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This paper proposes an efficient algorithm for reducing matrices to the generalized Hessenberg form
by unitary similarity, and recommends using it as a preprocessor in a variety of applications. As an
illustration of its power, two cases from control theory are analyzed in detail: a solution procedure
for a sequence of shifted linear systems with multiple right hand sides (e.g. evaluating transfer
function of a linear time invariant (LTI) dynamical system, with multiple inputs and outputs, at
many complex values) and computation of the staircase form. The proposed algorithm for the
generalized Hessenberg reduction introduces two levels of aggregation of Householder reflectors,
thus allowing efficient BLAS 3 based computation. Another level of aggregation is introduced
when solving many shifted systems by processing the shifts in batches. Numerical experiments
confirm that the proposed methods have superior efficiency.
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1. INTRODUCTION

Hessenberg form belongs to the tools of trade of numerical linear algebra. We
say that H € R™*" is m-Hessenberg matrix, m < n, if H;; = 0 for all 4,j =
1,...,n such that i > j +m. Any A € R™" can be written as A = UHUT,
where U is orthogonal and H is m-Hessenberg form of A. Such a generalized
Hessenberg structure naturally arises e.g. in the block Arnoldi algorithm, and it is
very frequent in the computational control. For instance, the controller Hessenberg
form of (A, B) € R™"xR"™ ™ is (H, (§)) = (QTAQ, Q™ B), where @ is orthogonal,
H is m-Hessenberg and R is upper triangular.

For computing the standard (1-)Hessenberg form, the state of the art software
package LAPACK [Anderson et al. 1992] contains an optimized subroutine xGEHRD.
Recent work by Tomov and Dongarra [Tomov and Dongarra 2009] shows that on
a hybrid CPU/GPU parallel computing machinery, a considerable speedup over
xGEHRD is possible; see also [Tomov et al. 2010]. In a distributed parallel comput-
ing environment, ScalLAPACK [ScaLAPACK 2009] provides parallel subroutines
PxXGEHRD. For the controller Hessenberg form, the computational control library
SLICOT [SLICOT 2009] contains the subroutine TBO1MD, which also computes the
m-Hessenberg form. Unlike xGEHRD, the subroutine TBO1MD does not use aggregated
transformations (block reflectors). As a consequence, its low flop—to—memory—
reference ratio cannot provide optimal efficiency. Our goal is high performance
CPU and CPU/GPU software for the generalized Hessenberg form and its appli-
cations. We are in particular interested in the computational control applications
and contributions to the control library SLICOT.

In the first stage of the development, we give detailed block CPU implementa-
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tions. Section 2 describes the new algorithm for m-Hessenberg reduction. In §3, we
apply the m-Hessenberg form as a preprocessor and improve the efficiency of the
staircase reduction, which is one of the structure revealing canonical forms of LTI
systems [Dooren 1979]. In §4, we show how to use the m-Hessenberg form and a
variant of incomplete RQ factorization to compute C(ol — A)~!B very efficiently
for possibly large number of complex values ¢. Numerical experiments in §5 show
that the new algorithms provide superior performances. The second part of this
work, in a separate report [Bosner et al. 2011], contains parallel hybrid CPU/GPU
implementations of the algorithms from this paper.

2. A BLOCK ALGORITHM FOR M-HESSENBERG FORM

As with the QR and the 1-Hessenberg LAPACK routines, the main idea for a
faster m-Hessenberg algorithm is to partition the n x n matrix! A into blocks of b
consecutive columns, A = (AW A® . A®) | = [n/b]. Each of the leading
I —1 blocks carries b columns, while the last one contains the remaining n — (I —1)b
ones. After determining suitable block size b, the blocks are processed one at a
time, from left to right, and the computation is organized to enhance temporal and
spatial data locality. In particular, some transformations are postponed until the
very last moment in which the updated content is actually needed for the next step.
Accumulated transformations are then applied in a block fashion, thus increasing
the flop count per memory reference. Many details and tricks are involved, and this
section contains the blueprints of the new algorithm.

2.1 Processing a single block

Processing a block consists of constructing b Householder reflectors that annihilate
appropriate elements in each of the block’s columns. For the i-th block A® =

(a@ ag) e al(f))7 define a sequence of Householder reflectors: for j = 1,2,...,b, let
H; = I—-T75v; v; be the Householder reflector such that the vector H;H;_; - -- Hlag-z)
has zeros as its (k + j + 1)-th, (k 4+ j + 2)-th, ..., n-th element (with an offset k

that will be a function of ¢ and b). Here 7; is a scalar and v; is a vector such that
v;(1:k+j—1) =0 and v;(k+ j) = 1. These vectors are stored in the matrices
Vi = (v1 v2 ... vj). (The introduction of the V; matrices is for explanatory
purposes only.) As in xGEHRD, the non-trivial elements of the vectors v; are stored
in the matrix A in places of entries that have been zeroed by the H;’s. In our
description of the algorithm, we overwrite the initial data, thus there will be no
“time stepping” index in our notation.

To set the stage for the new algorithm and to introduce necessary notation, we
briefly describe block reflectors. For more details we refer the reader to [Schreiber
and van Loan 1989].

ProprosITION 1. The product (); = H1Hy...H; can be represented as Q; =
I —V;T;V7, where T} is an upper triangular j X j matriz.

PRrROOF. The construction of Tj is inductive: we first set V4 = (v1), T1 = 71, and

1For the sake of brevity, we describe only the real case. The algorithm is easily extended, mutatis
mutandis, to complex matrices.
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then we easily verify that, for {4 = —7;T;_1V;_v;, it holds
Qj = Qj—1Hy = —-V;21Tj1 Vi) - (I — mj0507)

Tyt
= 1= (Vi1 vj)- ( o +> - (Vim1v5)"

Tj

Thus, setting T; = (Tjol t; > completes the proof. O
j

Once the block is processed, we will have to update
A QAQ=I-VIT'VHAI-VIV)=I-VT'V)(A-YVT), (1)

where V. =V, T =T, Q = Qp and Y = AVT. The auxiliary matrix Y will be
used for fast update of the matrix A “from the right-hand side” (A<« A —-YV7).

PROPOSITION 2. The matrices Y; =Y (:,1: j) = AV;T; satisfy:
Vi=mndvy; Yy = (Y1 (=Y Vv + Avy) ). 2)
PrROOF. Starting with Y; = 7 Av; and using Proposition 1, we have

Tj_1 t
Y; =A~(Vj_1 'Uj)'( Jol 7——;

= (since t+ = —TjTj,1%11Uj) = (Y};l Tj(—}/},l . V}T_l?}j + A’Uj) ) . (3)

) = (AVjo1Tjo1 AVjaty +7;Av; )

O

In order to compute the reflector that annihilates the elements in the j-th column
of the block, we must have already updated this part of the matrix A with the
accumulated product H;_; --- Hy. To that end, we use Yj_1, following (1). Note
that computing the reflectors requires only the elements of A in the rows from
(k+ 1)-st on — thus the update will also require only the elements of Y;_; with the
same row indices. The processing of a single block is outlined in Algorithm 1 and
the details are given in §2.1.1-§2.1.4.

