
Developing dynamic Web applications:

“Exam scheduler”

S. Maržić, I. Jugo, M. Radovan

University of Rijeka, Department of Informatics,

Omladinska 14, 51000 Rijeka, Croatia

sanjin.marzic@gmail.com; ijugo@inf.uniri.hr; mradovan@inf.uniri.hr

The paper presents and analyzes the methodology of the

development of dynamic web applications, illustrated by

the example of the web application for exam scheduling

and managing, which has been developed for the use at

the University of Rijeka, Department of Informatics.

The main drawback of the previous application

regarded the need for "manual" search for free exam

terms, because it did not contain the possibility of

automatic insight into the taken (already inserted) exam

terms. The new application for the thorough evidence of

exam terms has been created by using the script

languages PHP and JavaScript, together with the

relational database system MySQL and the language

HTML, as the basic means for defining the structure of

web pages. In the first part of the paper we describe the

methodology of the development of web applications,

while in the rest of the paper we illustrate the use of this

methodology on the example of the development of the

dynamic web application “Exam scheduler”.

I. INTRODUCTION

Dynamic web applications, like classic desktop
applications, ought to be developed by following a
series of formally defined steps and phases determined
by a methodology. There are several methodologies
for software development but they all have a common
basic structure [1]:

1. Requirements analysis and specification – what is
the object/purpose of the application;

2. Design – how will the application fulfill its
purpose;

3. Construction/implementation – implementing the
designs created in the previous phase;

4. Verification and validation – does the application
fulfill its purpose and work correctly;

5. Deployment – installation, user education, test
phase;

6. Maintenance – support, change-test-
redeployment loop.

Since this web application is not so complex as
various large applications can be, some of the sub
phases of the methodology have not been necessary.
This regards mainly the strategic planning phase,
which deals mostly with general preparation activities

and problem analysis. The development of this
application actually started as a new iteration from the
Maintenance phase.

We developed the “Exam Scheduler” application,
which was then added to our existing web content
management system. A similar application that was
used as an exam scheduler existed before this one but
it had several flaws and only basic functions. Recent
changes introduced by the Bologna education system
required that we rebuild the existing application. The
main drawbacks of the existing application where the
lack of different exam schedule views as well as the
absence of exam overlap control (which had to be
done manually). The removal of these drawbacks has
been the main goal of this process.

All phases of the methodology must be repeated
when making a change in the existing system,
especially in the case of developing a new system
which completely replace the existing one.

II. MODELING AND DEVELOPING THE WEB

APPLICATION “EXAM SCHEDULER”

A. Requirements

The object of this process is to build a web
application that will enable the staff of the Department
of informatics to manage their exam schedules online.
This web application will be added to the existing
content management system of the Department.

The goal of the main project phase is a detailed
analysis of the system and its decomposition into
modules which will be realized as separate project
designs. The main product of this phase is a process
model of the selected system.

The main requirements are:

- web application will enable the users to
manage their exams (insert, update, delete)

- web application will detect and prevent all
possible exam terms overlaps by notifying the
user and offering possible correct inputs

- web application will have multiple views of
the data: full academic year exam schedule,

monthly view, weekly view, per employee
view, per course view

- web application will enable data manipulation
(exam submission, update, delete) for
Department employees only (identity will be
checked via a SOAP request [2] to the
AAI@EduHr[3] infrastructure)

- exam scheduler views will have an option to
be made public or visible only to Department
students (identity will also be checked using
AAI@EduHr infrastructure)

B. Design

In the next phase we created the process model for
our application. The process model describes the
process of the observed system on several levels (each
one going one more level of decomposition deeper,
until we reach the most basic processes that cannot be
decomposed further). The process model is created
based on interviewing the experts who know and work
on the real system. When working on a large scale
information system many interviews have to be
conducted in order to create a correct and precise
process model. The process models for our web
application can be seen in Figure I and II.

FIGURE I. CONTEXT DIAGRAM FOR THE EXAM

SCHEDULER

The context diagram (Figure I) models the whole
observed system as one process and its data relations
with the outside systems. The first level diagram
(Figure II) models its sub processes that cannot be
decomposed further.

Processes are presented as rounded shapes, while
outside systems are presented as rectangles. Data
relations (flows) are displayed as arrows between two
processes or the outside system and the process.
Outside systems in this model are professors, students
and management.

The next step is to develop a data model. The
model is based on the previous data model and new
data requirements that follow from the new set of

requirements. The data model (or entity-relationship
model) depicts all entities, aggregations and their
relationships as shown in Figure III.

