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Abstract. In this paper we consider Jessen’s functional, defined by means

of positive isotonic linear functional, and investigate its properties. Derived

results are then applied to weighted generalized and power means, which yields
extensions of some recent results, known from the literature. In particular, we

obtain the whole series of refinements and conversions of numerous classical

inequalities such as arithmetic-geometric mean inequality, Young’s inequality
and Hölder’s inequality.

1. Introduction

Jensen’s inequality is sometimes called the king of inequalities since it implies
the whole series of other classical inequalities (e.g. those by Hölder, Minkowski,
Beckenbach-Dresher and Young, the arithmetic-geometric mean inequality etc.).
As we know, Jensen’s inequality for convex functions is probably one of the most
important inequalities which is extensively used in almost all areas of mathematics,
especially in mathematical analysis and statistics. For a comprehensive inspection
of the classical and recent results related to this inequality the reader is referred to
[17] and [21].

In this paper we refer to so called Jensen’s functional, deduced from Jensen’s
inequality. Namely, Dragomir et al. (see [12]), investigated the properties of discrete
Jensen’s functional

(1) Jn(Φ,x,p) =

n∑
i=1

piΦ(xi)− PnΦ

(∑n
i=1 pixi
Pn

)
,

where Φ : I ⊂ R→ R, x = (x1, x2, . . . , xn) ∈ In, n ≥ 2, and p = (p1, p2, . . . , pn) is
positive n−tuple of real numbers with Pn =

∑n
i=1 pi. They obtained that, under

assumption that Φ is convex function, such functional is superadditive on the set
of positive real n−tuples, that is

(2) Jn(Φ,p + q, x) ≥ Jn(Φ,p, x) + Jn(Φ,q, x).

Further, above functional is also increasing in the same setting, that is,

(3) Jn(Φ,p, x) ≥ Jn(Φ,q, x) ≥ 0,

where p ≥ q (i.e. pi ≥ qi, i = 1, 2, . . . , n). Monotonicity property of discrete
Jensen’s functional was proved few years before (see [17], p.717). Above mentioned
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properties provided refinements of numerous classical inequalities. For more details
about such extensions see [12].

Very recently, Dragomir (see [13]) investigated boundedness of normalized Jensen’s
functional, that is functional (1) satisfying

∑n
i=1 pi = 1. He obtained the following

lower and upper bound for normalized functional:

(4) max
1≤i≤n

{
pi
qi

}
Jn(Φ,x,q) ≥ Jn(Φ,x,p) ≥ min

1≤i≤n

{
pi
qi

}
Jn(Φ,x,q) ≥ 0.

In relation (4), Φ : K ⊂ X → X is convex function on convex subset K of linear
space X, x = (x1, x2, . . . , xn) ∈ Kn, and p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn)
are positive real n−tuples with

∑n
i=1 pi =

∑n
i=1 qi = 1. Let’s mention that an

alternative proof of relation (4) was also given in [8].
It is well known that Jensen’s inequality can be regarded in a more general

manner, including positive linear functionals acting on linear class of real valued
functions.

More precisely, let E be nonempty set and L(E,R) linear class of real-valued
functions f : E → R satisfying following properties:

L1: f, g ∈ L(E,R) ⇒ αf + βg ∈ L(E,R) for all α, β ∈ R;
L2: 1 ∈ L(E,R), that is, if f(t) = 1 for all t ∈ E, then f ∈ L(E,R).

We also consider isotonic positive linear functionals A : L(E,R) → R. That is,
we assume that

A1: A(αf + βg) = αA(f) + βA(g) for f, g ∈ L(E,R), α, β ∈ R (linearity);
A2: f ∈ L(E,R), f(t) ≥ 0 for all t ∈ E ⇒ A(f) ≥ 0 (isotonicity).

Further, if

A3: A(1) = 1

also holds, we say that A is normalized isotonic positive linear functional or A(f)
is linear mean defined on L(E,R).

Common examples of such isotonic functionals A are given by

A(f) =

∫
E

fdµ or A(f) =
∑
k∈E

pkfk,

where µ is a positive measure on E in the first case, and E is subset of N = {1, 2, . . .}
with all pk > 0 in the second case. Additionally, if E is an interval 〈a, b〉, where
−∞ ≤ a < b ≤ ∞, and

L(E,R) = {f : E → R;α(f) = lim
x→a+

f(x), β(f) = lim
x→b−

f(x) both exist},

then A(f) = α(f) + β(f) or A(f) = [α(f) + β(f)] /2 or A(f) = α(f), etc., are also
isotonic linear functionals.

Jessen’s generalization of Jensen’s inequality (see [21], p. 47-48), in view of
positive isotonic functionals, claims that

(5) Φ(A(f)) ≤ A(Φ(f)),

where Φ is continuous convex function on interval I ⊆ R, A is normalized isotonic
positive linear functional, and f ∈ L(E,R) such that Φ(f) ∈ L(E,R). Jessen’s
inequality was extensively studied during the eighties and early nineties of the last
century (see papers [9], [11], [15], [18], [19], [20], [23]).



JESSEN’S FUNCTIONAL, ITS PROPERTIES AND APPLICATIONS 3

Very recently, Čuljak et al. (see [10]) generalized Jessen’s relation (5). Namely,
suppose Φ is continuous convex function on real interval, p, q ∈ L(E,R) are non-
negative functions, and let there exist non-negative constants m and M such that
p(t)−mq(t) ≥ 0, Mq(t)− p(t) ≥ 0, A(p)−mA(q) > 0, MA(q)− A(p) > 0. Then,
the series of inequalities

M

[
A (qΦ(f))−A(q)Φ

(
A(qf)

A(q)

)]
≥ A (pΦ(f))−A(p)Φ

(
A(pf)

A(p)

)
≥ m

[
A (qΦ(f))−A(q)Φ

(
A(qf)

A(q)

)]
,(6)

hold for every f ∈ L(E,R) such that all expressions in (6) are well defined.
Led by Jessen’s variant of Jensen’s inequality, in this paper we study so called

Jessen’s functional which includes described isotonic functional. We shall obtain
that mentioned properties of superadditivity and monotonicity hold in a more gen-
eral manner. These properties can also be regarded as refinements and conversions
of numerous classical inequalities, what will be considered in the sequel. Results
that will be deduced in the paper, generalize all the mentioned results in this In-
troduction.