2.1.1 Updating ag.i)(k—&—l : n) from the right. Inline 4 of Algorithm 1, the column

ay)(k +1:n) is updated by the transformation from the right. The details of this
update are given in Algorithm 2 and in Figure 1, which illustrates the situation in
the case n = 15, m = 2 and the block size b = 5. The current block A® is shaded
(i = 2); the parameter k is equal to (i —1)-b+m = 7. The elements of a particular

column ay) are shown as diamonds and filled circles (j = 4). All elements below

the m-th subdiagonal in the columns to the left of agz) have already been set to
zero by the algorithm, and our goal now is to use a Householder reflector and zero
out those elements of the column ag-l) that are shown as filled circles.

Prior to that, we have to apply to this column the previously generated block
reflector I — V;_1T;_1V;_; from both the left and the right. During the block
processing, only the row indices £ + 1 : n of ag»z) will be updated — the remaining
indices are not involved in computation of the Householder reflectors for the current

block. For the same reason, only the rows k 4+ 1 : n of Y;_; and V;_; will be
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ALGORITHM 1: Processing of a block to reduce it to m-Hessenberg form

Input: block A®, block size b, index k
Output: partially updated block A® | transformation matrices Y and T,
auxiliary array T AU; details in §2.1.1, 2.1.2, 2.1.3.

for j=1,2,...,bdo
if j > 1 then
Update a?(k +1:n):
a’(k+1:n)=a(k+1:n) — (Vo Vi) (k+1:nk+j—m)
Multiply ag-i)(k +1:n) with I = V; 177,V | from the left;
end

Generate the elementary reflector H; to annihilate ay) (k+j+1:n);
Set TAU(j) = 7, and compute Y;(k +1:n,j);

Compute Tj;(:, 7);

10 end

11 Compute Y(1: k,1:b);
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Fig. 1: Updating column a;.i) (k+1:n) from the right (line 4 in Algorithm 1)

referenced. The horizontal dashed line separates the rows 1: k and £+ 1 : n of all
matrices in the figure. All action takes place below this line.

The non-trivial elements of the matrix V;_; are shown as B — these are actually
stored in places of the elements of A that have already been zeroed out. All
elements above the ones in the matrix V;_; are zero. Note that the j-th column of
the block A® is the ((i — 1) - b+ j = k + j — m)-th column of the original matrix
A. Thus, updating the column aé’) involves only the row k£ + j — m of the matrix
V;—1 — the shaded one in Figure 1. In fact, what is needed from this row are the
leading j — m — 1 elements stored in AW (k45 —m,1:j —m — 1), and a single
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ALGORITHM 2: Details of line 4 in Algorithm 1

4.1 if j > m then
4.2 temp = a;izm(k +j—m);
4.3 agizm(k: +j7—m)=1;
4.4 Call xGEMV (BLAS 2) to compute
ay)(k—i— 1:n)= ay)(k +1:n)—
Vioa(k+1:n,1:5—m)  (AD(k+j—m,1 :j—m))T;

@ (k+j—m) =temp;

j—m

4.5 a
end

X X
X X X
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Fig. 2: Updating column ag.i)(k + 1:n) from the left

element 1 (thus the trick with introducing 1 in line 4.3 in Algorithm 2).

2.1.2  Updating ay)(k + 1:n) from the left. The details of the implementation
of line 5 in Algorithm 1 are given in Algorithm 3, and illustrated in Figure 2.

The lines 5.2 and 5.3 compute the product Vf_lagl). This multiplication is carried
out in two phases: first, we multiply the triangular block V;_1(k+1:k+j—1,1:
j — 1) using the xTRMV routine. This routine can be deployed to “pretend” as if
the lower triangular matrix has ones on its diagonal without explicitly looking up
matrix elements, enabling us to avoid the temporary backup of elements of A
which occupy that place. (This triangular block of V;_; is between the dashed and
the wavy line in Figure 2.) Then the rectangular block V;_i(k+j :n,1:j—1)
In line 5.4, the vector lelellay) is formed, and lines 5.5-5.7 complete the

multiplies the rest of vector a
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ALGORITHM 3: Details of line 5 in Algorithm 1

5.1 Copy a\(k+1:k+j—1) to T(L:j—1,5);

5.2 Call xTRMV (BLAS 2) to compute
T(A:j—1,7)=(ADk+1:k+5j-1,1:5-1) -T(1:5—1,));

5.3 Call xGEMV to compute
T(1:j—1,7)=TQ:j - 1)+ Ak +j:n1:5-1) -l (k+j:n);

5.4 Call xTRMV to compute T'(1:j —1,5) =T7_, - T(1:j —1,j);

5.5 Call xGEMV to compute
aMk+j:n)=a(k+j:n) —AD(k+j:n1:j—1)-T(1:j—1,5);

5.6 Call xTRMV to compute
T(1:5-1,)=AD(k+1:k+j—-1,1:5-1)-T(1:5—1,5);

5.7 (k+1:k+j-1)=a(k+1:k+j-1)-TQ:j-1,5);

ALGORITHM 4: Details of line 8 in Algorithm 1

8.1 temp = ag-i)(k +J); af)(’f +i)=1

8.2 Call xGEMV to compute

Yi(k+1:n,j7) =A(k—|—1:n,k;—&—j:n)-ag»z)(k—kan);
8.3 Call xGEMV to compute

Tj(1:j—1,5)= (AD(k+j:n,1:5—1))
8.4 Call xGEMV to compute

Yik+1:n,j)=Yj(k+1:n,5)—Y;_1(k+1:n,:)-T;(1:5—1,j);
8.5 Scale Y;(k +1: n,j) by multiplying it with 7; = TAU(j);

T

~a§i)(k+j in);

transformation by multiplying that vector by V;_; from the left.

2.1.3 Other details of block processing. The line 7 is a single call of the LA-
PACK routine xLARFG. The Householder vector is stored in ay)(k +ji+1:n),
while the scalar 7; is stored in an auxiliary array TAU as the element TAU(j).

Next, in line 8, we append a column to Y;_; to define Y as in (2). Note that

ag»z)(k + 7+ 1:n) now contains the non-trivial part of the j-th elementary House-
holder vector. Algorithm 4 gives the details.