FIGURE II. PROCESS MODEL FOR EXAM SCHEDULER

FIGURE III. ER DIAGRAM FOR EXAM SCHEDULER

The entities on the data model must all have a
unique identifier (primary key) which is displayed in
strong underlined style. An exception from this rule is
the aggregation concept whose primary key is a set

consisting of primary keys of its connected entities.
Relationships between entities must be named (except
relationships between aggregations) and have stated
cardinalities (0,1,M) which are later used for
translation to the relational model.

When the data model has been completed and
reviewed it is ready to be translated into the database
relational model. The translation is performed
following a set of rules which define the translation
procedures for each concept shown in the data model.
The most important rules used in this example are:

Each entity from the Entity-Relationship (ER)
model becomes a relation in the relational model in
such way that the entity attributes become relation
attributes, the primary key of the entity becomes the
primary key of the relation.

Relationships with cardinalities (1,1):(0,M) are not
translated into a relationships, but the key of the entity
that enters the relationship with the cardinality M
becomes an attribute (foreign key) of the relation that
enters the relationship with the cardinality 1.

Any relationship with the cardinality (0,M):(0,M)
is called an aggregation and becomes a relation in the
relational model, with a primary key made of the
primary keys of the connected entities. This
relationship type can have more attributes and they
become attributes of the relation.

The resulting relational model is displayed in Table I.

TABLE I. RELATION MODEL

Status(IdStatus, NazivStatusa, Kratica, Opis,
EngleskiNaziv, EngleskaKratica, Poredak)

Zaposlenik(IdZaposlenika, Ime, Prezime, Titula,
KorisnickoIme, Zaporka, RazinaPrava, fk_IdStatus)

Nositelj(IdZaposlenik, IdKolegij, Uloga)

NazivKolegija(IdNaziva, NazivKolegija)

Kolegij(IdKolegija, Izborni, cSegment, Semestar,
ISVUId, Predavanja, Seminari, Vježbe, fk_IdNaziva)

Ispit(IdIspita, Vrijeme, Napomena, Trajanje,
IdZaposlenik, BrojProstorije)

Prostorija(BrojProstorije, Number of seats, Projector,
Comments)

The following step in the design phase is to make
drafts of the application user interfaces (also known as
“UX model”). As this application will be added to the
existing Department website (CMS) the drafts had all
the basic design guidelines (such as background color,
text and link colors etc.). All basic forms for data
manipulation and all data views were wireframed and
then refined to detailed images. An example for a
weekly data view can be seen in Figure IV.

FIGURE 1. A WIREFRAME OF THE WEEKLY EXAM

OVERVIEW

The final part of the design phase is to define all
operations over the database schema. This includes
writing all queries that will later be used in the
application. Our web application uses MySQL [4], a
relation database management system. There are two
basic parts of the SQL language [5]: (1) the Data
Definition Language, which is used to define relations,
keys, attributes and data types, and (2) the Data
Manipulation Language which is used to define
queries/operation over the database relations such as
inserting, updating, deleting data, and most
importantly querying data from the database. The most
important queries are described below:

 course exam schedule overview

SELECT naziviKolegija.naziv,

zaposlenik.prezime,

zaposlenik.ime,

nositelj.uloga,

ispit.prostorija,

ispit.vrijeme

FROM zaposlenik, kolegij,

naziviKolegija, ispit, nositelj

WHERE ispit.zaposlenik=zaposlenik.id

AND

zaposlenik.id=nositelj.zaposlenik

AND nositelj.kolegij=kolegij.id

AND kolegij.naziv=naziviKolegija.id

[AND kolegij.id=$kolegij]

[AND

naziviKolegija.naziv=$nazivKolegija]

ORDER BY ispit.vrijeme

This query collects data from five relations in order
to display all the data required for this view (exam
schedule for the selected course and the name of the
professor).

 employee exams overview

SELECT * FROM ispiti

WHERE zaposlenik=$sifra ORDER BY

vrijeme DESC

 exams in a selected week

SELECT * FROM ispit

WHERE vrijeme BETWEEN $pocetak AND

$kraj ORDER BY vrijeme

C. Construction

The construction phase is the most time consuming
phase during which the code of the application is being
written by programmers.

The first activity in this phase was to build the
database on the MySQL server. To speed up the
process we used the common PhpMyAdmin [6] web
application that serves as a user interface to the
MySQL server.

The second activity was to create all the basic
HTML [7] files needed for forms and data views.
After that they were styled using CSS [8]. Furthermore
the form fields were given unique id’s to facilitate
JavaScript [9] manipulation. Lastly, all the necessary
JavaScript functions (for input validation and visual
presentation of the data (class schedule table)) as well
as XmlHttpRequest[10] object invocations were
written and tested.