The paper is organized in the following way: After this Introduction, in Section 2
we define Jessen’s functional deduced from inequality (5), and analyze its properties
depending on convexity of associated function. Further, in Section 3 we apply our
general results to the weighted general and power means with respect to positive
isotonic linear functional. In particular, we consider obtained results in various
settings what will bring us to the improvements of some earlier results, known from
the literature. The last Section 4 is dedicated to inequalities of Hölder’s type and
their improvements.

The techniques that will be used in the proofs are mainly based on classical real
analysis, especially on the well known Jensen’s inequality.

2. Definition and basic properties of generalized Jensen’s functional

In this section, by means of relation (5), we define Jessen’s functional including
positive isotonic functional. Before we define such functional, we have to establish
some basic notation.

Let F(I,R) be the linear space of all real functions on interval I ⊆ R, let L(E,R)
be the linear class of real functions, defined on nonempty set E, satisfying properties
(L1) and (L2), and let L+

0 (E,R) ⊂ L(E,R) be subset of non-negative functions in
L(E,R). Further, let I(L(E,R),R) denotes the space of positive isotonic linear
functionals on L(E,R), that is, we assume that such functionals satisfy properties
(A1) and (A2).

As a generalization of Jensen’s functional, with respect to isotonic functional,
we define J : F(I,R)× L(E,R)× L+

0 (E,R)× I(L(E,R),R)→ R as

(7) J (Φ, f, p;A) = A (pΦ(f))−A(p)Φ

(
A(pf)

A(p)

)
.

Clearly, definition (7) is deduced from relation (5) and it also contains definition
(1) of discrete Jensen’s functional. We call (7) Jessen’s functional.
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Remark 1. In above definition (7) we suppose pf , pΦ(f) ∈ L(E,R). Then,

it is easy to see that Φ
(
A(pf)
A(p)

)
is well defined provided that A(p) 6= 0. Namely,

A1(f) = A(pf)
A(p) ∈ I(L(E,R),R) is normalized isotonic functional, that is, A1(1) = 1.

Now, suppose I = [a, b]. Clearly, a ≤ f(t) ≤ b, ∀t ∈ E. Since b− f(t) ≥ 0, by using
properties (A1), (A2), and (A3) we have b−A1(f) = A1(b)−A1(f) = A1(b−f) ≥ 0,

hence A1(f) ≤ b. Similarly, a ≤ A1(f) wherefrom we conclude that A(pf)
A(p) belongs

to interval I. �

Conditions similar to those in Remark 1 will usually be omitted, so Jessen’s
functional (7) will initially assumed to be well defined.

Remark 2. If Φ is continuous convex function on interval I, then Jessen’s func-
tional is non-negative, i.e.

(8) J (Φ, f, p;A) ≥ 0.

It follows directly from Jessen’s relation (5) applied on normalized isotonic func-

tional A1(f) = A(pf)
A(p) ∈ I(L(E,R),R). On the other hand, if Φ is continuous

concave function, then the sign of inequality in (8) is reversed. �

Now we are ready to state and prove our main result that describes basic pro-
perties of Jessen’s functional.

Theorem 1. Suppose Φ : I ⊂ R → R is continuous convex function. Let f ∈
L(E,R), p, q ∈ L+

0 (E,R), A ∈ I(L(E,R),R), such that Jessen’s functional (7) is
well defined. Then, functional (7) possess the following properties:
(i) J (Φ, f, ·;A) is superadditive on L+

0 (E,R), i.e.

(9) J (Φ, f, p+ q;A) ≥ J (Φ, f, p;A) + J (Φ, f, q;A) .

(ii) If p, q ∈ L+
0 (E,R) with p ≥ q, then

(10) J (Φ, f, p;A) ≥ J (Φ, f, q;A) ≥ 0,

i.e. J (Φ, f, ·;A) is increasing on L+
0 (E,R).

(iii) If Φ is continuous concave function, then the signs of inequality in (9) and (10)
are reversed, i.e. J (Φ, f, ·;A) is subadditive and decreasing on L+

0 (E,R).

Proof. (i) From definition (7) and by using the linearity of isotonic functional A,
we have

J (Φ, f, p+ q;A) = A ((p+ q)Φ(f))−A(p+ q)φ

(
A((p+ q)f)

A(p+ q)

)
= A (pΦ(f) + qΦ(f))− (A(p) +A(q)) Φ

(
A(pf + qf)

A(p) +A(q)

)
= A (pΦ(f)) +A (qΦ(f))− (A(p) +A(q)) Φ

(
A(pf) +A(qf)

A(p) +A(q)

)
.(11)
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On the other hand, convexity of function Φ, together with classical Jensen’s ine-
quality, yields inequality

Φ

(
A(pf) +A(qf)

A(p) +A(q)

)
= Φ

(
A(p)

A(p) +A(q)
· A(pf)

A(p)
+

A(q)

A(p) +A(q)
· A(qf)

A(q)

)
≤ A(p)

A(p) +A(q)
Φ

(
A(pf)

A(p)

)
+

A(q)

A(p) +A(q)
Φ

(
A(qf)

A(q)

)
,

which can be rewritten in the following form:

(12) (A(p) +A(q)) Φ

(
A(pf) +A(qf)

A(p) +A(q)

)
≤ A(p)Φ

(
A(pf)

A(p)

)
+A(q)Φ

(
A(qf)

A(q)

)
.