Line 8.2 is the only line in the loop of the block processing algorithm that ref-
erences elements of A outside of the current block A®). This is also the only line
which deals with a matrix of dimension O(n) x O(n); all others have at least one
dimension of block size b or less. Line 8.3 computes the product V/_qv; — observe
that v;(1: k+j—1) =0, so we can disregard the rows 1 to k+ j — 1 of the matrix

Vj—1. The old value of the element a;i)(k + j), whose backup copy is in line 8.1,
can be restored after the update of the next column aﬁl.

All that is now left to do in order to complete the matrix T} is to re-scale the
current content of its last column by TAU(j), and to multiply it by T;_; from the

left by using yet another call to xTRMV. Finally, we show how to compute the first
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Fig. 3: Updating first k rows of Y

k rows of Y, outside of the main loop in Algorithm 1 (line 11):

ALGORITHM 5: Details of line 11 in Algorithm 1

1 Copy A(1:k,k+1:k+b)toY(1:k,1:b);
2 Call xTRMM (BLAS 3) to compute
Y(1:k1:0)=Y(1:k,1:0)- AD(k4+1:k+b,1:b);
3 Call xGEMM (BLAS 3) to compute
Y(1:k,1:0)=Y(1:k1:0)+A(1:kk+b+1:n)- AD(k+b+1:n,1:b);
4 Call xTRMM to compute Y(1:k,1:0) =Y (1:k,1:0)-T;

In Figure 3, the region below the elements denoted by X in the current block
(shaded) of the matrix A has been zeroed out. It now stores the non-trivial part
of the matrix V' (elements denoted by m). Multiplication by the matrix V from
the right in lines 11.2 and 11.3 is once again split into triangular and rectangular
parts. Line 11.3 references elements not in the current block. Note that only the
columns k + 1 : n of the matrix A (the ones to the right of the vertical dashed line)
are referenced while updating Y, because of the zero-pattern in V.

2.1.4  The concept of mini-blocks. The first m columns of a block do not need
to be updated from the right since the corresponding rows of the matrices V;_; are
zero. Moreover, if m is greater than or equal to the block size, then the updates
from the right are not needed at all within the current block.? When m is less than
the block size, this fact permits another variant of Algorithm 1 in which:

(1) The block is split into several disjoint “mini-blocks”, each (except maybe the
last one) consisting of m consecutive columns.

(2) In each “mini-block”, column by column is updated only from the left, and the
appropriate elements are annihilated.

2We are indebted to Daniel Kressner [Kressner 2010] for pointing this out; a similar concept is

also used in [Bischof et al. 2000] for the reduction of a symmetric matrix to the tridiagonal form.
The mini-blocks are also successfully used in [Karlsson 2011].
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ALGORITHM 6: Processing of a block by using mini-blocks to reduce it to m-
Hessenberg form

Input: block A®, block size b, index k
Output: partially updated block A® | transformation matrices Y and T,
auxiliary array T AU

1 for j=1,2,...bdo
2 if j > 1 then
3 Update agl)(k +1:n) only from the left by applying I —V;_177_; V[ y;
4 end
5 Generate the elementary reflector H; to annihilate ag-l)(k +j+1:n);
6 Compute Tj(:, j);
7 if j mod m =0 or j = b then
8 cMini =m or (b mod m); // current miniblock size
9 nMini = min{b — j,m}; // next miniblock size
10 Compute Yj(k+1:n,j —cMini+1: j);
11 Call xGEMM to update the entire next miniblock from the right:
AD(k+1:n,5+1:j+nMini) =
AD(E4+1:n,5+1:j+nMini)— (Y;V7)(k+1:n,j+1:j+nMini);
12 end

13 end
14 Compute Y(1: k,1:b);

(3) A “mini-reflector” Qm =1 — V,, T V5, is aggregated from m annihilations.

(4) After processing of the “mini-block”, the block reflector Q; 4, is updated:

Viewm = (Vi Y )
Tion = (§ 3 ) T =TT @
Yiem = (Y5 (ZYVi Vi + AVi) T ) .

(5) The next m columns of A are updated from the right; these columns are then
declared the new current “mini-block”.

Note that, in order to update all columns in the next “mini-block” from the right,
one only needs the elements of Y that lie in the current and previous “mini-blocks”,
see line 4.4 in Algorithm 2. Thus, an update from the right of the entire next “mini-
block” and the appropriate part of the matrix Y may be computed after all columns
in the current “mini-block” have been annihilated.

The details are worked out in Algorithm 6 which, for m > 1, makes better use of
BLAS 3 operations than the original Algorithm 1 and thus provides better perfor-
mance. The minimum size of m where this variant is more effective depends on the
user’s machine setup — on our machine, for m > 3 the speedup was already notable.
(See subsection 5.1 for timing results that illustrate a considerable improvement
due to the modification described in Algorithm 6.)

ACM Journal Name, Vol. V, No. N, Month 20YY.



XX XXX X XQ®RKKKEKK ®B® X x
XX XXX XXQ®® XX X RR® X X
XX XXX XXQQQ KX XXX R X X
XXX XXXRQRFFVKXKXKX X R®RRQ X X
XX XX XQ®QKKKKK RV® X X
XX X XiQQ QKKK KX KX ROV X X
,,,,,,,,,, XX XQ&EC XXX | | Q@ XX_| . [___________
X X X X X X X X X D
XXX X X X X X ®D
XX XNXXXKX X X X X X @a®d
D XX NRXXX X X X X X ) (] (] (1] [
1 XX XXX X X X X X X (] (o] (] (] 1]
! XX X X X X X X (o] o] (o] (o] ]
! XX X X X X X X (o] (o] (o] (o] ]
! XX X X X X X X X X CCRC IO
A Y \%

Fig. 4: Updating the matrix A from the right, A=A -YV7.

This completes the description of the block processing algorithm. We now turn
our attention to the global algorithm on the block level.

2.2 The outer loop

Figure 4 shows the update A = A—Y V7", where Y and V are computed during the
last block processing (the last block A is shaded). This update only affects the
columns k + 1 : n of A — the ones to the right of the vertical dashed line. Only the
elements of A that are encircled or boxed have yet to be updated, since the block
processing has already updated A (k+1:n,1:b).

The boxed elements of A will be updated by subtracting the product of Y with
the boxed part of V. Since the elements of V' above the ones are all zeros and V' is
stored in A®, the appropriate part of A® has to be replaced with zeros and ones
in order to use the xGEMM routine for the multiplication. The encircled elements of
A will be updated by subtracting the product of encircled elements of Y with the
triangular matrix of encircled elements in V.