The final activity was to write the necessary PHP
code [11]. In order to simplify the application structure
and help performance, we decided to write all the code
in one PHP file; we obtained code separation by using
procedural programming. The main structure of the
application is based on a switch structure that receives
the action instruction requests from the user (via query
string) and calls the required functions. The query
string is the main channel for transferring user requests
for action as well as starting or ending data identifiers
among subsequent HTTP requests.

An example of the query string usage can be seen
below:

http://www.adresa.hr/index.php?varijabla1=vrijedn
ost1&varijabla2=vrijednost2

A query string starts with the question mark (?)
which is followed by a number of “key=value” pairs
separated by the ampersand character (&).

The main functions followed from the process
model: exam_overlap_check() and display_schedule(),
with a number of auxiliary functions (such as basic
input control, database connection, page header/footer,
etc.). On a more general basis we can divide the
application functionality into three parts: (a) inserting,
updating and deleting exam terms, (b) data views and
(c) administrative functions. We will describe their
development process in the following paragraphs.

To submit exams and update or delete them the
user has to authenticate his identity via a login screen
that sends the user's credentials to an AAI server
through a SOAP request and returns the identification
result. When submitting a new, or updating previously
submitted exams, a function is called that checks for
overlaps. This function gets the starting date and time
of the exam, duration and classroom number and then
checks for all possible overlap situations as depicted in
Figure V.

FIGURE V. PROCESS MODEL FOR EXAM SCHEDULER

The SQL query is written as follows (parameters
sent to the function begin with the $ sign as mandatory
for the PHP language):

SELECT * FROM ispit, zaposlenik

WHERE ispit.zaposlenik=zaposlenik.id

AND prostorija=$prostorija

AND ((ispit.vrijeme<=$pocetak AND

(ispit.vrijeme+ispit.trajanje)>$poce

tak)

OR (vrijeme<$kraj AND

(vrijeme+trajanje)>=$kraj)

OR (vrijeme>=$pocetak AND

vrijeme<$kraj)

OR ((vrijeme+trajanje)>$pocetak AND

(vrijeme+trajanje)<=$kraj))

ORDER BY vrijeme

The exam submission form requires from the user
to insert starting date and time of the exam, duration,
classroom number and comments. The starting date
field has a JavaScript calendar function attached,
which facilitates the insertion of the date. The time is
inserted using drop down lists of hours and minutes.
The classroom number is selected from another
dropdown list populated by the data stored in the
Prostorija relation. Another JavaScript function is used
to validate all of the inserted or selected data, prior to
form submission. If all the data are formally correct,
an XmlHttpRequest (short: XHR) object is instantiated
and through it a request is made to the PHP script,
which then checks for overlaps in the database and
returns a true/false result. If the result is false the form
is submitted and the data is stored in the database.

The XHR object is one of the keystones of the
AJAX [12] technology and the connected Web 2.0
web application usage paradigm change. It enables
asynchronous communication between the client (web
browser) and the server, and is integrated with the
JavaScript interpreters of the most contemporary web
browsers. When an XHR request is made the
onreadystatechange event listener is automatically
invoked for each change in the readyState property of
the XHR object. When the response has finished

http://www.adresa.hr/index.php?varijabla1=vrijednost1&varijabla2=vrijednost2
http://www.adresa.hr/index.php?varijabla1=vrijednost1&varijabla2=vrijednost2

loading the readyState changes to the value 4 and then
the response can be displayed on the page the user is
currently viewing using JavaScript (for example by
displaying the content of the responseText property as
the contents of a paragraph).

In our web application this is implemented in the
following way: the value of the variable a located in
the query string determines the required action – p for
exam submission, and pa for exam update. Other
variables in the query string contain the rest of the
required data. Depending on the value of a an XHR
request is made to the PHP script which returns a
true/false response. Depending on the response the
form Submit button can be disabled and an alert
window displayed.

While the user is logged in any of the defined data
views, the view will show the update and delete icons
next to his exams. To delete an exam the user has to
click the delete icon/link and confirm his action before
the exam is deleted.

All data views have a similar basic functionality –
submit a query to the database, retrieve and display
data on the screen. What changes is the display of data
on the screen for each data view.