Finally, by combining relation (11) and inequality (12) we get

J (Φ, f, p+ q;A) ≥ A (pΦ(f)) +A (qΦ(f))−A(p)Φ

(
A(pf)

A(p)

)
−A(q)Φ

(
A(qf)

A(q)

)
= J (Φ, f, p;A) + J (Φ, f, q;A) ,

that is, superadditivity of J (Φ, f, ·;A) on L+
0 (E,R).

(ii) Monotonicity follows easily from superadditivity. Since p ≥ q ≥ 0, we can
represent p ∈ L+

0 (E,R) as the sum of two functions in L+
0 (E,R), namely p =

(p− q) + q. Now, from relation (9) we get

J (Φ, f, p;A) = J (Φ, f, p− q + q;A) ≥ J (Φ, f, p− q;A) + J (Φ, f, q;A) .

Finally, since J (Φ, f, p− q;A) ≥ 0, it follows that J (Φ, f, p;A) ≥ J (Φ, f, q;A),
which completes the proof.
(iii) The case of concave function is treated in the same way as in (i) and (ii), taking
into consideration that the sign of Jensen’s inequality is reversed and that Jessen’s
functional is non-positive in that case. �

The properties contained in Theorem 1 play meaningful role in numerous appli-
cations of Jessen’s inequality. As the first consequence of Theorem 1, we consider
monotonicity property of Jessen’s functional which includes the function that att-
ains minimum and maximum value on its domain. That result is contained in the
following statement.

Corollary 1. Let Φ be continuous convex function on real interval, let f ∈ L(E,R),
and let A ∈ I(L(E,R),R). Suppose p ∈ L+

0 (E,R) attains minimum and maximum
value on the set E. If the functional (7) is well defined, then the following series of
inequalities hold

(13)
[

max
x∈E

p(x)
]
j (Φ, f ;A) ≥ J (Φ, f, p;A) ≥

[
min
x∈E

p(x)
]
j (Φ, f ;A) ,

where

(14) j (Φ, f ;A) = A (Φ(f))−A(1)Φ

(
A(f)

A(1)

)
.

Further, if Φ is continuous concave function, then the signs of inequality in (13)
are reversed.

Proof. The result follows easily from property (10) of Jessen’s functional. Namely,
since p ∈ L+

0 (E,R) attains minimum and maximum value on its domain E, then

max
x∈E

p(x) ≥ p(x) ≥ min
x∈E

p(x),
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so we can consider two constant functions

p(x) = max
x∈E

p(x) and p(x) = min
x∈E

p(x).

Now, double application of property (10) yields required result since

J (Φ, f, p;A) =
[

max
x∈E

p(x)
]
j (Φ, f ;A) and J

(
Φ, f, p;A

)
=
[

min
x∈E

p(x)
]
j (Φ, f ;A) .

�

The properties described in Theorem 1 and Corollary 1 generalize all the re-
sults presented in Introduction, what will clearly be explained in next few remarks.
Additionally, obtained results provide new opportunities for applications of Jessen’s
inequality, what will be discussed in the sequel.

Remark 3. Our main result, i.e. Theorem 1 is the generalization of relation
(6) from Introduction. More precisely, suppose functions p, q ∈ L+

0 (E,R) are
chosen in such a way that there exist positive real constants m and M such
that relation Mq(x) ≥ p(x) ≥ mq(x) holds for all x ∈ E. Then, double app-
lication of property (10) yields (6) since J (Φ, f,mq;A) = mJ (Φ, f, q;A) and
J (Φ, f,Mq;A) = MJ (Φ, f, q;A). �

Remark 4. Let’s consider the discrete case of Theorem 1 or rather Corollary
1. We suppose E = {1, 2, . . . , n} and L(E,R) is the class of real n−tuples. If
we consider discrete functional A ∈ I(L(E,R),R) defined by A(x) =

∑n
i=1 xi,

where x = (x1, x2, . . . , xn), then the functional (7) becomes discrete functional (1)
from paper [12]. Additionally, if p = (p1, p2, . . . , pn) with

∑n
i=1 pi = 1, we get

normalized Jensen’s functional from relation (4) (see paper [13]). Of course, our
Theorem 1 is further generalization of relation (4) from Introduction. Namely, if
p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) are two positive n−tuples satisfying∑n
i=1 pi = 1 and

∑n
i=1 qi = 1, then, if we denote

m = min
1≤i≤n

{
pi
qi

}
and M = max

1≤i≤n

{
pi
qi

}
,

the relation Mqi ≥ pi ≥ mqi holds for all i = 1, 2, . . . , n, that is, we are in condi-
tions of Remark 3. �

Remark 5. Let’s rewrite relation (13) from Corollary 1 in a discrete form. Namely,
under the same notations as in the previous remark, relation (13) takes form

(15) max
1≤i≤n

{pi}SΦ(x) ≥ Jn(Φ,x,p) ≥ min
1≤i≤n

{pi}SΦ(x),

where the functional Jn(Φ,x,p) is defined by (1) and SΦ(x) =
∑n
i=1 Φ(xi) −

nΦ
(∑n

i=1 xi

n

)
. Relation (15) was proved in [24] only for n = 2 in the case of

normalized functional. The mentioned relation for n = 2 was also used in applica-
tions of Jensen’s inequality. For example, in [14], the authors use (15), for n = 2,
in obtaining some global upper bounds for Jensen’s inequality. �

We conclude this section with remark about integral form of Jessen’s functional.
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Remark 6. Suppose E ⊆ R and let L(E,R) be linear class of measurable func-
tions with respect to positive measure µ. If A(f) =

∫
E
fdµ, then the integral

representation of functional (7) reads∫
E

p(x)Φ(f(x))dµ(x)−
(∫

E

p(x)dµ(x)

)
Φ

(∫
E
p(x)f(x)dµ(x)∫
E
p(x)dµ(x)

)
.