The Block Algorithm 7 at first just stores all of the block’s reflectors, instead of
annihilating columns one by one and applying the resulting reflector to the entire
matrix A each time. Only after a block is processed, the whole batch of its reflectors
is applied to A, first from the left and then from the right.

This brings several important performance benefits into play. The first one is
the localization of memory referencing: in the point version, the algorithm has to
reference elements of A that are “far away” (in terms of memory addresses) from
the current column when applying the reflectors, for each column being annihilated.
On the other hand, the block version mostly references only elements local to the
block being processed. Elements “far away”, i.e. the ones outside of that block are
referenced only after all of the block’s reflectors have already been computed. If
the block size is chosen to fit into the cache memory, there will be much less cache
misses during the computation of all the reflectors and less data fetching from the
slower main memory. The second advantage is the more effective transformation
A~ QTAQ. If QQ were a single Householder reflector, one could only use BLAS
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ALGORITHM 7: Block algorithm for reduction to the m-Hessenberg form

Input: n x n matrix A, block size b, bandwidth m
Output: A converted to m-Hessenberg form

1forz=1,1+b,14+2-b,1+3-D,...do

2 | i=(z—1)/b+1;

3 Process block A% = A(1:n,z:24+b—1) with k=2+m —1 by
Algorithm 6;

// Apply block reflector from the right:

4 Backup the upper triangle of AW (k4+b—m+41:k+b,b—m+1:b) into
matrix temp and replace it with the upper triangle of identity matrix;

5 Call xGEMM to compute

A(l:n,z+b:n)=A(l:n,z+b:n)—-Y - (A(i)(k—l—b—m—i—l:n,l:b))T;
6 Restore temp to upper triangle of AW (k+b—m+1:k+bb—m+1:b);

7 Call xTRMM to compute
temp:Y(l:k,l:b—m)-(A(i)(k+1:k—‘—b—m,l:b—m))T;
8 Al kk+1:24b—-1)=A1:kk+1:24+b—1) — temp;

// Apply block reflector from the left:

9 Call xLARFB to apply block reflector (V,T') from left onto
Alk+1:n,z4+b:n);

10 end

2 operations to apply the transformation, whereas transformation routines such
as xLARFB use the more efficient BLAS 3 operations (e.g. xGEMM, xTRMM), taking
advantage of the underlying block reflector structure of Q.

3. THE STAIRCASE FORM

The m-Hessenberg form can be used for efficient computation of other useful canon-
ical forms. For instance, the controller Hessenberg form of (A, B) € R™*™ x R**™
is easily computed in two steps: first compute the QR factorization B = Q1 (&),
update A to A = QT AQ, and compute the m-Hessenberg form H = Q¥ AN Q,.
Then, the transformation @ = Q1Q2 produces QTAQ = H, Q"B = (&). We now
turn our attention to detecting whether the system is controllable and to deter-
mining its controllable part. A numerically reliable method for such task is the
computation of a staircase form.

THEOREM 3. [Dooren 1979] For a pair (A, B), where A € R"*"™ and B € R"*™,
there exists an orthogonal matriz Q € R™ ™ such that ( Q™B ‘ QTAQ ) equals

XAy A ... A Al,k+1
o 0| Xy Ay ... Ao AQ,k+1
(4—%3 A1y | A1 ) 2 B :
01 0 |Ax : : con o )
0 0 oo Xk Akk Ak7k+1
00 .. 0 0 [Agien
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ALGORITHM 8: Computing a staircase form with a full system matrix A
Input: the system (A, B)
Output: the system (A, B) in the staircase form

1 Compute RRD B=U (§), where B has full row rank p1;
2 Update A =UT AU,
3 Set prev =0, curr = p1, i = 1;
4 while curr < n do
5 Set Z = A(curr +1:n,prev+1: prev+ p;);
if Z is a zero matriz then
‘ break: the system is uncontrollable;
end
Compute RRD Z =U (%), where Z has full row rank p;1;
10 Update from left:
A(curr +1:n,prev+1:n) = UA(curr + 1 : n,prev+ 1 : n);
11 Update from right: A(l:n,curr+1:n)=A(l:n,curr+1:n)U7;
12 Prev = curr, curr = curr + piy1, t =1+ 1;
13 end
14 Set A=A, B=(5);

© 0w N o

where each matriz X; is of order p; X pi—1 and has a full row rank pi (we set
po = m). The initial system (A, B) is controllable if and only if Asa = A1 k41 s
void, 1.e. Zle pi = n. Otherwise, (A11, B) is the controllable part of (A, B).

If the matrix A has no structure, then a common way of computing the staircase
form is shown in the Algorithm 8. A series of rank-revealing decompositions of the
sub-matrices is computed. By a rank-revealing decomposition (RRD) of the matrix
Z € RP* p > ¢, we consider any factorization Z = U (g) , where U is orthog-
onal and Z has a full row rank. To make the staircase algorithm more efficient,
usually a rank-revealing QR~factorization is used instead of the more reliable, but
slower singular value decomposition. The SLICOT routine ABO1ND implements a
staircase algorithm which uses the classical QR-factorization with Businger—Golub
pivoting and an incremental rank estimator. Note that most of those pivoted QR
factorizations run on tall matrices. To compute X; (line 9), the factorization of a
matrix with at least n— (¢ —1)m rows is required. The corresponding updates (lines
10 and 11) transform the sub-matrix of order at least (n—(i—1)m) X (n— (i —1)m).
Assuming the usual case m < n, we see that many of these updates are actually
on O(n) x O(n) sub-matrices.

3.1 A new scheme

We propose a novel algorithm for computing the staircase form in which the system
is first transformed into the controller Hessenberg form using the blocked algorithm
described in §2. Then, we use Algorithm 9, specially tailored for the generalized
Hessenberg structure. Compared to the Algorithm 8, performance is gained because
of these differences, which are due to the m-Hessenberg form of the system matrix:

—RRDs in line 9 are computed on matrices with h rows. The number h is initially
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equal to m, and may increase by at most m — 1 in each pass through the while-
loop. Therefore, we expect that RRDs are computed on matrices having only
O(m) rows.

—Update in line 10 transforms a submatrix of order O(m) x O(n).

—Update in line 11 transforms a submatrix of order O(n) x O(m).

XXXXXO OO O XXXXXX
XXX:XX:OOOOXXXXXX
XXX\XX:OOOOXXXXXX

' 0000000000
000000000
2 0000000000
000000000
Ll 000X X X XXX
! ! OO X X X XXX
! ! O X X X X X X
Lo X X X X X X
L X X X X X
L X X X X

Fig. 5: A typical situation in the loop of Algorithm 9. RRD is computed on the submatrix e;
elements o are updated from the left, and elements ¢ are updated from the right. Here n = 15,
m=py=p1 =3, p2=2.