Monthly overview – the exam schedule for all
exams for the current month is displayed in the classic
table form. The PHP functions date() and mktime() are
used to format the date output and to calculate the
ending date for the data view, respectively. The
following query is sent to the database ($pocetak and
$kraj are timestamps marking the starting and ending
dates for the selected month):

SELECT ispit.id AS id, zaposlenik.id

AS zaposlenik, ime, prezime,

vrijeme, napomena, trajanje,

prostorija

FROM ispit, zaposlenik

WHERE ispit.zaposlenik=zaposlenik.id

AND vrijeme BETWEEN $pocetak AND

$kraj

ORDER BY vrijeme ASC

The results of the query are all exams that fall into
the defined time span ordered by starting time. The
output is in the simple form of a HTML table.

Academic year overview – the data for this view is
obtained using the same query as the previous view
but the display is different. The HTML table columns
represent months while each row displays exams for
one employee.

Weekly overview – the data for this view is
obtained using the same query as the previous view.
This is the most complex view of the application. This
view has the classic time organizer display with
columns as days and rows as 30 minutes time blocks.
The exams are displayed as blocks that span multiple
rows filled with exam information. The problem is in

the fact that HTML tables are written in start row-add
columns manner, and this view requires that the table
gets generated in the opposite way. This requires extra
checks in order to get the right HTML syntax.

FIGURE VI. WEEKLY OVERVIEW OF THE FINISHED WEB

APPLICATION

The administrator panel enables the users that have
administrator privileges to get various data statistics
and delete or change multiple exams at once (such as
delete all exams from the finished academic year).
Database administrators can also check the status of
data tables of the MySQL server, and make repairs and
backups if necessary.

D. Verification

After the application was finished, its functioning
and performances were tested and validated in the real
time usage. Some weaknesses which have been seen in
this process, have been removed.

E. Deployment

After the application was tested using test data, it
was uploaded to the Department web server and
installed as a component of our CMS. The existing
database schema was also updated with new and/or
changed tables. The application and the procedures of
its use were presented to the employees of the
Department. The design of forms and views was tested
and made self-explanatory as much as possible. In
addition, all forms and data views have “help buttons”
which facilitated the use of the application, especially
during the initial period.

F. Maintenance

The last (and lasting) phase in the life-cycle of an
application is the continuous process of monitoring the
performances of the application, with the identification
of its malfunctioning or weaknesses. Finally, if/when
new administrative procedures pose new requirements
to the application, the process of its maintenance ought
to start with a new iteration of logical and physical
modeling, development and implementation.

III. CONCLUSION

In this paper we presented a complete process of
developing a web application, based on a general
methodology of software development, which consists
of several phases, from the requirements analysis to
the application validation and maintenance. It is
important to emphasize the specific differences of web
applications, such as the simpler ways of update
rollouts (the updated files replace the older ones on
only one computer – the web server). This application
demonstrates the synergetic effects of the “classic”
web development technologies (such as HTML, PHP
and MySQL) and new web technologies (such as
AJAX). JavaScript was used to control user inputs,
while XmlHttpRequest object was used to change the
usage paradigm of the web application in order to
increase application interactivity. The methodology we
used ensured the success of the process through the
fulfillment of all requirements and the elimination of
possible functional errors. Other components of the
Departments management system will be rewritten in
the same way.

REFERENCES

[1] SWEBOK -
http://www.computer.org/portal/web/swebok/htmlformat
(10.01.2011)

[2] SOAP - http://www.w3.org/TR/soap/ (10.01.2011)

[3] AAI - http://www.aaiedu.hr/ (10.01.2011)

[4] MySQL - http://www.mysql.com/ (10.01.2011)

[5] SQL - http://www.w3schools.com/sql (10.01.2011)

[6] PhpMyAdmin - http://www.phpmyadmin.net/ (10.01.2011)

[7] HTML - http://www.w3.org/MarkUp/ (10.01.2011)

[8] CSS - http://www.w3.org/Style/CSS/ (10.01.2011)

[9] Javascript - http://www.javascript.com/ (10.01.2011)

[10] XmlHttpRequest - http://www.w3.org/TR/XMLHttpRequest/
(10.01.2011)

[11] PHP - http://www.php.net/ (10.01.2011)

[12] Garrett, J.J: "Ajax: A New Approach to Web Applications".
AdaptivePath.com (10.01.2011)

http://www.computer.org/portal/web/swebok/htmlformat
http://www.w3.org/TR/soap/
http://www.aaiedu.hr/
http://www.mysql.com/
http://www.w3schools.com/sql
http://www.phpmyadmin.net/
http://www.w3.org/MarkUp/
http://www.w3.org/Style/CSS/
http://www.javascript.com/
http://www.w3.org/TR/XMLHttpRequest/
http://www.php.net/

