =
qt

1 − qt
.

If a polyomino P lies in Sβ , then the last column of P is made up of the
pivot cell, of i ∈ {0, 1, 2, 3, . . . } cells lying below the pivot cell, and of
j ∈ {0, 1, 2, 3, . . . } cells lying above the pivot cell. See Figure 5. Hence,

(4.2) Aβ = A1 · qt ·
[

∞
∑

i=0

(qt)i

]

·





∞
∑

j=0

(qt)j



 =
qt

(1 − qt)2
· A1.

Figure 5. The last two columns of two elements of Sβ .

Consider the following situation. A polyomino P ∈ S ends with a column
I. We are creating a new column to the right of I, and the result should be
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an element of Sγ . Then, whether or not the column I has a hole, we can put
the lowest cell of the new column in exactly m places, where m is the height
of I. See Figure 6. Hence

(4.3) Aγ =
qt

1 − qt
· B1.

Figure 6. The last two columns of two elements of Sγ .

Let us proceed to another situation. A polyomino P ∈ S ends with a
column J . We are creating a new column to the right of J , and the result
should be an element of Sδ. Then, whether or not the column J has a hole,
we can put the hole of the new column in exactly n− 1 places, where n is the
height of J . See Figure 7. The new column is made up of i ∈ {1, 2, 3, . . . }
cells lying below the hole, of a hole of height one, and of j ∈ {1, 2, 3, . . . }
cells lying above the hole. Altogether,

(4.4) Aδ =
qt

1 − qt
· t · qt

1 − qt
· (B1 − A1) =

q2t3

(1 − qt)2
· (B1 − A1).

Now, let P be an element of Sǫ. By the definition of Sǫ, P is a polyomino
with a one-part last column, but the body of P is not a polyomino. Hence,
in the second last column of P there is a hole, and in the last column of P
there are two cells with which the hole is filled. In addition to this two-celled
“cork”, the last column contains i ∈ {0, 1, 2, . . .} cells lying below the “cork”
and j ∈ {0, 1, 2, . . . } cells lying above the “cork”. See Figure 8. Hence

(4.5) Aǫ =
1

1 − qt
· q2t2 · 1

1 − qt
· C1 =

q2t2

(1 − qt)2
· C1.
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Figure 7. The last two columns of two elements of Sδ.

Figure 8. The last two columns of an element of Sǫ.

If P is an element of Sζ , then P is a polyomino with a two-part last
column, while the body of P is not a polyomino. Once again, in the second
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last column of P there is a hole, and in the last column of P there are two
cells with which the hole is filled. Let the lower component of the second
last column consist of i cells, and let the upper component of the second last
column consist of j cells. Now, if the two-celled cork belongs to the upper
component of the last column, then it is impossible that i− 1 or more cells of
the last column lie between the cork and the hole of the last column. Namely,
if i − 1 or more cells were so situated, then the lower component of the last
column would not be connected with the rest of P , and P would not be a
polyomino. See Figure 9.

Figure 9. The last two columns of an element of Sζ .

For a similar reason, if the two-celled cork belongs to the lower component
of the last column, then it is impossible that j − 1 or more cells of the last
column lie between the cork and the hole of the last column.

These remarks lead us to the following expression:

Aζ =
q3t4

(1 − qt)3
· C1 −

q3t4

(1 − qt)3
· q−1t−1E(qt)

+
q3t4

(1 − qt)3
· C1 −

q3t4

(1 − qt)3
· q−1t−1D(qt).
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When an element of T is reflected about a horizontal axis, the area is pre-
served, whereas the height of the upper component of the last column be-
comes the height of the lower component of the last column. This means that
D(u) = E(u). We now have

(4.6) Aζ =
2q3t4

(1 − qt)3
· C1 −

2q2t3

(1 − qt)3
· D(qt).