4. SHIFTED SYSTEMS AND TRANSFER FUNCTION

Hessenberg reduction is known to be an excellent preprocessing tool in solving
shifted linear systems, in particular for evaluating the transfer function G(o) =
C(oI — A)™'B + D of a LTI system (A, B,C, D) € R"X" x R"X™ x RPX" x RPX™
at many values of complex scalar o. Recently, it has been shown that using the
controller Hessenberg form of (A, B) or (AT,C7) allows for more efficient and
numerically more consistent computation in the case min(m,p) = 1; for details
and references see [Beattie et al. 2011]. Here we extend those ideas to the case
min(m, p) > 1, where it is tacitly assumed that max(m, p) is small compared to n.
Henry [Henry 1994] introduced the idea of using the RQ factorization (A—oI)U =
T, where U is n x n unitary, and T is n x n upper triangular. Then, C(cl —
A)7!B = —(CU)(T~'B), and the original problem reduces to matrix multiplication
and backward substitutions using the upper triangular matrix 7. It is immediately
clear how the controller Hessenberg structure of (A4, B) simplifies this computation.
First, performing many RQ factorizations is more efficient if the matrix A is in
Hessenberg form simply because part of the matrix is already zero. Next,

m n—-m

L, (1B B _m (T
1 _ _ —
wo=(007) e (0) - )
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ALGORITHM 9: Computing a staircase form of a system in controller Hessenberg
form

Input: the system (A, (%)) in the controller Hessenberg form
Output: the system (/Al, (fg)) in the staircase form
(

1 Compute RRD B =U §), where B has full row rank p1;
2 Update A from left: A(1:m,1:n)=U"A(l:m,1:n);

3 Update A from right: A(1:2m,1:m) = A(1:2m,1: m)U;
4 Set h=m, prev =0, curr = p1, i = 1;

5 while curr < n do

6 Set Z = A(curr + 1 : curr + h,prev + 1 : prev + p;);

7 if Z is a zero matriz then
8 ‘ break: the system is uncontrollable;
9 end

10 Compute RRD Z =U (g), where Z has full row rank p;1;
11 Update from left: A(curr 4+ 1: curr 4+ h,prev+1:n) =
UA(curr +1: curr + h,prev+1:n);

12 Update from right: A(1: curr +h+m,curr+1: curr+h) =
A(L: curr 4+ h+m,curr + 1 : curr + h)UT;

13 h=h+m — pjy1, prev = curr, curr = curr + pi+1, ¢ =1 + 1;
14 end

15 Set A=A, B= B;

and C(oI — A)"'B = —C(T~'B), where C = (CU)(1 : p,1 : m). Note that only
the leading m x m matrix TofTis needed, which further simplifies the computation
of the RQ factorization (both in number of flops and memory management); also,
only a part of the transformed C' is needed. In short, for each o the computation
is organized to compute only T and C.

The RQ factorization is computed by Householder reflectors, U = H1Hy - - - H,,_1,
where the i-th reflector H; annihilates all subdiagonal elements in the (n — i+ 1)-
th row. The reduction starts at the last and finishes at the second row. For
i=n—m+1,...,n— 1, during the update of the rows m,...,2, the matrix T is
built bottom-up and the back-substitution is done on the fly.

4.1 A point algorithm

We first describe an algorithm in which the Householder reflectors are computed and
applied one by one. Since the matrix A is in the m-Hessenberg form, in each row we
have to annihilate m entries. This means that the corresponding Householder vector
has at most m + 1 nonzero elements. Further, the application of the corresponding
Householder reflector affects only m 4 1 columns of the matrices A — ol and C.
Since we need only a part of the RQ factorization, at no point we need more than
m + 1 columns of the transformed A — oI and of the transformed C. (The role
of C is rather passive — it just gets barraged by a sequence of reflectors, designed
to produce triangular structure of A — oI, and only Cis wanted.) For this reason
we introduce an auxiliary (p +mn) x (m + 1) array Z which, at any moment, stores
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m + 1 columns of the thus far transformed matrices C' and A — oI. We can think
of Z as a sliding window, moving from the last m + 1 columns to the left.

ALGORITHM 10: A point algorithm for computing G(o), where A and B are in
the controller Hessenberg form.
Input: (A, B,C,D) € R™*"™ x R"*™ x RP*™ x RP*™ ((A, B) in the controller
Hessenberg form); complex scalar o
Output: G(o) =C(cl — A)"'B+ D

Z(l:p,1:m)=C(1:p,n—m+1:n);
Zp+1l:p+n,l:m)=(A—-0cl)(1:n,n—m+1:n)
fork=n:-1:m+1do
Z(l:p+k2:m+1)=Z1Q:p+k,1:m);
Z(1:p,1)=C1:p,k—m);
Zp+1:p+k1)=(A-0cl)(1:kk—m);
Determine (m + 1) x (m + 1) Householder reflector H such that
Zp+k,1:m+1)H=(00 - 0 x);
8 Transform
Zl:p+k—-1,1:m)=Z(1:p+k—1,1:m+DH(1:m+1,1:m),
9 end
10 X = B;
11 for k=m:—-1:2do
12 Determine k& x k Householder reflector H such that
Zp+k1:K)H=(00-- 0 x);
13 Transform Z(1:p+k—1,1:k)=Z(1:p+k—1,1:k)H;
14 | Compute X (k k:m)= X(k,k:m)/Z(p+ k, k);
15 Compute
XA :k=1k:m)=X1:k—1k:m)—Z(p+1:p+k—1,k)-X(k,k:m);
16 end

// C(1:p,1:m) is now stored in Z(1:p,1:m)

// T is now stored in Zp+1l:p+m,1:m).
17 X(1,1:m) = X(1,1:m)/Z(p+1,1);

18 G(o)=D—-Z(1:p,1:m)-X;

N O A W N

4.2 A block algorithm

Block algorithm for the RQ factorization by Householder reflectors is based on a
special block representation of aggregated product of several reflectors. It is a well-
known technology, and we will adjust it to our concrete structure. We will use a
“reversed” WY representation of the aggregated Householder reflectors, which is a
modification of the WY form from [Bischof and Loan 1987].

PROPOSITION 4. Let H; = I — 1;v;v] be a Householder reflector, and let U; =
HyHy---Hj. Then U; can be represented as Uj = I —Y; V", where

Vi=wv, Yi=no; Vi= (v Vich), Yi= (nUisv Yioy), i=2,...,j.
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The correctness of the above representation is easily checked, and we will see later
why this particular form is practical in our framework.