�

3. Applications to weighted generalized and power means

In this section we apply our basic results from previous section to weighted gene-
ralized and power means with respect to isotonic functional A ∈ I(L(E,R),R). In
such a manner, we obtain both refinements and conversions of numerous classical
inequalities, what will briefly be discussed in the sequel.

Recall, weighted generalized mean with respect to isotonic linear functional
A ∈ I(L(E,R),R) and continuous and strictly monotone function χ ∈ F(I,R),
is defined as

(16) Mχ (f, p;A) = χ−1

(
A (pχ(f))

A(p)

)
, f ∈ L(E,R), p ∈ L+

0 (E,R).

Of course, we assume that (16) is well defined, that is, A(p) 6= 0 and pχ(f) ∈
L(E,R). Similarly as in the previous section, such conditions will usually be omitt-
ed, so weighted generalized mean (16) will initially assumed to be well defined.

Theorem 2. Let χ, ψ ∈ F(I,R) be continuous and strictly monotone functions
such that the function χ ◦ ψ−1 is convex. Suppose f ∈ L(E,R), p, q ∈ L+

0 (E,R),
A ∈ I(L(E,R),R) are such that the functional

(17) A(p) [χ (Mχ(f, p;A))− χ (Mψ(f, p;A))]

is well defined. Then, functional (17) satisfies the following properties:
(i) A(·) [χ (Mχ(f, ·;A))− χ (Mψ(f, ·;A))] is superadditive on L+

0 (E,R), i.e.

A(p+ q) [χ (Mχ(f, p+ q;A))− χ (Mψ(f, p+ q;A))]

≥ A(p) [χ (Mχ(f, p;A))− χ (Mψ(f, p;A))]

+A(q) [χ (Mχ(f, q;A))− χ (Mψ(f, q;A))] .(18)

(ii) If p, q ∈ L+
0 (E,R) with p ≥ q, then

A(p) [χ (Mχ(f, p;A))− χ (Mψ(f, p;A))]

≥ A(q) [χ (Mχ(f, q;A))− χ (Mψ(f, q;A))] ,(19)

that is, A(·) [χ (Mχ(f, ·;A))− χ (Mψ(f, ·;A))] is increasing on L+
0 (E,R).

(iii) If χ ◦ψ−1 is concave function, then the signs of inequality in (18) and (19) are
reversed, that is, A(·) [χ (Mχ(f, ·;A))− χ (Mψ(f, ·;A))] is subadditive and decre-
asing on L+

0 (E,R).

Proof. We consider Jessen’s functional (7) where the convex function Φ is replaced
with χ◦ψ−1 and f ∈ L(E,R) with ψ(f) ∈ L(E,R). Thus, having in mind definition
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(16), functional (7) can be rewritten in the form

J
(
χ ◦ ψ−1, ψ(f), p;A

)
= A

(
p ·
(
χ ◦ ψ−1 (ψ(f))

))
−A(p)χ

(
ψ−1

(
A (pψ(f))

A(p)

))
= A (pχ(f))−A(p)χ (Mψ(f, q;A))

= A(p)χ (Mχ(f, p;A))−A(p)χ (Mψ(f, q;A))

= A(p) [χ (Mχ(f, p;A))− χ (Mψ(f, p;A))] .

Now, the properties (i), (ii), and (iii) follow immediately from Theorem 1. �

Similarly as in Section 2, we can bound functional (17) with the minimum and
maximum value of function p ∈ L+

0 (E,R) if they exist.

Corollary 2. Let χ, ψ ∈ F(I,R) be continuous and strictly monotone functions
such that the function χ ◦ ψ−1 is convex. Suppose f ∈ L(E,R), p ∈ L+

0 (E,R),
A ∈ I(L(E,R),R) are such that the functional (17) is well defined. If p ∈ L+

0 (E,R)
attains minimum and maximum value on its domain E, then[

max
x∈E

p(x)
]
A(1) [χ (mχ(f ;A))− χ (mψ(f ;A))]

≥ A(p) [χ (Mχ(f, p;A))− χ (Mψ(f, p;A))]

≥
[

min
x∈E

p(x)
]
A(1) [χ (mχ(f ;A))− χ (mψ(f ;A))] ,(20)

where

(21) mη (f ;A) = η−1

(
A (η(f))

A(1)

)
, η = χ, ψ.

Additionally, if χ ◦ψ−1 is concave function, then the signs of inequality in (20) are
reversed.

Proof. Follows directly from property (19), following the same lines as in the proof
of Corollary 1. �

The first consequence of Theorem 2 refers to generalized power meansM [r] (f, p;A),
r ∈ R, equipped with isotonic functional A ∈ I(L(E,R),R). We have

(22) M [r] (f, p;A) =


(
A(pfr)
A(p)

) 1
r

, r 6= 0

exp
(
A(p ln(f))
A(p)

)
, r = 0

,

where f, p ∈ L+
0 (E,R), and f(x) > 0 for all x ∈ E. We assume that the above

expression is well defined, that is, pfr ∈ L+
0 (E,R), p ln(f) ∈ L(E,R), and A(p) 6= 0.

Such conditions will be omitted below.

Corollary 3. Let s 6= 0 and r be real numbers, let f, p, q ∈ L+
0 (E,R), f(x) > 0,

∀x ∈ E, and let A ∈ I(L(E,R),R). If the functional

(23) A(p)
{[
M [s](f, p;A)

]s
−
[
M [r](f, p;A)

]s}
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is well defined, then it has the following properties:
(i) If s > 0, s > r or s < 0, s < r or r = 0, then

A(p+ q)
{[
M [s](f, p+ q;A)

]s
−
[
M [r](f, p+ q;A)

]s}
≥ A(p)

{[
M [s](f, p;A)

]s
−
[
M [r](f, p;A)

]s}
+A(q)

{[
M [s](f, q;A)

]s
−
[
M [r](f, q;A)

]s}
,(24)

i.e. A(·)
{[
M [s](f, ·;A)

]s − [M [r](f, ·;A)
]s}

is superadditive on L+
0 (E,R).