Since A = Aα + Aβ + Aγ + Aδ + Aǫ + Aζ , equations (4.1)–(4.6) imply that

A =
qt

1 − qt
+

qt

(1 − qt)2
· A1 +

qt

1 − qt
· B1 +

q2t3

(1 − qt)2
· (B1 − A1)

+
q2t2

(1 − qt)2
· C1 +

2q3t4

(1 − qt)3
· C1 −

2q2t3

(1 − qt)3
· D(qt).(4.7)

Setting t = 1, from equation (4.7) we get

A1 =
q

1 − q
+

q

(1 − q)2
· A1 +

q

1 − q
· B1 +

q2

(1 − q)2
· (B1 − A1)

+
q2

(1 − q)2
· C1 +

2q3

(1 − q)3
· C1 −

2q2

(1 − q)3
· D(q).(4.8)

Differentiating equation (4.7) with respect to t and then setting t = 1, we get

B1 =
q

(1 − q)2
+

q + q2

(1 − q)3
· A1 +

q

(1 − q)2
· B1

+
3q2 − q3

(1 − q)3
· (B1 − A1) +

2q2

(1 − q)3
· C1 +

8q3 − 2q4

(1 − q)4
· C1

− 6q2

(1 − q)4
· D(q) − 2q3

(1 − q)3
· D′(q).(4.9)

5. Setting up the functional equations for C, D and C1

Now we turn to incomplete level one column-subconvex polyominoes. We
have already observed that an incomplete level one column-subconvex poly-
omino always ends with a holed column.

The set Tα contains every two-part column (with one-celled hole) having
i ∈ {1, 2, 3, . . . } cells below the hole and j ∈ {1, 2, 3, . . . } cells above the
hole. Thus,

(5.1) Cα =
qv

1 − qv
· qu

1 − qu
=

q2uv

(1 − qu)(1 − qv)
.

If P ∈ Tβ , then the body of P lies in S. The hole of the last column has two
possibilities: to coincide with the lower pivot cell of P or to coincide with the
upper pivot cell of P . Anyhow, the last column is made up of i ∈ {1, 2, 3, . . .}
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cells lying below the hole and j ∈ {1, 2, 3, . . . } cells lying above the hole. See
Figure 10. Therefore,

(5.2) Cβ = 2 · qv

1 − qv
· qu

1 − qu
· A1 =

2q2uv

(1 − qu)(1 − qv)
· A1.

Figure 10. The last two columns of two elements of Tβ.

Now let P ∈ Tγ . The body of P again lies in S. If the hole of the last
column lies below the lower pivot cell of P , then the last column of P is made
up of:

• i ∈ {1, 2, 3, . . . } cells lying below the hole,
• j ∈ {0, 1, 2, . . . } cells lying above the hole and below the lower pivot

cell,
• the lower pivot cell, and
• k ∈ {0, 1, 2, . . . } cells lying above the lower pivot cell.

If the hole of the last column lies above the upper pivot cell of P , then the
last column of P is made up of:

• i ∈ {1, 2, 3, . . . } cells lying above the hole,
• j ∈ {0, 1, 2, . . . } cells lying below the hole and above the upper pivot

cell,
• the upper pivot cell, and
• k ∈ {0, 1, 2, . . . } cells lying below the upper pivot cell.
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See Figure 11. Altogether,

(5.3) Cγ =
q2uv

(1 − qu)2(1 − qv)
· A1 +

q2uv

(1 − qu)(1 − qv)2
· A1.

Figure 11. The last two columns of two elements of Tγ .

If P ∈ Tδ, then the body of P lies in T . The second last and last columns
of P both have a hole. The hole of the last column is either the lower right
neighbour or the upper right neighbour of the hole of the second last column.
In the last column, there are i ∈ {1, 2, 3, . . . } cells below the hole and
j ∈ {1, 2, 3, . . . } cells above the hole. See Figure 12. Hence,

(5.4) Cδ = 2 · qv

1 − qv
· qu

1 − qu
· C1 =

2q2uv

(1 − qu)(1 − qv)
· C1.

Let P ∈ Tǫ. Once again, the second last and last columns of P both have
a hole. However, to the right of the hole of the second last column, there are
two cells which both belong to P . If this two-celled cork is contained in the
lower component of the last column, and if the upper component of the second
last column consists of j cells, then it is necessary that at least j − 1 cells
of the last column lie above the cork and below the hole of the last column.
Otherwise the upper component of the last column would be connected with
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Figure 12. The last two columns of two elements of Tδ.

the rest of P , and P would be a polyomino (that cannot happen because P
is an element of the set T , and the elements of T are not polyominoes). See
Figure 13.

Figure 13. The last two columns of the elements of Tǫ.
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Similarly, if the two-celled cork is contained in the upper component of
the last column, and if the lower component of the second last column consists
of i cells, then it is necessary that at least i − 1 cells of the last column lie
below the cork and above the hole of the last column. If it were not so, then
P would be a polyomino.