Let np denote the block size, i.e. the number of aggregated reflectors. Since
ny consecutive transformations on ng rows touch m + np consecutive columns of
A—ol and C, we extend our auxiliary array Z, and define it as (p+n) x (m +ny)
to accommodate m + ny columns of the transformed matrices C' and A — oI. The
sliding window (array Z) will move to the left now with step n;: its last n, columns
will be discarded, the leading m columns shifted to the right, and new n; columns
from A—ol and C will be brought as the leading columns of Z. During this sliding,
the number of rows of Z shrinks by n; at each step. Only the last n;, rows of the
current Z are needed to generate the reflector, and these pivotal parts of the sliding
window are trapezoidal matrices sliding upwards along the diagonal of A — o1.

The last m — 1 Householder reflectors which reduce the rows m,m —1,...,2 of
the matrix A — ol compute the dense RQ factorization and for small m are applied
as in the point algorithm.

4.2.1 Auziliary: Trapezoidal to triangular reduction. We use an auxiliary RQ
routine to reduce an np X (m + np) upper trapezoidal matrix to triangular form by
right multiplication by a sequence of Householder reflections,

( (5)

In the global scheme, this trapezoidal matrix is an n, x (m + np) pivotal block of
the auxiliary matrix Z. Most of the time we are not interested in the resulting
triangle, but in the aggregated product of the reflectors, which will be packed in
the reversed WY form and applied to only the part of the copy of the global array
(stored in Z) that is needed in subsequent steps.

Updates with Householder reflectors within the auxiliary routine are also done in
the blocked manner. The current row which determines current Householder reflec-
tor, is not updated by previous reflectors from the block until it is needed. Prior to
computing the current Householder vector, aggregated Householder reflectors from
previous steps have to be applied to the current row. Moreover, we update only
the part of the row that carries information needed to construct the reflector for
the next step.

Since the deployed reflectors are determined by Householder vectors with at most
m + 1 nonzero elements (occupying consecutive positions), the matrix V' is banded
with bandwidth m 4+ 1 and Y is lower trapezoidal:

T T
T T
T T
T T

8888
N——
7N
cocoo
cocoo
cocoo
[=]ele)]
cos 8
o’ RBR
8BE8
N—

T
T
T
0

oOoOO8
cOoOR R

V= Y = (6)

3

coceeee
cceeeeO
CeeeecO
XXX Y=l=t=
* ok ok ko %
* ok ko O
* ok 4k ok OO
* o X OO0

Since an application of the block transformation I — YV* involves V*, it is
convenient to store V* instead of V. Each time a new (m + 1)-dimensional House-
holder vector v is determined, the first m components of v* are stored in places of
m subdiagonal elements that are annihilated by the corresponding reflector. The
Householder vector is scaled so that its last component is equal to one, and there
is no need for storing it. This procedure is implemented in the LAPACK routine
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xLARFG. Hence, combining (5) and (6), the normalized V* is placed in the last ny,
rows of Z as follows:

Z(”+P—nb+11n+P,11m+nb)EZblock:(85::f§§>,
000eeex

where Z contains the last m + ny columns of A and C.

ALGORITHM 11: Reduction of an n, X (m + np) upper trapezoidal block to the
triangular form.

Input: ny X (m + ny) matrix block Zpock
Output: V and Y such that Zpeer (I — YV*) is triangular as in (5)

1V= O(m-‘rnb)xnb; Y= O(m-‘rnb)xnb;
2 fork=mn;:—-1:1do
3 if £k = n, then
4 Determine (m + 1) x (m + 1) Householder reflector H = I — 790* such
that Zblock(k,k : k—i—m)I:I: (0 0---0 *);
Set V(k: k+m, k) = 7;
Set Y(k:k+m,k) =77
Ise
mp = min{ny — k,m};
Update of the current row: Call xGEMM twice to compute
Zblock(k; k+1:k+ m) = Zblock(k, k+1:k+ m) — (Zblock(k, k+1:ny+ m)
Yk+1:imp+mk+1:k+mp)) - V(E+1:k+mk+1:k+mp)

© W O«
)

10 Determine (m + 1) x (m + 1) Householder reflector H = I — 790* such
that Zblock(k,k : ker)I:I: (0 0---0 *);

11 Set V(k : k+m, k) = 7;

12 Set Y(k:k+m,k) =17

13 Call xGEMV twice to compute

Yk+1:npy+mk)=Yk+1:ny+mk)—Y(k+1:ny+mk+1:k+my):
(Vk+1:k4+mE+1:k+m)* - Y(k+1:k+m,k));

14 end

15 end

The banded structure of the matrix V has been used to derive the lines 9 and 13
of Algorithm 11 from their original forms:

line 9 of Algorithm 11. Zpoer(k,k + 1 0 k+m) = Zyjoer(kyk +1 0 k + m)—
(Zviock(kyk+1:mp+m)-Y(E+1:np+mk+1:m)) - V(k+1:kE+m,k+1:np)*

line 13 of Algorithm 11. Y(k+1:ny+m,k)=Y(k+1:ny+m,k)—Y(k+1:
np+mk+1:ny) (Vk+1:k+mk+1:np)* - Y(k+1:k+m,k))

In both cases, we have multiplication of some submatrices of V' and Y:
Yk+1:np+mk+1:ny) - V(k+1l:k+mk+1:n)*

Since, for ny, —k >m, V(k+1:k+m,k+m+1:ny) = 0pyx (n,—k—m), We obtain

the forms of these lines as presented in Algorithm 11. A similar modification will

be used in Algorithm 12.
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4.2.2 The outer loop. The global structure of the block algorithm is given in
Algorithm 12.