(ii) If s > 0, s > r or s < 0, s < r or r = 0, then for p, q ∈ L+
0 (E,R) with p ≥ q,

holds inequality

A(p)
{[
M [s](f, p;A)

]s
−
[
M [r](f, p;A)

]s}
≥ A(q)

{[
M [s](f, q;A)

]s
−
[
M [r](f, q;A)

]s}
,(25)

i.e. functional A(·)
{[
M [s](f, ·;A)

]s − [M [r](f, ·;A)
]s}

is increasing on L+
0 (E,R).

(iii) If s > 0, s < r or s < 0, s > r, then the signs of inequality in (24) and (25) are

reversed, that is, A(·)
{[
M [s](f, ·;A)

]s − [M [r](f, ·;A)
]s}

is subadditive and decre-

asing on L+
0 (E,R).

Proof. The proof is direct use of Theorem 2. We have to consider two cases
depending on whether r 6= 0 or r = 0.

If r 6= 0, we define χ(x) = xs and ψ(x) = xr. Then, χ ◦ ψ−1(x) = x
s
r and(

χ ◦ ψ−1
)′′

(x) = s(s−r)
r2 x

s
r−2. Thus, χ◦ψ−1 is convex if s > 0, s > r or s < 0, s < r.

On the other hand, χ ◦ ψ−1 is concave if s > 0, s < r or s < 0, s > r.
If r = 0, we put χ(x) = xs and ψ(x) = lnx. Then, χ ◦ ψ−1(x) = esx is convex

under assumption s 6= 0.
Now, the result follows immediately from Theorem 2. �

In addition, Corollary 2, applied on generalized power means, yields the following
result.

Corollary 4. Let s and r be real numbers such that s > 0, s > r or s < 0, s < r
or r = 0, s 6= 0. Suppose f, p ∈ L+

0 (E,R), f(x) > 0, ∀x ∈ E, A ∈ I(L(E,R),R)
are such that the functional (23) is well defined. If p ∈ L+

0 (E,R) attains minimum
and maximum value on its domain E, then[

max
x∈E

p(x)
]
A(1)

{[
m[s](f ;A)

]s
−
[
m[r](f ;A)

]s}
≥ A(p)

{[
M [s](f, p;A)

]s
−
[
M [r](f, p;A)

]s}
≥
[

min
x∈E

p(x)
]
A(1)

{[
m[s](f ;A)

]s
−
[
m[r](f ;A)

]s}
,(26)

where

(27) m[t] (f ;A) =


(
A(fr)
A(1)

) 1
t

, t 6= 0

exp
(
A(ln(f))
A(1)

)
, t = 0

, t = r, s.
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Further, if s > 0, s < r or s < 0, s > r, then the signs of inequality in (26) are
reversed.

Proof. Follows immediately from property (25) or Corollary 2. �

Relations (20) and (26) can be regarded as both refinements and conversions of
weighted generalized and power means. Clearly, in both series of inequalities, one
inequality provides refinement, while the other one yields conversion of appropriate
mean inequality. The following remark describes such characteristics on the exam-
ple of classical arithmetic-geometric mean inequality.

Remark 7. For the sake of simplicity, we consider discrete variant of relation (26).
Equally as in Remark 4, we suppose E = {1, 2, . . . , n}, n ∈ N, and L(E,R) is a
class of real n−tuples. We consider discrete functional A ∈ I(L(E,R),R) defined
by A(x) =

∑n
i=1 xi, where x = (x1, x2, . . . , xn). Clearly, A(1) =

∑n
i=1 1 = n.

Then, if we put s = 1 and r = 0, series of inequalities (26) can be rewritten as

n max
1≤i≤n

{pi} [An(x)−Gn(x)] ≥ Pn [M1(x,p)−M0(x,p)]

≥ n min
1≤i≤n

{pi} [An(x)−Gn(x)] ≥ 0,(28)

where Pn =
∑n
i=1 pi,

(29) Mr(x,p) =


(∑n

i=1 pix
r
i

Pn

) 1
r

, r 6= 0

(
∏n
i=1 x

pi
i )

1
Pn , r = 0

,

(30) An(x) =

∑n
i=1 xi
n

, and Gn(x) =

(
n∏
i=1

xi

) 1
n

.

Obviously, the first sign of inequality in (28), from the left, provides conversion of
arithmetic-geometric mean inequality (M1(x,p) and M0(x,p)), while the second
one yields refinement of observed inequality. We also say that (28) yields conversion
and refinement of arithmetic-geometric mean inequality in difference form. Let’s
mention that some variants of inequalities in (28) were recently studied in paper
[6] of Aldaz. See also papers [1], [2], [3], [4], and [5]. �

Note that Corollaries 3 and 4 do not cover the case when s = 0 and r 6= 0. This
case should be considered separately.

Corollary 5. Let r 6= 0 be real number, let f, p, q ∈ L+
0 (E,R), f(x) > 0, ∀x ∈ E,

and let A ∈ I(L(E,R),R). If the functional

(31) A(p)

{
A (p ln f)

A(p)
− ln

[
M [r](f, p;A)

]}
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is well defined, then it possess the following properties:
(i) If r < 0 then

A(p+ q)

{
A ((p+ q) ln f)

A(p+ q)
− ln

[
M [r](f, p+ q;A)

]}
≥ A(p)

{
A (p ln f)

A(p)
− ln

[
M [r](f, p;A)

]}
+A(q)

{
A (q ln f)

A(q)
− ln

[
M [r](f, q;A)

]}
,(32)

i.e. A(·)
{
A(· ln f)
A(·) − ln

[
M [r](f, ·;A)

]}
is superadditive on L+

0 (E,R).