These remarks made, we conclude that

Cǫ =
q3uv2

(1 − qu)(1 − qv)2
· q−1v−1D(qv) +

q3u2v

(1 − qu)2(1 − qv)
· q−1u−1E(qu)

=
q2uv

(1 − qu)(1 − qv)2
· D(qv) +

q2uv

(1 − qu)2(1 − qv)
· D(qu).(5.5)

Since C = Cα + Cβ + Cγ + Cδ + Cǫ, equations (5.1)–(5.5) imply that

C =
q2uv

(1 − qu)(1 − qv)
+

2q2uv

(1 − qu)(1 − qv)
· A1 +

q2uv

(1 − qu)2(1 − qv)
· A1

+
q2uv

(1 − qu)(1 − qv)2
· A1 +

2q2uv

(1 − qu)(1 − qv)
· C1

+
q2uv

(1 − qu)(1 − qv)2
· D(qv) +

q2uv

(1 − qu)2(1 − qv)
· D(qu).(5.6)

Setting v = 1, from equation (5.6) we get

D(u) =
q2u

(1 − q)(1 − qu)
+

q2u

(1 − q)(1 − qu)2
· A1

+
(3 − 2q)q2u

(1 − q)2(1 − qu)
· A1 +

2q2u

(1 − q)(1 − qu)
· C1

+
q2u

(1 − q)2(1 − qu)
· D(q) +

q2u

(1 − q)(1 − qu)2
· D(qu).(5.7)

We have D(1) = C(q, 1, 1) = C1. So, when we set u = 1, equation (5.7) turns
into

(5.8) C1 =
q2

(1 − q)2
+

4q2 − 2q3

(1 − q)3
· A1 +

2q2

(1 − q)2
· C1 +

2q2

(1 − q)3
· D(q).

6. Solving the functional equations

For convenience, we firstly define an extra series F . The definition is

(6.1) F = 1 +
3 − 2q

1 − q
· A1 + 2C1 +

1

1 − q
· D(q).

Now equation (5.7) can be written as
(6.2)

D(u) =
q2u

(1 − q)(1 − qu)2
·A1 +

q2u

(1 − q)(1 − qu)
·F +

q2u

(1 − q)(1 − qu)2
·D(qu).
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The next step of the upgraded Temperley method is to iteratively remove the
D(qu) term from the right-hand side of equation (6.2). Namely, substituting
qu for u in equation (6.2) gives

D(qu) =
q3u

(1 − q)(1 − q2u)2
· A1 +

q3u

(1 − q)(1 − q2u)
· F

+
q3u

(1 − q)(1 − q2u)2
· D(q2u).

Replacing D(qu) of equation (6.2) by this latter expression, followed by a bit
of rearranging, results in

D(u) =

[

q2u

(1 − q)(1 − qu)2
+

q2+3u2

(1 − q)2(1 − qu)2(1 − q2u)2

]

· A1

+

[

q2u

(1 − q)(1 − qu)
+

q2+3u2

(1 − q)2(1 − qu)2(1 − q2u)

]

· F

+
q2+3u2

(1 − q)2(1 − qu)2(1 − q2u)2
· D(q2u).

After the next iteration, in each of the square brackets there is a sum of three
terms, and the argument of the final D is q3u instead of q2u. After infinitely
many iterations, we have

D(u) =











∞
∑

i=1

q
i(i+3)

2 ui

(1 − q)i ·
[

∏i
k=1(1 − qku)

]2











· A1

+











∞
∑

i=1

q
i(i+3)

2 ui

(1 − q)i ·
[

∏i−1

k=1(1 − qku)
]2

· (1 − qiu)











· F.(6.3)

The right-hand side of equation (6.3) involves no D because limn→∞D(qnu) =
0. The reason why this limit is zero is that the lowest power of q occurring in
D(qnu) is n + 2.