ALGORITHM 12: Block algorithm for computing G(o), where A and B are in
the controller Hessenberg form.
Input: matrices A, B, C, D ((A, B) in the controller Hessenberg form);
complex scalar o, and block dimension
Output: matrix G(o)

1l = (n—m)/np;

2 mink =n— (I, — 1) - ny;

3Z(1:p,1:m)=C(1:pn—m+1:n);

4 Zlp+1l:p+n,l:m)=(A—-0cl)(l:n,n—m+1:n);

5 for k =n: —ny : mink do

6 Z(l:p+knp+1l:m+n,)=Z(1:p+k,1:m);

7 Z(1:p,1:np)=C(Q:pk—m—np+1:k—m);

8 Zip+1l:p+kl:iny)=(A—oDA:kk—m—ny+1:k—m);

9 Compute V and Y by Algorithm 11, such that
Zp+k—np+1:p+k1:m+mny)(I —YV*)is upper triangular;

10 Call xTRMM and xGEMM to compute
Z(l:p+k—np,l:m)=Z(1:p+k—npl:m)—Z(1:p+k—np,1:m+nyg):
Y1 :m4+np,1:m) - V(1:m,1:m)*);

11 end

12 l:nflb”ﬂb;

13 fork=1:-1:m+1do

14 ‘ Perform lines 4-8 of Algorithm 10;

15 end

16 X = B;

17 for k=m:—-1:2do

18 ‘ Compute X(2 :m,1:m) as in lines 12-15 of Algorithm 10;
19 end

20 X(l,l:m) :X(l,l:m)/Z(Z?Jrl,l);

21 Glo)=D—-Z(1:p,1:m) X;

In the implementation of the Algorithm 12 we can also exploit the fact that V is
banded with bandwidth m 4+ 1 and Y is lower trapezoidal, hence the form of the
implementation of line 10, which in the original reads:

line 10 of Algorithm 12. Z(1:p+k—mnp,1:m) + Z(1 :p+k—mnp,1:m)—2Z(1:
p+k—npl:m+ny) (Y -V(1:m,1:np)%)

Here we also assumed that n, > m. Otherwise, V(1 : m,1 : m) does not exist and
we have the product YV (1 : m,1: ny)* with smaller inner dimension.

An estimate of additional workspace is as follows:
e Two-dimensional array of dimension (m + np) x ny for storing the matrix Y.
e One-dimensional array of dimension m for storing intermediate results in lines 9
and 13 of Algorithm 11
e Two-dimensional array of dimension (p + n — ny,) x m for storing intermediate
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result in line 10 of Algorithm 12

e One-dimensional array of dimension p+m+ny —1 for storing intermediate results
occurring in application of Householder reflector to a matrix in lines 14 and 17 of
Algorithm 12 (lines 8 and 13 of Algorithm 10)

e Two-dimensional m x m array for storing the matrix X. Depending on m/n, X
may be stored in place of Y, since X appears after Y becomes obsolete.

4.2.3  Batch processing in case of multiple shifts. The second level of aggregation
in the algorithm for solving shifted systems is processing the shifts in batches, see
[Beattie et al. 2011]. There are several reasons for introducing this technique. First,
we have to access the elements of the same matrices A and C for every shift. In
each step of the outer loop, lines 7 and 8 are the same for every shift: the same
np columns of A and C' are copied to the auxiliary array Z (except that different
shifts are subtracted from the diagonal elements of A4). Second, the most expensive
operation in the algorithm, which is the update of Z with the Householder reflectors
generated in Zyjoer (line 10), involves large amount of the same data for different
shifts. These data are the first n, columns of Z, containing original elements of A
and C, copied in lines 7 and 8.

The main goal of shift aggregation is to avoid all these redundant operations.
Let us assume that we evaluate the transfer function G(o;) for n, different shifts
oi,i=1,...,ns. For all these shifts we will access all the elements of A and C only
once, and we will perform one part of the update for all shifts simultaneously, as
one call to xGEMM. Such approach will require much more memory for storing the
auxiliary arrays, but it will reduce communication between different parts of the
memory. The original array Z is now split in two parts:

—The first part consists of the first n; columns of Z and is denoted by Z;. This
part is (almost) the same for all shifts and relates to the original elements of A
and C. The “small” differences will be dealt with later.

—The second part consists of the last m columns of Z that are specific to the shift
0;, and is denoted by Z5(7). These submatrices are the result of the update from
the previous outer loop step, and are different for different shifts.

We do not need to store the pivotal block Zyj,er after its reduction in Algorithm
11, and the Householder vectors which are generated in that block can be exploited
immediately after the auxiliary routine implementing Algorithm 11 completes exe-
cution. Hence, we use the same ny X (m + ny) array Zpocr for all shifts. Finally,
we will need the matrices Y () obtained from Algorithm 11 for different shifts o;.
The actual placing of these matrices in the workspace will be described later, after
some details of the new algorithm are explained.

The update in line 10 of Algorithm 12 is now divided into two parts: one part
dealing with shift specific arrays Z,(i) and the other part dealing with Z; which
is common to all updates (for all shifts). Actually there is a “small” difference
between the array Z; and the first n; columns of the array Z from Algorithm 12,
that was mentioned before. For Z; to be identical in all updates it cannot include
shifts, and that is not the case with Z. A shift is subtracted from the diagonal
elements of Z(p+k —ny —m+1:p+k—mnyp,1:m), which is m x m bottom-left
submatrix of the part of Z involved in update in the k-th outer loop step. Thus,
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single shift multiple shifts
Z Zl ZZ(Z)7 1= 17 s Ms
e e

Zplock

post-process
Fig. 6: The layout of the auxiliary arrays within the working space.

Zy will contain only elements of the original matrices A and C, and the shifts in
the first m columns will be processed separately. The details of the update after
reduction of the pivot block in case of multiple shifts are given in Algorithm 13.

Line 10.4 in Algorithm 13 suggests the layout of the auxiliary arrays within the
working space. We need only the first m columns of the matrices Y (¢), so there is
no need for storing all n; columns (under assumption n, > m). Thus, submatrices
Y(i)(1 : m 4 ny,1 : m) should occupy m - ng consecutive columns as well as the
matrices Z2(i). We should also note that the result of the update (lines 10.1-10.4)
is already placed on the right position for the next outer loop step, so that copying
operation in line 6 of Algorithm 12 can be omitted.

Similar techniques can be applied to the non-blocked part of the algorithm.

4.3 Descriptor systems

Algorithm 12 can be easily adapted for computing the transfer function G(o) =
C(0cE — A)™1B + D of a descriptor system. Here E € R"*". For Algorithm 12 to
be efficient, the matrices A, B and E have to be in the m-Hessenberg-triangular—
triangular form. An efficient block algorithm for the m-Hessenberg—triangular—
triangular reduction is described in [Bosner 2011].