(ii) If r < 0 then for p, q ∈ L+
0 (E,R) with p ≥ q, holds inequality

A(p)

{
A (p ln f)

A(p)
− ln

[
M [r](f, p;A)

]}
≥ A(q)

{
A (q ln f)

A(q)
− ln

[
M [r](f, q;A)

]}
,(33)

i.e. A(·)
{
A(· ln f)
A(·) − ln

[
M [r](f, ·;A)

]}
is increasing on L+

0 (E,R).

(iii) If r > 0 then the signs of inequality in (32) and (33) are reversed, that is,

A(·)
{
A(· ln f)
A(·) − ln

[
M [r](f, ·;A)

]}
is subadditive and decreasing on L+

0 (E,R).

Proof. The proof is direct consequence of Theorem 2. We define χ(x) = lnx and
ψ(x) = xr. Then, the function χ ◦ ψ−1(x) = 1

r lnx is convex if r < 0 and concave
if r > 0. That completes the proof. �

The analogue of Corollary 4, that covers the case when s = 0 and r 6= 0, is
contained in the following result.

Corollary 6. Let r < 0 be real number, let f, p ∈ L+
0 (E,R), f(x) > 0, ∀x ∈ E, and

let A ∈ I(L(E,R),R). Assume that functional (31) is well defined. If p ∈ L+
0 (E,R)

attains minimum and maximum value on its domain E, then[
max
x∈E

p(x)
]
A(1)

{
A (ln f)

A(1)
− ln

[
m[r](f ;A)

]}
≥ A(p)

{
A (p ln f)

A(p)
− ln

[
M [r](f, p;A)

]}
≥
[

min
x∈E

p(x)
]
A(1)

{
A (ln f)

A(1)
− ln

[
m[r](f ;A)

]}
,(34)

where m[r](f ;A) is defined by (27). On the other hand, if r > 0 then the signs of
inequality in (34) are reversed.

Proof. Follows directly from property (33) or Corollary 2. �

Corollary 6 is very interesting since it provides yet another set of refinements and
conversions of mean inequalities, but in so called quotient form. We shall clearly
explain that facts on the example of arithmetic-geometric mean inequality, which
is a content of the following remark.
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Remark 8. Similarly as in Remark 7, we consider discrete variant of relation (34).
Then, by using the same notation as in Remark 7, the term A (p ln f)/A(p) takes
form ∑n

i=1 pi lnxi∑n
i=1 pi

= ln

(
n∏
i=1

xi
pi

) 1
Pn

= lnM0(x,p),

what is logarithm of geometric mean. Of course, r = 1 yields arithmetic mean, so
we use relation (34) with reversed signs of inequality.

Thus, after elimination of logarithm function, reversed series of inequalities in
(34) reads

(35)

[
An(x)

Gn(x)

]nmax1≤i≤n{pi}

≥
[
M1(x,q)

M0(x,q)

]Pn

≥
[
An(x)

Gn(x)

]nmin1≤i≤n{pi}

≥ 1,

where Pn,M0(x,p),M1(x,p), An(x), Gn(x) are defined in Remark 7. Of course,
previous set of inequalities can be regarded as both refinement and conversion of
classical arithmetic geometric-mean inequality in quotient form. �

Since the Young’s inequality is closely related with arithmetic-geometric mean
inequality, relations (28) and (35) also yield refinements and conversions of Young’s
inequality. We describe that connection in detail.

Remark 9. Young’s inequality is another variant of arithmetic-geometric mean
inequality, so relations (28) and (35) provide refinements and conversions of Young’s
inequality. For that sake, if x = (x1, x2, . . . , xn) and p = (p1, p2, . . . , pn), we denote

xp = (xp11 , x
p2
2 , . . . , x

pn
n ) and p−1 =

(
1

p1
,

1

p2
, . . . ,

1

pn

)
.

Now, let x = (x1, x2, . . . , xn) and p = (p1, p2, . . . , pn) be positive n−tuples such
that

∑n
i=1

1
pi

= 1. Then, series of inequalities (28) and (35) can be rewritten in the

form

(36)

[
An(xp)

Gn(xp)

]nmax1≤i≤n

{
1
pi

}
≥ M1(xp,p−1)

M0(xp,p−1)
≥
[
An(xp)

Gn(xp)

]nmin1≤i≤n

{
1
pi

}
,

and

n max
1≤i≤n

{
1

pi

}
[An(xp)−Gn(xp)] ≥M1(xp,p−1)−M0(xp,p−1)(37)

≥ n min
1≤i≤n

{
1

pi

}
[An(xp)−Gn(xp)] ,

where Pn,M0(x,p),M1(x,p), An(x), Gn(x) are defined in Remark 7. Clearly, rela-
tions (36) and (37) represent refinements and conversions of Young’s inequality in
quotient and difference form.

Finally, let’s take a look at relation (37) in the case n = 2. Then, if we denote
1/p1 = 1− ν, 1/p2 = ν, ν ∈ 〈0, 1〉, xp11 = a, xp22 = b, relation (37) can be rewritten
in the form

max{ν, 1− ν}
(√

a−
√
b
)2

≥ (1− ν)a+ νb− a1−νbν

≥ min{ν, 1− ν}
(√

a−
√
b
)2

.(38)
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The second inequality in (38), that is refinement of Young’s inequality for n = 2,
was very recently proved in [16]. So our relation (37) is a further generalization of
the second inequality in (38), obtained in paper [16]. �

Finally, let’s mention that, according to Remark 3, all the results from this
section are generalizations of appropriate results from paper [10].

4. Applications to Hölder’s inequality

This section is devoted to one of the most important inequalities in mathe-
matical analysis, that is Hölder’s inequality. In view of isotonic functional A ∈
I(L(E,R),R), Hölder’s inequality claims that

(39) A

(
n∏
i=1

fi
1
pi

)
≤

n∏
i=1

A
1
pi (fi) ,

where pi, i = 1, 2, . . . , n are conjugate exponents, that is
∑n
i=1 1/pi = 1, pi > 1,

i = 1, 2, . . . , n, and provided that f1, f2, . . . , fn,
∏n
i=1 fi

1/pi ∈ L+
0 (E,R).