Setting u = q, from equation (6.3) we get

D(q) =











∞
∑

i=1

q
i(i+5)

2

(1 − q)i ·
[

∏i
k=1(1 − qk+1)

]2











· A1

+











∞
∑

i=1

q
i(i+5)

2

(1 − q)i ·
[

∏i−1

k=1(1 − qk+1)
]2

· (1 − qi+1)











· F.(6.4)
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“Logarithmically” differentiating2 equation (6.3) with respect to u and then
setting u = q, we obtain

D′(q) =











∞
∑

i=1

q
i(i+5)

2

(1 − q)i ·
[

∏i
k=1(1 − qk+1)

]2
·





i

q
+ 2 ·

i
∑

j=1

qj

1 − qj+1















· A1

+











∞
∑

i=1

q
i(i+5)

2

(1 − q)i ·
[

∏i−1

k=1(1 − qk+1)
]2

· (1 − qi+1)

·





i

q
+ 2 ·

i−1
∑

j=1

qj

1 − qj+1
+

qi

1 − qi+1











· F.(6.5)

Equations (4.8), (4.9), (5.8), (6.1), (6.4) and (6.5) make up a system of six
linear equations in six unknowns: A1, B1, C1, D(q), D′(q) and F . That linear
system was readily solved by the computer algebra package Maple. Of course,
the most interesting component of the solution is A1, the area generating
function for level one column-subconvex polyominoes. We state the formula
for A1 as a theorem.

Theorem 6.1. The area generating function for level one column-

subconvex polyominoes is given by

A1 =

∑3

n=1 numn
∑6

n=1 denn

,

where

num1 = q − 8q2 + 24q3 − 32q4 + 17q5 + 4q6 − 8q7 + 2q8,

num2 = (−q + 5q2 − 13q3 + 23q4 − 22q5 + 12q6 − 2q7) · β,

num3 = (−2q4 + 8q5 − 12q6 + 8q7 − 2q8) · δ,
den1 = 1 − 11q + 46q2 − 93q3 + 88q4 − 27q5 − 24q6 + 19q7 − 3q8,

den2 = (2q2 − 8q3 + 8q4 − 4q5 − 6q6 + 4q7) · α,

den3 = (−1 + 10q − 34q2 + 67q3 − 81q4 + 54q5 − 16q6 + q7) · β,

den4 = (2q4 − 8q5 + 8q6 − 2q8) · γ,

den5 = (6q4 − 22q5 + 34q6 − 22q7 + 4q8) · δ,
den6 = (2q4 − 6q5 + 10q6 − 6q7) · (αδ − βγ),

2By logarithmic differentiation we mean the use of the formula ϕ′ = ϕ · [ln(ϕ)]′.
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α =

∞
∑

i=1

q
i(i+5)

2

(1 − q)i
[

∏i
k=1(1 − qk+1)

]2
,

β =

∞
∑

i=1

q
i(i+5)

2

(1 − q)i
[

∏i−1

k=1(1 − qk+1)
]2

(1 − qi+1)
,

γ =

∞
∑

i=1

q
i(i+5)

2

(

i
q + 2

∑i
j=1

qj

1−qj+1

)

(1 − q)i
[

∏i
k=1(1 − qk+1)

]2
,

δ =

∞
∑

i=1

q
i(i+5)

2

(

i
q + 2

∑i−1
j=1

qj

1−qj+1 + qi

1−qi+1

)

(1 − q)i
[

∏i−1

k=1(1 − qk+1)
]2

(1 − qi+1)
.

From the formula just stated, one easily finds that

A1 = q + 3q2 + 11q3 + 44q4 + 184q5 + 786q6 + 3391q7 + 14683q8

+63619q9 + 275506q10 + 1192134q11 + 5154794q12 + . . . .

We expanded A1 in a Taylor series to 250 terms, and analysed the series by the
method of differential approximants ([7]) using second-order approximants,
that is to say, approximants given by solutions of inhomogeneous second de-
gree ordinary differential equations. From this analysis, we found that the
dominant singularity of A1 is a simple pole, located at q = qc = 0.2315276132
(note that we only needed some 20 series terms to establish this—the addi-
tional terms merely provided higher accuracy and confirmation of our initial
analysis). We refined this estimate by using Maple to locate the position of the

denominator zero. That is, by expanding the series
∑6

n=1 denn to more and

more terms, more and more accurate numerical solutions of
∑6

n=1 denn = 0
were obtained. In this way, we found qc to be 0.231527613159. We could
obtain much higher accuracy if necessary. It is likely that this number is
algebraic (such is usually the case with exact solutions), but we have been
unable to conjecture its exact value. Note also that the numerator is positive
for 0 < q < 0.8, so there is no possibility that this denominator zero cancels
with the numerator.