The only changes required for descriptor systems in the m-Hessenberg—triangular—
triangular form are in the lines 4, 8 and 14 (line 6 of Algorithm 10) of Algorithm
12 where specific columns of A — o are copied to the auxiliary array Z. What we
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ALGORITHM 13: Details of the update in case of aggregated shifts.

for k =n: —np : mink do
Initialize data;

for1=1:n, do

Perform necessary copying;

9 Compute V(i) and Y (i) by Algorithm 11, such that
Zpiock (I =Y (i)V (2)*) is upper triangular;
10.1 Call xTRMM to compute
Y@ :m4+ne,1:m)=Y@E) A :m+np,1:m)-V(E)(1:m,1:m)*;
10.2 Call xGEMM to compute

Zo()(1:p+k—np,1:m)=2Z1(1:p+k—mnp,1:m)
—Zs(i)(1:p+k—np,1:m) - Y(i)(np+1:n,+m,1:m);

10.3 Zo()(p+k—np—m—+1:p+k—mnp,1:m)=2Zo(i)(p+k—np—m+1:
p+k—npl:m)+o(@)Y(E)(1:m,1:m)—o(i)ln;
end

10.4 Call xGEMM to compute

(Z2(1) Z2(2) --+ Za(ng) )(1:p+k—np,1l:m-ns)=

(Z2(1) Z2(2) -+ Za(ns) )1 :p+k—mnp,1:m-ns)—Z1(1:p+k—mnyp,1:np)
(Y1) :np,1:m) Y(2)(L:np,1:m) -+ Y(ng)(1:np,1:m));

end

actually do here is copying the specific columns of the matrix A to Z first, and then
subtracting o from the diagonal elements of A. We have to change only the second
step and subtract the corresponding columns of E multiplied with ¢ in order to
obtain columns of A — oFE. Since E is upper triangular, this means that we have
to update all elements in the current column of A except subdiagonal ones.

5. NUMERICAL EXPERIMENTS

We have run a series of tests in order to assess the performances of the new soft-
ware. Our machine was a Intel® Xeon™ X5470 (quad-core), running at 3.33GHz
with 8 GB RAM and 6+6MB of Level 2 cache memory, under Ubuntu Linuz 8.10.
The compiler was Intel® Fortran Compiler 11.0. We used -O3 optimization and
the BLAS and LAPACK from the Intel® Math Kernel Library 10.1. All tests
were run using the IEEE double precision and double complex arithmetic. The
code was tested for correctness by computing the appropriate residuals and using
SLICOT routines for reference values.

5.1 The m-Hessenberg reduction

We have compared the default point implementation found in the routine TBO1MD
from SLICOT with our new algorithms: blocked versions with and without the
“mini-blocks”. Only the reduction of the matrix A to the m-Hessenberg form is
tested, and the code for the QR-factorization of the matrix B is removed from
the SLICOT routine, along with the corresponding similarity transformation of
the matrix A. We note that the blocked implementation of these transformations
would increase the gap between the algorithms even more.
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Fig. 7: Comparisons of the new m-Hessenberg algorithms and TBO1MD from SLICOT .

Figure 7a shows the speedup factors obtained by the the “mini-block” version of
the CPU algorithm versus the SLICOT routine. The tests were run for a batch
of matrices A with orders up to 6500 and various bandwidths m. The block size
that performed well on our testing hardware was b = 64. As Figure 7a shows,
the new algorithm can be more than 50 times faster than TBO1MD. The significance
of using the “mini-blocks” is shown in Figure 7b, where we compare two versions
of our algorithms: the one using “mini-reflectors” and “mini-blocks” and the one
updating each column of the block from the right prior to its annihilation.

The blocking has more effect when m is larger. In fact, to compute 100-Hessenberg
form of a 6000 x 6000 matrix our algorithm needs only about 1/9 of the time needed
for computing the 1-Hessenberg form! One could use this fact to design an algo-
rithm for successive band removal: in order to reduce a matrix to 1-Hessenberg, it
is first very quickly reduced to e.g. 100-Hessenberg, and then using a similar pro-
cess this intermediate matrix is further reduced to a 1-Hessenberg form. However,
our attempts to design such an algorithm have failed so far: reduction from a 100-
Hessenberg form to a 1-Hessenberg form simply takes too long! In the symmetric
case, this scheme is successful; see [Bischof et al. 2000]. (See also [Karlsson 2011].)

5.2 Reduction to the staircase form

We ran a number of numerical tests to demonstrate the efficiency of the Algorithm
9 compared to the Algorithm 8. Both algorithms used the same SLICOT routine
MB030Y for RRDs; this routine implements a blocked rank-revealing QR algorithm
using the Businger-Golub pivoting. We randomly generated systems (A B) of
various orders and ran the staircase reduction algorithms. Figure 8 shows that the
new algorithm performs up to 19 times faster than the original one. (The timings
for the new algorithm include both the reduction to the controller—Hessenberg form
and the subsequent transformation into the staircase form.)

5.3 Evaluation of the transfer function

Extensive numerical testing was performed for random systems with various values
of n and m; in our tests we set p = m. We have compared the SLICOT routine
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Fig. 8: The staircase reduction: comparison of Algorithm 9 and ABOIND from SLICOT .

TBO5AD to our new blocked CPU algorithm for transfer function computation, using
r = 1000 random complex shifts. The routines were executed as follows:

our routines. CPU implementation of the reduction to the controller Hessenberg
form was executed once followed by 1000 executions of our blocked CPU algorithm
for computing G(o);

SLICOT routine TBO5AD. at first the routine TBOSAD was executed with the pa-
rameter INITIA=’G’, indicating that the matrix A is a general matrix, and without
balancing and eigenvalues calculations (parameter BALEIG="N’). This was followed
by 999 executions of TBOSAD with INITIA="H’ indicating that the matrix A is in
the upper Hessenberg form, which is computed using DGEHRD from LAPACK.
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Fig. 9: Comparisons of the new transfer function algorithm and TBO5AD from SLICOT .

The block size in our CPU algorithm was set to n, = 64, which was in most
cases the optimal block size for our routine. The results presented in Figure 9a
confirm that our block algorithm for evaluating the transfer function is generally
faster than the corresponding SLICOT routine TBO5AD. Figure 9b demonstrates
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that aggregation of shifts significantly contributes to the efficiency (we aggregated
ns = 256 shifts). Although its efficiency decreases as m increases, we can conclude
that, as the dimension n grows, the efficiency of our routines is increasing. We
finally note that obvious modifications apply for the cases of purely real shifts, or
complex conjugate pairs of shifts.

5.4 Results on a different machine

We run the same test on the different machine with 2 x Intel® Xeon™ E5620
(4 cores), running at 2.40GHz with 23.5 GB RAM and 12+12MB of Level 3 cache
memory, under Scientific Linuzx release 6.0. The compiler was Intel® Fortran
Composer 2011.4.191 with multithreaded Intel® Math Kernel Library 10.3. We
obtained slightly weaker speedups than previously shown. The new m-Hessenberg
algorithm was up to 32 times faster than TBO1MD from SLICOT, for m = 100.
When comparing the new staircase reduction algorithm to ABO1ND from SLICOT,
the best speedup factors were 8.7 for m = 1 and 16 for m = 20. The best achieved
speedup factors of the new blocked transfer function routine relative to TBO5SAD
from SLICOT were 3.7 for m = 20 and 10 for m = 1.
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