It is well known from the literature (see [17] and [21]) that Hölder’s inequality
can easily be obtained from Young’s inequality. On the other hand, in Remark
9 we have obtained refinements and conversions of Young’s inequality. Therefore,
it is natural to expect that relations (36) and (37) also provide refinements and
conversions of Hölder’s inequality.

The first in a series of results refers to relation (37), that is refinement and
conversion of Hölder’s inequality in difference form.

Theorem 3. Let pi > 1, i = 1, 2, . . . , n, be conjugate exponents, let fi ∈ L+
0 (E,R),

i = 1, 2, . . . , n, and let
∏n
i=1 fi

1/pi ,
∏n
i=1 fi

1/n ∈ L+
0 (E,R). If A ∈ I(L(E,R),R),

then the following series of inequalities hold:

n max
1≤i≤n

{
1

pi

}[ n∏
i=1

A
1
pi (fi)−

n∏
i=1

A
1
pi
− 1

n (fi) ·A

(
n∏
i=1

fi
1
n

)]

≥
n∏
i=1

A
1
pi (fi)−A

(
n∏
i=1

fi
1
pi

)

≥ n min
1≤i≤n

{
1

pi

}[ n∏
i=1

A
1
pi (fi)−

n∏
i=1

A
1
pi
− 1

n (fi) ·A

(
n∏
i=1

fi
1
n

)]
.(40)

Proof. The proof is a direct consequence of relation (37). Namely, under nota-
tions as in Remark 9, if we consider n−tuple x = (x1, x2, . . . , xn), where xi =

[fi/A(fi)]
1
pi , i = 1, 2, . . . , n, the expressions in (37), that represent the difference

between arithmetic and geometric mean, become

M1(xp,p−1)−M0(xp,p−1) =

n∑
i=1

fi
piA(fi)

−
n∏
i=1

fi
1
pi

A
1
pi (fi)

,

An(xp)−Gn(xp) =
1

n

n∑
i=1

fi
A (fi)

−
n∏
i=1

fi
1
n

A
1
n (fi)

.
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Now, if we apply isotonic functional A ∈ I(L(E,R),R) on above expressions, and
use its linearity property, we get

A
[
M1(xp,p−1)−M0(xp,p−1)

]
=

n∑
i=1

A (fi)

piA(fi)
−
A
(∏n

i=1 fi
1
pi

)
∏n
i=1A

1
pi (fi)

= 1−
A
(∏n

i=1 fi
1
pi

)
∏n
i=1A

1
pi (fi)

,

and

A [An(xp)−Gn(xp)] =
1

n

n∑
i=1

A (fi)

A (fi)
−
A
(∏n

i=1 fi
1
n

)
∏n
i=1A

1
n (fi)

= 1−
A
(∏n

i=1 fi
1
n

)
∏n
i=1A

1
n (fi)

.

However, by application of functional A ∈ I(L(E,R),R) on the series of inequali-
ties in (37), the signs of inequalities do not change, since A is linear and isotonic.
Thus, the result follows easily after reducing previously derived expressions. �

Remark 10. Clearly, the first sign of inequality in (40) yields conversion of Hölder’s
inequality, while the second one yields appropriate refinement. Some related results,
for n = 2, were recently considered in paper [22]. �

Of course, we can also generate extensions of Hölder’s inequality in some other
forms. Now we give refinement and conversion od Hölder’s inequality in quotient
form, deduced from relation (36).

Theorem 4. Let pi > 1, i = 1, 2, . . . , n, be conjugate exponents, let fi ∈ L+
0 (E,R),

i = 1, 2, . . . , n, and let
∏n
i=1 fi

1/pi ∈ L+
0 (E,R). Then,

[
nn∏n

i=1A (fi)

]min1≤i≤n

{
1
pi

}
A

[ n∑
i=1

fi
piA(fi)

][ ∏n
i=1 fi

1
n∑n

i=1
fi

A(fi)

]nmin1≤i≤n

{
1
pi

}
≥
A
(∏n

i=1 fi
1
pi

)
∏n
i=1A

1
pi (fi)

≥
[

nn∏n
i=1A (fi)

]max1≤i≤n

{
1
pi

}
A

[ n∑
i=1

fi
piA(fi)

][ ∏n
i=1 fi

1
n∑n

i=1
fi

A(fi)

]nmax1≤i≤n

{
1
pi

},(41)

provided that A ∈ I(L(E,R),R) is such that all the expressions in (41) are well
defined.
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Proof. We consider relation (36) in the same setting as in Theorem 3. By inverting,
(36) can be rewritten in the form

M1(xp,p−1)

[
Gn(xp)

An(xp)

]nmin1≤i≤n

{
1
pi

}
≥M0(xp,p−1)

≥M1(xp,p−1)

[
Gn(xp)

An(xp)

]nmax1≤i≤n

{
1
pi

}
.(42)

Now, if we consider n−tuple x = (x1, x2, . . . , xn), where xi = [fi/A(fi)]
1
pi , i =

1, 2, . . . , n, the expressions that represent means in (42) become

M1(xp,p−1) =

n∑
i=1

fi
piA(fi)

, M0(xp,p−1) =

n∏
i=1

fi
1
pi

A
1
pi (fi)

,

An(xp) =
1

n

n∑
i=1

fi
A (fi)

, Gn(xp) =

n∏
i=1

fi
1
n

A
1
n (fi)

.