The growth constant is the reciprocal of the dominant singularity. Thus,
the growth constant of level one column-subconvex polyominoes is about
4.319139. For comparison, the growth constant of column-convex polyomi-
noes is 3.863131, the growth constant of level one cheesy polyominoes is
4.114908, and the growth constant of all polyominoes is 5.183148 (the lat-
ter two growth constants were found in [4] and [12], respectively). From the

result that τ = supn≥1 a
1/n
n , we also have the quite good lower bound (based
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on 250 terms) τ > 4.283006. We can also calculate the amplitude, so writing
the generating function as A1 =

∑

n anqn, then an ∼ c1 · τn, we can esti-
mate the amplitude c1 from the sequence of quotients an/τn. In this way we
estimate c1 = 0.1224281005.

7. Level two column-subconvex polyominoes

In the just-finished enumeration of level one column-subconvex polyomi-
noes, we considered altogether 11 cases. Namely, we partitioned the set S
into 6 subsets and the set T into 5 subsets; 6 + 5 equals 11.

Let us write A2 to denote the area generating function for level two
column-subconvex polyominoes. We found a formula for A2 as well, but
that goal was achieved through considering as much as 37 cases. We had to
struggle against a number of complicated expressions, and in the end we had
to solve a system of 16 linear equations in 16 unknowns (for comparison, the
computation of A1 was completed by solving a system of 6 linear equations
in 6 unknowns). Consequently, the formula for A2 is much bulkier than the
formula for A1. To save this journal’s space, we have chosen to state the
formula for A2 in the electronic form only ([14]).

However, the Taylor series expansion of A2 is

A2 = q + 3q2 + 11q3 + 44q4 + 186q5 + 812q6 + 3614q7 + 16254q8

+ 73464q9 + 332603q10 + 1505877q11 + 6813301q12 + . . .

and the critical point of A2 is at q = qc = 0.221755050048. This was obtained
in the same way as described above for level one column-subconvex polyomi-
noes, but based on a series of 153 terms. Thus the growth constant of level
two column-subconvex polyominoes is about 4.509480 . For comparison, the
growth constant of level two cheesy polyominoes is 4.231836 ([4]). As above,
we can also give the rigorous bound τ > 4.441222. We can also estimate the
amplitude c2 = 0.0969488405, so that the coefficient of the nth term of the
generating function A2 =

∑

n anqn is an ∼ c2 · τn.
As stated in [12], the area generating function for all polyominoes is

q + 3q2 + 11q3 + 44q4 + 186q5 + 814q6 + 3652q7 + 16689q8

+ 77359q9 + 362671q10 + 1716033q11 + 8182213q12 + . . . .

Indeed, a quick drawing confirms that a polyomino must have at least 5 (resp.
6) cells in order not to be a level one (resp. two) column-subconvex polyomino.
See Figure 14.

We have not tried to enumerate level three column-subconvex polyomi-
noes. Our non-rigorous estimate is that, in order to enumerate this latter
model by area, one would have to consider at least 80 cases.
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Figure 14. (a) The two smallest instances of a polyomino
which is not a level one column-subconvex polyomino. (b)
The two smallest instances of a polyomino which is not a
level two column-subconvex polyomino.

8. Conclusion

We have defined a class of polyominoes that interpolates between column-
convex polyominoes and all polyominoes. The former have been solved,
while the latter remain unsolved. For now, our interpolating class (we call
it level m column-subconvex polyominoes) remains solved up to a certain
point. Namely, we have solved the cases m = 1 and m = 2. Column-convex
polyominoes correspond to the case m = 0. In both cases m = 1, 2, the gen-
erating function has a simple pole singularity, located at q = qc = 0.2315 . . .
and 0.2217 . . . respectively. For all polyominoes, the corresponding singular-
ity is at q = qc(polyomino) = 0.192932 . . . , and the singularity is of the form
const. · |log(qc − q)|, rather than a simple pole ([12]). For all finite values of
m we expect the generating function of level m column-subconvex polyomi-
noes to have a simple pole, while the singularity position is expected to be
a monotone decreasing function of m, with a limiting value as m tends to
infinity of q∗ > qc(polyomino). We have also given the rigorous lower bounds
τ > 4.283006 and τ > 4.441222 for the growth constants of level 1 and level 2
column-subconvex polyominoes respectively.
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