Finally, if we act with functional A ∈ I(L(E,R),R) on (42) in described setting,
after reduction we get (41). �

Remark 11. The second sign of inequality in (41), from the left, yields conversion
of Hölder’s inequality in quotient form. Let’s explain why the first inequality in
(41) gives refinement of Hölder’s inequality. Bearing in mind the notations from
the proof of Theorem 4, the quotient of the left-hand side and the right-hand side
in Hölder’s inequality (39) is equal to A

(
M0(xp,p−1)

)
. Since Gn(xp) ≤ An(xp),

by arithmetic-geometric mean inequality, we have

(43) M0(xp,p−1) ≤M1(xp,p−1)

[
Gn(xp)

An(xp)

]nmin1≤i≤n

{
1
pi

}
≤M1(xp,p−1).

Clearly, action of isotonic functional A ∈ I(L(E,R),R) on relation (43) preserves
the order of inequalities in (43). Thus, medium expression in (43) yields refinement
of Hölder’s inequality since

A
(
M1(xp,p−1)

)
=

n∑
i=1

A (fi)

piA(fi)
=

n∑
i=1

1

pi
= 1.

�

It is also well known that Hölder’s inequality can directly be deduced from
Jensen’s inequality in the case of two functions (see [17]). That means that Coro-
llary 1 also provide another class of refinements and conversions of Hölder’s inequa-
lity. We conclude this paper with two results of such type.

Theorem 5. Let 1/r + 1/s = 1, with r > 1, let f, g ∈ L+
0 (E,R), and let A ∈

I(L(E,R),R). If the function f attains minimum and maximum value on set E,
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then the following series of inequalities hold:[
max
x∈E

f(x)
] [
A

1
r (1)A

1
s

(
g

f

)
−A

((
g

f

) 1
s

)]
≥ A 1

r (f)A
1
s (g)−A

(
f

1
r g

1
s

)
≥
[

min
x∈E

f(x)
] [
A

1
r (1)A

1
s

(
g

f

)
−A

((
g

f

) 1
s

)]
.(44)

Additionally, if 0 < r < 1, then the signs of inequality in (44) are reversed.

Proof. We consider relation (13) from Corollary 1 with arguments f and p respe-

ctively replaced with g/f and f , where Φ(x) = −rsx1/s. Clearly, Φ
′′
(x) = x1/s−2,

so Φ is convex function if x > 0. In this setting, Jessen’s functional (7) reads

J

(
Φ,

g

f
, f ;A

)
= A

(
fΦ

(
g

f

))
−A(f)Φ

(
A(g)

A(f)

)
= rs

[
A1− 1

s (f)A
1
s (g)−A

(
f1− 1

s g
1
s

)]
= rs

[
A

1
r (f)A

1
s (g)−A

(
f

1
r g

1
s

)]
.

Further,

j

(
Φ,

g

f
;A

)
= A

(
Φ

(
g

f

))
−A(1)Φ

A
(
g
f

)
A(1)


= rs

[
A1− 1

s (1)A
1
s

(
g

f

)
−A

((
g

f

) 1
s

)]

= rs

[
A

1
r (1)A

1
s

(
g

f

)
−A

((
g

f

) 1
s

)]
.

So, if we substitute obtained expressions J (Φ, g/f, f ;A) and j (Φ, g/f ;A) in (13),
we get (44).

On the other hand, if 0 < r < 1, then rs < 0. Since expressions J (Φ, g/f, f ;A)
and j (Φ, g/f ;A) contain factor rs, we conclude that the signs of inequality in (44)
are reversed in that case. �

Theorem 6. Let 1/r + 1/s = 1, with r > 1, let f, g ∈ L+
0 (E,R), and let A ∈

I(L(E,R),R). If the function f attains minimum and maximum value on set E,
then the following series of inequalities hold:[

max
x∈E

f(x)
] [
As−1(f)A

(
g

f

)
−
(
A(f)

A(1)

)s−1

As

((
g

f

) 1
s

)]
≥
[
A

1
r (f)A

1
s (g)

]s
−As

(
f

1
r g

1
s

)
≥
[

min
x∈E

f(x)
] [
As−1(f)A

(
g

f

)
−
(
A(f)

A(1)

)s−1

As

((
g

f

) 1
s

)]
.(45)

Further, if 0 < r < 1, then the signs of inequality in (45) are reversed.
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Proof. Similarly as in Theorem 5, we use relation (13) and consider Jessen’s func-
tional J

(
Φ, (g/f)1/s, f ;A

)
, where Φ(x) = xs/(s(s − 1)). It is obvious that Φ is

convex for x > 0 since Φ
′′
(x) = xs−2. We have

J

(
Φ,

(
g

f

) 1
s

, f ;A

)
= A

(
fΦ

((
g

f

) 1
s

))
−A(f)Φ

A
(
f

1
r g

1
s

)
A(f)


=

1

s(s− 1)

[
A(g)−A1−s(f)As

(
f

1
r g

1
s

)]
,

and

j

(
Φ,

(
g

f

) 1
s

;A

)
= A

(
Φ

((
g

f

) 1
s

))
−A(1)Φ

A
((

g
f

) 1
s

)
A(1)


=

1

s(s− 1)

[
A

(
g

f

)
−A1−s(1)As

((
g

f

) 1
s

)]
.

Hence, if we insert above expressions in (13) and multiply obtained series of ine-
qualities with s(s− 1)As−1(f), we get (45).

Finally, if 0 < r < 1, then s(s − 1)As−1(f) < 0, so in that setting we have
reversed inequalities in (45). That completes the proof. �

Remark 12. Clearly, relations (44) and (45) provide refinements and conversions of
Hölder’s inequality containing two functions. Some related conversions of Hölder’s
inequality were also obtained in paper [7]. �
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[22] J. Pečarić, V. Šimić, A note on the Hölder inequality, J. Inequal. Pure and Appl. Math. 7

(5) art. 176, (2006), 1–3.
[23] I. Rasa, A note on Jessen’s inequality, Itin. Sem. Funct. Eq. Approx. Conv. Cluj-Napoca,

Univ. ”Babes-Bolyai”, preprint 6, (1988), 275–280.
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